第二十七讲 动态几何问题透视
2020年初中数学竞赛讲义:第27讲-动态几何问题透视

2020年初中数学竞赛讲义:第27讲-动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A 移到点B时,A′B′的中点的位置( )A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在AmB上移动D.保持固定不移动思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P 从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x 的关系.思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m /秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).(1)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?(3)当1≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于tAP是否为一定的方程;对于(3),点P的位置是否发生变化,只需看PC值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结C O2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求:CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于α? C′D′与P′O l的位置关系如何?并说明理由.思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OO l上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.学力训练1.如图,ΔABC中,∠C=90°,AB=12cm,∠ABC=60°,将ΔABC以点B为中心顺时针旋转,使点C旋转到AB延长线上的D处,则AC边扫过的图形的面积是cm (π=3.14159…,最后结果保留三个有效数字).2.如图,在RtΔABC中,∠C=90°,∠A=60°,AC=3cm,将ΔABC绕点B旋转至ΔA'BC'的位置,且使A、B、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( )A .23πB .34πC .4D .232π+4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .215.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动.(1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r的取值范围及相应的切点个数;(3)设O在整个移动过程中,在ΔABC内部,⊙O未经过的部分的面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围.6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB 的长为x,CD的长为y.(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE 为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN 的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0-z+z的两个根.2522=(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;(2)求证:AN2=ON·MN;(3)求y与x之间的函数关系式及自变量x的取值范围;(4)试写出S随x变化的函数关系式,并确定S的取值范围.8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21 ; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动,B(4,2),以BE为直径作⊙O1.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于A点,连结AF交⊙O1于点P,试问PA·FA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.参考答案。
动态几何问题分类解析PPT

• 动态几何问题概述 • 动态几何问题的分类 • 动态几何问题的解析方法 • 动态几何问题的应用实例 • 动态几何问题的挑战与展望
01
动态几何问题概述
定义与特点
定义
动态几何问题是指涉及图形在运动过 程中产生的变化和规律的问题。
特点
动态几何问题具有综合性、探索性和 应用性,需要学生掌握基本的几何知 识和逻辑推理能力,同时还需要具备 一定的数学建模和问题解决能力。
02
动态几何问题的分类
点动问题
点在几何图形中运动,引起图形变化的问题。
点动问题是动态几何问题中最基础的一种,主要研究点在运动过程中,与其相关 的图形性质和数量关系的变化。例如,点在圆上运动时,研究其与圆心、半径等 的关系。
线动问题
线在几何图形中运动,引起图形变化的问题。
线动问题涉及线的移动对图形形状、大小和位置的影响。这类问题通常涉及到线与线、线与点、线与面等之间的关系变化。 例如,研究直线在平面内平移时,与平面内其他线的关系。
动态变化的不确定性
在动态几何问题中,形状、大小和位置可能会随时间发生变化,这 种不确定性增加了解决问题的难度。
计算效率问题
由于动态几何问题的复杂性,使用传统的几何或数值方法可能无法 快速得到精确解,因此需要高效的算法和计算技术。
研究进展与趋势
算法改进
研究者们不断改进算法,以更有 效地解决动态几何问题。例如, 采用更高级的数值计算方法、引 入人工智能和机器学习技术等。
利用几何图形的性质和定理,通过图形 变换和构造来解决问题。
VS
详细描述
几何法是解决动态几何问题的另一种常用 方法。它利用几何图形的性质和定理,通 过图形的平移、旋转、对称等变换以及构 造辅助线等方式来解决问题。这种方法适 用于解决一些涉及图形位置和形状变化的 动态问题。
透析动态几何问题思考角度与分析方法

透析动态几何问题思考角度与分析方法【摘要】以运动的观点来探索几何图形部分规律的问题称之为动态几何问题,本文主要通过动点问题和动线问题来分析解决动态几何存在的问题。
【关键词】几何问题;几何图形;动态几何;动点问题;动线问题;动图问题以运动的观点来探索几何图形部分规律的问题称之为动态几何问题,其特点是图形中的某个元素(点、线段、角等)或整个几何图形按某种规律运动,图形的各个元素在运动变化的过程中互相依存、和谐统一,体现了数学中的“变”与“不变”及由简单到复杂、由特殊到一般的辩证思想,它集代数与几何、概率统计等众多知识于一体,渗透了分类讨论、转化、数形结合、函数、方程等重要数学思想方法,问题具有开放性、综合性,近几年来,从中考考题上看,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力,更重要的是考查探索创新能力。
解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。
通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。
有关动态问题主要要有三类:动点问题、动线问题、动图问题。
题型一:点动型点动型就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。
解决此类动点几何问题常常用的是“类比发现法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。
类比发现法大致可遵循如下步骤:①根据已知条件,先从动态的角度去分析观察可能出现的情况。
②结合某一相应图形,以静制动,运用所学知识(常见的有三角形全等、三角形相似等)得出相关结论。
初中数学竞赛辅导讲义及习题解答 第27讲 动态几何问题透视

第二十七讲 动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系. 3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”. 【例题求解】【例1】 如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是 .思路点拨 解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB ′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动⌒思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒). (1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值.思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP是否为一定值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由.思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.⌒学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字).2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .23π B .34πC .4D .232π+4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .215.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.6.已知:如图,⊙O 韵直径为10,弦AC=8,点B 在圆周上运动(与A 、C 两点不重合),连结BC 、BA ,过点C 作CD ⊥AB 于D .设CB 的长为x ,CD 的长为y . (1)求y 关于x 的函数关系式;当以BC 为直径的圆与AC 相切时,求y 的值; (2)在点B 运动的过程中,以CD 为直径的圆与⊙O 有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B 运动的过程中,如果过B 作BE ⊥AC 于E ,那么以BE 为直径的圆与⊙O 能内切吗?若不能,说明理由;若能,求出BE 的长.7.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移移动.设OM=x ,ON= (y >x ≥0),ΔAOM 的面积为S ,若cos α、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量x 的取值范围; (4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.8.已知:如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C =60°,BD ⊥CD . (1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动.设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙O 1.(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.参考答案。
动态几何问题

动态几何问题
(2)当直线MN绕着点C顺时针旋转到 MN与AB相交于点F(AF>BF)的位 置(如图2所示)时,请直接写出下列 问题的答案: ①请你判断△ADC和△CEB还具有 (1)中①的关系吗? ②猜想DE、AD、BE三者之间具有怎 样的数量关系.
动态几何问题
训练题2
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4 √2, 另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合, 两腰分别落在AB、AC上,且G、F分别是AB、AC的中 点. (1)求等腰梯形DEFG的面积;
②探究2:设在运动过程中△ABC与等腰梯形 DEFG重叠部分的面积为y,求y与x的函数关系式.
动态几何问题
参考提示:
1、△ABC是等腰直角三角形,BC=,4√2,BC上的高为 2√2,梯形的底DE=4√2,GF=2√2,高为√2.。梯形面积 (4√2+2√2)*√2/2=6。 2、函数的定义域为0≤x≤4√2, 函数式分两个区间分析。
动态几何问题
动态几何问题
动态几何问题
动态几何问题
动态几何问题
Байду номын сангаас
动态几何问题
动态几何问题
解:(1)∵G、F分别是AB、AC的中点, ∴GF=1/2 BC=1/2×4√2 =2√2 , 过G点作GM⊥BC于M, ∵AB=AC,∠BAC=90°,BC=4√2 ,G 为AB中点 ∴GM=√2 又∵G,F分别为AB,AC的中点 ∴GF=1/2 BC=2√2 ∴S梯形DEFG=1/2 (2√2 +4√2 )×√2 =6, ∴等腰梯形DEFG的面积为6 .
动态几何问题
2)能为菱形
由BG∥DG′,GG′∥BC ∴四边形BDG′G是平行四边形 又AB=AC,∠BAC=90°,BC=4√2 , ∴AB=AC=4, 当BD=BG=1 2 AB=2时,四边形BDG′G为 菱形 此时可求得x=2, ∴当x=2秒时,四边形BDG′G为菱形
动态几何问题的解题技巧

动态几何问题的解题技巧解这类问题的基本策略是:1. 动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性•• • •2. 动静互化:“静”只是“动"的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静"的关系.3. 以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点來研究变动元素的关系• 总之,解决动态儿何问题的关键是要善于运用运动与变化的眼光去观察和研究图形, 把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变。
这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想.数形结合思想.转化的思想等。
1.在△ABC 中,ZC=90° , AC=BC=2,将一块三角板的直角顶点放在斜边AB 的中点P 处,将此三角板绕点P 旋转,三角板的两直角边分別交射线AC. CB 与点Ds 点E,图 ① ,②,③是旋转得到的三种图形。
(1) 观察线段PD 和PE 之间的有怎样的大小关系,并以图②为例,加以说明:(2) APBE 是否构成等腰三角形若能,指出所有的情况(即求出△PBE 为等腰三角形 B图①S ②B时CE的长,直接写出结果);若不能请说明理由。
2、如图,等腰RtAABC(ZACB = 90° )的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止-设CD的长为/XABC与正方形DEFG重合部分(图中阴影部分)的面积为y,(1)求y与X之间的函数关系式;(2)当△ABC与正方形DEFG重合部分的面积为扌时,3、在平面直角坐标系中,直线厶过点A(2, 0)且与),轴平行,直线,2过点B(0, 1)且与hHP 10 12 I备用图4、如图,在 RtAABC 中,ZC=90° , AC=4cm, BC=5cm,点 D 在 BC±,且 CD=3cm,现 有两个动点P, Q 分别从点A 和点B 同时出发,其中点P 以1厘米/秒的速度沿AC 向终 点C 运动;点Q 以厘米/秒的速度沿BC 向终点C 运动.过点P 作PE 〃BC 交AD 于点E, 连接EQ.设动点运动时间为t 秒(t>0)・连接DP,经过1秒后,四边形EQDP 能够成为平行四边形吗请说明理由;连接PQ,在运动过程中,不论t 取何值时,总有线段PQ 与线段AB 平行-为什(3) 连接 OE. OF 、EF, 若^OEF 为直角三角形,求k 的值。
“动态”立体几何题解法剖析

点评
近几年, 高考立体几何题出现一些求不
平 面上 , 得到 矩形 A C 如 图 4所 示 ) A 为底 面 B D( ,D
规则 几何 体 的体 积 问题 或 利 用体 积转 化 来 求 其他
的几何 量. 处理这 一问题 的 常用 方 法 是 “ 补 法 ” 割 ,
圆周 长 的 2倍 , A 4rA 即 D= ,,C为所 求 的最 短 长度 , r
的面积. 3 “ 割”
间 图形 向平 面图形 的迅速 转化 , 学 生真实 地感 受 让
“ ” 指 当所 呈 现 的几 何 体 较 复 杂 、 关 的 割 是 有 计算 公 式无 法直 接运用 或计算 较繁 时 , 以适 当地 可 分 割几何 体 , 化整 为零 , 而迅 速破解. 从 例 3 将 半 径 为 1的 4个 钢球 完 全 装 人 形 状 为正 四面 体 的容器 中 , 这个 正 四面体 高的最 小值 是
第 9期
郭 建 华 :动 态” “ 立体 几 何 题 解 法剖 析
“ 动 态 " 立 体 几 何 题 解 法 剖 析
●郭建华 ( 江苏教育学院附属高级中学 江苏南京 203 ) 1 6 0
立体几 何是 中学数 学传 统 的主体 内容 之一 , 也 是 当前高考命 题 的一个 热点 内容 . 它不 仅 能考查 学 生 的空 间想 象力 , 还能更 好地 体 现学 生思 维 的深刻 性和灵 活魔 随着 新课 改 地不 断深 人 , 体 几 何 以 立 柱体 和锥体 为载体 来考查 立体 几何 中的重要 内容 ,
例 5 有一 根 长 3r m, ' c 底面半 径为 1c 的圆 r m
径 , 中心到 2个 正 四面 体 的距 离 差 为 1 中心 把 而 ,
剖析立体几何中的“动态”问题

ʏ沈建良所谓动态立体几何问题,是指在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算㊂立体几何中常求解一些固定不变的点㊁线㊁面的关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,立意会更新颖㊁更灵活,能培养同学们的空间想象能力㊂下面是对破解立体几何 动态 问题的一些思考,以期抛砖引玉㊂一㊁ 动态 问题之轨迹问题例1如图1,在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H,N分别是C C1,C1D1,D D1,C D,B C的中点,M在四边形E F G H边上及其内部运动,若MNʊ面A1B D,则点M轨迹的长度是()㊂图1A.3aB.2aC.32aD.22a解:因为在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H分别是C C1, C1D1,D D1,C D的中点,N是B C的中点,则G HʊB A1,HNʊB D㊂又G H⊄面A1B D, B A1⊂面A1B D,所以G Hʊ面A1B D㊂同理可得,NHʊ面A1B D㊂又G HɘHN=H,所以面A1B Dʊ面G HN㊂因为点M在四边形E F G H上及其内部运动,MNʊ面A1B D,所以点M一定在线段G H上运动,即满足条件㊂易得G H=22a㊂故点M轨迹的长度是22a㊂应选D㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立不变量与动点之间的关系,从而确定动点的轨迹长度㊂二㊁ 动态 问题之定值问题例2如图2,在单位正方体A B C D-A1B1C1D1中,点P在线段A D1上运动㊂图2给出以下四个命题:①异面直线A1P与B C1间的距离为定值;②三棱锥D-B P C1的体积为定值;③异面直线C1P与C B1所成的角为定值;④二面角P-B C1-D的大小为定值㊂其中真命题的序号是()㊂A.①②B.③④C.①②③D.①②③④解:对于①,异面直线A1P与B C1间的距离即为两平行平面A D D1A1和平面B C C1B1间的距离,即为正方体的棱长,为定值,①正确㊂对于②,V D-B P C1=V P-D B C1,因为SәD B C1为定值,点PɪA D1,A D1ʊ平面B D C1,所以点P到平面B D C1的距离即为正方体的棱长,所以三棱锥D-B P C1的体积为定值,②正确㊂对于③,在正方体A B C D-A1B1C1D1中,因为B1Cʅ平面A B C1D1,而C1P⊂平面A B C1D1,所以B1CʅC1P,即这0 1数学部分㊃知识结构与拓展高一使用2022年4月Copyright©博看网. All Rights Reserved.两条异面直线所成的角为90ʎ,③正确㊂对于④,因为二面角P -B C 1-D 的大小即为平面A B C 1D 1与平面B D C 1所成的二面角的大小,而这两个平面位置固定不变,所以二面角P -B C 1-D 的大小为定值,④正确㊂应选D㊂动态立体几何问题,在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口㊂三㊁ 动态 问题之翻折问题例3 如图3,在长方形A B C D 中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әAF D 沿A F 折起,使平面A B D ʅ平面A B C F ,得到如图4所示的四棱锥D -A B C F ㊂在平面A B D 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图3 图4解:过点F 作F M ʅA B 交A B 于点M (作法略)㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1,A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R t әD F K 中,D F =2-x ,D K 2+F K 2=D F 2,所以1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x㊂又因为t =12-x在(0,1)上单调递增,所以12<t <1,即t 的取值范围为12,1()㊂本题是一个动态的翻折问题,通过发现不变的垂直关系,从而得到相关变量间的关系,最终转化成函数的值域问题㊂解决折叠问题的关键是分清折叠前后图形的位置和数量关系的变与不变的量㊂四㊁ 动态 问题之展开问题例4 已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为㊂设线段A B 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为㊂解:易得该圆锥的高h =32-1=22㊂所以该圆锥的体积V =13ˑπˑ12ˑ22=223π㊂将该圆锥侧面沿母线S A 展开,如图5所示㊂图5因为圆锥底面周长为2π,扇形半径为3,所以侧面展开后得到的扇形的圆心角øA S A '=2π3㊂由题意知点B 是圆锥侧面展开后得到的扇形的弧A A '的中点,则øA S B =π3,所以A B =A 'B =A S =3㊂所以该质点运动路径的最短长度为A B +A 'B =6㊂空间动态问题常转化为平面的动态问题求解㊂化曲为直是求解曲面上路径长度最短问题的关键㊂本题是求解圆锥侧面上质点运动路径的最短长度问题,可将圆锥侧面沿一条母线展开成扇形,从而在平面图形中解决问题㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
动态几何问题(课件)

THANK YOU
动态几何问题的实 际应用案例分析
实际应用案例的选择标准
代表性:案例应具有代表性,能够反映动态几何问题的普遍性和特殊性 实用性:案例应具有实用性,能够解决实际问题,具有实际应用价值 创新性:案例应具有创新性,能够展示动态几何问题的新方法和新思路 教育性:案例应具有教育性,能够帮助学生理解和掌握动态几何问题的基本概念和方法
动态几何问题的应 用
在数学竞赛中的应用
动态几何问题在数学竞赛中的 重要性
动态几何问题的解题技巧和方 法
动态几何问题在数学竞赛中的 常见题型和解题思路
动态几何问题在数学竞赛中的 创新应用和挑战
在实际生活中的应用
建筑设计:利 用动态几何问 题进行空间布 局和结构设计
机械制造:利 用动态几何问 题进行机械零 件设计和装配
力。
激发学习兴趣: 动态几何问题具 有趣味性和挑战 性,有助于激发 学生的学习兴趣, 提高学习积极性。
对学生思维发展的影响
提高空间思维能 力:通过动态几 何问题的解决, 学生可以更好地 理解和掌握空间 关系,提高空间
思维能力。
培养逻辑思维能 力:动态几何问 题的解决需要学 生运用逻辑推理 和数学思维,有 助于培养学生的 逻辑思维能力。
研究方法和成果
研究方法:动态几何问题的研究方法主要包括几何分析、代数方法、微 分几何等。
成果:动态几何问题的研究成果包括发现了许多新的几何结构、证明了 许多重要的几何定理、解决了许多重要的几何问题等。
动态几何问题的解题技巧

动态几何问题的解题技巧解这类问题的基本策略是:1.动中觅静:这里的“静”就是问题中的不变量、不变关系........,动中觅静就是在运动变化中探索问题中的不变性....2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题...........,从而找到“动”与“静”的关系.3.以动制动:以动制动就是建立图形中两个变量的函数关系.........,通过研究运动函数,用联系发展的观点来研究变动元素的关系.总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变.............。
这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。
1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。
(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。
2、如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,(1)求y 与x 之间的函数关系式;(2)当△ABC 与正方形DEFG 重合部分的面积为32时,求CD 的长. 3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与2l 相交于点P 。
高三总复习数学课件 立体几何中的动态问题

满足―B→P =λ―B→C +μ―BB→1 ,其中 λ∈[0,1],μ∈[0,1],则
()
A.当 λ=1 时,△AB1P 的周长为定值
B.当 μ=1 时,三棱锥 P-A1BC 的体积为定值
C.当 λ=12时,有且仅有一个点 P,使得 A1P⊥BP
D.当 μ=12时,有且仅有一个点 P,使得 A1B⊥平面 AB1P
由 M 点是正方形 ABB1A1 内的动点可知,若 C1M∥平面 CD1EF,则点 M 在线段 GH 上, 所以 M 点的轨迹长度 GH= 12+12= 2. 答案: 2
类型二 度量问题
立体几何中动点的轨迹的度量问题的探究,包括求解轨迹的长度,相关的 体积、截面面积等.
[例1] (2022·德州一模)(多选)如图,在边长为4的正方形ABCD中,点E,F
2 PPFE= 36,所以 P 点的轨迹是直线,故选 A.
(2)当 λ=1 时,―B→P =―B→C +μ―BB→1 .若 μ=0,则―B→P =―B→C , 即点 P 与点 C 重合,则△AB1P 的周长为 1+2 2;若 μ=12, 则―B→P =―B→C +12―BB→1 ,即点 P 为线段 CC1 的中点,易得 AP =PB1= 1+14= 25,所以△AB1P 的周长为 2+ 5,故 A 错误.当 μ=1 时,由―B→P =λ―B→C +―BB→1 ,得点 P 在线段 B1C1 上运动,易知 S △A1BC 为定值,且 B1C1∥平面 A1BC,所以点 P 到平面 A1BC 的距离为定值, 所以 VP-A1BC 为定值,故 B 正确.
确;对于D:因为MN∥AD1,AD1⊂面ABD1,MN⊄面ABD1,所以MN∥面ABD1,
所以点F到面ABD1的距离是定值,所以三棱锥F-ABD1的体积为定值,故D正
立体几何中的动态问题

立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1 如图1,直线l⊥平面α,垂足为O.正方体ABCD-A1B1C1D1的棱长为2.点A 是直线l上的动点,点B1在平面α内,则点O到线段CD1中点P的距离的最大值为________.图1答案2+2解析从图形分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=2+2,当且仅当OQ⊥AB1,且点O,Q,P共线时取到等号,此时直线AB1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2 在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤23,1解析 本例可用极端位置法来加以分析.先寻找垂直:记O 为△ACD 的中心,G 为OC 的中点,则BO ⊥面ACD ,EG ⊥面ACD .如图2,过点A ,E ,G 的平面交直线BD 于点F .此时,平面AEF 与平面ACD 所面二面角的正弦值为1.由图形变化的连续性知,当点F 在直线BD 的无穷远处时,看成EF 和BD 平行,此时平面AEF 与平面ACD 所成二面角最小(如图3),其正弦值为23.图2 图3综上可知,平面AEF 与平面ACD 所成二面角的正弦值的取值范围为⎝ ⎛⎦⎥⎤23,1.3.用法向量定平面——定海神针在解决立体几何中的“动态”问题时,有关角度计算问题,用法向量定平面,可将线面角或面面角转化为线线角.例3 在长方体ABCD -A 1B 1C 1D 1中,已知二面角A 1-BD -A 的大小为π6,若空间有一条直线l 与直线CC 1所成的角为π4,则直线l 与平面A 1BD 所成角的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤π12,5π12解析 如图4,过点A 作AE ⊥BD 于点E ,连接A 1E ,则∠A 1EA =π6.过点A 作AH ⊥A 1E 于点H ,则AH →为平面A 1BD 的法向量,且∠A 1AH =π6.因为l 与直线CC 1所成角的大小为π4,即l 与直线AA 1所成角的大小为π4,那么l 与直线AH 所成角的取值范围为⎣⎢⎡⎦⎥⎤π4-π6,π4+π6.又因为l 与直线AH 所成的角和l 与平面A 1BD 所成的角互余,所以直线l 与平面A 1BD 所成角的取值范围是⎣⎢⎡⎦⎥⎤π12,5π12.图44.锁定垂面破翻折——独挡一面在解决立体几何中的“动态”问题时,对于翻折或投影问题,若能抓住相关线或面的垂面,化空间为平面,则容易找到问题的核心.例4 如图5,在等腰Rt △ABC 中,AB ⊥AC ,BC =2,M 为BC 的中点,N 为AC 的中点,D 为线段BM 上一个动点(异于两端点),△ABD 沿AD 翻折至B 1D ⊥DC ,点A 在平面B 1CD 上的投影为点O ,当点D 在线段BM 上运动时,以下说法错误的是( )图5A .线段NO 为定长B .CO ∈(1,2)C .∠AMO +∠B 1DA >180°D .点O 的轨迹是圆弧 答案 C解析 如图6,记B 2为B 1在平面ADC 上的射影,由B 1D ⊥DC 可得B 2D ⊥DC .记B 2D 交AB 于点K ,则DC ⊥平面B 1B 2K .在△B 1DC 中,作EM ∥B 1D 交B 1C 于点E ,连接AE ,则平面AEM ∥平面B 1B 2K ,平面AEM ⊥平面B 1DC ,从而点A 在平面B 1DC 上的射影O 在直线EM 上.取AM 的中点H ,则NH =12MC =12,OH =12AM =12,ON =22均为定长.易知点O 的轨迹是以点H 为圆心、12为半径的圆弧,因为CO 2=MO 2+MC 2,且MO ∈(0,1),所以CO ∈(1,2).又∠AMO +∠AME =180°,∠AME =∠B 1DK ,由最小角定理知∠B 1DB 2<180°-∠B 1DA , 得∠B 1DK >∠B 1DA ,于是∠AMO +∠B 1DA <180°.故选C.图65.觅得定值明轨迹——动中有静在解决立体几何中的“动态”问题时,探寻变化过程中的不变关系,是解决动态问题的常用手段.例5 如图7,已知线段AB 垂直于定圆所在的平面,B ,C 是⊙O 上的两个点,H 是点B 在AC 上的射影,当点C 运动时,点H 运动的轨迹是( )图7A .圆B .椭圆C .抛物线D .不是平面图形 答案 A解析 如图8,设⊙O 的半径为r ,取BC 的中点M ,则图8OM⊥BC,MH=MC.因为AB⊥平面BCD,所以BC是AC在平面BCD上的射影,从而OM⊥平面ABC,得OM⊥MH,于是OH2=MO2+MH2=MO2+MC2=r2,即OH=r,亦即动点H在以O为球心、r为半径的球面上.又因为BH⊥AD,B为定点,所以动点H又在过点B且垂直于直线AD的定平面上,故点H运动的轨迹是圆.6.构建函数求最值——以数解形在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.例6 (2016·浙江)如图9,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC 外一点P和线段AC上一点D,满足PD=DA,PB=BA,则四面体P-BCD的体积的最大值是________.图9答案1 2解析设M,N分别为AC,AP的中点,因为BA=BP=BC,PD=DA,所以点B在平面PAC上的射影为△PAC的外心O,且点O在直线ND上.又因为AB=BC=2,∠ABC=120°,所以AC=23,图10BO =AB 2-OA 2≤AB 2-AM 2=1, 当且仅当点O 与点M 重合时取到等号.设AD =x ,∠PDC =θ,因为AC =23,所以DC =23-x , 则S △PDC =12x ·(23-x )sin θ≤12x ·(23-x )≤12⎝⎛⎭⎪⎫2322=32, 当且仅当点M 与点D 重合时取到等号. 因此,四面体P -BCD 的体积为V P -BCD =13S △PCD ·OB ≤13×32×1=12,此时点O ,M ,D 重合,即点D 为AC 的中点,且平面PBD 与平面ABC 垂直相交于BD .总之,解立体几何动态问题的过程实质是数学建模的过程,是创新的过程.方程、函数和图形变换是基础,因此夯实基础是解决此类问题的关键.化整为零的思想、转化思想、数形结合思想、函数思想、分类讨论思想等是解决立体几何动态问题的最佳策略.真正破解动态立体几何问题,需要整体把握动态变化过程,更需要深厚的空间想象之内功.如果说招式是术,那么内功就是修行,即不断积累知识与技巧、经验与经历.。
透过现象看本质——动态立体几何问题的处理

使问题的求解过程直观简洁.
四、拓展平面结论,发散动态思维
例 4 如 图 5, 在 正 方 体
A1
D1
ABCD-A1B1C1D1中,P为底面ABCD B1
C1
上的动点,PE⊥A1C于点E,且PA=
AE
PE,则点P的轨迹是( ).
P
D
. All AR.线ig段hts Reserved. B
一、寻找特殊位置,以动制静
. All Rights Reserved.
D1
例1 如图1所示, 在正方体
ABCD-A1B1C1D1中,点E是棱CC1上 A1
C1 E B1
的一个动点,平面BED1交棱AA1于
D
点F,则下列命题中为假命题的是 F
C
( ).
A
A.存在点E,使得A1C1∥平面BED1F
面,所以不存在这样的点E,故B错误.
对于选项C:因为BD1⊥面A1CD,BD1奂BED1F,所以 面A1C1D⊥面BED1F,故C正确.
对于选项D:因为VB1-BED1F=VE-BB1D1+VF-BB1D1,又CC1∥AA1∥ 面BB1D1,所以四棱锥B1-BED1F的体积为定值.答案为D.
评注:动态几何问题的核心是让变量变化起来,在
C 图5
B.圆弧
C.椭圆的一部分
D.抛物线的一部分
解析:在平面内到一个角的两边距离相等的点的轨
迹为此角的平分线,如果将条件改为空间,则点的轨迹
为平面, 在此不妨称之为角的平分面. 而点P又在底面
ABCD上,故点P的轨迹为两面的交线.答案为A.
评注:在类比推理的学习中,如果我们能将平面中
的有关结论推理到空间, 在解题中均有广泛的应用,如
聚焦立体几何中的动态问题

ʏ童昌立立体几何的动态问题的实质是数学建模问题,解这类问题,需要有较强的空间想象能力和化归处理能力㊂对于动态立体几何问题,如果能努力探寻运动过程中 静 的一面,动中求静,往往能以静制动㊂题型1:截面问题 图1例1 如图1,用一个平面去截直三棱柱A B C -A 1B 1C 1,分别交A 1C 1,B 1C 1,B C ,A C 于点E ,F ,G ,H ㊂若A 1A >A 1C 1,则截面的形状可以为㊂(把你认为可能的结果的序号填在横线上)①一般的平行四边形,②矩形,③菱形,④正方形,⑤梯形㊂由A B C -A 1B 1C 1为直三棱柱,可知平面A 1B 1C 1ʊ平面A B C ㊂因为截面过平面A 1B 1C 1㊁平面A B C ,所以交线E F ʊH G ㊂当F G 不与B 1B 平行时,此时截得的E H 不平行于F G ,则四边形E F G H 为梯形;当F G ʊB 1B 时,此时截得的E H ʊF G ,且F G ʅE F ,则四边形E F G H 为矩形㊂答案为②⑤㊂熟记平面图形的性质是解题的关键㊂题型2:角度问题例2 设异面直线a ,b 所成的角为30ʎ,经过空间一点O 有且只有两条直线与异面直线a ,b 成等角θ,则θ的取值范围为㊂如图2,过O 作a 1ʊa ,b 1ʊb ,则a 1,b 1所成的角,即为异面直线a ,b 所成的角㊂图2记a 1,b 1确定一个平面为α,过O 作O C ʅα,过O 作直线O A 和直线O B 分别平分a 1,b 1形成的两个对顶角㊂当过O 的直线在平面A O C 内旋转时,与a 1,b 1所成的角为θ,且15ʎɤθɤ90ʎ;当过O 的直线在平面B O C 内旋转时,与a 1,b 1所成的角为θ,且75ʎɤθɤ90ʎ㊂结合对称性可知,若经过空间一点O 有且只有两条直线与异面直线a ,b 成等角θ,则θ的取值范围为15ʎ<θ<75ʎ㊂两条异面直线所成角的范围是0ʎ<θɤ90ʎ㊂题型3:平行问题例3 如图3所示,在正四棱柱A B C D -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱C C 1,C 1D 1,D 1D ,D C 的中点,N 是B C 的中点,点M 在四边形EFGH 及其内部运动,则点M 只需满足条件时,就有MN ʊ平面B 1B D D 1㊂(请填上你认为正确的一个条件即可,不必考虑全部可能情况)图311知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.由题意得F HʊD D1,HNʊB D,F HɘHN=H,D D1ɘB D=D,所以平面F HNʊ平面B1B D D1㊂只需MɪF H,则MN⊂平面F HN,这时MNʊ平面B1B D D1㊂故满足条件的点M在线段F H上(或点M与点H重合)㊂本题属于开放性问题,解题的关键是证明MNʊ平面B1B D D1㊂题型4:垂直问题例4如图4所示,在棱长为1的正方体A B C D-A1B1C1D1中,点E是棱B C的中点,点F是棱C D上的动点㊂试确定点F的位置,使得D1Eʅ平面A B1F ㊂图4当点F为C D的中点时,D1Eʅ平面A B1F㊂因为A1BʅA B1,A1D1ʅA B1,又A1D1ɘA1B=A1,所以A B1ʅ平面A1B C D1㊂因为D1E⊂平面A1B C D1,所以A B1ʅD1E㊂因为D D1ʅ平面A B C D,所以D D1ʅA F㊂又A FʅD E,所以A Fʅ平面D1D E,所以A FʅD1E㊂又A FɘA B1=A,所以D1Eʅ平面A B1F㊂故当点F是C D的中点时,D1Eʅ平面A B1F㊂本题主要考查线面垂直的判定与性质㊂探求满足条件的点的问题,一般可考虑特殊情况,如线段的中点,三等分点等㊂题型5:轨迹问题例5如图5,已知线段A B垂直于定圆O所在的平面,B,C是☉O上的两个点,H是点B在A C上的射影,当点C运动时,点H运动的轨迹是()㊂图5A.圆B.直线C.线段D.三角形过点B作☉O的直径B D,连接C D,A D,则B CʅC D㊂过点B作B EʅA D于点E,连接E H㊂因为A Bʅ平面B C D,所以A BʅC D㊂因为B CʅC D,且A BɘB C=B,所以C Dʅ平面A B C,所以C DʅB H㊂又B HʅA C,且A CɘC D=C,所以B Hʅ平面A C D,所以B HʅA D,B HʅH E㊂注意到过点B与直线A D垂直的直线都在同一平面内,于是结合点B,E的位置,可知当点C运动时,点H的运动轨迹是以B E为直径的圆㊂应选A㊂立体几何中的轨迹问题,涉及的知识点较多,需要熟记直线㊁圆㊁球等几何图形的性质㊂如图6,一圆柱的底面半径为3π,母线长为4,轴截面为矩形A B C D,从点A拉一绳子沿圆柱侧面到相对顶点C,则最短绳长为㊂图6提示:沿B C剪开,将圆柱体的侧面的一半展开得到矩形B A'D'C,则A'D'=4,B A'=3πˑπ=3,所以A'C=32+42=5,即所求最短绳长为5㊂作者单位:湖北省恩施市第三高级中学(责任编辑郭正华) 21知识结构与拓展高一数学2023年4月Copyright©博看网. All Rights Reserved.。
透视动态问题,深剖解析方法

透视动态问题,深剖解析方法作者:***来源:《数学教学通讯·高中版》2020年第09期[摘要] 立体几何动态问题是高考的热点题型,其中含有大量的数形信息,问题解析需要把握动态成因,关注图形变化过程,合理进行化动为静降维处理. 文章对动态问题归类探究,解析问题的突破方法,提出相应的教学建议.[关键词] 立体几何;动态;角度;距离;翻折问题综述立体几何中的动态问题是高考的经典问题之一,由于问题中含有一些“不确定”因素,使得问题具有动态属性,例如联系动点、融合图形翻折、平移等. 问题中的“不确定性”往往会对学生解析问题造成一定困难,需要采用对应的策略来处理. 一般立体几何动态问题中隐含着一些规律性内容,可将其作为打开解题突破口的关键条件,即采用化“动”为“静”的转化策略. 解析时应关注变化过程,总结变化规律,运用数学思想,合理引入参数,适度代数推理,下面结合实例探究.类型探究立体几何动态问题的类型较为多样,从问题形式来看主要有角度类、距离类、翻折类等,下面对其进行深入探究.类型一:动态几何中的角度问题立体几何中角度问题是常见问题,涉及异面直线所成角、线面所成角、二面角等,若加入动态属性,其求解难度会变大. 求解此类问题往往采用空间向量法,常利用点坐标参数来设定动态因素,以实现静态转化.例1:ABCD-A■B■C■D■为正方体,点E是侧面ADD■A■内的一个动点,已知B■E∥平面BDC■,如图1所示,设直线B■E与直线AB所成角为θ,则sinθ的最小值为_____.解析:动点是形成动态几何的因素,求异面直线所成角的正弦值的最小值,同样可以采用空间向量法,引入坐标参数来实现动态问题的静态转化.以点D为原点,DA为x轴,DC为y轴,DD■为z轴建立空间直角坐标系,如图2所示. 设正方体的棱长为1,点E(a,0,c)(其中0≤a≤1,0≤c≤1),则B■(1,1,1),B(1,1,0),D(0,0,0),C■(0,1,1),则可推知向量■=(a-1,-1,c-1),■=(1,1,0),■=(0,1,1),■=(0,1,0).设平面DBC■的法向量为n=(x,y,z),可推知n=(1,-1,1). cosθ=■=■. 又知B■E∥平面BDC■,则■·n=0,可解得a+c=1,可推知ac≤■■=■,则■≤■,sinθ=■=■≥■,a=c时等号成立,且满足条件,所以sinθ的最小值为■.方法点睛:上述采用了空间向量法求异面直线所成角的正弦值的最小值,并利用坐标参数实现了动点的坐标具体化,促进了动态问题的静态转化. 因此对于涉及动点的立体几何问题,可以引入坐标参数来简化问题.类型二:动态几何中的距离问题求空间距离是立体几何的常见问题类型,同样也可从动态角度来考查距离求解的方法. 往往动点、动直线是造成问题动态的常见因素,具体求解时需首先确定动态元素的运动轨迹,然后进行静态转化.例2:正方体ABCD-A■B■C■D■的棱长为4,点H是棱长AA■上的一点,且HA■=1,在侧面BCC■B■内作一边长为1的正方形EFGC■,点P是侧面BCC■B■内的一个动点. 已知点P 到平面CDD■C■的距离与线段PF的长相等,当点P运动时,HP的最小值为____________.解析:本题目同样是因动点造成动态变化,解析时需要把握其中的距离关系,可以采用空间向量法,也可以建立平面坐标系来推导点P的运动轨迹,进而确定相应的线段最值.在棱BB■上取一点K,使得B■K=1,可知HK垂直于平面BCC■B■,连接PK,可知HP2=16+PK2. 在平面BCC■B■上建立平面坐标系,设定G为原点,GC■所在直线为x轴,GF 所在直线为y轴,如图4所示. 设点P的坐标为(x,y). 由题设条件可知点P的轨迹方程为x2=2y-1(其中x∈[-3,1],y∈■,4),轨迹为抛物线. 又可得点K的坐标为(0,4),则PK2=y2-6y+15,分析可知当y=3时,PK2可取得最小值6,所以HP的最小值为■.方法点睛:求解时采用了平面坐标系法,根据题设条件确定了动点的轨迹方程,然后建立了关于线段长的函数,利用函数的性质确定了最终的答案. 因此对于轨迹特征明确的动态几何问题可以从构建轨迹方程入手.类型三:动态几何中的翻折问题翻折、旋转是几何运动的重要方式,利用翻折和旋转同样可以构建动态几何,解析问题时需要关注翻折和旋转的运动过程,充分把握其特性,挖掘其中的隐含规律来构建相应的模型.例3:ABCD为平面内的四边形,已知AD=AB=■,CD=CB=■,AD⊥AB. 现将△ABD沿着对角线BD进行翻折,得到了△A′BD. 分析在△ABD折起至平面△A′BD的过程中,直线A′C与平面BCD所成最大角的正切值为____________.解析:连接AC,与BD的交点设为点E,则点A′的轨迹是一段以点E为圆心,以A′E长为半径的圆弧. 轨迹确定,故可以在动点轨迹所在平面内进行分析.在四边形ABCD中,可求得BD=2,BE=ED=1,EA=1,EC=2. 探究动点A′运动轨迹所在平面,直线A′C与平面BCD所成角的平面角为∠A′CE,显然当A′C与动点的轨迹圆相切时所成角最大,此时在Rt△A′CE中有EA=EA′=1,EC=2,所以∠A′CE=30°,則正切值tan30°=■.方法点睛:求解时采用了平面轨迹法,即确定翻折过程关键点的轨迹,然后从平面视角来直接判断其最值情形. 问题解析充分把握翻折过程中的特殊位置,故求解翻折类立体几何问题时可采用“轨迹转化,特殊位置分析”的思路.教学建议上述对立体几何常见的动态问题的特点、解析方法进行了剖析,充分掌握可以显著提升解题能力,下面结合教学实践提出两点建议.1. 准确定位动态成因,合理开展转化降维立体几何动态问题的类型较多,上述所呈现的是其中较为常见的三种,形成动态问题的因素涉及动点、动直线、翻折等,解析问题的关键是准确定位动态成因,确定动态因素的轨迹或变化过程,为后续的降维转化提供参考. 对于立体几何动态问题一般采用几何降维和化动为静的转化方式,其中降维处理有多种方式,可提取动点轨迹所在平面、关注其中的特殊位置、利用二面角构建方法等,解析时需根据问题特点确定转化降维方法. 而在教学中应引导学生深入剖析立体几何动态问题的本质,结合化动为静的策略来确定降维方法,形成该类问题的通性通法. 同时注重培养学生的创新思维,提升学生的思维灵活性.2. 掌握数形破解策略,发展数学核心素养立体几何动态问题常涉及距离、三角函数值、体积等知识,由于动态因素的存在,在解析时需要根据其动态情形来解析位置,其中必然需要利用方程、函数、不等式等代数知识,因此数形解析方法是该类问题常用的破解策略,需要重点掌握. 例如例2求距离问题时先结合动点轨迹建立了相应的函数方程,然后结合运动范围及函数性质确定了最终答案. 需要注意的是数形解析策略同样是一种数学思想,在教学中需要引导学生掌握该思想的内涵,掌握数形思想解析问题的方法技巧,教学中可以结合具体教学内容,让学生体验数形结合思想的应用过程,逐步发展学生的数学素养.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十七讲 动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系. 3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”. 【例题求解】【例1】 如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A经过的路线与直线l 所围成的面积是 .(黄冈市中考题)思路点拨 解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB ′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.(吉林省中考题)思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒). (1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值. (江西省中考题)思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP 是否为一定值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由.(济南市中考题)思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.⌒学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字). (济南市中考题) 2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .(黄冈市中考题)3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .23π B .34π C .4 D .232π+(烟台市中考题)4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( ) A .12- B .22 C .1 D .21(荆门市中考题)5.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.(江西省中考题)6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB的长为x,CD的长为y.(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.(太原市中考题)7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN的两边分别交射线OP 于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0-zz的两个根.+2522=(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;(2)求证:AN2=ON·MN;(3)求y与x之间的函数关系式及自变量x的取值范围;(4)试写出S随x变化的函数关系式,并确定S的取值范围.(河北省中考题)8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD 边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD 的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.(青岛市中考)9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCDS S矩形21 ;(3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.(福建省三明市中考题)10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙O 1.(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.(武汉市中考题)参考答案。