第三章 选修2-1第三章章末复习课
中国饮食文化选修课复习资料
第一章饮食文化1. 中国饮食文化情调优雅,氛围艺术化,主要表现在美器、命名、佳境三个方面。
2. 关于五谷主要有两种说法,主流的是稻(俗称水稻、大米)、黍(俗称黄米)、稷(又称粟,俗称小米)、麦(俗称小麦)、菽(俗称大豆)。
3. 在古代,甑是底面有孔的深腹盆,是用来蒸饭的器皿。
4. 依据中国饮食文化区位类型的不同,将中华食文化圈划分为12 个小圈。
第二章菜系1. 中国菜系的形成过程我国幅员辽阔,各地自然条件、人们生活习惯、经济文化发展状况和历史时期的不同,在饮食烹饪和菜肴品类方面,逐渐形成了不同的地方风味。
随着食生产的不断发展和食生活的逐渐丰富,由于金属炊具、尤其是铁质炊具较多地用于烹饪之后,菜的品种开始明显增多,菜的地方性也逐渐显现出来。
南北两大风味,自春秋战国时期开始出现。
《诗经》、《楚辞》、《山海经》等先秦诗文中对食物原料、食物品种及食风、食事的记述,已经表明了人们已开始注意到饮食的地域性差异。
汉至唐宋各期,曾出现了“胡食”、“素食”、“北食”、“南食”、“川味”等称呼。
因此,到唐宋时期已形成南食和北食两大风味派别。
宋代的时候,中国各地的饮食已经有了区别。
在当时,中国的口味主要有两种,北方人喜欢吃甜的,南方人喜欢吃咸的。
南宋时候,北方人大量南迁。
逐渐地,北方的饮食文化影响了南方。
在南方地区形成了自己的派系。
到了明代末期,中国饮食分为京式、苏式和广式。
京式偏咸,苏式、广式偏甜。
到清末初期,鲁菜、苏(淮皖)菜、粤菜、川菜已成为我国最具影响的地方菜。
民国开始,中国各地的文化有了相当大的发展。
苏式菜系分为苏菜、浙菜和徽菜。
广式菜系分为粤菜、闽菜,川式菜系分为川菜和湘菜。
因为川、鲁、苏、粤四大菜系形成历史较早,后来,浙、闽、湘、徽等地方2. 八大菜系中,苏菜和浙菜同为“南食”的两大台柱。
3. 佛跳墙是闽菜的特色菜。
4. 我国第一位典籍留名的职业厨师彭铿,又名彭祖。
彭祖制作野鸡羹供帝尧食用,其故乡被封为大彭国,亦即今天的徐州。
高中数学复习选修2-3 第一章章末总结 阶段复习课(一)
3. 的定义解释
是从Cmnn个 不Cnn同m元素中取出m个元素拼成一组,在从n个不同
元素中取出m个元素的同时,n个元素中剩余的n-m个元素就自
然C形mn 成了一组,所以 与 是相对应的,所以两数相等.
Cmn
Cnm n
【辨析】
1.组合与组合数的区别
组合与组合数是两个不同的概念,一个组合是由不同元素合成的一组数,组合
【辨析】
1.排列的概念 排列问题是针对不同元素的排列,若问题中允许元素重复,则不是排列问题. 2.排列与排列数的区别 排列与排列数是两个不同的概念,一个排列是按一定顺序排列的一列数,排列 数是所有不同排列的个数,是一个数.
三、组合 1.组合与组合数
概念
组合,组合数
一般地,从n个不同元素中取出m个元素合成一组, 叫做从n个不同元素中取出m个元素的一个组合, 所有不同组合的个数,叫做从n个不同元素中取 出m个元素的组合数.
各类方案之间是互斥的、 各步之间是关联的、相
并列的、独立的
互依存的
二、排列 1.排列与排列数
排列,排列数
排列 概念
一般地,从n个不同元素中取出m(m≤n)个元素, 按照一定的顺序排成一列,叫做从n个不同元素 中取出m个元素的一个排列 从n个不同元素中取出m(m≤n)个元素的所有不
排列数 同排列的个数,叫做从n个不同元素中取出m个
③④字a与C母knbaa的n,b次k是b数k一之种和“是符n号. ”,它可以是数、式及其他值.
⑤通项公式是对(a+b)n这个标准形式而言的,如(a-b)n的展 开式的通项公式是
Tk1 1 k Cnkankbk .
Ckn (n N*,k 0,1,2,,n)
(2)二项式定理的特征 ①二项展开式有n+1项,比二项式的次数大1. ②二项式系数与二项展开式系数是两个不同的概念. ③要注意逆用二项式定理来分析问题、解决问题.
2021_2022学年高中数学第3章圆锥曲线与方程章末复习课学案北师大版选修2_1
第3章 圆锥曲线与方程1.三种圆锥曲线的定义、标准方程、几何性质椭圆双曲线 抛物线定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹平面内与一个定点F和一条定直线l (l 不经过点F )距离相等的点的轨迹标准方程(以焦点在x轴为例) x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0) 关系式 a 2-b 2=c 2a 2+b 2=c 2图形封闭图形无限延展, 有渐近线无限延展, 无渐近线 对称性 对称中心为原点 无对称中心 两条对称轴一条对称轴顶点 四个两个一个离心率 0<e <1 e >1 e =1 准线方程 x =-p 2决定形 状的因素 e 决定扁平程度e 决定开口大小2p 决定 开口大小统一定义圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e2.椭圆的焦点三角形设P 为椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点(不在x 轴上),F 1,F 2为焦点且∠F 1PF 2=α,那么△PF 1F 2为焦点三角形(如图).(1)焦点三角形的面积S =b 2tan α2;(2)焦点三角形的周长L =2a +2c . 3.待定系数法求圆锥曲线标准方程 (1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位〞和“定量〞两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论.①可将椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B ),其中当1A >1B 时,焦点在x 轴上,当1A <1B时,焦点在y 轴上.②双曲线方程可设为Ax 2+By 2=1(AB <0),当1A <0时,焦点在y 轴上,当1B<0时,焦点在x轴上.(2)抛物线的标准方程对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y 2=ax (a ≠0)或x 2=ay (a ≠0). 4.双曲线及渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,把标准方程中的1换成0,即可得到两条渐近线的方程.(2)如果双曲线的渐近线为x a ±y b =0时,它的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).5.抛物线的焦点弦问题抛物线过焦点F 的弦长|AB |的一个重要结论. (1)y 2=2px (p >0)中,|AB |=x 1+x 2+p ; (2)y 2=-2px (p >0)中,|AB |=-x 1-x 2+p ; (3)x 2=2py (p >0)中,|AB |=y 1+y 2+p ; (4)x 2=-2py (p >0)中,|AB |=-y 1-y 2+p . 6.直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,那么有:①Δ>0⇔直线与圆锥曲线相交于两点; ②Δ=0⇔直线与圆锥曲线相切于一点; ③Δ<0⇔直线与圆锥曲线无交点.提醒:直线与双曲线、直线与抛物线有一个公共点应有两种情况:一是相切;二是直线与双曲线渐近线平行、直线与抛物线的对称轴平行.(2)直线l 截圆锥曲线所得的弦长|AB |=〔1+k 2〕〔x 1-x 2〕2或⎝ ⎛⎭⎪⎫1+1k 2〔y 1-y 2〕2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.圆锥曲线的定义及应用【例1】 (1)F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为点Q ,那么点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线(2)设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[思路探究] (1)借助角平分线的性质及相关曲线的定义求解;(2)要求|PF 1||PF 2|的值,可考虑利用椭圆的定义和△PF 1F 2为直角三角形的条件,求出|PF 1|和|PF 2|的值,但Rt △PF 1F 2的直角顶点不确定,故需要分类讨论.(1)A [延长垂线F 2Q 交F 1P 的延长线于点A ,如图. 那么△APF 2是等腰三角形,∴|PF 2|=|AP |, 从而|AF 1|=|AP |+|PF 1|=|PF 2|+|PF 1|=2a . ∵O 是F 1F 2的中点,Q 是AF 2的中点, ∴|OQ |=12|AF 1|=a .∴Q 点的轨迹是以原点O 为圆心,半径为a 的圆.] (2)解:由题意知,a =3,b =2,那么c 2=a 2-b 2=5,即c =5,由椭圆定义知|PF 1|+|PF 2|=6,|F 1F 2|=2 5.①假设∠PF 2F 1为直角,那么|PF 1|2=|F 1F 2|2+|PF 2|2,|PF 1|2-|PF 2|2=20,即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43.所以|PF 1||PF 2|=72.②假设∠F 1PF 2为直角,那么|F 1F 2|2=|PF 1|2+|PF 2|2.即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去.)所以|PF 1||PF 2|=2.运用定义解题主要表达在以下几个方面:(1)在求动点的轨迹方程时,如果动点所满足的几何条件符合某种圆锥曲线的定义,那么可直接根据圆锥曲线的方程写出所求的动点的轨迹方程;(2)涉及椭圆或双曲线上的点与两个焦点构成的三角形问题,常常运用圆锥曲线的定义并结合三角形中的正、余弦定理来解决;(3)在求有关抛物线的最值问题时,常利用定义,把抛物线上某一点到焦点的距离转化为到准线的距离,并结合图形的几何意义去解决.1.(1)点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过点M ,N 与圆C 相切的两直线相交于点P ,那么P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.(1)A [设PM ,PN 与⊙C 分别切于点E ,F ,如图,那么|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB | =4-2=2<|MN |,∴P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支(除去右顶点).∴所求轨迹方程为x 2-y 28=1(x >1).](2)解:抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如下图,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小,且最小值为|MD |=2-(-2)=4,所以|PM |+|PFP 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3.圆锥曲线简单性质的应用【例2】 (1)椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34y D .y =±34x (2)椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .[思路探究] (1)由椭圆和双曲线有公共的焦点可得m ,n 的等量关系,从而求出双曲线的渐近线方程;(2)写出AB 的直线方程,由F 1到直线AB 的距离为b7得出a ,c 的关系,求椭圆的离心率e .(1)D [由题意,3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2,令x 22m 2-y 23n 2=0,y 2=3n 22m 2x 2=316x 2,∴y =±34x ,即双曲线的渐近线方程是y =±34x .] (2)由A (-a ,0),B (0,b ),得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b=b ax ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2, 整理,得8c 2-14ac +5a 2=0,即8×⎝ ⎛⎭⎪⎫c a 2-14×c a +5=0,∴8e 2-14e +5=0.∴e =12或e=54(舍去). 综上可知,椭圆的离心率e =12.1.(变结论)在本例(1)条件不变的情况下,求该椭圆的离心率. [解] 题意可知,该椭圆的焦点在x 轴上,故 椭圆的离心率e =1-5n 23m2=1-5n 224n 2=11412.2.(变条件)在本例(2)条件换为“F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,〞求椭圆离心率的取值范围.[解] ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2. 由题意知椭圆上的点在该圆的外部, 设椭圆上任意一点P (x ,y ),到|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22. ∵0<e <1,∴0<e <22.1.本类问题主要有两种考察类型:(1)圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考察重点; (2)圆锥曲线的性质求其方程.2.对于求椭圆和双曲线的离心率,有两种方法: (1)代入法就是代入公式e =c a求离心率;(2)列方程法就是根据条件列出关于a ,b ,c 的关系式,然后把这个关系式整体转化为关于e 的方程,解方程即可求出e 的值.直线与圆锥曲线的位置关系2程是________.(2)向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). ①求点Q (x ,y )的轨迹C 的方程;②设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.8x -y -15=0 [(1)设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减,得(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,得k AB =8. 设直线方程为y =8x +b ,代入点(2,1)得b =-15; 故所求直线方程为y =8x -15.](2)①由题意得,a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0,即(x +3)(x -3)+3y ·3y =0, 化简得x 23+y 2=1,∴点Q 的轨迹C 的方程为x 23+y 2=1.②由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1.得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(ⅰ)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,那么x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,∴AP ⊥MN .那么-m +3k 2+13mk =-1k,即2m =3k 2+1, ②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ⅱ)当k =0时,|AM |=|AN |, ∴AP ⊥MN ,m 2<3k 2+1. 即为m 2<1,解得-1<m <1.综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2, 当k =0时,m 的取值范围是(-1,1).解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法:(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围.2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 2=λk 3?假设存在,求λ的值;假设不存在,请说明理由.[解] (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1.① 依题设知a =2c ,那么b 2=3c 2.②将②代入①,解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)由题意可设AB 的斜率为k , 那么直线AB 的方程为y =k (x -1). ③代入椭圆方程3x 2+4y 2=12,并整理,得 (4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),那么有 x 1+x 2=8k 24k 2+3,x 1x 2=4〔k 2-3〕4k 2+3. ④在方程③中令x =4,得M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.注意到A ,F ,B 三点共线,那么有k =k AF =k BF , 即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-〔x 1+x 2〕+1.⑤将④代入⑤,得k 1+k 2=2k -32·8k24k 2+3-24〔k 2-3〕4k 2+3-8k24k 2+3+1=2k -1. 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.函数与方程的思想【例4】 椭圆G :x 24+y 2=1.过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值. [解] (1)由得a =2,b =1,所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32.此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎪⎨⎪⎧y =k 〔x -m 〕,x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),那么 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1,即m 2k 2=k 2+1.所以|AB |=〔x 2-x 1〕2+〔y 2-y 1〕2=〔1+k 2〕[〔x 1+x 2〕2-4x 1x 2]=〔1+k 2〕⎣⎢⎡⎦⎥⎤64k 4m 2〔1+4k 2〕2-4〔4k 2m 2-4〕1+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2, 当且仅当m =±3时,|AB |=2, 所以|AB |的最大值为2.1.函数思想是解决最值问题最有利的武器.通常用建立目标函数的方法解有关圆锥曲线的最值问题.2.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.3.如下图,过抛物线y 2=2px 的顶点O 作两条互相垂直的弦交抛物线于A 、B 两点.(1)证明直线AB 过定点; (2)求△AOB 面积的最小值.[解] (1)证明:当直线AB 的斜率不存在时,AB ⊥x 轴,又OA ⊥OB ,∴△AOB 为等腰直角三角形,设A (x 0,y 0),那么y 20=2px 0,∴x 0=2p ,直线AB 过点(2p ,0).当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -a ),A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=2px ,y =k 〔x -a 〕,消去x 得ky 2-2py -2pak =0,那么y 1y 2=-2pa .又OA ⊥OB .∴y 1y 2=-x 1x 2.由方程组消去y ,得k 2x 2-(2k 2a +2p )x +k 2a 2=0, 那么x 1·x 2=a 2.因此,a 2=2pa .∴a =2p ..下载后可自行编辑修改,页脚下载后可删除。
2022-2021年《金版学案》数学选修1-2人教A版习题:章末复习课3
章末复习课[整合·网络构建][警示·易错提示]1.复数代数形式为z=a+b i,a、b∈R,应用复数相等的条件时,必需先将复数化成代数形式.2.复数表示各类数的前提条件是必需是代数形式z=a+b i(a、b∈R).z为纯虚数的条件为a=0且b≠0,留意虚数与纯虚数的区分.3.不要死记硬背复数运算的法则,复数加减可类比合并同类项,乘法可类比多项式乘法,除法可类比分母有理化.4.a2≥0是在实数范围内的性质,在复数范围内z2≥0不肯定成立,|z2|≠z2.5.复数与平面对量相联系时,必需是以原点为始点的向量.6.不全为实数的两个复数不能比较大小.7.复平面的虚轴包括原点.专题一复数的概念解决与复数概念相关的问题时,复数问题实数化是求解的基本策略,“桥梁”是设z=x+y i(x,y∈R),依据是“两个复数相等的充要条件”.[例1](1)已知i是虚数单位,若(m+i)2=3-4i,则实数m的值为() A.-2B.±2C.±2D.2(2)满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数是________.解析:(1)(m+i)2=m2+2m i-1=3-4i,则⎩⎨⎧m2-1=3,2m=-4,所以m=-2.(2)⎩⎨⎧x2-2x-3=0,9y2-6x+1=0,所以⎩⎪⎨⎪⎧x=3或-1,y=13,所以点(x,y)为⎝⎛⎭⎪⎫3,13,⎝⎛⎭⎪⎫-1,13.答案:(1)A(2)2个归纳升华1.当复数的实部与虚部含有字母时,利用复数的有关概念进行分类争辩,分别确定什么状况下是实数、虚数、纯虚数.当x+y i没有说明x,y∈R时,也要分状况争辩.2.复数相等的充要条件,其实质是复数问题实数化,体现了转化与化归的思想.[变式训练] 设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 的值为( )A .2B .-2C .-12 D.12解析:1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=2-a +(2a +1)i5,由于该复数为纯虚数,所以2-a =0,且2a +1≠0,因此a =2.答案:A专题二 复数的四则运算及几何意义历年高考对复数的考查,主要集中在复数的运算,尤其是乘除运算上,娴熟把握复数的乘法法则和除法法则,生疏常见的结论是快速精确 求解的关键.复数的加法与减法运算有着明显的几何意义,因此有些问题的求解可结合加法与减法的几何意义进行.[例2] (1)设z =11+i +i +⎝⎛⎭⎪⎫1-i 1+i 2,则|z |=________. (2)在复平面内,复数z =2i1+i (i 为虚数单位)的共轭复数对应点为A ,点A关于原点O 的对称点为B ,求:①点A 所在的象限; ②向量AB →对应的复数.(1)解析:由于11+i+i =1-i 2+i =12+i2.⎝ ⎛⎭⎪⎫1-i 1+i 2=⎝ ⎛⎭⎪⎪⎫-2i 22=(-i)2=-1. 所以z =12+i 2-1=-12+i2.因此|z |= ⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫122=22.答案:22(2)解:①z =2i1+i =2i (1-i )(1+i )(1-i )=1+i ,所以z 的共轭复数=1-i , 所以点A (1,-1)位于第四象限. ②又点A ,B 关于原点O 对称.由于点B 的坐标为B (-1,1),则z B =-1+i所以向量AB →对应的复数为z B -z A =(-1+i)-(1-i)=-2+2i. 归纳升华复数代数形式的加、减、乘、除运算是本章的重点,在四则运算时,不要死记结论.对于复数代数形式的加、减、乘运算,要类比多项式的加、减、乘运算进行;对于复数代数形式的除法运算,要类比分式的分母有理化的方法进行.另外,在计算时也要留意下面结论的应用:(1)(a ±b )2=a 2±2ab +b 2.(2)(a +b )(a -b )=a 2-b 2. (3)(1±i)2=±2i.(4)1i =-i.(5)1+i 1-i=i ,1-i 1+i =-i.(6)a +b i =i(b -a i).[变式训练] (1)若a ,b ∈R ,i 是虚数单位,且a +(b -1)i =1+i ,则1+b ia i对应的点在( )A .第一象限B .其次象限C .第三象限D .第四象限(2)已知复数z 1=2-3i ,z 2=15-5i(2+i )2,则·z 2=________.解析:(1)由a +(b -1)i =1+i ,a ,b ∈R , 得a =1且b -1=1,所以a =1,且b =2. 因此1+b i a i =1+2i i =-i·(1+2i )(-i )·i =2-i.所以复数对应点(2,-1)在第四象限. (2)由z 1=2-3i ,则=2+3i又z 2=15-5i(2+i )2=15-5i 3+4i =(15-5i )(3-4i )(3+4i )(3-4i )=25-75i 25= 1-3i.故·z 2=(2+3i)·(1-3i)=2-6i +3i +9=11-3i. 答案:(1)D (2)11-3i 专题三 共轭复数与复数的模共轭复数与复数的模是复数中两个重要的概念,在解决有关复数问题时,除用共轭复数定义与模的计算公式解题外,也常用下列结论简化解题过程:(1)|z |=1⇔z =.(2)z ∈R ⇔=z .(3)z ≠0,z 为纯虚数⇔=-z .[例3] 已知z -1z +1为纯虚数,且(z +1)( +1)=|z |2,求复数z .解:由(z +1)( +1)=|z |2⇒z +z =-1.① 由于z -1z +1为纯虚数,所以z -1z +1+=0⇒z ·-1=0.②设z =a +b i(a ,b ∈R),代入①②得 a =-12,a 2+b 2=1.所以a =-12,b =±32.所以z =-12±32i.归纳升华 共轭复数的性质(1)在复平面上,两个共轭复数对应的点关于实轴对称.(2)实数的共轭复数是它本身,即z =z -⇔z ∈R ,利用这共性质可证明一个复数为实数.(3)若z ≠0且z +z -=0,则z 为纯虚数,利用这共性质,可证明一个复数为纯虚数.[变式训练] (1)设z =1+2i(1-i )2,则z 的共轭复数z -=________.(2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45解析:(1)z =1+2i(1-i )2=1+2i -2i=(1+2i )i 2=-1+i2, 所以z 的共轭复数z -=-1-i 2.(2)由于(3-4i)z =|4+3i|=5,所以z =53-4i =5(3+4i )(3-4i )(3+4i )=35+45i ,因此z 的虚部为45.答案:(1)-1-i2 (2)D专题四 数形结合思想复数的几何意义及复数加减运算的几何意义充分体现了数形结合这一重要的数学思想方法,即通过几何图形来争辩代数问题.娴熟把握复平面内的点、以原点为起点的平面对量和复数三者之间的对应关系,就能有效地利用数形转换来解决实际问题.[例4] 已知复数z 的模为1,求|z -1-2i|的最大值和最小值. 解:由于复数z 的模为1,所以z 在复平面上的对应点在以原点为圆心,1为半径的圆上.又|z -1-2i|=|z -(1+2i)|可以看成圆上的点Z 到点A (1,2)的距离,如图所示.所以|z -1-2i|min =|AB |=|OA |-|OB |=5-1, |z -1-2i|max =|AC |=|OA |+|OC |=5+1. 归纳升华1.复数的几何意义主要体现在以下三个方面: (1)复数z 与复平面内的点Z 及向量OZ →的一一对应关系; (2)复数的加减运算与向量的加减运算的对应关系; (3)复数z =z 0模的几何意义. 2.复数中数形结合的主要应用:(1)复数的加减运算与向量的加减运算的相互转化.(2)利用|z -z 0|推断复数所对应的点的轨迹及轨迹方程,也可以求|z |的最值. [变式训练] 设z ∈C ,且满足下列条件,在复平面内,复数z 对应的点Z 的集合是什么图形?(1)1<|z |<2; (2)|z -i|=1; (3)|z -1|=|z -1+i|.解:(1)设z =x +y i(x ,y ∈R),则|z |=x 2+y 2.由题意1<x 2+y 2<2,即1<x 2+y 2<4.所以复数z 对应的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆所夹的圆环,不包括边界.(2)依据模的几何意义,|z-i|=1表示复数z对应的点到复数i对应的点(0,1)的距离为1.所以满足|z-i|=1的点Z的集合为以(0,1)为圆心,以1为半径的圆.(3)依据模的几何意义,|z-1|表示复数z对应的点到复数1对应的点(1,0)的距离;|z-1+i|表示复数z对应的点到复数1-i对应的点(1,-1)的距离.由于这两个距离相等,所以|z-1|=|z-1+i|以点(1,0)和(1,-1)为端点的线段的垂直平分线.。
选修2-1数学课后习题答案(全)
新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+-- ()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径. 原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(31≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0; (3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}. 6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C ==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形, 利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b+=.因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =. 连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c .(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得 直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B)为圆心,以线段2OA (或1OA ) 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-. 3、(1)2213632x y +=; (2)2212516y x+=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=. 5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12, 12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁; (2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5, 因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49) 1、解:由点(,)M x y10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略. 4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得2x =±. 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12……③化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤ 将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥ 由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =所以236927b =-=. 于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF PM d ⎧⎫==⎨⎬⎩⎭由此得 12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,.4、解:如图,由已知,得(0,3)E -,(4,0)F 因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''. 直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==. 所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=, 所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a -=.解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =.所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k-=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =; 3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p .设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32p x =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k ,OA k=所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线. 2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-=因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a +=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上.而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A的坐标为11(,)x y,点B的坐标为22(,)x y,点M的坐标为(,)x y.并设经过点M的直线l的方程为1(2)y k x-=-,即12y kx k=+-.把12y kx k=+-代入双曲线的方程2212yx-=,得222(2)2(12)(12)20k x k k x k------=2(20)k-≠. ……①所以,122(12)22x x k kxk+-==-由题意,得2(12)22k kk-=-,解得4k=当4k=时,方程①成为21456510x x-+=根的判别式25656512800∆=-⨯=>,方程①有实数解.所以,直线l的方程为47y x=-.10、解:设点C的坐标为(,)x y.由已知,得直线AC的斜率(5)5ACyk xx=≠-+直线BC的斜率(5)5BCyk xx=≠-由题意,得AC BCk k m=. 所以,(5)55y ym xx x⨯=≠±+-化简得,221(5)2525x yxm-=≠±当0m<时,点C的轨迹是椭圆(1)m≠-,或者圆(1)m=-,并除去两点(5,0),(5,0)-;当0m>时,点C的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x=上的点P的坐标为(,)x y,则24y x=.点P到直线3y x=+的距离d===当2y=时,d. 此时1x=,点P的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系.设隧道顶部所在抛物线的方程为22x py=-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=.2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得a c +=所以 (1c +=+ c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=. 由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……②(第4题)12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3.练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=(第7题)PRS B CAQ O(第3题)所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =.9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-, 所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =- 所以2312CM ==,21312D N == 111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19. 11、31(,,3)22- 习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠∴ OB OC OA OC ⋅=⋅∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β相交,交角的余弦等于292247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++(第3题)222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅ 222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'=.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-. 因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos 2θ===sin θ=点O 到平面ABC 的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,D ,1(0,,0)2B,3(0,,0)2C,A . ∴3((4DO DA ⋅=-⋅=,184DO DA ⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题3.2 B 组(P113) 1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)N .。
2013-2014学年 高中数学 人教A版选修1-1 第三章 章末复习课
研一研·题型解法、解题更高效
又 a>3,∴a-3x2>0,即 f′(x)>0.
章末复习课
∴f(x)在(0,1]上单调递增. (3)当 a>3 时,f(x)在(0,1]上单调递增, ∴f(x)max=f(1)=a-1=1. ∴a=2 与 a>3 矛盾. 当 0≤a≤3 时,令 f′(x)=a-3x2=0,
本 讲 栏 目 开 关
解 函数的定义域为 R,其导函数为 f′(x)=3x2-3a.
由 f′(x)=0 可得 x=± a,列表讨论如下: x f′(x) f(x) (-∞, - a) + ↗ - a 0 极大值 (- a, a) - ↘ a 0 极小 值 ( a, +∞) + ↗
研一研·题型解法、解题更高效
章末复习课
3 由此可得, 函数在 x=- a处取得极大值 f(- a)=2+2a 2 ; 3 在 x= a处取得极小值 f( a)=2-2a 2 .
根据列表讨论,可作函数的草图(如图).
本 讲 栏 目 开 关
3 因为极大值 f(- a)=2+2a 2 >0,故当极小 3 值 f( a)=2-2a 2 <0,即 a>1 时,方程 x3-3ax+2=0 有三 3 个不同的实根;当极小值 f( a)=2-2a 2 >0,
3 27 解得 a= , 4
章末复习课
a =1. 3
当 a<0 时,f′(x)=a-3x2<0, ∴f(x)在(0,1]上单调递减,f(x)在(0,1]上无最大值. 3 27 综上,存在 a= ,使 f(x)在(0,1]上有最大值 1. 4
研一研·题型解法、解题更高效 题型二 转化与化归思想在导数中的应用 ex 例 2 设 f(x)= ,其中 a 为正实数. 1+ax2 4 (1)当 a= 时,求 f(x)的极值点; 3
人教课标版高中数学选修2-1:《常用逻辑用语章末复习》教案-新版
《常用逻辑用语章末复习》一、思维导图二、例题讲解1. 写出下列命题的否定,并判断其真假. (1)p :∀x ∈R ,x 2-x +14≥0; (2)q :所有的正方形都是矩形; (3)r :∃x 0∈R ,x 20+2x 0+2≤0; (4)s :至少有一个实数x 0,使x 30+1=0.答案:(1)p ⌝:∃x 0∈R ,x 20-x 0+14<0,假命题.(2)q ⌝:至少存在一个正方形不是矩形,假命题.(3) r ⌝:∀x ∈R ,x 2+2x +2>0,真命题.(4) s ⌝:∀x ∈R ,x 3+1≠0,假命题.解析:【知识点】含有一个量词的命题的否定. 【解题过程】运用含有一个量词的命题的否定的形式.点拨:命题的否定中,∀∃均要改变. 2. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围. 答案:m 的取值范围为[9,)+∞. 解析:【知识点】充分必要条件.【解题过程】由22210x x m -+-≤得()110m x m m -+>≤≤. 所以“q ⌝”:{}110A x x m x m m =∈>+<->R 或,. 由1123x --≤得210x -≤≤,所以“p ⌝”:{}102B x x x =∈><-R 或. 由p ⌝是q ⌝的必要而不充分条件知0129110.m B A m m m >⎧⎪⊃⇔-≤-⇒≥⎨⎪+≥⎩,,.点拨:充分必要条件与集合的包含之间的联系.3.已知命题p :方程x 2+mx +1=0有两个不等的负实数根;命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.答案:m 的取值范围为m ≥3或1<m ≤2. 解析:【知识点】复合命题的真假.【解题过程】由p 得:⎩⎨⎧Δ1=m 2-4>0,-m <0,则m >2.由q 得:Δ2=16(m -2)2-16=16(m 2-4m +3)<0,则1<m <3. 又∵“p 或q ”为真,“p 且q ”为假,∴p 与q 一真一假.①当p 真q 假时,⎩⎨⎧ m >2,m ≤1或m ≥3,解得m ≥3;②当p 假q 真时,⎩⎨⎧m ≤2,1<m <3,解得1<m ≤2.点拨:熟悉复合命题的真值表. 三、章末检测题简易逻辑用语章末测试一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题;其中真命题为( ) A.①② B.②③ C.①③ D.③④ 答案:C.解析:【知识点】四种命题的形式及命题的真假判断.【解题过程】①是相互的定义,正确.②不全等的三角形等底等高面积也可相等,错误.③原命题和逆否命题同真假,440q ∆=-≥,正确.④内角相等的三角形一定是在正三角形,错误. 点拨:熟悉四种命题的形式.2.已知p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( )条件 A.必要不充分 B.充分不必要 C.充要D.既不充分也不必要 答案:B.解析:【知识点】充分必要条件.【解题过程】p ⌝推出q ⌝,q ⌝推不出p ⌝,由原命题和逆否命题真假性相同,所以q 推出p ,p 推不出q .点拨:原命题和逆否命题真假性相同. 3.下列特称命题中真命题的个数是( )①,0x x ∃∈≤R ②至少有一个整数,它既不是合数,也不是素数③2{|}x x x x ∃∈是无理数,是无理数 A.0 B.1 C.2 D.3 答案:D.解析:【知识点】全称命题和特称命题真假性的判断【解题过程】①中取1x =-,正确;②中取1x =,正确;③中取1x =. 点拨:特称命题为真,只需找到一个即可.4.命题“对任意的32,10R x x x ∈-+≤”的否定是( ) A.不存在32,10R x x x ∈-+≤ B.存在32,10R x x x ∈-+≥ C.存在32,10R x x x ∃∈-+> D.对任意的32,10R x x x ∈-+≥ 答案:C.解析:【知识点】全称命题的否定.【解题过程】“对任意的32,10R x x x ∈-+≤”是全称命题,否定命题是“存在32,10R x x x ∃∈-+>”.点拨:全称命题的否定需要把任意改成存在. 5.与命题“若a M ∈则b M ∉”的等价的命题是( ) A.若a M ∉,则b M ∉ B.若b M ∈,则a M ∉ C.若a M ∉,则b M ∈ D.若b M ∉,则a M ∈ 答案:B.解析:【知识点】四种命题的形式.【解题过程】由原命题与逆否命题等价,即若b M ∈,则a M ∉. 点拨:原命题与逆否命题等价.6.已知直线m 、l 和平面α、β,则α⊥β的充分条件是( )A.m ⊥l ,m //α,l //βB.m ⊥l ,α∩β=m ,l ⊂αC.m //l ,m ⊥α,l ⊥βD.m //l ,l ⊥β,m ⊂α 答案:B.解析:【知识点】充分必要条件.【解题过程】A.考虑,,,//////m l m l γγαβγαβ⊂⊂⊥⇒;B.当,αβ任意相交时均可成立;C.推出//αβ. 点拨:熟悉点线面的位置关系.7.如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[3.27]3=,[0.6]0=[]0.60=.那么“[][]x y =”是“||1x y -<”的( )条件A.充分而不必要B.必要而不充分C.充分必要D.既不充分也不必要 答案:A.解析:【知识点】充分必要条件.【解题过程】[][]11||1x y x y x y =⇒-<-<⇒-<,充分性成立.取 1.9, 2.1x y ==,必要性不成立. 点拨:读懂新定义. 8.设a ∈R ,则1a >是11a<的( )条件 A 、充分但不必要 B 、必要但不充分 C 、充要D 、既不充分也不必要 答案:A.解析:【知识点】充分必要条件. 【解题过程】1101a a a <⇒<>或,所以1a >是11a<的充分不必要条件.点拨:用集合的角度理解充分性和必要性.9.命题“原函数与反函数的图象关于y x =对称”的否定是( ) A.原函数与反函数的图象关于y x =-对称 B.原函数不与反函数的图象关于y x =对称C.存在一个原函数与反函数的图象不关于y x =对称D.存在原函数与反函数的图象关于y x =对称 答案:C.解析:【知识点】全称命题的否定.【解题过程】题目是对所有的函数都成立,在否定时要改成存在,即“存在一个原函数与反函数的图象不关于y x =对称”. 点拨:全称命题的否定是特称命题. 10.已知条件甲:()0b b a -≤;乙:1ab≥,那么条件甲是条件乙的( ) A.充分且必要条件 B.充分不必要条件 C.必要不充分条件 D.不充分也不必要条件 答案:C.解析:【知识点】充分必要条件.【解题过程】甲中0b =满足()0b b a -≤,但是乙没有意义,充分性不具备,1()00ab b a b b≤⇔-≤≠且,所以乙能推出甲,必要性具备. 点拨:用集合的角度理解充分性和必要性.11.“a =1”是“函数f (x )=|x -a |在区间[1,)+∞上为增函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案:A.解析:【知识点】 充分必要条件.【解题过程】a =1时,()|1|f x x =-在[1,)+∞单增;函数f (x )=|x -a |在区间[1,)+∞上为增函数,则1a ≤,所以选A. 点拨:用集合的角度理解充分性和必要性.12.已知P ={x |x 2-4x +3≤0},Q ={x |y =x +1+3-x },则“x ∈P ”是“x ∈Q ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案:A.解析:【知识点】充分必要条件.【解题过程】[1,3],[13],P Q P Q ==-⊂,,所以选A. 点拨:用集合的角度理解充分性和必要性.二、填空题:(本大题4个小题,每小题5分,共20分,各题答案必须填写在答题卷相应位置上)13.已知集合{|5}A x x =>,集合{|}x x a >,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 答案:(,5)-∞.解析:【知识点】充分必要条件.【解题过程】[5,),[,),,5A B a A B a =+∞=+∞⊂<由题意,得. 点拨:用集合的角度理解充分性和必要性. 14.下列“若p ,则q ”形式的命题中: ①若x E ∈或x F ∈,则x EF ∈;②若关于x 的不等式2230ax ax a -++>的解集为R ,则0a >;③若是有理数,则x 是无理数 ④若=90C ∠︒,则ABC ∆是直角三角形 满足p 是q 的充分而不必要条件的有 个. 答案:1.解析:【知识点】充分必要条件.【解题过程】①是充要条件;②是必要不充分条件;③是既不充分也不必要条件;④是充分不必要.点拨:用集合的角度理解充分性和必要性. 15.设{(,)|,},{(,)|20},{(,)|0}U x y x y A x y x y m B x y x y n =∈∈=-+>=+-≤R R ,那么点(2,3)()U P A C B ∈的充要条件是___________. 答案:15m n >-<且.解析:【知识点】充分必要条件.【解题过程】(2,3)()2230U P A C B m ∈⇔⋅-+>且230n +->,即15m n >-<且.点拨:用集合的角度理解充分性和必要性. 16.对于任意实数,,a b c ,给出下列命题: ① “a b >”是“11a b<”的必要条件; ② “||1||1a b <⎧⎨<⎩”是“||||2a b a b ++-<”的充要条件; ③“0a <”是“二次函数2()f x ax bx c =++的图象恒在x 轴下方”的必要条件; ④不等式22|2log |2|log |a a a a -<+成立的充分不必要条件是2a >. 以上命题中正确命题的序号是 (把所有正确命题的序号都填上). 答案:③④.解析:【知识点】充分必要条件.【解题过程】①取1,2;1,2a b a b ==-=-=,故错误;②是不充分条件∴<-++⇒<-<+⇒<-<-<+<-⇒<<-<<-∴<<4||||2||,2||22,2211,111||,1||b a b a b a b a b a b a b a b a③0,0a <∆>时,函数图像在x 轴上方和下方均有,反之,若函数图像在x 轴下方,开口定向下,故正确;④2220|2log |2||+|log |=2+|log |a a a a a a a >-<时,,所以2a >时,不等式成立,但是反过来不一定成立,故正确.点拨:用集合的角度理解充分性和必要性.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p :“函数2()4(0)f x ax x a =->在]2,(-∞上单调递减”,命题q :“R ∈∀x ,01)1(16162≠+--x a x ”,若命题“p 且q ”为真命题,求实数a 的取值范围. 答案:121≤<a 解析:【知识点】含有逻辑联结词的命题. 【解题过程】由命题p 为真知0<a ≤1; 由命题q 为真知0<∆,即41)1(2<-a .∴2321<<a 又“p 且q ”为真命题知,p 、q 都为真命题,∴a 的取值范围为121≤<a . 点拨:p 且q 为真,则p ,q 都为真.18.设命题P :22R x x x a ∀∈->“,”,命题Q :2,220R x x ax a ∃∈++-=“”; 如果“P 或Q ”为真,“P 且Q ”为假,求a 的取值范围. 答案:12-<<-a 或1≥a .解析:【知识点】含有逻辑联结词命题真假的判断,全称命题,特称命题. 【解题过程】由命题P 为真知1-<a ,由命题Q 为真知0≥∆,即08442≥-+a a .∴12≥-≤a a 或.又由“P 或Q ”为真,“P 且Q ”为假知,,P Q 必有一真一假, 若P 为真,Q 为假时,有1-<a 且12<<-a ,∴12-<<-a ; 若P 为假,Q 为真时,有1-≥a 且12≥-≤a a 或,∴1≥a . 综上可知,a 的取值范围为12-<<-a 或1≥a . 点拨:P 或Q 为真,P 且Q 为假,则,P Q 一真一假.19.已知c >0,设命题p :函数x y c =为减函数,命题q :当x ∈[12,2]时,函数f(x)=x +11x c>恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围. 答案:0<c ≤12或c ≥1解析:【知识点】函数的性质,命题的真假. 【解题过程】由命题p 为真知0<c <1,∵当x ∈[12,2]时有2≤x +1x ≤52.由命题q 为真知2>1c ,即c >12. 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假, ① p 为真,q 为假时,有0<c <1且c ≤12,∴0<c ≤12. ② p 为假,q 为真时,有c ≥1且c >12,∴c ≥1. 综上可知,c 的取值范围为0<c ≤12或c ≥1. 点拨:首先求解两个不等式.20.已知函数()|21||2|2f x x x x =-+++(x ∈R ). (1)求函数()f x 的最小值;(2)已知m ∈R ,命题:p 关于x 的不等式2()22f x m m ≥+-对任意x ∈R 恒成立; 命题:q 指数函数2(1)x y m =-是增函数.若“p q 或”为真,“p q 且”为假,求实数m 的取值范围.答案:(1)函数()f x 的最小值为1;(2)2123>≤≤--<m m m 或或. 解析:【知识点】充分、必要条件.【解题过程】(1)当2-≤x 时,11)(≥--=x x f ; 当21≥x 时,2715)(≥+=x x f ;当212<<-x 时,)27,1(3)(∈+=x x f ;∴函数()f x 的最小值为1. (2)若命题p 为真,则0322≤-+m m ,∴13≤≤-m ; 若命题q 为真,则112>-m ,∴22>-<m m 或; 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假:① p 为真,q 为假时,有13≤≤-m 且22≤≤-m ,∴12≤≤-m . ② p 为假,q 为真时,有13>-<m m 或且22>-<m m 或,∴23>-<m m 或.综上可知,实数m 的取值范围为2123>≤≤--<m m m 或或. 点拨:首先求解两个不等式.21.已知{}2|8200P x x x =--≤,{}|1S x x m =-≤.(1)是否存在实数m ,使x P ∈是x S ∈的充要条件.若存在,求出m 的范围.(2)是否存在实数m ,使x P ∈是x S ∈的充分条件.若存在,求出m 的范围.(3)是否存在实数m ,使x P ∈是x S ∈的必要条件.若存在,求出m 的范围. 答案:(1)m 不存在;(2)m ≥9;(3)m ≤3. 解析:【知识点】充分、必要条件.【解题过程】P ={x |-2≤x ≤10},当0m ≥时,S ={x |1-m ≤x ≤m +1},当m <0,S =∅.(1)若存在实数m ,使x ∈P 是x ∈S 的充要条件,则S =P . ∴⎩⎨⎧1-m =-21+m =10∴m 不存在. (2) 若存在实数m ,使x ∈P 是x ∈S 的充分条件,则P S ⊆. ∴不同时取等号)且(10121≥+-≤-m m ,∴m ≥9.(3)若存在实数m ,使x ∈P 是x ∈S 的必要条件,则S ⊆P . 当m <0时满足条件.当m ≥0时应有⎩⎨⎧ m +1≥1-m1-m ≥-2m +1≤10,解之得0≤m ≤3.综上得,m ≤3时,x ∈P 是x ∈S 的必要条件.点拨:首先求解两个不等式. 22.已知m ∈R ,对p :x 1和x 2是方程x 2-ax -2=0的两个根,不等式|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立;q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使“p 且q ”为真命题的实数m 的取值范围. 答案:(4,8]解析:【知识点】p 且q ,解不等式,函数零点.【解题过程】由题设知x 1+x 2=a ,x 1x 2=-2, ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8.a ∈[1,2]时,a 2+8的最小值为3,要使|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立,只需|m-5|≤3,即2≤m≤8.由已知,得f(x)=3x2+2mx+m+43=0的判别式Δ=4m2-12(m+43)=4m2-12m-16>0,得m<-1或m>4.综上,要使“p且q”为真命题,只需p真q真,即2814mm m≤≤⎧⎨<->⎩或,解得实数m的取值范围是(4,8] . 点拨:巧用韦达定理.。
章末复习课--高中化学选修市公开课一等奖课件名师大赛获奖课件
专 题 ·总 结 对 练 知 识 ·网 络 构 建
24
4.如图所示,a、b 是石墨电极,通电一段时间后,b 极附近溶 液显红色。下列说法正确的是( )
返 首 页
专 题 ·总 结 对 练 知 识 ·网 络 构 建
25
A.X 极是电源负极,Y 极是电源正极 B.a 极上的电极反应是 2Cl--2e-===Cl2↑ C.电解过程中 CuSO4 溶液的 pH 逐渐增大 D.b 极上产生 2.24 L(标准状况下)气体时,Pt 极上有 6.4 g Cu 析出
返 首 页
专 题 ·总 结 对 练 知 识 ·网 络 构 建
33
D [A 对:原电池工作时,Li+向正极移动,则 a 为正极,正极 上发生还原反应,a 极发生的电极反应有 S8+2Li++2e-===Li2S8、 3Li2S8+2Li++2e-===4Li2S6、2Li2S6+2Li++2e-===3Li2S4、Li2S4 +2Li++2e-===2Li2S2 等。
A.负极反应式为 Mg-2e-===Mg2+ B.正极反应式为 Ag++e-===Ag C.电池放电时 Cl-由正极向负极迁移 D.负极会发生副反应 Mg+2H2O===Mg(OH)2+H2↑
返 首 页
专 题 ·总 结 对 练 知 识 ·网 络 构 建
30
B [Mg-AgCl 电池的电极反应:负极 Mg-2e-===Mg2+,正极 2AgCl+2e-===2Ag+2Cl-,A 项正确,B 项错误。在原电池的电解 质溶液中,阳离子移向正极,阴离子移向负极,C 项正确。Mg 是活 泼金属,能和 H2O 发生反应生成 Mg(OH)2 和 H2,D 项正确。]
返 首 页
专 题 ·总 结 对 练 知 识 ·网 络 构 建
数学选修2-3期末复习
排列与组合●本章知识网络一、根本计数原理●1. 分类计数原理(加法原理)分类计数原理的定义:做一件事,完成它有n类方法。
在第一类方法中有m1种不同的方法;在第二类方法中,有m2种不同的方法;……;在第n类方法中,有m n中不同的方法,则完成这件事共有N=_______________种不同的方法。
.●2. 分步计数原理(乘法原理)分步计数原理的定义:做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法,……,做第n个步骤有m n中不同的方法,则完成这件事共有N=______________种不同的方法.二、排列●1. 排列的定义从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列●2. 排列数1〕排列数的定义:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用______表示2〕排列数公式mnA=_____________________________=___________________________特别的,nnA=_____________________= n!规定0!=______三、组合●1. 组合的定义从n个不同的元素中,任意取出m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合●2. 组合数1〕组合数的定义:从n个不同的元素中,任取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中任意取出m个元素的组合数,用______表示2〕组合数公式mnC=___________=_______________________=______________________特别的,0nC=_______=______3)组合数的性质mnC=___________ mnC1+=______+______解决排列组合问题的根本规律:分类相加,分步相乘,有序排列,无序组合,正难则反,先选后排●前测1.*Nn∈且55n<,则乘积(55)(56)(69)n n n---等于( )A.5569nnA--B.1569nA-C.1555nA-D.1469nA-2.710695847CCCC+++=_______3.*八层大楼一楼电梯上来3名乘客,他们到各自的一层下电梯,下电梯的不同方法有____种4.4人排成一排,其中甲和乙都站在边上的不同站法有_________种5.用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有_______种.6.从3台甲型和4台乙型电脑中任意取出3台,其中至少要甲型和乙型电脑各一台,则不同的取法有________种.7.*停车场有8个连在一起的车位,有4辆不同的车要停进去,且恰有3辆车连在一起,则不同的停放方法有_______种.●典型例题1.有4封不同的信和3个信筒.(1)把4封信都寄出,有__________种寄信方法;(2) 把4封信都寄出,且每个信筒不空,有________种寄信方法.2.对*种产品的6件不同正品和4件不同次品,(1) 一件一件的不放回抽取,连续取3次,至少取到1件次品的不同取法有______种.(2)一一进展测试,到区分出所有次品为止,假设所有次品恰好在第五次测试被全部发现,则这样的测试方法有_______种.3.*台小型晚会由6个节目组成,演出顺序有如下要求:(1) 节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有_____种.(2) 原有的节目单保持顺序不变,但删去第一个节目和最后一个节目,添加两个新节目,该台晚会排列应用题根本计数原理排列组合排列数公式组合数公式与性质组合应用题组合数公式与性质节目演出顺序的编排方案共有_____种.〔3〕节目甲、乙、丙必须连排〔顺序不固定〕,且和节目丁不相邻,该台晚会节目演出顺序的编排方案共有___种.4.9个篮球队中有3个强队,平均分三组.(1) 假设3个强队分别作为三个小组的种子队,不同的分组方法有_______种.(2) 假设恰有2个强队分在一组,不同的分组方法有_______种.5.用5种不同的颜色涂色,要求每小格涂一种颜色,有公共边的两格不同颜色,颜色可重复使用(1) 涂在"目〞字形的方格有________种不同的涂法(2) 涂在"田〞字形的方格有________种不同的涂法6.(1) 编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有_______种(2)*仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,假设每次显示其中三个孔,但相邻的两孔不能同时显示,则这个显示屏可以显示_______种不同的信号.7. 学校文艺队有10名会表演唱歌或跳舞的队员,其中会唱歌的有5人,会跳舞的有7人。
高中数学选修2-1课时作业3:章末复习课
章末复习课一、选择题1.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x0∉R,x20≠x0D.∃x0∈R,x20=x02.命题“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0(a,b∈R),则a2+b2≠0B.若a=b≠0(a,b∈R),则a2+b2≠0C.若a≠0且b≠0(a,b∈R),则a2+b2≠0D.若a≠0或b≠0(a,b∈R),则a2+b2≠03.有下列命题:①垂直于同一条直线的两个平面互相平行;②垂直于同一个平面的两个平面互相平行;③若直线m,n与同一个平面所成的角相等,则m,n互相平行;④若直线m,n是异面直线,则与m,n都相交的两条直线是异面直线.其中假命题的个数是()A.1B.2C.3D.44.已知直线l1:ax+y=1和直线l2:9x+ay=1,则“a+3=0”是“l1∥l2”的() A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件5.下列有关命题的叙述,①若p∨q为真命题,则p∧q为真命题;②“x>5”是“x2-4x-5>0”的充分不必要条件;③命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,使得x2+x-1≥0;④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”.其中错误的个数为()A.1B.2C.3D.46.下列命题中的真命题是()A.对于实数a、b、c,若a>b,则ac2>bc2B.x2>1是x>1的充分不必要条件C.∃α,β∈R,使得sin(α+β)=sinα+sinβ成立D .∀α,β∈R ,tan(α+β)=tan α+tan β1-tan α·tan β成立 二、填空题7.若命题p :常数列是等差数列,则綈p :____________________________________________.8.把“奇函数的图象关于原点对称”改写成“若p ,则q ”的形式为_____________________ __________________________.9.命题p :若ac =b ,则a ,b ,c 成等比数列,则命题p 的否命题是________命题.(填“真”或“假”)10.定义f (x )={x }({x }表示不小于x 的最小整数)为“取上整函数”,例如{1.2}=2,{4}=4.“取上整函数”在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照“取上整函数”进行计费的.以下关于“取上整函数”的性质是真命题的序号是________.(请写出所有真命题的序号)①f (2x )=2f (x );②若f (x )=f (y ),则x -y <1;③任意x ,y ∈R ,f (x +y )≤f (x )+f (y );④f (x )+f (x +12)=f (2x ); ⑤函数f (x )为奇函数.三、解答题11.求证:函数f (x )=x 2+|x +a |+1是偶函数的充要条件是a =0.12.已知命题p :“存在a >0,使函数f (x )=ax 2-4x 在(-∞,2]上单调递减”,命题q :“存在a ∈R ,使∀x ∈R,16x 2-16(a -1)x +1≠0”.若命题“p ∧q ”为真命题,求实数a 的取值范围.13.求实数a 的取值范围,使得关于x 的方程x 2+2(a -1)x +2a +6=0.(1)有两个都大于1的实数根;(2)至少有一个正实数根.[答案]精析1.D 2.D 3.C 4.C 5.B 6.C7.存在一个常数列,不是等差数列8.若一个函数是奇函数,则这个函数的图象关于原点对称9.假 10.②③11.证明 先证充分性,若a =0,则函数f (x )=x 2+|x +a |+1是偶函数. 因为a =0,所以f (x )=x 2+|x |+1(x ∈R ).因为f (-x )=(-x )2+|-x |+1=x 2+|x |+1,所以f (x )是偶函数.再证必要性,若f (x )=x 2+|x +a |+1是偶函数,则a =0.因为f (x )是偶函数,所以f (-x )=f (x ),即(-x )2+|-x +a |+1=x 2+|x +a |+1,从而|x -a |=|x +a |,即(x -a )2=(x +a )2,展开并整理,得ax =0.因为x ∈R ,所以a =0.12.解 若p 为真,则对称轴x =--42a =2a 在区间(-∞,2]的右侧,即2a≥2, ∴0<a ≤1.若q 为真,则方程16x 2-16(a -1)x +1=0无实数根,∴Δ=[-16(a -1)]2-4×16<0,∴12<a <32. ∵命题“p ∧q ”为真命题,∴命题p 、q 都为真,∴⎩⎪⎨⎪⎧ 0<a ≤1,12<a <32,∴12<a ≤1. 故实数a 的取值范围为(12,1]. 13.解 (1)方程x 2+2(a -1)x +2a +6=0的两实根x 1,x 2均大于1的充要条件是 ⎩⎨⎧ Δ≥0,x 1>1,x 2>1⇔⎩⎪⎨⎪⎧ Δ≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0⇔⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2>2,(x 1+x 2)-x 1x 2<1⇔⎩⎪⎨⎪⎧ 4(a -1)2-4(2a +6)≥0,-2(a -1)>2,-2(a -1)-(2a +6)<1⇔⎩⎪⎨⎪⎧a ≤-1或a ≥5,a <0,a >-54.∴-54<a ≤-1.(2)由题意①当一根为正,一根为负时,⎩⎪⎨⎪⎧ 2a +6<0,Δ>0,∴a <-3; ②当一根为正,一根为零时,⎩⎪⎨⎪⎧ 2a +6=0,-2(a -1)>0,Δ>0,∴a=-3;③当两根均为正时,⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2=-2(a -1)>0,x 1x 2=2a +6>0,∴⎩⎪⎨⎪⎧ a ≤-1或a ≥5,a <1,a >-3.即-3<a ≤-1.综上所述,方程至少有一个正实数根时,a 的取值范围是(-∞,-1].。
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
人教版数学选修2-1章 末 复 习 提 升 课03课
(3)假设在 AB 上存在点 E,使得 AC1∥平面 CEB1,设A→E=tA→B =(-3t,4t,0),其中 0≤t≤1.
则 E(3-3t,4t,0),B→1E=(3-3t,4t-4,-4),B→1C=(0,-4, -4).
又因为A→C1=mB→1E+nB→1C成立, 所以 m(3-3t)=-3,m(4t-4)-4n=0, -4m-4n=4,
解得 t=12. 所以在 AB 上存在点 E,使得 AC1∥平面 CEB1,这时点 E 为 AB 的中点.
专题三 利用空间向量求角 空间向量与空间角的关系 (1)设异面直线 l1,l2 的方向向量分别为 m1,m2,则 l1 与 l2 的夹角 θ 满足 cosθ=|cos〈m1,m2〉|. (2)设直线 l 的方向向量和平面 α 的法向量分别为 m,n,则 直线 l 与平面 α 的夹角 θ 满足 sinθ=|cos〈m,n〉|.
[例 3] (山东高考)在如图所示的圆台中,AC 是下底面圆 O 的直径,EF 是上底面圆 O′的直径,FB 是圆台的一条母线.
(1)已知 G,H 分别为 EC,FB 的中点,求证:GH∥平面 ABC; (2)已知 EF=FB=12AC=2 3,AB=BC,求二面角 F-BC-A 的余弦值.
【解析】 (1)证明:设 CF 的中点为 I,连接 GI,HI. 在△CEF 中,因为点 G,I 分别是 CE,CF 的中点, 所以 GI∥EF.又 EF∥OB,所以 GI∥OB. 在△CFB 中,因为 H,I 分别是 FB,CF 的中点, 所以 HI∥BC. 又 HI∩GI=I,BC∩OB=B, 所以平面 GHI∥平面 ABC. 因为 GH⊂平面 GHI, 所以 GH∥平面 ABC.
解析:(1)证明:在直三棱柱 ABC-A1B1C1 中,因为 AC=3, BC=4,AB=5,所以 AC,BC,CC1 两两垂直,以 C 为坐标原 点,直线 CA,CB,CC1 分别为 x 轴,y 轴,z 轴建立如图空间直 角坐标系 C-xyz.
新教材高考数学章末复习课含解析选修2
章末复习课[网络构建][核心归纳]1.对于导数的定义,必须明确定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与自变量的增量Δx的比的极限,即Δx→0时,ΔyΔx趋于确定的常数.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x =x0;P点坐标适合切线方程,如果切线不平行于y轴,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.4.函数的单调性与导数(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分条件.5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧邻近区域而言的.(2)连续函数f(x)在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a,b]上连续的函数f(x),在[a,b]上必有最大值与最小值;但在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值,例如:f(x)=x3,x∈(-1,1).(2)求函数最值的步骤一般地,求函数y=f(x)在[a,b]上最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是函数的最值.要点一导数的几何意义及应用导数几何意义的应用,主要体现在与切线方程有关的问题上.利用导数的几何意义求切线方程的关键是弄清楚所给的点是不是切点,常见类型有两种:一种是求“在某点处的切线方程”,此点一定为切点,先求导,再求斜率,进而求出切线方程;另一种是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-x1).①又已知y1=f(x1)②由①②求出x 1,y 1的值,即求出了过点P (x 0,y 0)的切线方程.切线问题是高考的热点内容之一,在高考试题中既有选择题、填空题,也有综合性大题,难度一般为中等.【例1】 (1)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1)) 处的切线为l ,则l 在y 轴上的截距为________.(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 (1)由题意可知f ′(x )=a -1x,所以f ′(1)=a -1,因为f (1)=a ,所以切点坐标为(1,a ),所以切线l 的方程为y -a =(a -1)(x -1),即y =(a -1)x +1. 令x =0,得y =1,即直线l 在y 轴上的截距为1.(2)由y ′=e x,知曲线y =e x在点(0,1)处的切线斜率k 1=e 0=1. 设P (m ,n ),又y =1x (x >0)的导数y ′=-1x2,曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2.依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1). 答案 (1)1 (2)(1,1)【训练1】 曲线f (x )=exx -1在x =0处的切线方程为________.解析 f ′(x )=e x(x -1)-e x(x -1)2=e x(x -2)(x -1)2,所以曲线在x =0处的切线斜率为k =f ′(0)=-2,又f (0)=-1,则所求的切线方程为y +1=-2x ,即2x +y +1=0. 答案 2x +y +1=0要点二 应用导数求函数的单调区间在区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在区间(a ,b )内单调递增;在区间(a ,b )内,如果f ′(x )<0,那么函数y =f (x )在区间(a ,b )内单调递减.【例2】 已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性.解 由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2,有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x )、f (x )的变化情况如下表:此时在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.【训练2】 已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=1x-a ,当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增;当a >0时,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.要点三 利用导数求函数的极值和最值 1.利用导数求函数极值的一般步骤 (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点.2.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以断定f (x )在该点处取得最大(最小)值, 这里(a ,b )也可以是(-∞,+∞).【例3】 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值. (1)求函数y =f (x )在x =-2时对应的切线方程; (2)求函数y =f (x )在[-2,1]上的最大值与最小值. 解 (1)f ′(x )=-3x 2+2ax +b , 又因为当x =-1,x =23时,函数分别取得极小值、极大值,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以23a =-1+23,-b 3=(-1)×23.于是a =-12,b =2,则f (x )=-x 3-12x 2+2x .当x =-2时,f (-2)=2,即切点为(-2,2). 又因为切线斜率k =f ′(-2)=-8, 所以,所求切线方程为y -2=-8(x +2), 即8x +y +14=0.(2)当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减 单调递增 单调递减因此,f (x )在[-2,1]上的最大值为2,最小值为-2.【训练3】 已知函数f (x )=x -a cos x ,x ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当a =-2时,求函数f (x )的极大值; (2)若函数f (x )有极大值,求实数a 的取值范围. 解 (1)因为a =-2,所以f ′(x )=1-2sin x . 令f ′(x )=0,得sin x =12.又x ∈⎝ ⎛⎭⎪⎫-π2,π2,所以x =π6. 又当x ∈⎝ ⎛⎭⎪⎫-π2,π6时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(x )<0,故当x =π6时,f (x )取得极大值,为f ⎝ ⎛⎭⎪⎫π6=π6+ 3.(2)f ′(x )=1+a sin x .当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,-1<sin x <1,即|sin x |<1. ①当|a |≤1时,|a sin x |<1,所以当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )>0恒成立,此时f (x )在⎝ ⎛⎭⎪⎫-π2,π2上没有极值. ②当a >1时,-a <a sin x <a ,-1∈(-a ,a ),所以1+a sin x =0,x ∈⎝ ⎛⎭⎪⎫-π2,π2有解,设为α.因为y =a sin x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增, 所以当x ∈⎝ ⎛⎭⎪⎫-π2,α时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫α,π2时,f ′(x )>0. 因此f (x )在⎝ ⎛⎭⎪⎫-π2,π2上没有极大值.③当a <-1时,a <a sin x <-a ,-1∈(a ,-a ),所以a sin x +1=0,x ∈⎝ ⎛⎭⎪⎫-π2,π2有解,设为β. 因为y =a sin x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减,所以当x ∈⎝ ⎛⎭⎪⎫-π2,β时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫β,π2时,f ′(x )<0.所以f (x )在x =β处取得极大值.综上所述,实数a 的取值范围是(-∞,-1). 要点四 导数与函数、不等式的综合应用利用导数研究函数是高考的必考内容,也是高考的重点、热点.考题利用导数作为工具,考查求函数的单调区间、函数的极值与最值,参数的取值范围等问题,若以选择题、填空题出现,以中低档题为主;若以解答题形式出现,则难度以中档以上为主,有时也以压轴题的形式出现.考查中常渗透函数、不等式等有关知识,综合性较强. 【例4】 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围;(3)若关于x 的方程f (x )=b 恰有两个不相等的实数根,求实数b 的取值范围. 解 (1)f (x )的定义域是(0,+∞),f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,故f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 故f (x )min =f ⎝ ⎛⎭⎪⎫1e =1e ln 1e =-1e .(2)∵f (x )=x ln x ,当x ≥1时,f (x )≥ax -1恒成立, 等价于x ln x ≥ax -1(x ≥1)恒成立, 等价于a ≤ln x +1x(x ≥1)恒成立,令g (x )=ln x +1x,则a ≤g (x )min (x ≥1)恒成立;∵g ′(x )=1x -1x 2=x -1x2,∴当x ≥1时,g ′(x )≥0,∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=1, ∴a ≤1,即实数a 的取值范围为(-∞,1].(3)若关于x 的方程f (x )=b 恰有两个不相等的实数根,即y =b 的图象和y =f (x )的图象在(0,+∞)上有两个不同的交点,由(1)知当0<x <1e时,f (x )<0,x >1时,f (x )>0.f (x )在⎝⎛⎭⎪⎫0,1e 上单调递减,在⎝⎛⎭⎪⎫1e ,+∞上单调递增,f (x )min =f ⎝ ⎛⎭⎪⎫1e=1eln 1e =-1e;故当-1e<b <0时,满足y =b 的图象和y =f (x )的图象在(0,+∞)上有两个不同的交点,即若关于x 的方程f (x )=b 恰有两个不相等的实数根,则-1e <b <0,即b ∈⎝ ⎛⎭⎪⎫-1e ,0. 【训练4】 已知函数f (x )=x 3-92x 2+6x -a .(1)若对任意实数x ,f ′(x )≥m 恒成立,求m 的最大值; (2)若函数f (x )恰有一个零点,求a 的取值范围. 解 (1)f ′(x )=3x 2-9x +6=3⎝ ⎛⎭⎪⎫x -322-34≥-34,由f ′(x )≥m 恒成立,可得m ≤-34,即m 的最大值为-34.(2)f ′(x )=3x 2-9x +6=3(x -2)(x -1), 由f ′(x )>0⇒x >2或x <1,由f ′(x )<0⇒1<x <2,∴f (x )在(-∞,1)和(2,+∞)上单调递增,在(1,2)上单调递减, ∴f (x )极大值=f (1)=52-a ,f (x )极小值=f (2)=2-a .∵f (x )恰有一个零点,∴52-a <0或2-a >0,即a <2或a >52,所以a 的取值范围为(-∞,2)∪⎝ ⎛⎭⎪⎫52,+∞.。
黑龙江省绥化市第九中学高二理科新人教A版选修2-1第三章空间向量与立体几何导学案
⿊龙江省绥化市第九中学⾼⼆理科新⼈教A版选修2-1第三章空间向量与⽴体⼏何导学案1. 理解空间向量的概念,掌握其表⽰⽅法;2. 会⽤图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.8486 复习1:平⾯向量基本概念:具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量.叫相反向量, a的相反向量记着 .叫相等向量. 向量的表⽰⽅法有,,和共三种⽅法.复习2:平⾯向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有法则和法则.2. 实数与向量的积:实数λ与向量a 的积是⼀个量,记作,其长度和⽅向规定如下: (1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成⽴吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb⼆、新课导学※学习探究探究任务⼀:空间向量的相关概念问题:什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表⽰?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同⼀平⾯内,变为OB =, AB = ,试试:1. 分别⽤平⾏四边形法则和三⾓形法则求,.a b a b +-.2. 点C 在线段AB 上,且52AC CB =,则AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※典型例题例 1 已知平⾏六⾯体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量:AB BC + ⑴;'AB AD AA ++⑵;1'2AB AD CC ++ ⑶1(')2AB AD AA ++ ⑷.变式:在上图中,⽤',,AB AD AA 表⽰'',AC BD 和'DB.⼩结:空间向量加法的运算要注意:⾸尾相接的若⼲向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若⼲向量之和时,可通过平移使它们转化为⾸尾相接的向量.. b1. 掌握空间向量的数乘运算律,能进⾏简单的代数式化简;2. 理解共线向量定理和共⾯向量定理及它们的推论;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.⼀、课前准备(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5(32a b - )+4(23b a -);⑵ ()()63a b c a b c -+--+- .复习2:在平⾯上,什么叫做两个向量平⾏?在平⾯上有两个向量,a b ,若b 是⾮零向量,则a与b平⾏的充要条件是⼆、新课导学※学习探究探究任务⼀:空间向量的共线问题:空间任意两个向量有⼏种位置关系?如何判定它们的位置关系?新知:空间向量的共线:1. 如果表⽰空间向量的所在的直线互相或,则这些向量叫共线向量,也叫平⾏向量.2. 空间向量共线:定理:对空间任意两个向量,a b (0b ≠ ), //a b的充要条件是存在唯⼀实数λ,使得推论:如图,l 为经过已知点A 且平⾏于已知⾮零向量的直线,对空间的任意⼀点O ,点P 在直线l 上的充要条件是试试:已知5,28,AB a b BC a b =+=-+()3CD a b =-,求证: A,B,C 三点共线.反思:充分理解两个向量,a b共线向量的充要条件中的0b ≠,注意零向量与任何向量共线.※典型例题例 1 已知直线AB ,点O 是直线AB 外⼀点,若OP xOA yOB =+,且x +y =1,试判断A,B,P 三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外⼀点,若12OP OA tOB =+,那么t =例2 已知平⾏六⾯体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对⾓线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试⽤向量,,a b c 表⽰向量',,,CA CA CM CG .变式1:已知长⽅体''''ABCD A B C D -,M 是对⾓线AC '中点,化简下列表达式:⑴ 'AA CB - ;⑵ '''''AB B C C D ++⑶ '111222AD AB A A +-D试试:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式111236OP OA OB OC =++,则点P 与 A,B,C共⾯吗?反思:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式OP xOA yOB zOC =++,且点P 与 A,B,C 共⾯,则x y z ++= .※典型例题例1 下列等式中,使M ,A ,B ,C 四点共⾯的个数是()①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++= . A. 1 B. 2 C. 3 D. 4变式:已知A,B,C 三点不共线,O 为平⾯ABC 外⼀点,若向量()17,53OP OA OB OC R λλ=++∈则P ,A,B,C 四点共⾯的条件是λ=例2 如图,已知平⾏四边形ABCD,过平⾯AC 外⼀点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F ,G ,H,并且使,OE OF OG OHk OA OB OC OD==== 求证:E,F ,G ,H 四点共⾯.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共⾯,E,F ,G ,H 分别是AB,BC,CD,AD 的中点,求证:E,F ,G ,H 四点共⾯.⼩结:空间向量的化简与平⾯向量的化简⼀样,加法注意向量的⾸尾相接,减法注意向量要共起点,并且要注意向量的⽅向.※动⼿试试练1. 已知,,A B C 三点不共线,对平⾯外任⼀点,满⾜条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否⼀定共⾯?练 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠,若//a b ,求实数.x三、总结提升※学习⼩结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. ※知识拓展平⾯向量仅限于研究平⾯图形在它所在的平⾯内的平移,⽽空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的⽅向移动相.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC是() A. 有相同起点的向量 B .等长向量 C .共⾯向量 D .不共⾯向量.2. 正⽅体''''ABCD A B C D -中,点E 是上底⾯''''A B C D 的中⼼,若''BB xAD yAB zAA =++, 则x =,y =,z = .3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP OA + OB .4. 平⾏六⾯体''''ABCD A B C D -, O 为A 1C 与B 1D的交点,则'1()3AB AD AA ++=AO .5. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为().A .0 B.1 C. 2D. 3 1. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠ ,若//a b ,求实数,x y .2.已知两个⾮零向量21,e e不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共⾯.A B C D F E G H§3.1.3.空间向量的数量积(1)1. 掌握空间向量夹⾓和模的概念及表⽰⽅法;2.复习1:什么是平⾯向量a 与b的数量积?复习2:在边长为1的正三⾓形⊿ABC 中,求AB BC ?⼆、新课导学※学习探究探究任务⼀:空间向量的数量积定义和性质问题夹⾓和空间线段的长度问题?新知:1) 两个向量的夹⾓的定义:已知两⾮零向量,a b在空间⼀点O ,作,OA a OB b ==,则AOB ∠做向量a 与b 的夹⾓,记作 .试试:⑴范围: ,a b ≤<>≤,a b ?? =0时,a b 与 ;,a b ?? =π时,a b 与⑵ ,,a b b a <>=<>成⽴吗?⑶,a b <>=,则称a 与b 互相垂直,记作 .2) 向量的数量积:已知向量,a b ,则叫做,a b作a b ? ,即a b ?=.规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵ 0a ?= (选0还是0 )⑶你能说出a b ?的⼏何意义吗? 3) 空间向量数量积的性质:(1)设单位向量e ,则||cos ,a e a a e ?=<>.(2)a b a b ⊥??=.= .4) 空间向量数量积运算律:(1)()()()a b a b a b λλλ?=?=?.(2)a b b a ?=?(交换律).(3)()a b c a b a c ?+=?+?(分配律反思:⑴ )()a b c a b c ??=??(吗?举例说明.⑵若a b a c ?=? ,则b c =吗?举例说明.⑶若0a b ?= ,则00a b ==或吗?为什么?※典型例题例1 ⽤向量⽅法证明:在平⾯上的⼀条直线,如果和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.变式1:⽤向量⽅法证明:已知:,m n 是平⾯α内的两条相交直线,直线l 与平⾯α的交点为B ,且,l m l n ⊥⊥. 求证:l α⊥.例2 如图,在空间四边形ABCD 中,2AB =,3BC =,BD =,3CD =,30ABD ∠= ,60ABC ∠= ,求AB 与CD 的夹⾓的余弦值变式:如图,在正三棱柱ABC-A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的⾓为()A. 60°B. 90°C. 105°D. 75°例3 如图,在平⾏四边形ABCD-A 1B 1C 1D 1中,4,3AB AD ==,'5AA =,90BAD ∠=?,'BAA ∠='DAA ∠=60°,求'AC 的长.※动⼿试试练1. 已知向量,a b满⾜1a = ,2b = ,3a b +=,则a b -= ____.练 2. 222,,22a b a b ==?=-已知, 则a b 与的夹⾓⼤⼩为_____. 三、总结提升※学习⼩结1..向量的数量积的定义和⼏何意义.2. 向量的数量积的性质和运算律的运⽤.※知识拓展向量给出了⼀种解决⽴体⼏何中证明垂直问题,求两条直线的夹⾓和线段长度的新⽅法.学习评价※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 下列命题中:①若0a b ?= ,则a ,b 中⾄少⼀个为0②若a 0≠ 且a b a c ?=? ,则b c =③()()a b c a b c ??=??④22(32)(32)94a b a b a b +?-=-正确有个数为()A. 0个B. 1个C. 2个D. 3个2. 已知1e 和2e 是两个单位向量,夹⾓为3π,则下⾯向量中与212e e -垂直的是()A. 12e e +B. 12e e -C. 1eD. 2e 3.已知ABC ?中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=?,则BC CA ?=4. 已知4a = ,2b =,且a 和b 不共线,当 a b λ+ 与a b λ-的夹⾓是锐⾓时,λ的取值范围是 .5. 已知向量,a b满⾜4a = ,2b = ,3a b -= ,则a b +=____课后作业:1. 已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.2. 已知线段AB 、BD 在平⾯α内,BD ⊥AB , 线段AC α⊥,如果AB =a ,BD =b ,AC =c ,求C 、D 间的距离.D B C§3.1.4 空间向量的正交分解及其坐标表⽰1. 掌握空间向量的正交分解及空间向量基本定理和坐标表⽰;2. 掌握空间向量的坐标运算的规律;⼀、课前准备(预习教材P 92-96找出疑惑之处)复习1:平⾯向量基本定理:对平⾯上的任意⼀个向量P ,,a b 是平⾯上两个向量,总是存在实数对(),x y ,使得向量P 可以⽤,a b 来表⽰,表达式为,其中,a b 叫做 . 若a b ⊥,则称向量P 正交分解.复习2:平⾯向量的坐标表⽰:平⾯直⾓坐标系中,分别取x 轴和y 轴上的向量,i j 作为基底,对平⾯上任意向量a ,有且只有⼀对实数x ,y ,使得a xi y j =+,,则称有序对(),x y 为向量a 的,即a = .⼆、新课导学※学习探究探究任务⼀:空间向量的正交分解问题:对空间的任意向量a ,能否⽤空间的⼏个向量唯⼀表⽰?如果能,那需要⼏个向量?这⼏个向量有何位置关系?新知:⑴空间向量的正交分解:空间的任意向量a,均可分解为不共⾯的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++ . 如果123,,a a a两两,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c ,对空间任⼀向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把的⼀个基底,,,a b c 都叫做基向量.反思:空间任意⼀个向量的基底有个.⑶单位正交分解:如果空间⼀个基底的三个基向量互相,长度都为,则这个基底叫做单位正交基⑷空间向量的坐标表⽰:给定⼀个空间直⾓坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正⽅向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB= .⑹向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++;⑵a -b =112233(,,)a b a b a b ---;⑶λa =123(,,)a a a λλλ()R λ∈;⑷a ·b =112233a b a b a b ++.试试: 1. 设23a i j k =-+,则向量a 的坐标为 .2. 若A (1,0,2),B (3,1,1)-,则AB= . 3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b ,a -b ,8a ,a ·b※典型例题例1 已知向量,,a b c 是空间的⼀个基底,从向量,,a b c 中选哪⼀个向量,⼀定可以与向量,p a b =+q a b =-构成空间的另⼀个基底?变式:已知O,A,B,C 为空间四点,且向量,,OA OB OC不构成空间的⼀个基底,那么点O,A,B,C 是否共⾯?⼩结:判定空间三个向量是否构成空间的⼀个基底的⽅法是:这三个向量⼀定不共⾯. 例2 如图,M,N 分别是四⾯体QABC 的边OA,BC 的中点,P ,Q 是MN 的三等分点,⽤,,OA OB OC表⽰OP 和OQ .变式:已知平⾏六⾯体''''ABCD A B C D -,点G是侧⾯''BB C C 的中⼼,且OA a =,',OC b OO c == ,试⽤向量,,a b c 表⽰下列向量: ⑴''',,;OB BA CA ⑵ OG .※动⼿试试练1. 已知()()()2,3,1,2,0,3,0,0,2a b c =-==,求:⑴()a b c ?+ ;⑵68a b c +- .练2. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,则点1D ,',AC AC 的坐标分别是,, .三、总结提升※学习⼩结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表⽰及其运算※知识拓展建⽴空间直⾓坐标系前,⼀定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 若{}a,,b c为空间向量的⼀组基底,则下列各项中,能构成基底的是()A.,,a a b a b +-B. ,,b a b a b +-C. ,,c a b a b +-D. 2,,a b a b a b ++-2. 设i 、j 、k 为空间直⾓坐标系O -xyz 中x 轴、y 轴、z 轴正⽅向的单位向量,且AB i j k =-+-,则点B 的坐标是 3. 在三棱锥OABC 中,G 是ABC ?的重⼼(三条中线的交点),选取,,OA OB OC 为基底,试⽤基底表⽰OG =4. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,E 为BB 1中点,则E 的坐标是 .5. 已知关于x 的⽅程()222350x t x t t --+++=有两个实根,c a tb =+ ,且()()1,1,3,1,0,2a b =-=-,当t =时,c的模取得最⼤值. 1. 已知()()3,5,7,2,4,3A B =-=-,求,,AB BA线段AB的中点坐标及线段AB 的长度.2. 已知,,a b c 是空间的⼀个正交基底,向量,,a b a b c +- 是另⼀组基底,若p 在,,a b c 的坐标是()1,2,3,求p 在,,a b a b c +-的坐标.§3.1.5空间向量运算的坐标表⽰1. 掌握空间向量的长度公式、夹⾓公式、两点间距离公式、中点坐标公式;※典型例题例1. 如图,在正⽅体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的⼀个四等分点,求1BE 与1DF 所成的⾓的余弦值.变式:如上图,在正⽅体1111A B C D A B C D -中,1111113A BB E D F ==,求1BE 与1DF 所成⾓的余弦值.例2. 如图,正⽅体1111ABCD A B C D -中,点E,F 分别是111,BB D B 的中点,求证:1EF DA ⊥.变式:如图,正⽅体1111ABCD A B C D -中,点M 是AB 的中点,求1DB 与CM 所成⾓的余弦值.1. 若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分⼜不不要条件2. 已知()()2,1,3,4,2,a b x =-=-,且a b ⊥,则x = .3. 已知()()1,0,0,0,1,1A B -,OA OB λ+ 与OB 的夹⾓为120°,则λ的值为()A. B. C. D. 4. 若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹⾓为钝⾓,则x 的取值范围是()A. 4x <-B. 40x -<<C. 04x <<D. 4x >5. 已知 ()()1,2,,,1,2a y b x =-=,且(2)//(2)a b a b +-,则()A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-1. 如图,正⽅体''''ABCD ABC D -棱长为a ,⑴求'',A B B C 的夹⾓;⑵求证:''A B AC ⊥.2. 如图,正⽅体1111ABCD A B C D -中,点M,N 分别为棱11,A A B B 的中点,求CM 和1D N 所成⾓的余弦值.§3.1 空间向量及其运算(练习)1. 熟练掌握空间向量的加法,减法,向量的数乘运算,向量的数量积运算及其坐标表⽰;a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.10. 设A 111(,,)x y z ,B 222(,,)x y z ,则AB = .11. 向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =;⑵a -b =;⑶λa =;⑷a ·b =※动⼿试试 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为()A .0 B. 1 C. 2 D. 3 2.在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC 是() A .有相同起点的向量 B .等长向量C .共⾯向量D .不共⾯向量3.已知a =(2,-1,3),b =(-1,4,-2), c =(7,5,λ),若a 、b 、c 三向量共⾯,则实数λ=() A. 627 B. 637 C. 647 D. 657 4.若a 、b 均为⾮零向量,则||||?=a b a b 是a 与b 共线的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分⼜不必要条件5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为() A .2 B .3C .4D .56. 32,2,a i j k b i j k =+-=-+ 则53a b ?= ()A .-15B .-5C .-3D .-1※典型例题例1 如图,空间四边形OABC 中,,OA a OB b == , OC c =,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .变式:如图,平⾏六⾯体''''ABCD A B C D -中,,AB a AD b ==,'AA c = ,点,,P M N 分别是'''',,CA CD C D 的中点,点Q 在'CA 上,且'41CQ QA =,⽤基底,,a b c表⽰下列向量:⑴ AP ; ⑵ AM ; ⑶ AN ; ⑷ AQ .例2 如图,在直三棱柱ABC —A 1B 1C 1中,190,1,2,6ABC CB CA ∠=?==,点M 是1CC 的中点,求证:1AM BA ⊥.变式:正三棱柱ABC —A 1B 1C 1的侧棱长为2,底⾯边长为1,点M 是BC 的中点,在直线1CC 上求⼀点N ,使得1MN AB ⊥※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB =b ,1CC = c ,则1A B =() A. +-a b c B. -+a b c C. -++a b c D.-+-a b c 2.,,m a m b ⊥⊥ (,n a b R λµλµλ=+∈向量且、0)µ≠则()A .//m nB . m 与n不平⾏也不垂直C. m n ⊥, D .以上情况都可能.3. 已知a +b +c =0 ,|a |=2,|b |=3,|c|则向量a 与b之间的夹⾓,a b <> 为()A .30°B .45°C .60°D .以上都不对4.已知()()1,1,0,1,0,2,a b==-且ka b + 与2a b - 互相垂直,则k 的值是()A. .1B. 15C. 35D. 755. 若A (m +1,n -1,3), B. (2m ,n ,m -2n ),C (m +3,n -3,9)三点共线,则m +n =如图,在棱长为1的正⽅体1111ABCD A B C D -中,点,,E F G 分别是11,,DD BD BB 的中点. ⑴求证:EF CF ⊥;⑵求EF 与CG 所成⾓的余弦;⑶求CE 的长.§3.2⽴体⼏何中的向量⽅法(1)1. 掌握直线的⽅向向量及平⾯的法向量的概念;⾏、垂直、夹⾓等⽴体⼏何问题.⼀、课前准备(预习教材P 102~ P 104,找出疑惑之处)复习1:可以确定⼀条直线;确定⼀个平⾯的⽅法有哪些?复习2:如何判定空间A ,B ,C 三点在⼀条直线上?复习3:设a =123(,,)a a a ,b =123(,,)b b b ,a ·b =⼆、新课导学※学习探究探究任务⼀:向量表⽰空间的点、直线、平⾯问题:怎样⽤向量来表⽰点、直线、平⾯在空间中的位置?新知:⑴点:在空间中,我们取⼀定点O 作为基点,那么空间中任意⼀点P 的位置就可以⽤向量OP来表⽰,我们把向量OP称为点P 的位置向量. ⑵直线:①直线的⽅向向量:和这条直线平⾏或共线的⾮零向量.②对于直线l 上的任⼀点P ,存在实数t ,使得AP t AB =,此⽅程称为直线的向量参数⽅程. ⑶平⾯:①空间中平⾯α的位置可以由α内两个不共线向量确定.对于平⾯α上的任⼀点P ,,a b是平⾯α内两个不共线向量,则存在有序实数对(,)x y ,使得OP x a y b =+ .②空间中平⾯α的位置还可以⽤垂直于平⾯的直线的⽅向向量表⽰空间中平⾯的位置.⑷平⾯的法向量:如果表⽰向量n的有向线段所在直线垂直于平⾯α,则称这个向量n垂直于平⾯α,记作n ⊥α,那么向量n叫做平⾯α的法向量.试试: .1.如果,a b 都是平⾯α的法向量,则,a b的关系 .2.向量n是平⾯α的法向量,向量a 是与平⾯α平⾏或在平⾯内,则n 与a的关系是 .反思:1. ⼀个平⾯的法向量是唯⼀的吗?2. 平⾯的法向量可以是零向量吗?⑸向量表⽰平⾏、垂直关系:设直线,l m 的⽅向向量分别为,a b,平⾯,αβ的法向量分别为,u v,则① l ∥m ?a ∥b a kb ?=② l ∥α?a u ⊥ 0a u ??=③α∥β?u ∥v .u kv ?=※典型例题例1 已知两点()()1,2,3,2,1,3A B --,求直线AB与坐标平⾯YOZ 的交点.变式:已知三点()()1,2,3,2,1,2,A B ()1,1,2P ,点Q 在OP 上运动(O 为坐标原点),求当QA QB ?取得最⼩值时,点Q 的坐标.⼩结:解决有关三点共线问题直接利⽤直线的参数⽅程即可.例2 ⽤向量⽅法证明两个平⾯平⾏的判定定理:⼀个平⾯内的两条相交直线与另⼀个平⾯平⾏,则这两个平⾯平⾏.变式:在空间直⾓坐标系中,已知()()()3,0,0,0,4,0,0,0,2A B C ,试求平⾯ABC 的⼀个法向量.⼩结:平⾯的法向量与平⾯内的任意向量都垂直.※动⼿试试练1. 设,a b分别是直线12,l l 的⽅向向量,判断直线12,l l 的位置关系:⑴ ()()1,2,2,2,3,2a b =-=-;⑵ ()()0,0,1,0,0,3a b ==.练2. 设,u v分别是平⾯,αβ的法向量,判断平⾯,αβ的位置关系:⑴ ()()1,2,2,2,4,4u v =-=--;⑵ ()()2,3,5,3,1,4u v =-=--.三、总结提升※学习⼩结1. 空间点,直线和平⾯的向量表⽰⽅法2. 平⾯的法向量求法和性质.※知识拓展:求平⾯的法向量步骤:⑴设平⾯的法向量为(,,)n x y z =;⑵找出(求出)平⾯内的两个不共线的向量的坐标;⑶根据法向量的定义建⽴关于,,x y z 的⽅程组;,即得法向量.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设()()2,1,2,6,3,6a b =--=--分别是直线12,l l 的⽅向向量,则直线12,l l 的位置关系是 .2. 设()()2,2,5,6,4,4u v =-=-分别是平⾯,αβ的法向量,则平⾯,αβ的位置关系是 .3. 已知n α⊥,下列说法错误的是()A. 若a α?,则n a ⊥B.若//a α,则n a ⊥C.若,m α⊥,则//n mD.若,m α⊥,则n m = 4.下列说法正确的是()A.平⾯的法向量是唯⼀确定的B.⼀条直线的⽅向向量是唯⼀确定的C.平⾯法向量和直线的⽅向向量⼀定不是零向量D.若m 是直线l 的⽅向向量,//l α,则//m α5. 已知()()1,0,1,0,3,1AB AC =-=-,能做平⾯ABC 的法向量的是()A. ()1,2,1B.11,,13??C.()1,0,0D. ()2,1,31. 在正⽅体1111ABCD A B C D -中,求证:1DB是平⾯1ACD 的⼀个法向量.2.已知()()2,2,1,4,5,3AB AC ==,求平⾯ABC 的⼀个法向量.§3.2⽴体⼏何中的向量⽅法(2)的⽴体⼏何问题;2. 掌握向量运算在⼏何中求两点间距离和求空间图形中的⾓度的计算⽅法.⼀、课前准备(预习教材P 105~ P 107,找出疑惑之处.复习1:已知1a b ?= ,1,2a b ==,且2m a b =+ ,求m .复习2:什么叫⼆⾯⾓?⼆⾯⾓的⼤⼩如何度量?⼆⾯⾓的范围是什么?⼆、新课导学※学习探究探究任务⼀:⽤向量求空间线段的长度问题:如何⽤向量⽅法求空间线段的长度?新知:⽤空间向量表⽰空间线段,然后利⽤公式a = 求出线段长度.试试:在长⽅体''''A B C DA B C D -中,已知'1,2,1AB BC CC ===,求'AC 的长.反思:⽤向量⽅法求线段的长度,关键在于把未知量⽤已知条件中的向量表⽰.※典型例题例1 如图,⼀个结晶体的形状为平⾏六⾯体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹⾓都是60°,那么以这个顶点为端点的晶体的对⾓线的长与棱长有什么关系?变式1:上题中平⾏六⾯体的对⾓线1BD 的长与棱长有什么关系?变式2:如果⼀个平⾏六⾯体的各条棱长都相等,并且以某⼀顶点为端点的各棱间的夹⾓都等于α, 那么由这个平⾏六⾯体的对⾓线的长可以确定棱长吗?探究任务⼆:⽤向量求空间图形中的⾓度例2 如图,甲站在⽔库底⾯上的点A 处,⼄站在⽔坝斜⾯上的点B 处.从A ,B 到直线l (库底与⽔坝的交线)的距离,AC BD 分别为,a b ,CD 的长为c ,AB 的长为d .求库底与⽔坝所成⼆⾯⾓的余弦值.变式:如图,60?的⼆⾯⾓的棱上有,A B 两点,直线,AC BD 分别在这个⼆⾯⾓的两个半平⾯内,且都垂直于,AB 已知4,6,8AB AC BD ===,求CD 的长.※动⼿试试练1. 如图,已知线段AB 在平⾯α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD∠= ,如果AB =a ,AC =BD =b ,求C 、D 间的距离.练2. 如图,M 、N 分别是棱长为1的正⽅体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异⾯直线MN 与'CD 所成的⾓.三、总结提升※学习⼩结 1. 求出空间线段的长度:⽤空间向量表⽰空间线段,然后利⽤公式a ; 2. 空间的⼆⾯⾓或异⾯直线的夹⾓,都可以转化为利⽤公式cos ,a ba b a b= 求解.※知识拓展解空间图形问题时,可以分为三步完成:(1)建⽴⽴体图形与空间向量的联系,⽤空间向量表⽰问题中涉及的点、直线、平⾯,把⽴体⼏何问题转化为向量问题(还常建⽴坐标系来辅助);(2)通过向量运算,研究点、直线、平⾯之间的位置关系以及它们之间距离和夹⾓等问题;“翻译”成相应的⼏何意义.※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 已知()()1,02,1,1,3A B -,则AB = .2. 已知1cos ,2a b =- ,则,a b 的夹⾓为 .3. 若M 、N 分别是棱长为1的正⽅体''''ABCD A B C D-的棱''',A B BB 的中点,那么直线,AM CN 所成的⾓的余弦为()C.35D.25 4.将锐⾓为60?边长为a 的菱形ABCD 沿较短的对⾓线折成60?的⼆⾯⾓,则,AC BD 间的距离是()A.32a C.34a 5.正⽅体'''A B C D AB C D -中棱长为a ,'13AM AC=,N 是'BB 的中点,则MN 为()1. 如图,正⽅体''''ABCD A B C D -的棱长为1, ,M N 分别是''',BB B C 的中点,求:⑴ ',MN CD 所成⾓的⼤⼩;⑵ ,MN AD 所成⾓的⼤⼩;⑶ AN 的长度.§3.2⽴体⼏何中的向量⽅法(3)C。
(完整版)高中数学课程安排
高中数学课程安排必修数学1(必修)第一章:(上)集合(中)函数及其表(下)函数的基本性质第二章:基本初等函数(I)第三章:函数的应用数学2(必修)第一章:空间几何体第二章:点直线平面第三章:直线和方程第四章:圆和方程数学3(必修)第一章:算法初步第二章:统计第三章:概率数学4(必修)第一章:三角函数(上、下)第二章:平面向量第三章:三角恒等变换数学5(必修)第一章:解三角形第二章:数列第三章:不等式选修文科选修1-1第一章:常用逻辑用语第二章:圆锥曲线第三章:导数及其应用选修1-2第一章:统计与案例第二章:推理与证明第三章:复数选修4-4坐标系与参数方程理科选修2-1第一章:常用逻辑用语第二章:圆锥曲线第三章:空间向量与立体几何选修2-2第一章:导数及其应用第二章:推理与证明第三章:复数选修2-3第一章:计数原理:第二章离散型随机变量选修4-1几何证明选讲选修4-4坐标系与参数方程选修4-5不等式选讲高三阶段复习时间规划表时间节点持续时间复习阶段重点目标8月初60天第一轮:梳理学习思路回顾以前学习过的知识,做到“知道自己学过什么”9月初10月20天第一轮:梳理知识点和知识体系(一)梳理高中阶段所有知识点,按照前一阶段确定的学习思路落实每一个知识点10月中11月60天(自主招生)有意参加自主招生的同学,需要做好准备高三第一学期学期末之前,知识结构至少达到高考考查要求;检验复习效果12月1月30天第一轮:梳理知识点和知识体系(二)形成自己完整的知识体系2月30天第一轮:高考压轴题提升难度的同时,巩固之前阶段的基本复习成果3月60天,高考一模第二轮:强化训练熟悉经典的解题方法,从解一道题升华到解一类题,从解一类题到看穿命题意图4月5月35天,高考二模第三轮:调整训练全真、模拟题训练,找感觉的同时全面订正错题,做的万无一失6月高考,准备充分,轻松应对。
各位,享受胜利的果实吧!高考数学最有效的复习方法怎么样的复习才是科学高效的复习方法?这是一个很多考生都普遍关心的问题,那么请问:高考复习的目的是什么?毫无疑问,当然是高考取得高分。
人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习(共24张PPT)教育课件
为 60°.
MN = AN - AM =1( AC + AD)-1 AB=1(q+r-p),
2
22
∴ MN ·AB=1(q+r-p)·p 2
=1(q·p+r·p-p2) 2
=1(a2cos 60°+a2cos 60°-a2)=0. 2
∴ MN ⊥ AB.即 MN⊥AB.
(2)求 MN 的长; 解由(1)可知 MN =1(q+r-p),
些
计
划
,
有
的
计
划
《
几
乎
不
去
做
或
者
做
了
坚
持
不
了
多
久
。
其
实 我
成
功
的
关
键
是
做
很
坚
持
。
上
帝
没
有
在
我 是
们
出
生
的
时
候
给
我
们
什
么
额
外
的
装
备
, 算
也
A.2,1 2
B.-1,1 32
C.-3,2
D.2,2
3、已知 P(-2,0,2),Q(-1,1,2),R(-3,0,4),设 a= PQ ,b= PR ,c= QR ,
若实数 k 使得 ka+b 与 c 垂直,则 k 的值为___2_____.
•
•
•
•
•
•
《
极
,
那有 就些 在人 于经 坚常 持做 。一
(1)证明 设C→A=a,C→B=b,CC→′=c,
根据题意,|a|=|b|=|c|且 a·b=b·c=c·a=0,
高中数学第三章空间向量与立体几何章末复习课件新人教B版选修2_1
α⊥β⇔μ⊥v⇔_μ_·_v_=__0_
l,m的夹角为θ
0≤θ≤π2,cos
|a·b| θ=_|_a_||_b_| _
l,α的夹角为θ
0≤θ≤π2, sin
|a·μ| θ=_|_a_||_μ_| _
|μ·v| α,β的夹角为θ 0≤θ≤π2, cos θ=__|μ__||v_|__
2.用坐标法解决立体几何问题 步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进行相关坐标的运算; (4)写出几何意义下的结论.
题型二 利用空间向量解决位置关系问题
例2 在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中 点,求证: (1)PC∥平面EBD;
(2)平面PBC⊥平面PCD.
反思感悟 (1)证明两条直线平行,只需证明这两条直线的方向向量是共线 向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②能够在平面内找到一个向量与已知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量 是共面向量.
线线平行 线面平行 面面平行 线线垂直 线面垂直
l∥m⇔a∥b⇔a=kb,k∈R l∥α⇔_a_⊥__μ_⇔_a_·_μ_=__0_
α∥β⇔μ∥v⇔_μ_=__k_v_,__k_∈__R_ l⊥m⇔_a_⊥__b__⇔_a_·_b_=__0_
l⊥α⇔a∥μ⇔a=kμ,k∈R
面面垂直 线线夹角 线面夹角 面面夹角
跟踪训练2 正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证: 平面AED⊥平面A1FD1.
题型三 利用空间向量求角
例3 如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点. (1)求点C到平面A1ABB1的距离;
高二数学选修2-1_空间向量与立体几何教材分析
空间向量与立体几何教材分析在必修2中,我们已经学习了空间中线面、面面平行与垂直的判定定理和性质定理,但必修2中没有证明空间中的距离,点点距、点线距、点面距等、空间中的角,包括异面直线所称的角、线面教、二面角,在必修2中也都只介绍了有关概念,以及很简单的求解题.为了能更好的解决空间中的几何元素的位置、距离、角度问题,教材在这里引入了空间向量.用空间向量处理某些几何问题,为我们提供新的视角,在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率.向量知识的引进,使我们能用代数的观点和方法解决立体几何问题,用计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度.本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面的位置关系的问题等内容.通过本章的学习,我们要体会向量方法在研究几何图形中的作用,进一步培养我们的空间想象能力.在空间向量的学习中,我们要注意类比、推广、特殊化、化归等思想方法的应用,充分利用空间向量与平面向量之间的内在联系,通过类比,将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关的内容相互沟通,又学习了类比、推广、特殊化、化归等思想方法,体会数学探索活动的基本规律,提高对向量的整体认识水平.空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的.在空间向量运算中,还要注意与数的运算的对比.另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行比较,对各自的优势以及面临问题时应当如何做出选择进行正确的分析.本章突出了用空间向量解决立体几何问题的基本思想.根据问题的特点,以适当的方式(例如构造基向量、建立空间直角坐标系)用空间向量表示空间图形中的点、线、面等元素,建立空间图形与空间向量的联系,然后通过空间向量的运算,研究相应元素之间的关系(平行、垂直、角和距离等),最后对运算结果的几何意义作出解释,从而解决立体几何的问题.教材还通过例题,引导学生对解决例题几何问题的三种方法(向量方法、解析法、综合法)进行了比较,分析各自的优势,因题而异作出适当的选择,从而提高综合运用数学知识解决问题的能力.《普通高中数学课程标准》对《空间向量与立体几何》内容的要求如下:(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程.②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.③掌握空间向量的线性运算及其坐标表示.④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(2)空间向量的应用①理解直线的方向向量与平面的法向量.②能用向量语言表述线线、线面、面面的垂直、平行关系.③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)(参见例1、例2、例3).④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用.通过一定的训练,我们应该达到以下意识和习惯:凡能用向量解决的立体几何问题尽可能用向量解决;另外在解题过程中必须写出规范的格式和必要的步骤,例如建立空间直角坐标系的表述、有关向量的坐标表示等.本章课时安排:3.1空间向量及其运算5课时;3.2立体几何中的向量方法5课时;章末复习课1课时.共11课时。
2020数学选修2-1人教B版新素养同步讲义:1.常用逻辑用语章末复习提升课
章末复习提升课1.全称量词与存在量词(1)全称量词与全称命题全称量词用符号“∀”表示.全称命题用符号简记为:∀x∈M,p(x).(2)存在量词与存在性命题存在量词用符号“∃”表示.存在性命题用符号简记为:∃x∈M,p(x).2.简单的逻辑联结词(1)用联结词“且”“或”“非”联结命题p和命题q,可得p∧q,p∨q,﹁p.(2)命题p∧q,p∨q,﹁p的真假判断.p∧q中p、q有一假为假,p∨q有一真为真,p与﹁p必定是一真一假.3.充分条件与必要条件(1)如果p⇒q,那么称p是q的充分条件,q是p的必要条件.(2)分类①充要条件:p⇒q且q⇒p,记作p⇔q;②充分不必要条件:p⇒q,q⇒/p;③必要不充分条件:q⇒p,p⇒/q;④既不充分也不必要条件:p⇒/q且q⇒/p.4.四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.5.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x∈M,﹁p(x)∃x∈M,p(x)∀x∈M,﹁p(x)1.否命题和命题的否定是两个不同的概念(1)否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造一个新的命题;(2)命题的否定只是否定命题的结论,常用于反证法.若命题为:“若p,则q”,则该命题的否命题是“若﹁p,则﹁q”;命题的否定为“若p,则﹁q”.2.四种命题的三种关系:互否关系,互逆关系,互为逆否关系,只有互为逆否关系的命题是等价命题.3.判断p与q之间的关系时,要注意p与q之间关系的方向性,充分条件与必要条件方向正好相反,不要混淆.如“a=0”是“a·b=0”的充分不必要条件,“a·b=0”是“a=0”的必要不充分条件.4.注意常见逻辑联结词的否定一些常见逻辑联结词的否定要记住,如:“都是”的否定“不都是”,“全是”的否定“不全是”,“至少有一个”的否定“一个也没有”,“至多有一个”的否定“至少有两个”.全称命题与存在性命题全称命题与存在性命题是新课标新增内容,从形式上看,主要以选择题和填空题的形式出现.知识方法:全称命题“∀x∈M,p(x)”强调命题的一般性,因此,(1)要证明它是真命题,需对集合M中每一个元素x,证明p(x)成立;(2)要判断它是假命题,只要在集合M中找到一个元素x,使p(x)不成立即可.存在性命题“∃x∈M,p(x)”强调结论的存在性,因此,(1)要证明它是真命题,只需在集合M中找到一个元素x,使p(x)成立即可.(2)要判断它是假命题,需对集合M中每一个元素x,证明p(x)不成立.下列命题中,真命题是()A.∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数对于选项A,∃m∈R,即当m=0时,f(x)=x2+mx=x2是偶函数.故A正确.【答案】 A逻辑联结词高考中常以选择题和填空题的形式对含有逻辑联结词的命题的构成及其真假判断进行考查,正确理解逻辑联结词“且”“或”“非”是解决问题的关键.知识方法:判断含有逻辑联结词的命题的真假的关键是对逻辑联结词“或”“且”“非”的含义的理解,应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.对于函数:①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2).有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数,能使p∧q为真命题的所有函数的序号是________.若f(x)=|x+2|,则f(x+2)=|x+4|不是偶函数,不满足命题p;若f(x)=(x-2)2,则f(x+2)=x2为偶函数,此时f(x)在(-∞,2)上递减,在(2,+∞)上递增;若f(x)=cos(x-2),则f(x+2)=cos x为偶函数,但此时f(x)不满足命题q,故填②.【答案】②充要条件的判定充要条件的判定以选择题和填空题为主,所考查内容涉及各个章节,具有一定的综合性,个别题目具有一定的难度.知识方法:充分条件与必要条件的判断(1)直接利用定义判断:即“若p⇒q成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)(2)利用等价命题的关系判断:“p⇒q”的等价命题是“﹁q⇒﹁p”,即“若﹁q⇒﹁p 成立,则p是q的充分条件,q是p的必要条件”.已知p:x2-8x-20>0,q:x2-2x+1-a2>0,若p是q的充分而不必要条件,求正实数a的取值范围.【解】p:x2-8x-20>0⇔x<-2或x>10,令A={x|x<-2或x>10},因为a >0,所以q :x <1-a 或a >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且p ⇐/q ,知A ⊆B ,应有⎩⎨⎧a >0,1+a <10,1-a ≥-2或⎩⎨⎧a >0,1+a ≤10,1-a >-2,解得0<a ≤3,所以a 的取值范围为(0,3].四种命题及其关系四种命题及其关系是高考命题的内容之一,主要以选择题和填空题的形式出现,一般不单独命题,往往和其他知识结合起来进行考查.知识方法:原命题与它的逆命题、原命题与它的否命题之间的真假是不确定的,而原命题与它的逆否命题(它的逆命题与它的否命题)之间在真假上是始终保持一致的:同真同假.判断下列命题的真假:(1)“若x ∈A ∩B ,则x ∈B ”的逆命题与逆否命题; (2)“若0<x <5,则|x -2|<3”的否命题与逆否命题;(3)a ,b 为非零向量,“如果a ⊥b ,则a·b =0”的逆命题和否命题.【解】 (1)“若x ∈A ∩B ,则x ∈B ”,是真命题,故其逆否命题为真命题,逆命题“若x ∈B ,则x ∈A ∩B ”,为假命题.(2)因为0<x <5,所以-2<x -2<3, 所以0≤|x -2|<3.原命题为真,故其逆否命题为真.否命题:若x ≤0或x ≥5,则|x -2|≥3.否命题为假. 例如当x =-12时,|-12-2|=52<3.(3)逆命题:a·b =0⇒a ⊥b ,为真命题. 故它的否命题:a ,b 不垂直⇒a·b ≠0也为真.1.设a ,b 是两条不同的直线,α,β是两个不同的平面,a ⊂α,b ⊥β,则“α∥β ”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件详细分析:选A .当α∥β时,因为b ⊥β,所以b ⊥α,因为a ⊂α,所以b ⊥a ;当a ⊥b ,a ⊂α,b ⊥β时,α,β可能平行,也可能相交,故“α∥β”是“a ⊥b ”的充分不必要条件,选A .2.已知p :函数f (x )=(x -a )2在(-∞,1)上是减函数.q :∀x >0,a ≤x 2+1x恒成立,则p 是﹁q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件详细分析:选B .p :函数f (x )=(x -a )2在(-∞,1)上是减函数,由二次函数的性质可知a ≥1,q :∀x >0,a ≤x 2+1x 恒成立,则x 2+1x =x +1x ≥2≥a ,则﹁q :a >2,故p 是﹁q 的必要不充分条件.3.已知命题p :“φ=π2”是“函数y =sin(x +φ)为偶函数”的充分不必要条件;命题q :∀x ∈⎝⎛⎭⎫0,π2,sin x =12的否定为∃x ∈⎝⎛⎭⎫0,π2,sin x ≠12.则下列命题为真命题的是( ) A .p ∧(﹁q ) B .(﹁p )∧q C .(﹁p )∨(﹁q )D .p ∨q详细分析:选D .若y =sin(x +φ)为偶函数,则有φ=π2+k π,k ∈Z ,所以“φ=π2”是“函数y =sin(x +φ)为偶函数”的充分不必要条件,所以命题p 为真命题;根据全称命题的否定的概念,可知﹁q 为∃x ∈⎝⎛⎭⎫0,π2,sin x ≠12,所以命题q 为真命题,故选D . 4.命题“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥4B .a ≤4C .a ≥3D .a ≤3详细分析:选C .因为x ∈[1,2],所以x 2∈[1,4],x 2-a ≤0恒成立,即x 2≤a ,因此a ≥4.由“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”可推出a ≥3,但由a ≥3推不出“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立.故选C .5.已知命题p :∀x ∈R ,2x >0,则﹁p 为________.详细分析:根据全称命题的否定的概念可知﹁p 为“∃x ∈R ,2x ≤0”. 答案:∃x ∈R ,2x ≤06.若“∀x ∈⎣⎡⎦⎤-π4,π4,m ≤tan x +1”为真命题,则实数m 的最大值为________. 详细分析:根据正切函数的性质可知,y =tan x +1在⎣⎡⎦⎤-π4,π4上的最小值为y =tan ⎝⎛⎭⎫-π4+1=0.所以m ≤0. 答案:07.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若命题p 且q 是真命题,则实数a 的取值范围是________.详细分析:由x 2-a ≥0,得a ≤x 2,因为x ∈[1,2],所以a ≤1.要使q 成立,则有Δ=4a 2-4(2-a )≥0,即a 2+a -2≥0,解得a ≥1或a ≤-2.因为命题p 且q 是真命题,所以p ,q 同时为真,即⎩⎨⎧a ≤1a ≥1或a ≤-2,故a ≤-2或a =1.答案:a ≤-2或a =1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型二
利用空间向量解决位置关系问题
例2
四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的
中点,求证:
(1)PC∥平面EBD.
证明
(2)平面PBC⊥平面PCD.
证明
反思与感悟
(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②能够在平面内找到一个向量与已知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向 量是共面向量. (3)证明面面平行的方法 ①转化为线线平行、线面平行处理. ②证明这两个平面的法向量是共线向量.
类型一 例1
空间向量及其运算
如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,S到
A、B、C、D的距离都等于2.给出以下结论:
→ → → → ①SA+SB+SC+SD=0; → → → → ②SA+SB-SC-SD=0; → → → → ③SA-SB+SC-SD=0; → → → → ④SA· SB=SC· SD; → → ⑤SA· SC=0.
例3 已知O、A、B、C为空间不共面的四点, a=→(OA)+→(OB)+→(OC),b=→(OA)+ →(OB)-→(OC),则与a、b不能构成空间的 一个基底的是( ) A.→(OA) B.→(OB) C.→(OC) D.→(OA)或 →(OB)
例4 阅读下列各式,其中正确的是( ) A.a· b=b· c(b≠0)⇒a=c B.a· b=0⇒a=0或b=0 C.(a· b)· c=a· (b· c) D.→(OA)· →(BO)=|→(OA)||→(BO)|cos(180°-∠AOB)
计算来解决,如何转化也是这类问题解决的关键.
题型探究
例1 “a· b<0”是“〈a,b〉为钝角”的________条件.(填“充 分不必要”“必要不充分”“充要”“既不充分也不必要”) 例2 如图所示,在120°的二面角α-AB-β中,AC⊂α, BD⊂β,且AC⊥AB,BD⊥AB,垂足分别为A,B.已知AC= AB=BD=6,试求线段CD的长.
是平面α内任意一点, 则x, y, z满足的关系式是 x+y+z=0 .
答案 解析
→ OM· e=(x,y,z)· (1,1,1)=x+y+z=0.
1
2
3
4
5
→ 5.已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4),设 a=AB, → b=AC. → (1)若|c|=3,且 c∥BC,求向量 c;
1
2
3
4
5
2.若a=(0,1,-1),b=(1,1,0),且(a+λb)⊥a,则实数λ的值是 A.-1 B.0 C.1
√
D.-2
答案
解析
a+λb=(λ,1+λ,-1).
由(a+λb)⊥a,知(a+λb)· a=0,
∴λ×0+(1+λ)×1+(-1)×(-1)=0,解得λ=-2.
1
2
3
4
5
3.已知向量a=(4-2m,m-1,m-1)与b=(4,2-2m,2-2m)平行,则
解答
→ ∵c∥BC,∴存在实数 m, → 使得 c=mBC=m(-2,-1,2)=(-2m,-m,2m). ∵|c|=3,∴ -2m2+-m2+2m2=3|m|=3,
∴m=±1.∴c=(-2,-1,2)或c=(2,1,-2).
1 2 3 4 5
(2)求向量a与向量b的夹角的余弦值.
∵a=(1,1,0),b=(-1,0,2), ∴a· b=(1,1,0)· (-1,0,2)=-1.
知识梳理
题型探究 当堂训练
知识梳理
共面向量
定义 的充要条件
平行于同一个 平面 的向量
三个向量共面 向量p与不共线向量a, b共面的充要条件是存在 惟一 的 p=xa+yb 有序实数对(x,y),使__________ → 存在有序实数对(x,y),使 AP 点P位于平面 → → xAB+yAC =__________ ABC内的充要 → → 对空间任一点O,有 OP =OA 条件 → → xAB+yAC +__________
(4)证明两条直线垂直,只需证明这两条直线的方向向量垂直. (5)证明线面垂直的方法 ①证明直线的方向向量与平面的法向量是共线向量. ②证明直线的方向向量与平面内的两个不共线的向量互相垂直. (6)证明面面垂直的方法 ①转化为证明线面垂直. ②证明两个平面的法向量互相垂直.
跟踪训练2
正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,
解答
(2)求直线AF与平面α所成角的正弦值.
解答
用向量法求空间角的注意点 异面直线的方向向量,借助方向向量所成角求解.
反思与感悟
(1)异面直线所成角:两异面直线所成角范围为 0°<θ≤90°,需找到两 (2)直线与平面所成的角:要求直线a与平面α所成的角θ,先求这个平面α
的法向量n与直线a的方向向量a的夹角的余弦cos〈n,a〉,再利用公式
更多精彩内容请登录:
本课结束
线面垂直
面面垂直
l⊥α⇔a∥μ⇔a=kμ,k∈R
μ·v=0 α⊥β⇔μ⊥v⇔_______
线线夹角 线面夹角 面面夹角
|a· b| π l,m的夹角为θ(0≤θ≤ 2 ),cos θ= |a||b|
|a· μ| π l,α的夹角为θ(0≤θ≤ 2 ),sin θ= |a||μ|
|μ· v| π α,β的夹角为θ(0≤θ≤ ),cos θ= |μ||v| 2
其中正确结论的序号是 ③④ .
答案
解析ห้องสมุดไป่ตู้
反思与感悟
向量的表示与运算的关键是熟练掌握向量加减运算的平行四边形法则、 三角形法则及各运算公式,理解向量运算法则、运算律及其几何意义.
跟踪训练 1
→ 如图,在平行六面体 A1B1C1D1-ABCD 中,M 分AC成的比
1 → → → → 为2,N 分A1D成的比为 2,设AB=a,AD=b,AA1=c,试用 a、b、c 表 → 示MN.
(1) 选择恰当的坐标系 . 坐标系的选取是基石,恰当的坐标系可以使得点
的坐标、向量的坐标易求且简单,简化运算过程.
(2) 点的坐标、向量的坐标的确定 . 将几何问题转化为向量的问题,必须
确定点的坐标、直线的方向向量、平面的法向量,这是最核心的问题.
(3) 几何问题与向量问题的转化 . 平行、垂直、夹角问题都可以通过向量
sin θ=|cos〈n,a〉|,求θ.
(3)二面角:如图,有两个平面α与β,分别作这两个平
面的法向量n1与n2,则平面α与β所成的角跟法向量n1
与n2所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角.
跟踪训练 3
如图,在几何体 ABCDE 中,四边形 ABCD 是矩形, AB⊥ 平
面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点. (1)求证:GF∥平面ADE;
例5在正方体ABCD-A1B1C1D1中,求二面角A-BD1-C的大小.
2.定位问题 例2 如图,已知四边形ABCD,CDGF,ADGE均为正方形, 且边长为1,在DG上是否存在点M,使得直线MB与平面BEF的 夹角为45°?若存在,求出点M的位置;若不存在,请说明理 由.
答案
如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三 角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD⊥平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分 成体积相等的两部分,求二面角D–AE–C的余弦值.
m= 1或3 .
答案
解析
当2-2m=0,即m=1时,a=(2,0,0),b=(4,0,0),满足a∥b;
当2-2m≠0,即m≠1时,
4-2m m-1 ∵a∥b,∴ 4 = ,解得 m=3. 2-2m
综上可知,m=3或m=1.
1
2
3
4
5
4.已知平面α经过点O(0,0,0),且e=(1,1,1)是α的一个法向量,M(x,y,z)
第三章 空间向量与立体几何
章末复习课
学习目标
1.理解空间向量的概念,掌握空间向量的运算法则及运算律.
2.掌握空间向量数量积的运算及其应用,会用数量积解决垂直
问题、夹角问题.
3.理解空间向量基本定理,掌握空间向量的坐标表示.
4.会用基向量法、坐标法表示空间向量.
5.会用向量法解决立体几何问题.
内容索引
证明
求证:平面AED⊥平面A1FD1.
类型三 例3
利用空间向量求角
如图所示,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=
8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长
方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
知识点一
空间中点、线、面位置关系的向量表示
设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,v,则
线线平行
线面平行 线线垂直
l∥m⇔a∥b⇔a=kb,k∈R
a· μ=0 l∥α⇔ a⊥μ ⇔_______ a· b=0 l⊥m⇔ a⊥b ⇔______
μ=kv,k∈R 面面平行 α∥β⇔μ∥v⇔____________
证明
(2)求平面AEF与平面BEC所成锐二面角的余弦值.
解答
当堂训练
→ 1 → → 1.已知空间四边形 ABCD,G 是 CD 的中点,则AB+2(BD+BC)等于
√
→ A.AG
→ B.CG
→ C.BC
1→ D.2BC