高考数学一轮复习第七章不等式第4讲基本不等式配套课时作业理含解析新人教A版
高考数学一轮复习第七章不等式第4讲基本不等式课件理高三全册数学课件
12/13/2021
第二十六页,共四十四页。
【解析】 (1)圆 x2+y2-2y-5=0 化成标准方程, 得 x2+(y-1)2=6, 所以圆心为 C(0,1). 因为直线 ax+by+c-1=0 经过圆心 C, 所以 a×0+b×1+c-1=0, 即 b+c=1. 因此4b+1c=(b+c)4b+1c=4bc+bc+5.
第七章 不等式
第4讲 基本(jīběn)不等式
12/13/2021
第一页,共四十四页。
数学(shùxué
12/13/2021
01
基础知识 自主回顾
02
核心考点 深度剖析
03
方法素养 助学培优
04
高效演练 分层突破
第二页,共四十四页。
12/13/2021
第三页,共四十四页。
一、知识梳理 1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件:_a_≥__0_,__b_≥__0_______. (2)等号成立的条件:当且仅当_a_=__b_____时取等号.
()
A.60 件 B.80 件 C.100 件
D.120 件
12/13/2021
第二十二页,共四十四页。
【解析】 若每批生产 x 件产品,则每件产品的生产准备费用是80x0元,仓储费用是x8元, 总的费用是80x0+x8≥2 80x0·x8=20,当且仅当80x0=x8,即 x=80 时取等号,故选 B. 【答案】 B
答案:7+4 3
12/13/2021
第二十一页,共四十四页。
基本不等式的实际应用(师生共研)
某车间分批生产某种产品,每批产品的生产准备费用为 800 元,若每批生产 x 件,
则平均仓储时间为x8天,且每件产品每天的仓储费用为 1 元.为使平均到每件产品的生
高考数学一轮复习第七章不等式第4讲基本不等式教案理含解析新人教A版
高考数学一轮复习第七章不等式第4讲基本不等式教案理含解析新人教A 版第4讲 基本不等式基础知识整合1.重要不等式a 2+b 2≥□012ab (a ,b ∈R )(当且仅当□02a =b 时等号成立). 2.基本不等式ab ≤a +b2(1)基本不等式成立的条件:□03a >0,b >0; (2)等号成立的条件:当且仅当□04a =b 时等号成立; (3)其中a +b2叫做正数a ,b 的□05算术平均数,ab 叫做正数a ,b 的□06几何平均数. 3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当□07x =y 时,x +y 有□08最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当□09x =y 时,xy 有□10最大值S 24.(简记:“和定积最大”)常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R );(3)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (4)b a +ab≥2(a ,b 同号).以上不等式等号成立的条件均为a =b .1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A.1 B.14 C.12 D.22答案 B解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立.故选B.2.(2019·山西模拟)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B.4C.92D.5答案 C解析 y =12(a +b )⎝ ⎛⎭⎪⎫1a +4b =12⎝ ⎛⎭⎪⎫5+4a b +b a ≥92⎝ ⎛⎭⎪⎫当且仅当a =23,b =43时等号成立.故选C.3.3-aa +6(-6≤a ≤3)的最大值为( )A.9B.92 C.3 D.322答案 B解析 当a =-6或a =3时,3-a a +6=0;当-6<a <3时,3-aa +6≤3-a +a +62=92, 当且仅当3-a =a +6,即a =-32时取等号.4.(2019·南昌摸考)已知函数y =x +m x -2(x >2)的最小值为6,则正数m 的值为________.答案 4解析 ∵x >2,m >0,∴y =x -2+mx -2+2≥2x -2·mx -2+2=2m +2,当且仅当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,∴2m +2=6,解得m =4.5.(2019·大连模拟)函数y =2x +2x(x <0)的最大值为________.答案 -4解析 ∵x <0,∴-x >0,∴(-2x )+⎝ ⎛⎭⎪⎫-2x ≥2-2x ·⎝ ⎛⎭⎪⎫-2x =4,即y =2x +2x≤-4(当且仅当-2x =-2x,即x =-1时等号成立).6.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.答案 14解析 由a -3b +6=0可得a -3b =-6, 又∵2a+18b ≥22a8b =22a -3b =22-6=14(当且仅当a =-3,b =1时取等号), ∴2a+18b 的最小值为14.核心考向突破考向一 利用基本不等式求最值角度1 利用配凑法求最值例1 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23答案 B解析 ∵0<x <1,∴x ·(3-3x )=13·3x ·(3-3x )≤13⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当3x =3-3x ,即x =12时,x (3-3x )取得最大值.故选B.(2)设x >0,则函数y =x +22x +1-32的最小值为________.答案 0 解析 y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.触类旁通通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:1拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形.2代数式的变形以拼凑出和或积的定值为目标. 3拆项、添项应注意检验利用基本不等式的前提.即时训练 1.已知x ,y 都是非负实数,且x +y =2,则8x +2y +4的最小值为________.答案 12解析 ∵x ,y 都是非负实数,且x +y =2,∴x +2+y +4=8,∴8≥2x +2y +4,即1x +2y +4≥116,当且仅当x =2,y =0时取等号,则8x +2y +4≥816=12. 角度2 利用常数代换法求最值例2 (1)(2019·绵阳诊断)若θ∈⎝⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( )A .[6,+∞)B .[10,+∞)C .[12,+∞)D .[16,+∞)答案 D解析 ∵θ∈⎝⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D. (2)(2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b=4+4a b +b a ≥4+24ab·b a=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.触类旁通常数代换法求最值的步骤常数代换法适用于求解条件最值问题.应用此种方法求解最值的基本步骤为: 1根据已知条件或其变形确定定值常数. 2把确定的定值常数变形为1.3把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式. 4利用基本不等式求解最值.即时训练 2.(2019·正定模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.答案 5解析 由x +3y =5xy ,可得15y +35x=1, 所以3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5,当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.角度3 利用消元法求最值例3 (1)(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则acb2的最大值为( )A .8B .2C .18D .16答案 C解析 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac 4a 2+4ac +c 2=14a c +ca+4≤124a c ·ca+4=18,当且仅当c =2a >0时等号成立.故选C. (2)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________. 答案 3解析 由x 2+2xy -3=0,得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.触类旁通通过消元法利用基本不等式求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.即时训练 3.(2019·安徽阜阳模拟)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b +3b a的最小值为________.答案 6解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以b =aa -1>0,所以a >1,所以a +b +3b a =(a -1)+4a -1+2≥4+2=6,当且仅当a =3时等号成立,所以a +b+3ba的最小值是6.考向二 求参数值或取值范围例4 (1)(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.(2)(2019·珠海模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8答案 C解析 解法一:由已知得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,令x +3y =t ,则t >0,且t 2+12t -108≥0,解得t ≥6,即x +3y ≥6.解法二:∵x +3y =9-xy ≥23xy ,∴(xy )2+23·xy -9≤0,∴(xy +33)·(xy -3)≤0,∴0<xy ≤3,∴x +3y =9-xy ≥6.故选C.触类旁通1要敏锐地洞察到已知条件与所求式子的联系,并能灵活的进行转化. 2利用基本不等式确立相关成立条件,从而得到参数的值或范围.即时训练 4.设a >0,b >0且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2答案 C解析 由1a +1b +ka +b≥0得k ≥-a +b 2ab,又a +b 2ab=a b +b a+2≥4(a =b 时取等号),所以-a +b2ab≤-4,因此要使k ≥-a +b2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.故选C.5.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16答案 D 解析32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.考向三 基本不等式的实际应用例5 (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?解 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元,∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n+n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.触类旁通有关函数最值的实际问题的解题技巧(1)根据实际问题建立函数的解析式,再利用基本不等式求得函数的最值. 2设变量时一般要把求最大值或最小值的变量定义为函数. 3解应用题时,一定要注意变量的实际意义及其取值范围.4在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.即时训练 6.某厂家拟在2018年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2018年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2018年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2018年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元),∴2018年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0). (2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2018年的促销费用投入3万元时,厂家的利润最大为21万元.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.答案 4解析 ∵a 4+4b 4≥2a 2·2b 2=4a 2b 2(当且仅当a 2=2b 2时“=”成立),∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab,由于ab >0,∴4ab +1ab≥24ab ·1ab=4⎝ ⎛⎭⎪⎫当且仅当4ab =1ab 时“=”成立, 故当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab 时,a 4+4b 4+1ab的最小值为4.答题启示利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.对点训练 已知a >b >0,求a 2+16ba -b的最小值. 解 ∵a >b >0,∴a -b >0.∴b (a -b )≤⎣⎢⎡⎦⎥⎤b +a -b 22=a 24. ∴a 2+16b a -b ≥a 2+64a2≥2a 2·64a2=16.当a 2=64a2且b =a -b ,即a =22,b =2时等号成立. ∴a 2+16ba -b的最小值为16.。
高考数学一轮复习第七章不等式第四节基本均值不等式课后作业理(1)
学 习 资 料 汇编【创新方案】2017届高考数学一轮复习 第七章 不等式 第四节 基本(均值)不等式课后作业 理[全盘巩固]一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 2.当x >0时,函数f (x )=2xx 2+1有( ) A .最小值1 B .最大值1 C .最小值2 D .最大值2 3.-aa +(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.3224.若2x +2y=1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]5.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( )A .有最大值eB .有最大值 eC .有最小值eD .有最大值 e 二、填空题6.(2016·开封模拟)已知圆x 2+y 2+2x -4y +1=0,关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是________.7.(2016·东莞模拟)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.8.(2016·潍坊模拟)已知a ,b 为正实数,直线x +y +a =0与圆(x -b )2+(y -1)2=2相切,则a 2b +1的取值范围是________.三、解答题9.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x -2x 的最大值.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[冲击名校]1.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1 C.94D .32.(2016·银川模拟)若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0,则2a +1b的最小值是( )A .2- 2 B.2-1 C .3+2 2 D .3-2 23.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________. 4.若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)(b +2)的最小值为________. 5.某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为x 2+x 万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?答 案 [全盘巩固]一、选择题1.解析:选C 对选项A ,当x >0时,x 2+14-x =⎝ ⎛⎭⎪⎫x -122≥0,∴lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x ,故不成立;对选项B ,当sin x <0时显然不成立;对选项C ,x 2+1=|x |2+1≥2|x |,一定成立;对选项D ,∵x 2+1≥1,∴0<1x 2+1≤1,故不成立. 2.解析:选B f (x )=2x +1x≤22x ·1x=1. 当且仅当x =1x,x >0即x =1时取等号.所以f (x )有最大值1.3解析:选B 法一:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本(均值)不等式可知,-a a +≤-a +a +2=92,当且仅当a =-32时等号成立. 法二:-aa +=-⎝ ⎛⎭⎪⎫a +322+814≤92,当且仅当a =-32时等号成立.4.解析:选D ∵2x+2y≥22x·2y=22x +y(当且仅当2x =2y 时等号成立),∴2x +y≤12,∴2x +y≤14,得x +y ≤-2. 5.解析:选C ∵x >1,y >1,且14ln x ,14,ln y 成等比数列,∴ln x ·ln y =14≤⎝ ⎛⎭⎪⎫ln x +ln y 22,∴ln x +ln y =ln xy ≥1⇒xy ≥e.二、填空题6.解析:∵圆关于直线对称,∴直线过圆心(-1,2),即a +b =1.∴ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时,等号成立.答案:⎝⎛⎦⎥⎤-∞,14 7.解析:函数log a (x +3)-1恒过定点A (-2,-1),又点A 在直线mx +ny +1=0上,∴2m +n =1.∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+n m +4m n ≥8,当且仅当n m =4m n ,即m =14,n =12时,等号成立.答案:88.解析:由题意知(b,1)到x +y +a =0的距离为2,即b +1+a2=2,得a +b =1,a=1-b ,a 2b +1=-b 2b +1=b +2-b ++4b +1=b +1+4b +1-4≥0,当且仅当b =1,a =0时取等号,又a >0,b >0,所以a 2b +1>0.答案:(0,+∞) 三、解答题9.解:(1)y =x +82x -3=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,∴3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号,于是y ≤-4+32=-52,故函数的最大值为-52.(2)∵0<x <2,∴2-x >0, ∴y =x-2x =2·x-x≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, ∴当x =1时,函数y =x-2x 的最大值为 2.10.解:(1)由2x +8y -xy =0, 得8x +2y=1.又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.[冲击名校]1.解析:选Bxy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x +1y -2z=-1y2+2y=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.2.解析:选C ∵圆心为(1,2)在直线2ax +by -2=0上,∴a +b =1,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b (a +b )=3+2b a +a b ≥3+2 2.当且仅当2b a =ab,即a =2-2,b =2-1时等号成立.3.解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xyx +y≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值为2.又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值为2.答案:24.解析:因为ab -4a -b +1=0,所以b =4a -1a -1.又a >1,所以b >0,所以(a +1)(b +2)=ab +2a +b +2=6a +2b +1=6a +8+6a -1+1=6(a -1)+6a -1+15.因为a -1>0,所以6(a -1)+6a -1+15≥2 a -6a -1+15=27,当且仅当6(a -1)=6a -1(a >1),即a =2时等号成立,故(a +1)·(b +2)的最小值为27.答案:275.解:(1)设需要修建k 个增压站,则(k +1)x =240,即k =240x-1.所以y =400k +(k +1)(x 2+x )=400⎝⎛⎭⎪⎫240x -1+240x(x 2+x )=96 000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x <240. 故y 与x 的函数关系是y =96 000x+240x -160(0<x <240).(2)y =96 000x+240x -160≥296 000x·240x -160=2×4 800-160=9 440,当且仅当96 000x=240x ,即x =20时等号成立,此时k =240x -1=24020-1=11.故需要修建11个增压站才能使y 最小,其最小值为9 440万元.敬请批评指正。
高三数学一轮总复习 第七章 不等式 第四节 基本不等式
课时跟踪检测(三十九) 基本不等式及应用一抓基础,多练小题做到眼疾手快1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为________.解析:∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立,∴ab 的最大值为14.答案:142.(2016·盐城调研)若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为________.解析:因为a >0,b >0,1a +1b =1,所以a +b =ab ,则4a -1+16b -1=4b -1+16a -1a -1b -1=4b +16a -20ab -a +b +1=4b +16a -20.又4b +16a =4(b +4a )⎝ ⎛⎭⎪⎫1a +1b =20+4×⎝ ⎛⎭⎪⎫b a+4a b ≥20+4×2b a ·4a b =36,当且仅当b a=4a b 且1a +1b =1,即a =32,b =3时取等号,所以4a -1+16b -1≥36-20=16. 答案:163.已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t =________. 解析:因为a >0,b >0时,有ab ≤a +b24=t 24,当且仅当a =b =t2时取等号.因为ab的最大值为2,所以t 24=2,t 2=8,所以t =8=2 2.答案:2 24.(2016·常州一模)已知x >0,则xx 2+4的最大值为________.解析:因为x x 2+4=1x +4x,又x >0时,x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时取等号,所以0<1x +4x≤14,即x x 2+4的最大值为14. 答案:145.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.解析:依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.答案:20二保高考,全练题型做到高考达标1.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.解析:由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.当且仅当a =b =1时取等号. ∴m +n 的最小值是4. 答案:42.(2015·湖南高考改编)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.解析:由1a +2b=ab ,知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2. 答案:2 23.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.解析:每批生产x 件,则平均每件产品的生产准备费用是800x元,每件产品的仓储费用是x 8元,则800x +x 8≥2 800x ·x 8=20,当且仅当800x =x8,即x =80时“=”成立,∴每批生产产品80件.答案:804.(2016·重庆巴蜀中学模拟)若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是________.解析:1a +1+4b +1=⎝ ⎛⎭⎪⎫ 1a +1+4b +1 a +1+b +14=14⎝ ⎛⎭⎪⎫1+4+b +1a +1+ 4a +1b +1 ≥14(5+24)=94,当且仅当b +1a +1=4a +1b +1,即a =13,b =53时取等号.所以1a +1+4b +1的最小值是94. 答案:945.若一元二次不等式ax 2+2x +b >0(a >b )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,则a 2+b 2a -b 的最小值是________.解析:由一元二次不等式ax2+2x +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,得⎩⎪⎨⎪⎧Δ=4-4ab =0且a >0,a ×1a 2-2a+b =0,所以ab =1且a >0.又已知a >b ,所以a 2+b 2a -b =a -b 2+2aba -b=(a -b )+2a -b ≥22,当且仅当a -b =2a -b 时取等号.所以a 2+b2a -b的最小值是2 2.答案:2 26.已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1,所以x 2+y 2=1+xy . 所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4,解得-2≤x +y ≤2. 当且仅当x =y =1时等号成立. 所以x +y 的最大值为2. 答案:27.(2016·青岛模拟)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为________.解析:因为log 2x +log 2y =log 22xy -1≤log 2⎝ ⎛⎭⎪⎫x +2y 2 2-1=2-1=1,当且仅当x =2y =2,即x =2,y =1时等号成立, 所以log 2x +log 2y 的最大值为1. 答案:18.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:1⊗k =k +1+k =3,即k +k -2=0, ∴k =1或k =-2(舍), ∴k =1.∴f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3,当且仅当x =1x,即x =1时等号成立.答案:1 39.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x4-2x 的最大值.解:(1)y =12(2x -3)+82x -3+32=-⎝⎛⎭⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0,∴3-2x 2+83-2x≥2 3-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)∵0<x <2, ∴2-x >0, ∴y =x4-2x =2·x2-x≤ 2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, ∴当x =1时,函数y =x4-2x 的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.三上台阶,自主选做志在冲刺名校1.(2016·南京名校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则3a +2b的最小值为________.解析:不等式组在直角坐标系中所表示的平面区域如图中的阴影部分所示.由z =ax +by 得y =-a b x +z b,当z 变化时,它表示经过可行域的一组平行直线,其斜率为-a b ,在y 轴上的截距为z b,由图可知当直线经过点A (4,6)时,在y 轴上的截距最大,从而z 也最大,所以4a +6b =12,即2a +3b =6,所以3a +2b =2a +3b 6·⎝ ⎛⎭⎪⎫3a +2b =16⎝ ⎛⎭⎪⎫6+6+4a b +9b a ≥4,当且仅当a =32,b =1时等号成立.所以3a +4b的最小值为4.答案:42.(2015·南京二模)已知函数f (x )=x 2+ax +11x +1(a ∈R).若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:令f (x )=x 2+ax +11x +1≥3(x ∈N *),则(3-a )x ≤x 2+8,即3-a ≤x +8x .因为x +8x≥28=42,当且仅当x =22时取等号,又x ∈N *,当x =2时,x +8x=6;当x =3时,x+8x =3+83<6,因此x +8x 的最小值为3+83,于是3-a ≤3+83,即a ≥-83. 答案:⎣⎢⎡⎭⎪⎫-83,+∞3.(2016·常州期末调研)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积...为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形为区域的总面积最大,最大为676 m 2.。
高考一轮复习课时作业(人教版):7-4基本不等式word版含答案
7-4基本不等式A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2012·福州调研)若x >0,则x +4x 的最小值为( ). A .2B .3C .2 2D .4解析 ∵x >0,∴x +4x ≥4. 答案 D2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ). A.13B.12C.34D.23解析 ∵0<x <1,∴1-x >0. ∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎪⎫x +1-x 22=34. 当x =1-x ,即x =12时取等号. 答案 B3.把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为( ). A .4B .8C .16D .32解析 设截成的两段铁丝长分别为x,16-x,16>x >0,则围成的两个正方形面积之和为S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫16-x 42≥⎝ ⎛⎭⎪⎫x 4+16-x 422=8,当且仅当x 4=16-x 4,即x =8时,等号成立.故两个正方形面积之和的最小值为8. 答案 B4.(2012·合肥模拟)若正实数a ,b 满足a +b =1,则( ). A.1a +1b 有最大值4B .ab 有最小值14 C.a +b 有最大值 2D .a 2+b 2有最小值22解析 由基本不等式,得ab ≤a 2+b 22=(a +b )2-2ab 2,所以ab ≤14,故B 错;1a +1b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2≤a +b2=12,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C5.(2011·重庆)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ). A.72B .4C.92D .5解析 依题意得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b (a +b )=12⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫b a +4a b ≥12⎝ ⎛⎭⎪⎫5+2b a ×4a b =92,当且仅当⎩⎪⎨⎪⎧a +b =2b a =4aba >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92,选C. 答案 C二、填空题(每小题4分,共12分) 6.若x >1,则x +4x -1的最小值为________. 解析 x +4x -1=x -1+4x -1+1≥2(x -1)·4x -1+1=5,等号当且仅当x -1=4x -1,即x =3时成立. 答案 57.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4. 答案 48.(2011·浙江)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值为________. 解析 由x 2+y 2+xy =1,得(x +y )2-xy =1, 即xy =(x +y )2-1≤(x +y )24,所以34(x +y )2≤1,故-233≤x +y ≤233,当x =y 时“=”成立,所以x +y 的最大值为233. 答案 233三、解答题(共23分)9.(11分)已知x >0,y >0,且2x +8y -xy =0, 求:(1)xy 的最小值; (2)x +y 的最小值. 解 ∵x >0,y >0,2x +8y -xy =0, (1)xy =2x +8y ≥216xy , ∴xy ≥8,∴xy ≥64. 故xy 的最小值为64.(2)由2x +8y =xy ,得:2y +8x =1, ∴x +y =(x +y )·1=(x +y )⎝ ⎛⎭⎪⎫2y +8x=10+2x y +8yx ≥10+8=18. 故x +y 的最小值为18.10.(12分)(2011·丽水模拟)某单位用2 160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元). (1)写出楼房平均综合费用y 关于建造层数x 的函数关系式;(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解 (1)依题意得y =(560+48x )+2 160×10 0002 000x=560+48x +10 800x (x ≥10,x ∈N +); (2)∵x >0,∴48x +10 800x ≥248×10 800=1 440(元),当且仅当48x =10 800x,即x =15时取到“=”, 此时,平均综合费用的最小值为560+1 440=2 000(元).所以,当该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2 000元.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·皖南八校联考(二))已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小值是( ). A .0B .1C .2D .4解析 由题知a +b =x +y ,cd =xy ,x >0,y >0,则(a +b )2cd =(x +y )2xy ≥(2xy )2xy =4,当且仅当x =y 时取等号. 答案 D2.(2011·厦门模拟)若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( ). A.14B. 2C.32+ 2D.32+2 2解析 圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b =32+b a +a 2b ≥32+2,当且仅当b a =a2b ,即a =2(2-1),b =2-2时取等号.答案 C二、填空题(每小题4分,共8分)3.(2011·湖南)x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=1+4+4x 2y 2+1x 2y 2≥1+4+24x 2y 2·1x 2y 2=9,当且仅当4x 2y 2=1x 2y 2时等号成立,即|xy |=22时等号成立. 答案 94.(2011·江苏)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x 的图象交于P ,Q 两点,则线段PQ 长的最小值是________.解析 假设直线与函数f (x )=2x 的图象在第一象限内的交点为P ,在第三象限内的交点为Q ,由题意知线段PQ 的长为OP 长的2倍. 假设P 点的坐标为⎝ ⎛⎭⎪⎫x 0,2x 0,则|PQ |=2|OP |=2x 20+4x 20≥4.当且仅当x 20=4x20,即x 0=2时,取“=”号. 答案 4三、解答题(共22分)5.(10分)已知a ,b >0,求证:a b 2+b a 2≥4a +b .证明 ∵a b 2+ba 2≥2 ab 2·b a 2=21ab >0,a +b ≥2ab >0, ∴⎝ ⎛⎭⎪⎫a b 2+b a 2(a +b )≥21ab ·2ab =4. ∴a b 2+b a 2≥4a +b .当且仅当⎩⎪⎨⎪⎧a b 2=b a2,a =b 取等号,即a =b 时,不等式等号成立.6.(12分)(2011·洛阳模拟)桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占的总面积为S 平方米.(1)试用x 表示S ;(2)当x 取何值时,才能使得S 最大?并求出S 的最大值. 解 (1)由题图形知,3a +6=x ,∴a =x -63. 则总面积S =⎝ ⎛⎭⎪⎫1 800x -4·a +2a ⎝ ⎛⎭⎪⎫1 800x -6=a ⎝ ⎛⎭⎪⎫5 400x -16=x -63⎝ ⎛⎭⎪⎫5 400x -16 =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3,即S =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3(x >0).(2)由S =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3,得S ≤1 832-210 800x ·16x3=1 832-2×240=1 352(平方米). 当且仅当10 800x =16x3,此时,x =45.即当x 为45米时,S 最大,且S 最大值为1 352平方米.。
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练【含解析】
2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(原卷版)一、单项选择题1.设a,b均为非零实数且a<b,则下列结论中正确的是()A.1a>1bB.a2<b2C.1a2<1b2D.a3<b32.已知实数a>b>0>c,则下列结论一定正确的是()A.ab>acBC.1a<1cD.a2>c23.已知a>0,b>0,若直线l1:ax+by-2=0与直线l2:2x+(1-a)y+1=0垂直,则a+2b的最小值为()A.1B.3C.8D.94.已知x>0,y>0,且1x+2+1y=23,若x+y>m2+3m恒成立,则实数m的取值范围是()A.(-4,6)B.(-3,0)C.(-4,1)D.(1,3)5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x万件该产品,需另投入成本ω(x)万元.其中ω(x)2+10x,0<x≤40,x+10000x-945,x>40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为()A.720万元B.800万元C.875万元D.900万元二、多项选择题6.下列结论中,正确的有()A.若a>b,则ac2>b c2B.若ab=4,则a2+b2≥8C.若a>b,则ab<a2D.若a>b,c>d,则a-d>b-c7.(2023·曲靖一模)已知a>0,b>0,且a+b=4,则下列结论一定正确的有()A.(a+2b)2≥8ab B.1a+1b≥2abC.ab有最大值4D.1a+4b有最小值98.设a>0,b>0,且a+2b=2,则() A.ab的最大值为12B.a+b的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是___.10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为___.11.若a>0,b>0,a+b=9,则36a+ab的最小值为____.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;(2)求a1+b2的最大值,并求此时a,b的值.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;(2)设备占地面积x为多少时,y的值最小?2025高考数学一轮复习-第4讲-不等式的性质、基本不等式-专项训练(解析版)一、单项选择题1.设a ,b 均为非零实数且a <b ,则下列结论中正确的是(D )A .1a >1b B .a 2<b 2C .1a 2<1b2D .a 3<b 3【解析】对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a 2=b 2,B 错误;对于C ,取a =-1,b =1,则1a 2=1b 2,C 错误;对于D ,由a <b ,可得b 3-a 3=(b -a )·(b 2+ab +a 2)=(b -a +12a +34a2>0,所以a 3<b 3,D 正确.2.已知实数a >b >0>c ,则下列结论一定正确的是(A )A .a b >ac B C .1a <1cD .a 2>c 2【解析】对于A ,因为a >b >0>c ,所以a b >0>ac ,故A 正确;对于B ,因为函数y 在R 上单调递减,且a >c ,故B 错误;对于C ,因为a >0>c ,则1a >0>1c ,故C 错误;对于D ,若a =1,c =-2,满足a >0>c ,但a 2<c 2,故D 错误.3.已知a >0,b >0,若直线l 1:ax +by -2=0与直线l 2:2x +(1-a )y +1=0垂直,则a +2b 的最小值为(D )A .1B .3C .8D .9【解析】由题可知两条直线的斜率一定存在,因为两直线垂直,所以斜率乘积为-1,即-a b×1,即2a +b =ab ,整理得2b +1a =1,所以a +2b=(a +2b =2a b +1+4+2ba ≥5+22a b ·2ba=9,当且仅当a =b =3时等号成立.因此a +2b 的最小值为9.4.已知x >0,y >0,且1x +2+1y =23,若x +y >m 2+3m 恒成立,则实数m 的取值范围是(C)A .(-4,6)B .(-3,0)C .(-4,1)D .(1,3)【解析】因为x >0,y >0,且1x +2+1y =23,所以x +2+y =32(x +2+y+y x +2+x +2y ++6,当且仅当y x +2=x +2y,即y=3,x =1时取等号,所以x +y ≥4.因为x +y >m 2+3m 恒成立,所以m 2+3m <4,即(m -1)(m +4)<0,解得-4<m <1.所以实数m 的取值范围是(-4,1).5.(2023·深圳罗湖期末)某科技企业开发生产一种智能产品,该产品每年的固定成本是25万元,每生产x 万件该产品,需另投入成本ω(x )万元.其中ω(x )2+10x ,0<x ≤40,x +10000x-945,x >40,若该公司一年内生产的该产品全部售完,每件的售价为70元,则该企业每年利润的最大值为(C)A .720万元B .800万元C .875万元D .900万元【解析】该企业每年利润为f (x )=x -(x2+10x +25),0<x ≤40,xx +10000x-945+x >40,当0<x ≤40时,f (x )=-x 2+60x -25=-(x -30)2+875,当x =30时,f(x )取得最大值875;当x >40时,f (x )=920920-2x ·10000x=720,当且仅当x =100时等号成立,即在x=100时,f (x )取得最大值720.由875>720,可得该企业每年利润的最大值为875万元.二、多项选择题6.下列结论中,正确的有(BD )A .若a >b ,则a c 2>bc 2B .若ab =4,则a 2+b 2≥8C .若a >b ,则ab <a 2D .若a >b ,c >d ,则a -d >b -c【解析】对于A ,若c =0,则a c 2,bc 2无意义,故A 错误;对于B ,若ab =4,则a 2+b 2≥2ab =8,当且仅当a =b =±2时等号成立,故B 正确;对于C ,由于不确定a 的符号,故无法判断,例如a =0,b =-1,则ab =a 2=0,故C 错误;对于D ,若a >b ,c >d ,则-d >-c ,所以a -d >b -c ,故D 正确.7.(2023·曲靖一模)已知a >0,b >0,且a +b =4,则下列结论一定正确的有(AC)A .(a +2b )2≥8abB .1a +1b ≥2ab C .ab 有最大值4D .1a +4b有最小值9【解析】对于A ,(a +2b )2=a 2+4b 2+4ab ≥2·a ·2b +4ab =8ab ,故A 正确;对于B ,找反例,当a =b =2时,1a +1b =2,2ab =4,1a +1b<2ab ,故B 错误;对于C ,因为a +b =4≥2ab ,所以ab ≤4,当且仅当a =b =2时取等号,故C 正确;对于D ,1a +4b =a +b )+4+b a ++=94,当且仅当a =43,b =83时取等号,故D 错误.8.设a >0,b >0,且a +2b =2,则(ACD )A .ab 的最大值为12B .a +b 的最小值为1C.a2+b2的最小值为45D.a-b+2ab的最小值为9 2【解析】对于A,a>0,b>0,22ab≤a+2b=2⇒ab≤12,当且仅当a=1,b=12时取等号,故A正确;对于B,a+b=2-b,a=2-2b.因为a>0,b>0,所以0<b<1,1<a+b<2,故B错误;对于C,a2+b2=(2-2b)2+b2=5b2-8b+4=+45≥45,当且仅当a=25,b=45时取等号,故C正确;对于D,a-b+2ab=a-b+a+2bab=2a+bab=2b+1a=·(a+2b)·12=+2b a++=92,当且仅当2ba=2ab,即a=b=23时取等号,故D正确.三、填空题9.已知实数a,b满足-3≤a+b≤-2,1≤a-b≤4,则3a-5b的取值范围是__[6,19]__.【解析】因为3a-5b=-(a+b)+4(a-b),由-3≤a+b≤-2,得2≤-(a +b)≤3,由1≤a-b≤4,得4≤4(a-b)≤16,所以6≤3a-5b≤19,即3a-5b 的取值范围是[6,19].10.已知a>0,b>0,且ab=a+b+3,则a+b的最小值为__6__.【解析】因为ab=a+b+3≤14(a+b)2,所以(a+b)2-4(a+b)-12≥0,即(a+b-6)(a+b+2)≥0,解得a+b≥6或a+b≤-2.因为a>0,b>0,所以a+b≥6(当且仅当a=b=3时取等号).11.若a>0,b>0,a+b=9,则36a+ab的最小值为__8__.【解析】36a+ab=4(a+b)a+ab=4+4ba+ab≥4+24ba·ab=8,当且仅当a=6,b=3时取等号,故36a+ab的最小值为8.四、解答题12.已知a,b为正实数,且4a2+b2=2.(1)求ab的最大值,并求此时a,b的值;【解答】由不等式4a2+b2≥4ab,解得ab≤12,当且仅当2a=b=1时取等号,所以ab的最大值为12,此时a=12,b=1.(2)求a1+b2的最大值,并求此时a,b的值.【解答】由4a2+b2=2,得4a2+(1+b2)=3.由4a2+(1+b2)≥24a2·(1+b2)=4a1+b2,得a1+b2≤34,当且仅当4a2=1+b2,即a=64,b=22时取等号,所以a1+b2的最大值为34,此时a=64,b=22.13.已知a>1,b>2.(1)若(a-1)(b-2)=4,求1a-1+1b-2的最小值及此时a,b的值;【解答】因为a>1,b>2,所以a-1>0,b-2>0,所以1a-1+1b-2=a-1)(b-2)=14[(b-2)+(a-1)]≥14×2(b-2)(a-1)=1,当且仅-2=a-1,a-1)(b-2)=4,即a=3,b=4时等号成立,所以1a-1+1b-2的最小值为1,此时a=3,b=4.(2)若2a+b=6,求1a-1+1b-2的最小值及此时a,b的值;【解答】由2a+b=6,得2(a-1)+(b-2)=2,所以(a-1)+b-22=1,所以1a-1+1b-2=(a-1)+b-22=32+a-1b-2+b-22(a-1)≥3+222,当-2=2(a-1),a-1)+(b-2)=2,即a=3-2,b=22时等号成立,所以1a-1+1b-2的最小值为3+222,此时a=3-2,b=2 2.(3)若1a+1b=1,求1a-1+1b-2的最小值及此时a,b的值.【解答】因为b>2,由1a+1b=1,可得a=bb-1,所以a-1=1b-1,所以1a-1+1b-2=b-2+1b-2+1≥3,当且仅当a=32,b=3时等号成立,所以1a-1+1b-2的最小值为3,此时a=32,b=3.14.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C(单位:万元)与设备占地面积x之间的函数关系为C(x)=20x+5(x>0).将该企业的净水设备购置费与安装后4年需缴水费之和合计为y(单位:万元).(1)要使y不超过7.2万元,求设备占地面积x的取值范围;【解答】由题意得y=0.2x+80x+5x>0).由y≤7.2,得0.2x+80x+5≤7.2,整理得x2-31x-220≤0,解得11≤x≤20,即设备占地面积x的取值范围为[11,20].(2)设备占地面积x为多少时,y的值最小?【解答】y=0.2x+80x+5=x+55+80x+5-1≥2x+55×80x+5-1=7,当且仅当x+55=80x+5,即x=15时等号成立.所以设备占地面积为15平方米时,y的值最。
2021版高考数学一轮复习第7章不等式第4节基本不等式课件文新人教A版
解析几何、不等式相结合考查,加强 逻辑推理
数形结合、分类讨论、转化与化归等
数学思想的应用意识.难度中档.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.重要不等式 a2+b2≥ 1 ___2_a_b____ (a,b∈R)(当且仅当 2 __a_=__b____时等号成立). 2.基本不等式 ab≤a+2 b (1)基本不等式成立的条件: 3 _a_>_0_,__b_>_0_.
(2)等号成立的条件:当且仅当 4 __a_=__b____时等号成立.
(3)
其
中
a+b 2
叫
做
正
数
a,b
的 5 __算__术__平__均__数___ ,
ab 叫 做 正 数
a,b
的6
___几__何__平__均__数______.
3.利用基本不等式求最大、最小值问题 (1)如果 x,y∈(0,+∞),且 xy=P(定值),那么当且仅当 7 __x_=__y____时,x+y 有最 小值 2 P.(简记:“积定和最小”) (2)如果 x,y∈(0,+∞),且 x+y=S(定值),那么当且仅当 x=y 时,xy 有最大值S42.(简 记:“和定积最大”)
4.常用的几个不等式
(1)a+b≥ 8 _2__a_b_____ (a>0,b>0).
(2)ab≤
9
a+b2
__ _2______
(a,b∈R).
(3)a+2 b2≤a2+2 b2(a,b∈R).
(4)ba+ab≥ 10 __2_______ (a,b 同号).
以上不等式等号成立的条件均为 a=b.
‖常用结论‖ 1.应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会 出错. 2.对于公式 a+b≥2 ab,ab≤a+2 b2,要弄清它们的作用、使用条件及内在联系, 两个公式也体现了 ab 和 a+b 的转化关系. 3.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用, 则一定要保证它们等号成立的条件一致.
【精品】高考数学一轮复习第七章不等式7-4基本不等式课时练理
2017高考数学一轮复习 第七章 不等式 7.4 基本不等式课时练 理时间:45分钟基础组1.[2016·衡水中学仿真]下列命题正确的是( ) A .若x ≠k π,k ∈Z ,则sin 2x +1sin 2x ≥4B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则a b +ab≥2 答案 D解析 当sin 2x =1时,1+1=2<4,所以A 错;若a <0,则a +4a≤-4,B 错;因为lg a ,lg b 可以小于零,C 错;由a <0,b <0,所以b a ,a b 都大于零,D 正确.2.[2016·武邑中学一轮检测]若不等式tt 2+9≤a ≤t +2t2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413 D.⎣⎢⎡⎦⎥⎤213,1答案 D 解析tt 2+9=1t +9t ,而t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t =2时等号成立),t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18,因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1.3.[2016·武邑中学月考]设a >b >c >0,则2a 2+1ab +1aa -b-10ac +25c 2的最小值是( )A .2B .4C .2 5D .5答案 B 解析 原式=a 2+1ab+1a a -b+a 2-10ac +25c 2=a 2+1ba -b+(a -5c )2≥a 2+4a 2+0≥4,当且仅当b =a -b 、a =5c 且a 2=4a2,即a =2b =5c =2时等号成立,故原式的最小值为4.故选B.4.[2016·衡水中学热身]已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A.14 B .4 C.12 D .2答案 C解析 由4=2a +b ≥22ab ,得ab ≤2,又a >0,b >0,所以1ab ≥12,当且仅当a =1,b=2时等号成立.5. [2016·枣强中学期中]已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 答案 9 解析 由已知得x +2y2=1,则x +8y xy =1y +8x =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x +2y 2=12( 10+x y +16y x )≥12(10+216)=9,当且仅当x =43,y =13时取等号.6.[2016·衡水二中预测]已知x >0,y >0,若2y x +8x y>m 2+2m 恒成立,则实数m 的取值范围是________.答案 -4<m <2解析 根据题意,x >0,y >0,则2y x >0,8xy>0,所以2y x +8x y≥22y x ×8x y =8,当且仅当2y x =8xy时,即y =2x 时等号成立,即2y x +8xy的最小值为8.若2y x +8x y>m 2+2m 恒成立,必有m 2+2m <8恒成立,所以m 2+2m <8,m 2+2m -8<0,即-4<m <2.7.[2016·枣强中学期末]已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x +4y的最小值为________.答案 4 2解析 由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3, ∴2x +4y ≥22x ·4y =22x +2y=42,当且仅当x =2y =32时,等号成立,故2x +4y的最小值为4 2.8.[2016·衡水二中模拟]已知x ,y ∈R ,满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________.答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4,当且仅当x =2y 时取等号.又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12.综上可得4≤x 2+4y 2≤12.9.[2016·武邑中学预测]已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝ ⎛⎭⎪⎫1x-1⎝ ⎛⎭⎪⎫1y -1⎝ ⎛⎭⎪⎫1z -1>8. 证明 因为x ,y ,z 是互不相等的正数,且x +y +z =1,所以1x -1=1-x x =y +z x >2yzx①1y-1=1-y y =x +z y >2xz y ②,1z-1=1-z z=x +y z>2xy z③,又x ,y ,z 为正数,由①×②×③,得⎝ ⎛⎭⎪⎫1x -1⎝ ⎛⎭⎪⎫1y -1⎝ ⎛⎭⎪⎫1z -1>8. 10.[2016·冀州中学仿真]证明:4a -3+a ≥7(a >3). 证明 因为a >3,所以4a -3+a =4a -3+(a -3)+3≥24a -3a -+3=2×4+3=7.当且仅当4a -3=a -3,即a =5时,等号成立. 11.[2016·武邑中学猜题]已知lg (3x )+lg y =lg (x +y -1). (1)求xy 的最小值; (2)求x +y 的最小值.解 由lg (3x )+lg y =lg (x +y +1),得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)∵x >0,y >0,∴3xy =x +y +1≥2xy +1. ∴3xy -2xy -1≥0, 即3(xy )2-2xy -1≥0, ∴(3xy +1)(xy -1)≥0, ∴xy ≥1,∴xy ≥1.当且仅当x =y =1时,等号成立. ∴xy 的最小值为1.(2)∵x >0,y >0,∴x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22.∴3(x +y )2-4(x +y )-4≥0,∴[3(x +y )+2][(x +y )-2]≥0,∴x +y ≥2, 当且仅当x =y =1时取等号, ∴x +y 的最小值为2.12. [2016·衡水二中期末]如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体的沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计)?解 解法一:设y 为流出的水中杂质的质量分数, 则y =k ab,其中k 为比例系数,且k >0. 根据题意有,4b +2ab +2a =60(a >0,b >0), 所以b =30-a 2+a (0<a <30).所以ab =a ×30-a 2+a =30a -a22+a=-a +32-642+a=34-⎝⎛⎭⎪⎫a +2+64a +2 ≤34-2a +64a +2=18. 当a +2=64a +2时取等号,y 达到最小值. 此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:设y 为流出的水中杂质的质量分数, 则y =k ab,其中k 为比例系数,且k >0. 根据题意有,4b +2ab +2a =60(a >0,b >0), 即2b +ab +a =30.因为a +2b ≥22ab ,所以30-ab =a +2b ≥22ab . 所以ab +22ab -30≤0. 因为a >0,b >0,所以0<ab ≤18, 当a =2b 时取等号,ab 达到最大值18. 此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.能力组13.[2016·冀州中学预测]若不等式tt 2+9≤a ≤t +2t2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413 D.⎣⎢⎡⎦⎥⎤213,1答案 D 解析tt 2+9=1t +9t ,而y =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t =2时等号成立),t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18,因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1. 14. [2016·衡水二中期中]设M =3x +3y2,N =(3)x +y ,P =3xy (x ,y >0,且x ≠y ),则M ,N ,P 大小关系为( )A .M <N <PB .N <P <MC .P <M <ND .P <N <M答案 D解析 由基本不等式可知3x+3y2≥3x 3y =3x +y=3x +y 2≥3xy ,因为x ≠y ,所以等号不成立,故P <N <M .15.[2016·衡水中学热身]若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________.答案233解析 (x +y )2=x 2+2xy +y 2=x 2+xy +y 2+xy =1+xy ,要使其有最大值,不妨设x ,y 均为正数,故有x 2+y 2+xy =1≥2xy +xy =3xy ,即xy ≤13,当且仅当x =y 时取等号,所以(x +y )2=1+xy ≤43,则x +y 的最大值是233.16. [2016·武邑中学月考]某厂家拟在2015年举行促销活动,经调查测算,该产品的。
高考数学一轮复习 第七章 不等式 第四节 基本不等式及
x
x
x
= 64 ,即x=4时,等号成立,故选B.
x
4.(2018北京海淀期中,11)能够说明“设x是实数,若x>1,则x+ 1 >3”是
x 1
假命题的实数x的值为 2 .
答案 2
解析 ∵x>1,∴x-1>0,∴x+ 1 =x-1+ 1 +1≥3,当且仅当x-1= 1 ,即x=
x 1
x 1
x 1
2时,取“=”,∴当x=2时,x+ 1 >3是假命题.
xy
此时由
x x
2 y, 3y
5xy
解得
x
y
1, 1
2
(满足x>0,y>0).
故3x+4y的最小值为5.
(3)因为正数x,y满足x+2y=1,
所以
2 x
+
1 y
=
2 x
1 y
(x+2y)
=2+ 4 y + x +2
xy
=4+ 4 y + x ≥4+2 4 y x =8,
xy
xy
当且仅当 4 y = x ,即x=2y时取等号.
x 1
5.已知点P(x,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为 4 2
3
,此时x= 2 .
答案 4 2 ; 3
2
解析 由题意得 x2 ( y 4)2 = (x 2)2 y2 ,即x+2y=3,则2x+4y≥2 2x 4y =2 2x2y =2 23 =4 2 ,当且仅当x=2y= 3 时,等号成立.
2020版高考数学一轮总复习第七单元不等式与推理证明课时4基本不等式教案文(含解析)新人教A版
基本不等式1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件.2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题.知识梳理1.基本不等式a +b 2≥ab(1)基本不等式成立的条件: a >0,b >0 .(2)等号成立的条件:当且仅当 a =b 时不等式取等号.2.几个重要不等式(1)a 2+b 2≥ 2ab (a ,b ∈R );(2)a b +b a ≥ 2 (a ,b 同号);(3)ab ≤(a +b 2)2(a ,b ∈R ); (4)a 2+b 22 ≥ (a +b 2)2. 3.基本不等式求最值(1)两个 正数 的和为 定值 ,当且仅当它们 相等 时,其积最大.(2)两个 正数 的积为 定值 ,当且仅当它们 相等 时,其和最小.利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件.热身练习1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是(D)A .a 2+b 2>2abB .a +b ≥2abC.1a +1b >2abD.b a +a b≥2A 、C 中,a =b 时不成立,B 中,当a 与b 均为负数时不成立,而对于D ,利用基本不等式x +y ≥2xy (x >0,y >0)成立,故选D.2.已知a ,b 为正数,则下列不等式中不成立的是(D)A .ab ≤a 2+b 22B .ab ≤(a +b 2)2C.a 2+b 22≥a +b 2D.2aba +b ≥ab易知A ,B 成立,对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以a 2+b 22≥(a +b 2)2,所以a 2+b 22≥a +b2,故C 成立.对于D ,取a =4,b =1,代入可知,不等式不成立,故D 不成立.由以上分析可知,应选D.3.周长为60的矩形面积的最大值为(A)A .225B .450C .500D .900设矩形的长为x ,宽为y ,则2(x +y )=60,所以x +y =30,所以S =xy ≤(x +y 2)2=225,即S max =225.当且仅当x =y =15时取“=”,故选A.4.设函数f (x )=2x +1x -1(x <0),则f (x )(A)A .有最大值B .有最小值C .是增函数D .是减函数f (x )=-[(-2x )+(-1x )]-1≤-22-1, 当且仅当x =-22时,等号成立,所以函数f (x )有最大值,所以选A.5.(2017·山东卷)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为8 .因为直线x a +yb =1(a >0,b >0)过点(1,2), 所以1a +2b =1,所以2a +b =(2a +b )(1a +2b )=4+4a b +b a ≥4+24ab ·b a =8, 当且仅当ba =4ab ,即a =2,b =4时,等号成立.故2a +b 的最小值为8.利用基本不等式判断大小关系下列不等式一定成立的是A .x 2+1>2x (x ∈R )B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1+1x 2+1>2(x >0) D .x ≥1x(x >0)对于A ,当x =1时,x 2+1=2x ,A 不正确.对于B ,需要满足sin x >0,不等式成立,所以B 也不正确;对于C ,x 2+1+1x 2+1≥2,当且仅当x 2+1=1x 2+1,即x =0时,取等号,但x >0,所以不等式不能取到等号,故C 正确.对于D ,当0<x <1时,x <1x,故D 不正确.C运用基本不等式判断大小关系,要注意基本不等式成立的条件及取等号的条件,同时要注意特例的运用.1.(2018·福建莆田模拟)下列结论正确的是(C)A .当x >0且x ≠1时,lg x +1lg x≥2 B .当x ∈(0,π2)时,sin x +4sin x的最小值为4 C .当x >0时,x +1x≥2 D .当0<x ≤2时,x -1x 无最大值对于A ,当0<x <1时,lg x <0,不等式不成立;对于B ,当x ∈(0,π2)时,sin x +4sin x的最小值不为4(因为sin x =2不成立); 对于C ,当x >0时,x +1x ≥2x ·1x =2,当且仅当x =1时,等号成立;对于D ,当0<x ≤2时,x -1x 单调递增,所以当x =2时,取得最大值,最大值为32.利用基本不等式求最值(1)已知x <54,求函数y =4x -2+14x -5的最大值. (2)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.(1)y =4x -2+14x -5=-(5-4x +15-4x)+3 ≤-2+3=1,当且仅当5-4x =15-4x,即x =1时,取等号. 故当x =1时,y max =1.(2)(方法一)因为x >0,y >0,1x +9y=1, 所以x +y =(1x +9y )(x +y )=y x+9x y +10≥6+10=16. 当且仅当y x =9x y ,且1x +9y=1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.(方法二)由1x +9y=1,得(x -1)(y -9)=9(定值), 可知x >1,y >9,从而x +y =(x -1)+(y -9)+10 ≥2x -y -+10=16,所以当且仅当x -1=y -9=3,即x =4,y =12时,(x +y )min =16.(1)利用基本不等式求最值时,要注意“一正、二定、三相等”三个条件.所谓“一正”指正数,“二定”是指应用不等式时,和或积为定值,“三相等”指满足等号成立的条件.(2)利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,再利用基本不等式.2.(1)若x >0,y >0,且2x +3y =6,则xy 的最大值为 32. (2)(2018·江苏杭州一模)若对任意的x >1,x 2+3x -1≥a 恒成立,则a 的最大值是(B)A .4B .6C .8D .10(1)因为x >0,y >0,且2x +3y =6.所以xy =16(2x )·(3y )≤16(2x +3y 2)2=32, 当且仅当2x =3y =3,即x =32,y =1时,xy 取得最大值32. (2)a ≤x 2+3x -1对x ∈(1,+∞)恒成立,即a ≤(x 2+3x -1)min . 因为x 2+3x -1=x -2+x -+4x -1=(x -1)+4x -1+2, 因为x >1,所以(x -1)+4x -1+2≥2x -4x -1+2=6, 当且仅当x -1=4x -1,即x =3时,取“=”,所以a ≤6. 故a 的最小值为6.基本不等式的实际应用(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.一年的总运费为6×600x =3600x(万元). 一年的总存储费用为4x 万元.总运费与总存储费用的和为(3600x+4x )万元. 因为3600x +4x ≥23600x ·4x =240,当且仅当3600x=4x ,即x =30时取得等号, 所以当x =30时,一年的总运费与总存储费用之和最小.30应用基本不等式解决实际问题的步骤:①先理解题意,设变量时一般把要求的最大(小)值的变量定为函数;②建立相应的函数关系式,把实际问题抽象为函数的最大(小)值问题;③利用基本不等式求函数的最大(小)值问题,注意是否符合“一正、二定、三相等”的条件;④回到实际问题中,写出正确答案.3.某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 80 件.设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x 8=20. 当且仅当800x =x 8(x >0),即x =80时“=”成立.1.基本不等式具有将“和式”转化为“积式”或将“积式”转化为“和式”的放缩功能,分析其结构特点,有利于在运用过程中根据问题的结构特征灵活地对公式进行合理选择.2.基本不等式的应用主要是:(1)证明某些不等式;(2)求某些函数的最值.3.利用基本不等式求最值,有“和定积最大,积定和最小”的结论,利用它可以解决某些非二次的有关函数及多元函数的最大值或最小值问题,在具体解题时,要特别注意:“一正、二定、三相等”的条件.创造利用基本不等式的条件,合理拆分项或配凑因式是常用的解题技巧,而拆与凑的目标在于满足“一正、二定、三相等”的条件.。
2020版高考数学一轮复习第七章不等式第4讲基本不等式配套课时作业课件理新人教A版
答案
解析
8.(2019·江西鹰潭模拟)已知 a>0,b>0,a+b=1a+1b,则1a+2b的最小值
为( )
A.4
B.2 2
C.8
D.16
答案 B
解析 因为 a>0,b>0,所以根据 a+b=1a+1b=a+ abb,可得 ab=1,所以
1a+2b≥2 1a·2b=2 2,当且仅当 b=2a= 2时等号成立.故选 B.
答案
解析
5.(2019·陕西咸阳质检)已知 x+y=3,则 2x+2y 的最小值是( )
A.8
B.6
C.3 2
D.4 2
答案 D
解析 因为 2x>0,2y>0,x+y=3,所以由基本不等式得 2x+2y≥2 2x·2y= 2 2x+y=4 2,当且仅当 2x=2y,即 x=y=32时等号成立.故选 D.
答案
解析
4.(2019·秦皇岛模拟)函数 y=xx2-+12(x>1)的最小值是(
)
A.2 3+2 B.2 3-2
C.2 3
D.2
答案 A
解析 ∵x>1,∴x-1>0, ∴y=x2-x-1+1 3=x-1x-x+11+3=x+1+x-3 1=x-1+x-3 1+2≥2 3+ 2(当且仅当 x=1+ 3时取“=”).故选 A.
>0,解得 n<-2152或 n>1,所以实数 n 的取值范围是-∞,-2152∪(1,+∞).故
选 B.
解析
10.已知两个正数 x,y 满足 x+4y+5=xy,则 xy 取最小值时 x,y 的值
分别为( )
A.5,5
B.10,5
C.10,52
高考数学总复习 第7章 第4节 基本不等式课时跟踪检测 理(含解析)新人教版
【优化指导】2015高考数学总复习 第7章 第4节 基本不等式课时跟踪检测 理(含解析)新人教版1.(2014·东北三校联考)设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .2 6 B .4 2 C .6D .8解析:选B 2a+2b≥22a +b=42,当且仅当a =b =32时,等号可以取到,此时2a +2b有最小值.故选B.2.(2013·福建高考)若2x+2y=1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]解析:选D ∵2x+2y=1≥22x +y,当且仅当x =y 时等号成立.∴(12)2≥2x +y ,即2x +y ≤2-2.∴x +y ≤-2,∴所求范围为(-∞,-2].故选D. 3.在面积为定值9的扇形中,当扇形的周长取得最小值时,扇形的半径是( ) A .3 B .2 C .4D .5解析:选A 设扇形的半径为r ,其弧长为l ,由题意可得S =12lr =9,故lr =18.所以扇形的周长C =2r +l ≥22rl =22×18=12,当且仅当2r =l ,且lr =18即r =3,l =6时等号成立.故选A.4.(2014·宁夏质检)若正实数a ,b 满足a +b =1,则( ) A.1a +1b有最大值4B .ab 有最小值14C.a +b 有最大值 2D .a 2+b 2有最小值22解析:选C 由基本不等式得1a +1b =a +b a +a +b b =2+b a +a b ≥4,当且仅当a =b =12时等号成立,故A 错误;由基本不等式,得ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时等号成立,所以ab ≤14,故B 错误;由基本不等式,得a +b2≤a +b2=12,即a +b ≤2,当且仅当a =b =12时等号成立,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故D错误.因此选C.5.某商场的某种商品的年进货量为1万件,分若干次进货,每次进货的量相同,且每次需运费100元,运来的货物除出售外,还需租仓库存放,一年的租金按每次进货量的一半来计算,每件收费2元,为使一年的运费和租金最省,每次进货量应为( )A .200件B .5 000件C .2 500件D .1 000件解析:选D 设每次进货量为x 件,费用为y 元,则y =10 000×100x+x2·2≥21 000 000x ·x =2 000,当且仅当1 000 000x=x ,即x =1 000时费用y 最小.故每次的进货量应为1 000件.选D.6.(2014·江西七校联考)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0(m ,n >0)上,则1m +2n的最小值等于( )A .16B .12C .9D .8解析:选D 依题意,点A 的坐标为(-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),所以1m +2n =⎝ ⎛⎭⎪⎫1m +2n ·(2m +n )=4+⎝ ⎛⎭⎪⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4mn,即n =2m =12 时取等号,所以1m +2n的最小值是8,选D.7.(2014·福建六校联考)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析:9 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=1+4+4x 2y 2+1x 2y2≥1+4+24x 2y 2·1x 2y2=9,当且仅当4x 2y 2=1x 2y2,即|xy |=22时等号成立,故最小值为9.. 8.已知a >0,b >0,且2a +b =4,则1ab的最小值为________.解析:12由2a +b =4,得22ab ≤4,即ab ≤2,又a >0,b >0,所以1ab ≥12.当且仅当2a =b 且2a +b =4,即b =2,a =1时,1ab 取得最小值12.9.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =12(log 0.5a 5+log 0.5a 7),Q =log 0.5a 3+a 92,则P 与Q 的大小关系为________.解析:P >Q P =12(log 0.5a 5+log 0.5a 7)=12log 0.5a 5a 7=log 0.5a 6,Q =log 0.5a 3+a 92<log 0.5a 3a 9=log 0.5a 6,所以P >Q .10.(2014·惠州模拟)如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树______米时,看A ,B 的视角最大.解析:6 问题转化为求△ABC 中∠BCA 的取值范围.过点C 作CD ⊥AB 交AB 的延长线于点D .设该人距离此树的距离CD =x 米,看A 、B 的视角最大,即∠BCA 最大.不妨设∠BCD=α,∠ACD =β,则∠BCA =β-α,且tan α=4x ,tan β=9x ,所以tan ∠BCA =9x -4x 1+9x ×4x=5x x 2+36=5x +36x≤52x ×36x=512,当且仅当x =36x ,即x =6时取等号,此时∠BCA 最大.11.已知a ,b >0,求证:a b 2+b a 2≥4a +b, 证明:∵a >0,b >0, ∴a b 2+b a 2≥2a b 2·ba 2=2 1ab>0,∴a +b ≥2ab >0,∴⎝ ⎛⎭⎪⎫a b2+b a 2(a +b )≥2 1ab·2ab =4.∴a b 2+b a 2≥4a +b.当且仅当⎩⎪⎨⎪⎧a b 2=b a 2,a =b .时,即a =b 时等号成立.12.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总收入之和?并求出此时商品的每件定价.解:(1)设每件定价为t 元,依题意得⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0, 解得25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意知当x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.由于150x +16x ≥2 150x ×16x =10,当且仅当150x =x6,即x =30时等号成立,所以a ≥10.2.当该商品明年的销售量a 至少达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.13.(2014·海淀模拟)若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,得(2+x )y =30-x , 又2+x ≠0,所以y =30-x2+x >0,0<x <30.(1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18, 当且仅当x +2=64x +2,即x =6时等号成立. 所以xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2y =42-1时等号成立.由y =30-x 2+x >0,得x <30.∵x +y =x +2+32x +2-3(0<x <30), 令x +2=t (2<t <32),且f (t )=t +32t ,则函数f (t )=t +32t在(2,42)上单调递减,在(42,32)上单调递增,∴f (t )≥f (42)=82,又f (2)=18,f (32)=33,∴f (t )<33. ∴x +2+32x +2-3<30,即x +y <30.∴x +y 的取值范围是[82-3,30).1.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( ) A .1 B .2 C .3D .4解析:选B 依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +2xyx +y≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xyx +y恒成立,因此有λ≥2,所以λ的最小值是2.2. (2014·广东六校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0x -y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则ab 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32B.⎝ ⎛⎭⎪⎫0,32C.⎣⎢⎡⎭⎪⎫32,+∞ D .(0,+∞)解析:选A目标函数y =-ab x +z b(a >0,b >0)经过点A (4,6)时z 有最大值,所以4a +6b =12,ab =124(4a ·6b )≤124⎝ ⎛⎭⎪⎫1222=32,当且仅当4a =6b 且4a +6b =12,即a =32,b =1时取等号,所以ab 的取值范围是⎝ ⎛⎦⎥⎤0,32.故选A. 3.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( )A.32 B.53 C.256D .不存在解析:选A 由题意可知,a 5q 2=a 5q +2a 5,化简得q 2-q -2=0,解得q =-1(舍去)或q =2.又由已知条件a m a n =4a 1,得a 1q m -1·a 1q n -1=16a 21,∴qm +n -2=16=24,所以m +n =6,所以1m +4n =⎝ ⎛⎭⎪⎫1m +4n ×m +n 6=16×⎝ ⎛⎭⎪⎫5+4m n +n m ≥16×⎝ ⎛⎭⎪⎫5+24m n ×n m =32,当且仅当4m n =n m ,即n =2m 时等号成立.4.已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA ,△MAB 的面积分别为12,x ,y ,则1x +4y的最小值为( )A .20B .19C .16D .18解析:选D 依题意得AB →·AC →=|AB →|·|AC →|cos 30°=23,则|AB →|·|AC →|=4,故S △ABC=12|AB →|·|AC →|sin 30°=1, 即12+x +y =1,x +y =12,所以1x +4y =2(x +y )⎝ ⎛⎭⎪⎫1x +4y =2⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫y x +4x y ≥2⎝ ⎛⎭⎪⎫5+2y x ·4x y =18,当且仅当y x =4x y ,即y =2x =13时等号成立,因此1x +4y 的最小值为18,选D.5.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的“上确界”.若a ,b ∈(0,+∞),且a +b =1,则-12a -2b的“上确界”为________.解析:-92 由题意知,求-12a -2b 的“上确界”相当于求-12a -2b 的最大值.∵-12a -2b=-⎝ ⎛⎭⎪⎫12a +2b (a +b )=-⎝ ⎛⎭⎪⎫12+2+b 2a +2a b ≤-52-2b 2a ·2a b =-52-2=-92(当且仅当a =13,b =23时等号成立),∴-12a -2b 的“上确界”为-92.。
【赢在课堂】2021届高考数学一轮复习 7.4 基本不等式及不等式的应用 理 新人教A版
第4讲基本不等式及不等式的应用基础巩固1.(2013届·福建福州检测)设a,b满足2a+3b=6,a>0,b>0,则+的最小值为( )A. B. C. D.4【答案】A【解析】由a>0,b>0,2a+3b=6,得+=1,从而+==++++2=+2=.当且仅当=且2a+3b=6,即a=b=时等号成立.即+的最小值为.2.(2012·浙江杭州模拟)若正实数a,b满足a+b=1,则( )A.+有最大值4B.ab有最小值C.+有最大值D.a2+b2有最小值【答案】C【解析】由基本不等式,得ab≤=,所以ab≤,故B错;+==≥4,故A错;由基本不等式得=,即+,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.3.下列函数中,y的最小值为4的是( )A.y=x+B.y=(x∈R)C.y=e x+4e-xD.y=sin x+(0<x<π)【答案】C【解析】对于A,当x<0时,最小值不存在且y<0,排除A;B中y==2≥4,当且仅当x2+2=1时等号成立,这样的实数x不存在,故y=(x∈R)取不到最小值4,B错误;同理对于D,等号成立的条件为sin2x=4,这也是不可能的;只有C,y=e x+4e-x≥4,当且仅当e x=2,即x=ln2时等号成立,函数有最小值4.4.设a,b,c都是正数,且满足+=1,则使a+b>c恒成立的c的取值范围是( )A.(0,10]B.(0,10)C.(0,18]D.(0,18)【答案】D【解析】∵+=1,∴a+b=(a+b)×1=(a+b)=2+++8=10++≥10+2=18,当且仅当b=2a=12时,等号成立.∴c<18.又∵c为正数,∴0<c<18.5.(2012·浙江卷,9)若正数x,y满足x+3y=5xy,则3x+4y的最小值是( ).A. B. C.5 D.6【答案】C【解析】∵x+3y=5xy,∴+=1.∴3x+4y=(3x+4y)×1=(3x+4y)=++++2=5,当且仅当=,即x=1,y=时等号成立.6.某商场中秋前30天月饼销售总量f(t)与时间t(0<t≤30)的关系大致满足f(t)=t2+10t+16,则该商场前t天平均售出如前10天平均售出的月饼为的月饼最少为( )A.18B.27C.20D.16【答案】A【解析】平均销售量y===t++10≥18,当且仅当t=,即t=4∈[1,30]时等号成立,即平均销售量的最小值为18.7.已知a,b,c∈R+,则(a+b+c)的最小值是.【答案】4【解析】∵(a+b+c)=[(a+b)+c]·=1+++1=2+.又∵a,b,c∈R+,∴+≥2.∴(a+b+c)≥4.∴所求最小值为4.8.若对任意x>0,≤a恒成立,则a的取值范围是.【答案】【解析】当x>0时,=,∵x+≥2,∴=.∵a≥恒成立,∴a≥.9.当a>0,a≠1时,函数f(x)=log a(x-1)+1的图象恒过定点A,若点A在直线mx-y+n=0上,则4m+2n 的最小值是.【答案】2【解析】由题意知点A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.10.设a,b,c都是正数,求证:++++.【证明】∵a,b,c都是正数,∴.同理可证,.三式相加得++++,当且仅当a=b=c时取等号.11.(1)求函数y=x(a-2x)(x>0,a为大于2x的常数)的最大值;(2)当点(x,y)在直线x+3y-4=0上移动时,求表达式3x+27y+2的最小值.【解】(1)∵x>0,a>2x,∴y=x(a-2x)=×2x(a-2x)≤×=,当且仅当x=时取等号,故函数的最大值为.(2)由x+3y-4=0得x+3y=4,∴3x+27y+2=3x+33y+2≥2+2=2·+2=2+2=20,当且仅当3x=33y且x+3y-4=0,即x=2,y=时等号成立.12.已知lg(3x)+lg y=lg(x+y+1).(1)求xy的最小值;(2)求x+y的最小值.【解】由lg(3x)+lg y=lg(x+y+1)得(1)∵x>0,y>0,∴3xy=x+y+1≥2+1.即3xy-2-1≥0,3()2-2-1≥0.(3+1)(-1)≥0.从而≥1,xy≥1,当且仅当x=y=1时,等号成立.故xy的最小值为1.(2)∵x>0,y>0,∴x+y+1=3xy≤3·.即3(x+y)2-4(x+y)-4≥0.[3(x+y)+2][(x+y)-2]≥0.从而x+y≥2,当且仅当x=y=1时取等号.故x+y的最小值为2.拓展延伸13.(2012·江苏卷,17)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0,故x===10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔a≤6.所以当a不超过6(千米)时,可击中目标.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
高考数学一轮复习第七章不等式第4讲基本不等式课件文新人教A版
二、易错纠偏 常见误区(1)忽视不等式成立的条件 a>0 且 b>0; (2)忽视定值存在; (3)忽视等号成立的条件.
1.若 x<0,则 x+1x
()
A.有最小值,且最小值为 2
B.有最大值,且最大值为 2
C.有最小值,且最小值为-2
D.有最大值,且最大值为-2
解析:选 D.因为 x<0,所以-x>0,-x+-1x≥2 1=2,当且仅当 x=-1 时,等号成立,
二、习题改编
1.(必修 5P99 例 1(2)改编)设 x>0,y>0,且 x+y=18,则 xy 的最大值为
()
A.80
B.77
C.81
D.82
解析:选 C.xy≤x+2 y2=1282=81,当且仅当 x=y=9 时等号成立,故选 C.
2.(必修 5P100A 组 T2 改编)若把总长为 20 m 的篱笆围成一个矩形场地,则矩形场地的 最大面积是__________.
角度二 通过常数代换法求最值 已知 a>0,b>0,a+b=1,则1+1a1+1b的最小值为__________.
【解析】 1+1a1+1b=1+a+a b1+a+b b= 2+ba·2+ab=5+2ba+ab≥5+4=9.当且仅当 a=b=12时,取等号.
【答案】 9
【迁移探究 1】 (变问法)若本例中的条件不变,则1a+1b的最小值为__________. 解析:因为 a>0,b>0,a+b=1, 所以1a+1b=a+a b+a+b b=2+ba+ab≥2+2 ba·ab=4,即1a+1b的最小值为 4,当且仅当 a=b =12时等号成立. 答案:4
-1=3(当且仅当 x=3y 时等号成立).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习第七章不等式第4讲基本不等式配套课时作业理含解析新人教A 版配套课时作业1.已知a ,b 为正实数,函数y =2a e x+b 的图象过点(0,1),则1a +1b的最小值是( )A .3+2 2B .3-2 2C .4D .2答案 A解析 因为函数y =2a e x+b 的图象过点(0,1),所以2a +b =1.又a >0,b >0,所以1a +1b=2a +b a +2a +b b =3+b a +2a b ≥3+22,当且仅当b a =2a b ,即b =2a 时取等号,所以1a +1b的最小值是3+2 2.2.(2019·长春质量监测一)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16答案 B解析 由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”.故选B.3.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)答案 C解析 因为a b+16b a≥2a b ·16b a=8,当且仅当a =4b 时等号成立,由题意知x 2+2x <8恒成立,由此解得-4<x <2.4.(2019·秦皇岛模拟)函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2答案 A解析 ∵x >1,∴x -1>0,∴y =x 2-1+3x -1=x -1x +1+3x -1=x +1+3x -1=x -1+3x -1+2≥23+2(当且仅当x =1+3时取“=”).故选A.5.(2019·陕西咸阳质检)已知x +y =3,则2x+2y的最小值是( )A .8B .6C .3 2D .4 2答案 D解析 因为2x>0,2y>0,x +y =3,所以由基本不等式得2x+2y≥22x·2y=22x +y=42,当且仅当2x =2y,即x =y =32时等号成立.故选D.6.(2019·湖南模拟)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4答案 C解析 由1a +2b =ab ,知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.故选C.7.设x >0,y >0,且x +4y =40,则lg x +lg y 的最大值是( ) A .40 B .10 C .4 D .2答案 D解析 ∵x +4y =40,且x >0,y >0,∴x +4y ≥2x ·4y =4xy ,当且仅当x =4y =12×40,即x =20,y =5时取“=”,∴4xy ≤40.∴xy ≤100.∴lg x +lg y =lg (xy )≤lg 100=2.∴lg x +lg y 的最大值为2.故选D.8.(2019·江西鹰潭模拟)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16答案 B解析 因为a >0,b >0,所以根据a +b =1a +1b =a +b ab ,可得ab =1,所以1a +2b ≥21a ·2b=22,当且仅当b =2a =2时等号成立.故选B.9.若两个正实数x ,y 满足13x +3y =1,且不等式x +y 4-n 2-13n12<0有解,则实数n 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2512,1B.⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞)C .(1,+∞) D.⎝ ⎛⎭⎪⎫-∞,-2512 答案 B解析 因为不等式x +y 4-n 2-13n 12<0有解,所以⎝ ⎛⎭⎪⎫x +y 4min <n 2+13n 12.因为x >0,y >0,且13x +3y =1,所以x +y 4=⎝⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫13x +3y =1312+3x y +y 12x ≥1312+23xy ·y 12x =2512,当且仅当3xy=y12x 时取等号,所以⎝ ⎛⎭⎪⎫x +y 4min =2512.故n 2+13n 12-2512>0,解得n <-2512或n >1,所以实数n 的取值范围是⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞).故选B.10.已知两个正数x ,y 满足x +4y +5=xy ,则xy 取最小值时x ,y 的值分别为( ) A .5,5 B .10,5 C .10,52D .10,10答案 C解析 xy =x +4y +5≥4xy +5,当且仅当x =4y 时,取等号.令xy =t ,则上式为t 2-4t -5≥0(t >0),整理得(t -2)2≥9,解得t ≥5(t ≤-1舍去),当t =5时,取等号,即t =5为最小值,xy 最小值为t 2=25. 当⎩⎪⎨⎪⎧x =4y ,x +4y +5=25时,xy 取最小值,即x =10,y =52.11.(2019·河南中原名校质检)已知正实数a ,b 满足a +b =3,则11+a +44+b 的最小值为( )A .1B .78C .98D .2答案 C解析 因为a +b =3,所以(1+a )+(4+b )=8,所以11+a +44+b =18[(1+a )+(4+b )]⎝⎛⎭⎪⎫11+a +44+b =18⎣⎢⎡⎦⎥⎤5+4+b 1+a +41+a 4+b ≥18×(5+4)=98,当且仅当4+b =2(1+a ),即2a -b =2,即a =53,b =43时等号成立.故选C.12.(2019·唐山模拟)当0<m <12时,若1m +21-2m ≥k 2-2k 恒成立,则实数k 的取值范围为( )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4]答案 D解析 因为0<m <12,所以12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +1-2m 22=18(当且仅当2m =1-2m ,即m =14时取等号),所以1m +21-2m =1m 1-2m ≥8,又1m +21-2m ≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4].故选D.13.函数y =2x +1x -1(x >1)的最小值为________. 答案 22+2 解析 因为y =2x +1x -1(x >1),所以y =2x +1x -1=2(x -1)+1x -1+2≥2+22x -1·1x -1=22+2. 当且仅当x =1+22时取等号,故函数y =2x +1x -1(x >1)的最小值为22+2. 14.(2019·北京朝阳区模拟)已知x >1,且x -y =1,则x +1y的最小值是________.答案 3解析 ∵x >1且x -y =1,∴y =x -1>0, ∴x +1y =x +1x -1=(x -1)+1x -1+1≥2x -1·1x -1+1=3(当且仅当x =2时取等号,此时y =1).∴x +1y的最小值为3.15.若实数x ,y 满足x 2+x +y 2+y =0,则x +y 的取值范围是________. 答案 [-2,0]解析 ∵x 2+y 2≥2xy ,∴2(x 2+y 2)≥x 2+y 2+2xy ,即x 2+y 2≥x +y22.由已知x 2+y2+x +y =0,得x +y +x +y22≤0,∴(x +y )2+2(x +y )≤0,解得-2≤x +y ≤0.16.(2019·湖北八校联考)已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.答案2解析 ∵正数a ,b 满足2a 2+b 2=3, ∴a b 2+1=22×2a b 2+1≤22×12(2a 2+b 2+1)=24×(3+1)=2, 当且仅当2a =b 2+1, 即a =1,b =1时,等号成立. 故a b 2+1的最大值为 2.17.(2019·贵阳模拟)已知正实数x ,y 满足等式1x +3y=2.(1)求xy 的最小值;(2)若3x +y ≥m 2-m 恒成立,求实数m 的取值范围. 解 (1)2=1x +3y ≥23xy,即xy ≥3,当且仅当x =1,y =3时等号成立,所以xy 的最小值为3.(2)3x +y =12(3x +y )⎝ ⎛⎭⎪⎫1x +3y =12⎝⎛⎭⎪⎫6+9x y +y x ≥12⎝ ⎛⎭⎪⎫6+29x y·y x =6,当且仅当x =1,y=3时等号成立,即(3x +y )min =6,所以m 2-m ≤6,所以-2≤m ≤3.18.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解 (1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立. (2)解法一:由2x +8y -xy =0,得x =8y y -2, 因为x >0,所以y >2, 则x +y =y +8y y -2=(y -2)+16y -2+10≥18, 当且仅当y -2=16y -2,即y =6,x =12时等号成立. 解法二:由2x +8y -xy =0,得8x +2y =1,则x +y =⎝ ⎛⎭⎪⎫8x +2y·(x +y )=10+2x y+8y x≥10+22x y ·8yx=18,当且仅当y =6,x =12时等号成立.19.(2019·郑州模拟)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解 (1)因为a >0,b >0,且1a +1b=ab ,所以ab =1a +1b ≥21ab,所以ab ≥2,当且仅当a =b =2时取等号. 因为a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号, 所以a 3+b 3的最小值为4 2.(2)由(1)可知,2a +3b ≥22a ·3b =26ab ≥43>6, 故不存在a ,b ,使得2a +3b =6成立.20.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?解 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+300x -80000=-12(x -300)2-35000,因为x ∈[400,600],所以S ∈[-80000,-40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损.。