动态规划讲解
动态规划算法难点详解及应用技巧介绍
动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。
在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。
本文将详细介绍动态规划算法的难点以及应用技巧。
一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。
状态是指问题在某一阶段的具体表现形式。
在进行状态定义时,需要考虑到问题的最优子结构性质。
状态的定义直接影响到问题的子问题划分和状态转移方程的建立。
2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。
因此,建立合理的状态转移方程是动态规划算法的关键。
在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。
3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。
边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。
二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。
在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。
在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。
其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。
在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
动态规划
多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
第6章动态规划
第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。
它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。
在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。
动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。
因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。
动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。
6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。
任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。
动态规划的基本思想
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
第6章-动态规划
求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*
动态规划算法详解及经典例题
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
动态规划(完整)
(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者从
给定阶段状态出发对下一阶段状态作出的选
择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
阶段变量描述当前所处的阶段位置,一 般用下标 k 表示;
(2) 确定状态
每阶段有若干状态(state), 表示某一阶段决策 面临的条件或所处位置及运动特征的量,称为 状态。反映状态变化的量叫作状态变量。 k 阶段的状态特征可用状态变量 sk 描述;
每一阶段的全部状态构成该阶段的状态集合Sk ,并有skSk。每个阶段的状态可分为初始状 态和终止状态,或称输入状态和输出状态, 阶段的初始状态记作sk ,终止状态记为sk+1 ,也是下个阶段的初始状态。
状态转移方程在大多数情况下可以由数学公 式表达, 如: sk+1 = sk + xk;
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
• 2、在全过程最短路径中,将会出现阶段的最优路
径;-----递推性
• 3、前面的终点确定,后面的路径也就确定了,且 与前面的路径(如何找到的这个终点)无关;----
-无后效性
• 3、逐段地求解最优路径,势必会找到一个全过程
最优路径。-----动态规划
§7.1多阶段决策问题
• 动态规划是解决多阶段最优决策的方法, 由美国数学家贝尔曼(R. Bellman) 于 1951年首先提出;
运筹学——动态规划
优子策略。该原理的具体解释是,若某一全过程
最优策略为:
p1
(s1 )
{u1
(s1 ),
u 2
(s2
),
,
u
k
(sk
),
u
n
(sn
)}
则对上述策略中所隐含的任一状态而言,
第k子过程上对应于该状态的最优策略必然包
含在上述全过程最优策略p1*中,即为
pk
(sk
)
{u
k
(sk
),
u
k 1
(sk
1
),
2.正确地定义状态变量sk,使它既能正确地描述过 程的状态,又能满足无后效性.动态规划中的状 态与一般控制系统中和通常所说的状态的概念是 有所不同的,动态规划中的状态变量必须具备以 下三个特征:
20
2021/7/26
(1)要能够正确地描述受控过程的变化特征。 (2)要满足无后效性。即如果在某个阶段状态已经给定,那么在
sk 1 Tk (sk ,uk (sk ))
上式称为多阶段决策过程的状态转移方程。有些问题的 状态转移方程不一定存在数学表达式,但是它们的状态 转移,还是有一定规律可循的。
12
2021/7/26
(六) 指标函数 用来衡量策略或子策略或决策的效果的某种数量
指标,就称为指标函数。它是定义在全过程或各 子过程或各阶段上的确定数量函数。对不同问题 ,指标函数可以是诸如费用、成本、产值、利润 、产量、耗量、距离、时间、效用,等等。
7
2021/7/26
(二)状态、状态变量和可能状态集 1.状态与状态变量。用以描述事物(或系统)在某特 定的时间与空间域中所处位置及运动特征的量,称 为状态。反映状态变化的量叫做状态变量。状态变 量必须包含在给定的阶段上确定全部允许决策所需 要的信息。按照过程进行的先后,每个阶段的状态 可分为初始状态和终止状态,或称输入状态和输出 状态,阶段k的初始状态记作sk,终止状态记为sk+1 。但为了清楚起见,通常定义阶段的状态即指其初 始状态。
动态规划的基本思想
动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
动态规划讲解+例子ppt课件
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。
第6章_动态规划ppt课件
第一章 动态规划的基本方法 §1 动态规划的研究对象
特征:包含有随时同变化的因素和变量,整个 过程可以分为若干个相互联系的阶段,而且每个 阶段都要做出决策。
PPT学习交流
1
应用:
企业管理:动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载问题、排序 问题、设备更新问题、生产过程最优控制问题等等。
xk(sk)Dk(sk)
PPT学习交流
10
PPT学习交流
11
在实际过程中,可供选择的策略有一定的范围,此 范围称为允许策略集合,用P表示,从允许策略集合中 找出达到最优效果的策略称为最优策略。
五、状态转移方程
在多阶段决策过程中,第k阶段到第(k+1)阶段的 演变规律,称为状态转移方程。当给定了第K阶段的状 态变量sk和决策变量xk时,根据状态转移方程,第 (k+1)阶段的状态Sk+1的值也随之而定。也就是说, sk+1将依某种函数关系与(sk,xk(sk))相对应,这种对 应关系常记为:
一个阶段包含若干个状态,描述状态的变量称为状 态变量。常用sk表示第k阶段的某一状态。所有状态 变量组成的集合,称为状态变量集合。常用Sk表示第 k阶段的状态变量集合。 三、决策和决策变量
决策就是某阶段状态给定以后,从该状态演变 到下一阶段某状态的选择。描述决策的变量,称为 决策变量。常用xk(sk)表示第k阶段当状态处于sk时 的决策变量,在实际问题中,决策变量的取值往往 限制在某一范围内,此范围称为允许决策集合,通 常用Dk(sK)表示第k阶段的允许决策集合,显然有:
二、动态规划的基本方程 动态规划函数基本方程的一般形式为:
fk(sk)opvk( tsk,xk(sk) )fk 1(sk 1)
动态规划部分知识点总结
动态规划部分知识点总结动态规划的基本思想动态规划的基本思想可以用“递推”来描述。
在解决一个问题时,通常需要先确定一个递推关系,然后利用递推关系逐步求解问题的最优解。
以求解最长递增子序列(Longest Increasing Subsequence,LIS)问题为例,最长递增子序列是指在一个无序的序列中找到一个最长的子序列,要求子序列中的元素是递增的。
假设原序列为A,最长递增子序列的长度为LIS(i),则可以通过递推关系来解决这个问题:LIS(i) = max(LIS(j)+1),其中j<i 且A[j]<A[i]通过这个递推关系,我们可以逐步求解出从A[1]到A[n]的最长递增子序列的长度,最终得到整个序列的最长递增子序列。
动态规划的特点动态规划有一些特点,可以帮助我们更好地理解和应用这种方法。
1. 重叠子问题:动态规划的关键特点之一是重叠子问题,即原问题可以分解为若干个子问题,不同的子问题可能有重叠的部分。
通过记录和利用子问题的解,可以避免重复计算,提高计算效率。
2. 最优子结构:动态规划适用于具有最优子结构性质的问题。
最优子结构指的是原问题的最优解可以通过子问题的最优解来求解。
换句话说,原问题的最优解可以由子问题的最优解推导出来。
3. 状态转移方程:动态规划问题通常可以通过状态转移方程来描述。
状态转移方程是指原问题与子问题之间的关系,它可以用数学公式或递推关系来表示。
通过状态转移方程,可以确定问题的递推规律,从而求解问题的最优解。
动态规划的应用动态规划广泛应用于各种领域,比如算法设计、优化问题、数据挖掘等。
它可以解决许多经典问题,比如最短路径、背包问题、编辑距离、最长公共子序列等。
1. 最短路径:最短路径问题是指在一个加权有向图或加权无向图中,找到一条从起点到终点的路径,使得路径上的边权重之和最小。
动态规划可以用于求解最短路径问题,比如利用Floyd-Warshall算法或Dijkstra算法,通过记录并利用子问题的解来求解最短路径。
运筹学第五章动态规划
和 dk 2 (sk ));
(4) 允许决策集: D k ( s k ) ( x k , y k ) 0 ≤ y k ≤ s k ; 0 ≤ x k ≤ 1 0 0 0 ( s k y k )
状态转移方程: s k 1 s k x k y k ,s 1 5 0 0k4,3,2,1
其中s 5 表示第四阶段末的状态; (5) 阶段指标: v k ( s k ,x k ,y k ) q k y k p k x k ,k4,3,2,1;
5.1 动态规划的基本概念和模型
5.1.1 动态规划的基本概念
下面结合实例来介绍动态规划的基本概念:
【例5.1】 如图5.1所示,在处有一水库,现需从点铺设一条 管道到点,弧上的数字表示与其相连的两个地点之间所需修建 的渠道长度,请找出一条由到的修建线路,使得所需修建的渠 道长度最短。
2
A4
3
B
7
(1) 按月份分段: k4,3,2,1;
(2) 状态变量: s k 表示第 k 个月月初的库存量;
(3) 决策变量: dk1(sk表) 示第 k 个月已有库存 s的k 情况下,要定
购的商品量, dk2表(sk示) 第 个月k 已有库存 的商品量(为方便,后面将分别依次用 ,
的 来x sk 情 代k y况 替k 下,要d销k1(售sk )
(6) 动态规划基本方程:
fk(s k) (x k,y m k) a D x k(s k)v k(s k,x k,y k) fk 1 (s k 1 )
f5 (s 5 ) 0 k 4 ,3 ,2 ,1
求解(要求板书) 辅图1
辅图2
辅图3
5.2.3 动态规划的顺序解法
【 例 5.3】 图 5.3 所 示 为 一 水 利 网 络 , A 为 水 库 , 分B 1 ,别B 2 为,B 3 不;C 同1 ,C 的2 ,供C 3 水;D 目1 ,D 的2地,试找出给各供水目的地供水的 最短路线。
动态规划讲解大全(含例题及答案)
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>
动态规划的基本概念和基本原理
史的一个完整总结。只有具有无后效性的多阶段决策过程
才适合于用动态规划方法求解。
2 A1
3
5 B1 4
7
6
B2
5
3
2
C1 2 5 6
C2 3
2
C3 1
D3
1
E 5 D
2
B3 2
3.决策(decision)
C4 7
当各阶段的状态选定以后可以做出不同的决定(或选择)从
而确定下一个阶段的状态,这种决定(或选择)称为决策。
5.状态转移方程(state transfer equation) 设第k阶段状态为sk,做出的决策为uk(sk),则第k+1阶段 的状态sk+1随之确定,他们之间的关系可以表示为:
sk+1=Tk(sk,uk) 表示从第k阶段到第k+1阶段状态转移规律的方程称为状态 转移方程,它反映了系统状态转移的递推规律。
f3
(C3
)
min
d d
3 3
(C3 (C3
, ,
D1) D2 )
f4 (D1) f4 (D2 )
2 3
min1
5
5
u3(C3)=D1
f3(C4)= d3(C4,D2)+ f4(D2)=7+5=12
u3(C4)=D2
5
C1 2
2
A
1
3
B1 4
7
6
B2
5
3
2
5 6 C2 3 2
C3 1
D1 3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决策序 列,称此决策序列为一个策略。
最优化理论_动态规划讲解
§1 动态规划问题实例
例1 给定一个线路网络, 要从A向F铺设一条输油管道, 各点间连线上的数字表示距离,问应选择什么路线,可使总 距离最短?
2
C1
5
8
B1 3
4
D1
3
4
6
C2 5
5E14来自6A5
8 7
3
C3 4
B2
7
8
C4 4
D2 2
1
D3
3
3
E2
F
动态规划是解决多阶段决策问题的一种方法。所谓多阶段 决策问题是指这样的决策问题:其过程可分为若干个相互联 系的阶段,每一阶段都对应着一组可供选择的决策,每一决
(
sk
,
uk
)
f k 1 ( sk 1 )}
k 5,4,3,2,1
f6 (s6 ) 0
动态规划最优化原理:
不管该最优策略上某状态以前的状态和决策如何,对
最
该状态而言,余下的诸决策必定构成最优子策略。即
优
最优策略的任意后部子策略也是最优的。
性
原
C
理
B
fk (sk ) opt Fkn (sk , xk , sk1, xk1, , sn , xn )
最优指标函数:表示从第k阶段状态为 sk 时采用最佳策略 pk*n 到过程终止时的最佳效益。记为
fk (sk ) Vkn (sk , pk*n ) opt Vkn (sk , pkn )
pknDkn ( sk )
其中 opt 可根据具体情况取max 或min。
基本方程:此为逐段递推求和的依据,一般为:
4
A
5
2
B1 3
数据结构之动态规划动态规划的基本思想和常见应用场景
数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。
它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。
动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。
动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。
2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。
3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。
动态规划的核心是状态转移方程。
状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。
在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。
动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。
这类问题中,动态规划可以帮助我们找到最优解。
2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。
这类问题中,动态规划可以帮助我们找到最佳的组合方案。
3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。
这类问题中,动态规划可以帮助我们计算复杂的概率。
举例来说,我们可以通过动态规划求解最长递增子序列问题。
给定一个序列,我们希望找到其中最长递增的子序列的长度。
首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。
然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。
最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。
动态规划应用动态规划解决问题的思路与技巧
动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。
通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。
本文将介绍动态规划的应用,并提供一些思路与技巧。
一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。
2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。
3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。
4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。
5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。
二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。
滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。
2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。
例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。
3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。
4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。
5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。
三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Line 1,station 1
9
期待 大家 九月份的表现 ~
2013-3-10
10
装配线1
a1,1 t1,1 t2,1 a2,1
2013-3-10
a1,2 t1,2
a1,3 t1,3 t2,3 a2,3
装配站S2,3
a1,4
a1,n-1
a1,n
e1 e2
装配线2
t1,n-1 t2,n-1
a2,4
装配站S2,4
x1
t2,2
a2,2
x2
a2,n
4
a2,n-1
装配站S2,1 装配站S2,2
x2
a2,4
装配站S2,4
a2,n-1
a2,n
6
装配站S2,1 装配站S2,2
装配站S2,3
装配站S2,n-1 装配站S2,n
装配线的调度问题
2013-3-10
7
装配线的调度问题
f1[1] f1[1] For j→2 to n do if(f1[j-1]+a1,j<=f2[j-1]+t2,j-1+a1,j) e1+a1,1 e1+a1,1 if(f2[j-1]+a2,j<=f1[j-1]+t1,j-1+a2,j) then f2[j]→ f2[j-1]+a2,j L2[j]→2 else f1[j]→ f2[j-1]+t2,j-1+a1,j L2[j]→1 if(f1[n]+x1<=f2[n]+x2) then f*→ f1[n]+x1 L*→1 else f*→ f2[n]+x2 L*→2
then f1[j]→ f1[j-1]+a1,j
L1[j]→1 else f1[j]→ f2[j-1]+t2,j-1+a1,j L1[j]→2
2013-3-10
8
装配线的调度问题
i→l* Print”line” I “,station” n For j →n downto 2
Do i→Li[j]
print”line” i”,station”j-1 Line 1,station 6 Line 2,station 5 Line 2,station4 Line 1,station 3 Line 2,station 2
装配站S2,n-1 装配站S2,n
装配线的调度问题
装配站S1,1 装配站S1,2 装配站S1,3 装配站S1,4 装配站S1,5 装配站S1,6
装配线1
9
7 2 2
18 9
20 3
4 24
1 2 3 1
8 32 4 1
35 4
2 4
装配线2
3
3 2
37 7
5
1
5 16
24 6
8 12
2013-3-10
25 4
装配站S2,4
30 5
装配站S2,1 装配站S2,2
装配站S2,3
装配站S2,n-1 装配站S2,n
f1[1]=e1+a1,1
装配线的调度问题 f [j]=min(f [j-1]+a
1 1
1,j,f2[j-1]+t2,j-1+a1,j)
装配站S1,1 装配站S1,2
装配站S1,3
装配站S1,4
ACM程序设计
动态规划
DP
Dynamic Programming
1汽车装配线的调度问题 2矩阵乘法 3最长公共子序列
2013-3-10
2
动态规划
1描述最优解的结构 2递归定义最优解的值 3按自底向上的方式构造一个最优解 4由计算的结果构造一个最优解
2013-3-10
3
装配线的调度问题
装配站S1,1 装配站S1,2 装配站S1,3 装配站S1,4 装配站S1,n-1 装配站S1,n
装配站S1,n-1 装配站S1,n
装配线1
a1,1 t1,1 t2,1 a2,1
2013-3-10
a1,2 t1,2
a1,3 t1,3 t2,3
a1,4
a1,n-1
a1,nபைடு நூலகம்
e1 e2
装配线2
t1,n-1 t2,n-1
x1
t2,2
a2,2 a2,3
f2[1]=e2+a2,1
f2[j]=min(f2[j-1]+a2,j,f1[j-1]+t1,j-1+a2,j)