初中2012年中考数学模拟试卷
数学中考模拟试题
黄冈市2012年中考数学摸拟试题命题人:浠水县英才学校 占 政 时间:120分钟 满分:120分考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
一、认真填一填(本题有8个小题,每小题3分,共24分) 1. 化简.16的平方根为 。
(原创) 2.分解因式:a 2b -2ab 2+b 3= .(原创) 3.函数y =3-x x 中自变量x 的取值范围是__________.4.任何一个正整数 都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解 (p≤q )称为正整数 的最佳分解,并定义一个新运算 .例如:12=1×12=2×6=3×4,则F (24)= .(2011年中考模拟卷选择题改编)5.在Rt ABC ∆中, AC =6cm ,BC =8cm ,以BC 边所在的直线为轴,将ABC ∆ 旋 转一周,则所得到的几何体的表面积是 2cm .(结果保留π) (原创)6.如图,已知正三角形ABC 的边长为6,在△ABC 中作内切圆O 及三个角切圆(我们把与角两边及三角形内切圆都相切的圆叫角切圆),则△ABC 的内切圆O 的面积为 ;图中阴影部分的面积为 . (2012年中考模拟卷改编)7.如图,在直角坐标系中,已知点0P 的坐标为(10),,将线段0O P 按逆时针方向旋转45,再将其长度伸长为0O P 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2O P ;如此下去,得到线段3O P ,4O P , ,n O P (n 为正整数)则点6P 的坐标是 ;56P OP △的面积是 ;(摘录)第8题5PBCA E 1 E 2 E 3D 4D 1 D 2D 3(第10题图)8.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S 是 .(改编)二、仔细选一选(本题10小题,每小题3分,共21分) 9. 计算错误的是( )A.1)2012(0=-B.393-=-C.2)21(1=- D.()81322=10 (改编自网络)如图6,边长为n 的正ΔDEF 的三个顶点恰好在边长为m 的正ΔABC 的各边上,则ΔAEF 的内切圆半径为:( )(A) ()6m n -(B))4m n -(C)()3m n - (D))2m n -11.现给出下列四个命题:①无公共点的两圆必外离 ②位似三角形是相似三角形③菱形的面积等于两条对角线的积 ④三角形的三个内角中至少有一内角不小于600其中不正确的命题的个数是( )(原创)13.不等式组⎩⎨⎧8-3x ≥-1x -1>0的解集是( )A .x ≤3B .1<x ≤3C .x ≥3D .x >1 14.已知点P 是半径为5的⊙O 内一定点,且OP =4,则过点P 的所有弦中,弦长可能取到的整数值为( ) A. 5,4,3 B. 10,9,8,7,6,5,4,3C. 10,9,8,7,6D. 12,11,10,9,8,7,6 15. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1C D 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1C D 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233B D E B D E B D E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则( )A .n S =14nABC S △ B .n S =13n +ABC S △ C .n S =()121n +ABC S △ D .n S =()211n +ABC S △图6三.解答题(共9道大题,共75分) 16.(本小题满分5分)先化简再求值:11131332--+÷--x x x x x ,并从不等式组x - 3(x-2) ≥24x - 2 < 5x + 1的解中选一个你喜欢的数代入,求原分式的值。
2012年辽宁省盘锦市中考数学模拟试卷(二)
2012年辽宁省盘锦市中考数学模拟试卷(二)2012年辽宁省盘锦市中考数学模拟试卷(二)一、选择题(每小题3分,计24分)1.(3分)如图,数轴上点A所表示的数的倒数是()D.2.(3分)(2012•南平模拟)我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将4.(3分)(2013•凤阳县模拟)将一副三角板如图叠放,问∠1的度数为()5.(3分)(2011•台湾)如图为△ABC与圆O的重叠情形,其中BC为⊙O之直径.若∠A=70°,BC=2,则图中灰色区域的面积为何?().C D.6.(3分)为了迎接中考体育达标测试,李强同学记录了自己5次投掷实心球的成绩(单位:m):8,8.5,9,8.5,7.(3分)(2012•鞍山三模)函数y=ax+bx+c的图象如图所示,那么关于x的方程ax+bx+c﹣3=0的根的情况是()8.(3分)(1999•黄冈)如图,在正方形ABCD中,点E在AB边上,且AE:EB=2:1,AF⊥DE于G,交BC于F,则△AEG的面积与四边形BEGF的面积之比为()二、填空题(每小题3分,计24分)9.(3分)式子有意义,则m的取值范围_________.10.(3分)如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=cm,则OC的长为_________ cm.11.(3分)计算:=_________12.(3分)(2013•门头沟区一模)因式分解:ax2﹣10ax+25a=_________.13.(3分)(2012•宿迁模拟)若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=_________.14.(3分)如图,⊙O内切于△ABC,切点分别为D、E、F,且DE∥BC,若AB=8cm,AD=5cm,则△ADE的周长是_________cm.15.(3分)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则阴影部分面积是_________cm2(结果保留π).16.(3分)(2011•丽江模拟)下列图形是用棋子摆成的图案,摆第1个图形需要7枚棋子,摆第2个图形需要19枚棋子,摆第3个图形需要37枚棋子,按照这样的方式摆下去,则摆第5个图形需要_________枚棋子.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:,其中.18.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以直线BC为对称轴作△ABC的轴对称图形,得到△A1BC,再将△A1BC绕着点B逆时针旋转90°,得到△A2BC2,请在下面网格中画出△A1BC、△A2BC2;(2)求线段BC旋转到BC1过程中,C点所经过的路线长度(计算结果用含有π的式子表示).四、解答题(19题10分,20题8分,共18分)19.(10分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、﹣3、﹣4.指针固定,转动转盘后任其自由停止,指针所指扇形得到相应位置上的数字(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).(1)若将转盘转动一次,求得到负数的概率;(2)若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b.请你用列表法或树状图求a与b都是方程x2+2x﹣8=0的解的概率.20.(8分)“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为_________;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是_________.五、解答题(每小题10分,共20分)21.(10分)(2012•镇江模拟)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)22.(10分)(2011•北京)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.六、解答题(23题10分、24题12分,共22分)23.(10分)市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需在商场购买6台.从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场运一台电脑到一中、二中的运费分别是40元和80元.要求总运费不超过840元,问有几种调运方案?指出运费最低的方案.24.(12分)(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.七.解答题(12分)25.(12分)(2011•安徽)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=_________°时,EP长度最大,最大值为_________.八.解答题(14分)26.(14分)(2010•遵义)如图,已知抛物线y=ax+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.2012年辽宁省盘锦市中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题3分,计24分)1.(3分)如图,数轴上点A所表示的数的倒数是()D.,2.(3分)(2012•南平模拟)我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将4.(3分)(2013•凤阳县模拟)将一副三角板如图叠放,问∠1的度数为()5.(3分)(2011•台湾)如图为△ABC与圆O的重叠情形,其中BC为⊙O之直径.若∠A=70°,BC=2,则图中灰色区域的面积为何?().C D.(+.6.(3分)为了迎接中考体育达标测试,李强同学记录了自己5次投掷实心球的成绩(单位:m):8,8.5,9,8.5,7.(3分)(2012•鞍山三模)函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c﹣3=0的根的情况是()8.(3分)(1999•黄冈)如图,在正方形ABCD中,点E在AB边上,且AE:EB=2:1,AF⊥DE于G,交BC于F,则△AEG的面积与四边形BEGF的面积之比为()∴((二、填空题(每小题3分,计24分)9.(3分)式子有意义,则m的取值范围m≤0.10.(3分)如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=cm,则OC的长为4 cm.OE=OD=OC=11.(3分)计算:=﹣=+故答案为:.12.(3分)(2013•门头沟区一模)因式分解:ax2﹣10ax+25a=a(x﹣5)2.13.(3分)(2012•宿迁模拟)若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=2.14.(3分)如图,⊙O内切于△ABC,切点分别为D、E、F,且DE∥BC,若AB=8cm,AD=5cm,则△ADE的周长是cm.∴,∴=,DE==,5+5+=故答案是:15.(3分)已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则阴影部分面积是cm2(结果保留π).×=60CB=CO==CO=×,×=.16.(3分)(2011•丽江模拟)下列图形是用棋子摆成的图案,摆第1个图形需要7枚棋子,摆第2个图形需要19枚棋子,摆第3个图形需要37枚棋子,按照这样的方式摆下去,则摆第5个图形需要91枚棋子.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:,其中.÷•﹣,,﹣18.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以直线BC为对称轴作△ABC的轴对称图形,得到△A1BC,再将△A1BC绕着点B逆时针旋转90°,得到△A2BC2,请在下面网格中画出△A1BC、△A2BC2;(2)求线段BC旋转到BC1过程中,C点所经过的路线长度(计算结果用含有π的式子表示).四、解答题(19题10分,20题8分,共18分)19.(10分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、﹣3、﹣4.指针固定,转动转盘后任其自由停止,指针所指扇形得到相应位置上的数字(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).(1)若将转盘转动一次,求得到负数的概率;(2)若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b.请你用列表法或树状图求a与b都是方程x2+2x﹣8=0的解的概率.==.20.(8分)“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为100;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.家长赞成的比例是:家长反对的比例是:态度的概率是故答案是:五、解答题(每小题10分,共20分)21.(10分)(2012•镇江模拟)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)(米)PAB==,100+2x=100的铅直高度为22.(10分)(2011•北京)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.﹣OA==∴,解得∴=六、解答题(23题10分、24题12分,共22分)23.(10分)市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需在商场购买6台.从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场运一台电脑到一中、二中的运费分别是40元和80元.要求总运费不超过840元,问有几种调运方案?指出运费最低的方案.24.(12分)(2009•湖州)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.DE=CD=.∴,即∴,k=﹣七.解答题(12分)25.(12分)(2011•安徽)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=120°时,EP长度最大,最大值为a.a+a=a2EP=EC+CP=a+a=,八.解答题(14分)26.(14分)(2010•遵义)如图,已知抛物线y=ax+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.;﹣=2+﹣2+参与本试卷答题和审题的老师有:caicl;马兴田;leidan;bjy;zhangCF;dbz1018;gbl210;workholic;zhxl;MMCH;lf2-9;HLing;sks;zjtlxl;张超。
北师大版2012年中考数学模拟试题2[1]
2012年数学学业水平考试模拟试卷2第Ⅰ卷(选择题 共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12的倒数是( ). A.2 B . 2- C .12- D . 122.sin60°的值等于( ) A .21 B .22 C .23 D .13.右图是由四个小正方体摆成的一个立体图形,那么它的俯视图是( )4.“天上的星星有几颗,7后跟上22个0”这是国际天文学联合大会上宣布的“在现代望远镜力所能及的范围内计算出的相对准确的数字”。
如果用科学记数法表示宇宙星星颗数为( )。
A .2010700⨯ B.22107⨯ C.23107⨯ D.23107.0⨯ 5.下列计算正确的是 ( ) A .32523xx x =+ B .2363412x x x ∙= C .()222b a b a -=- D .()623x x =- 6. 下列图形中,是轴对称图形的有( )A .4个B .3个C .2个D .1个 7.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o ,那么∠2的度数是( )A.32oB.58oC.68oD.60o8.2011年某市有60000名学生参加了初中学业水平考试,为了了解这60000名学生的数学成绩,准备从中随机抽取2000 名学生的数学成绩进行统计分析,那么考号为0900800的李晓明同学的数学成绩被抽中的概率为 ( )4=1+3 9=3+616=6+10 图6 …A .160000B .12000C .150D .1309.如图4,AB O 是⊙的直径,弦30CD AB E CDB O ⊥∠=于点,°,⊙,则弦CD 的长为( )A .3cmB .C . 3cm 2D .9cm10.a b ,是方程220100x x +-=的两个实数根,则22a a b ++的值为( )A .2008B .2009C .2010D .201111.如图5所示的计算程序中,y 与x 之间的函数关系所对应的图 象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图6中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31A D CB图5图4 C A B O E D17题图 第Ⅱ卷(非选择题 共72分)二、填空题:本大题共5小题,每小题3分,共15分.13.计算:312-= .14.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:典典同学共调查了 名居民的年龄,扇形统计图中a = ,b = .15.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD边中点,菱形ABCD 的周长为24,则OH 的长等于16.如下图,是用4个全等的等腰梯形镶嵌成的图形,则这个图形中等腰梯形上下两底边的比是 .17.如图所示,已知:点(00)A ,,B ,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 .三、解答题(本大题共7题,共57分)18.(本题共7分,第(1)题3分,第(2)题4分)(1)已知:2=a ,求(1+11-a )·()12-a 值. (2)解不等式组,并把解集在数轴上表示出来 ()40321x x x ->⎧⎪⎨>-⎪⎩① ②19.(本题共7分)如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.BC E A第16题图20.(本题共8分)一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色外,没有任何其他区别.现从中任意摸出一个球.(1)计算摸到的是绿球的概率.(2)如果要使摸到绿球的概率为41,需要在这个口袋中再放入多少个绿球?21.(本题共8分)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?22.(本题共9分) 在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD . (1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.D C 第21题图b23.(本题共9分)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证: AF +EF =DE ;(2)若将图①中的DBE △绕点B 按顺时针方向旋转角α,且060α<<°°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在⑴中猜想的结论是否仍然成立;(3)若将图①中的DBE △绕点B 按顺时针方向旋转角β,且60180β<<°°,其它条件不变,如图③.你认为⑴中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF 、EF 与DE 之间的关系,并说明理由.24.(本题共9分)第23题图如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式;(2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标;②当m 为何值时,线段PB 最短,并求出此时PB 的长度。
2012年中考数学中考模拟试卷一
2011—2012学年九年级数学中考模拟试卷一一、选择题(本大题5小题,每小题3分,共15分) 1、3的倒数是( )A 、-3B 、13C 、-13D 、32、不等式2X-6>0的解集在数轴上表示正确的是( )3、在函数x 的取值范围是( )A 、x>1B 、x 1≥C 、x<1D 、x 1≤4、随着中国综合国力的提升,近年来全球学习汉语的人不断增加,据报道,2010年海外习汉语的学生人数已达101500000人,101500000用科学计数法表示(保留3个有效数字).( ) A 、81.0110⨯ B 、71.0110⨯ C 、81.0210⨯ D 、81.01510⨯ 5、下图所示的几何体的主视图是( )二、填空题(本大题5小题,每小题4分,共20分) 6、分解因式:2218x -=________.7、在某一时刻,测得一根高为1m 的竹杆的影长为2m ,同时测得一栋高楼的影长为40m ,这栋高楼的高度是______m.8、已知点A (m ,3)与点B (2,n+1)关于x 轴对称,则m=_____, n=_______. 9、一直反比例函数k y x=(k ≠0)的图象经过点(-2,3),则这个函数的表达式是______.当x<0时,y 的值随自变量x 的增大而______(填“增大或减小”).10、如图,45AOB ∠=,过O A 上到点O 的距离分别为1357911 ,,,,,,的点作O A 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.则第一个黑色 梯形的面积=1S ;观察图中的规律,第n (n 为正整数)个 黑色梯形的面积=n S .三、解答题(一)(本大题5小题,每小题6分,共30分) 11、计算:︒+⎪⎭⎫ ⎝⎛--+--30tan 3312010231. 12. 解分式方程:22125=---xxABCDABCD第10题13、已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE=FC.14、已知0342=+-x x ,求)x 1(21x 2+--)(的值.15、如图,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到D A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2。
南昌市2012年中考数学模拟试题
江西省南昌市2012年初中毕业暨中等学校招生考试数 学 模 拟 试 卷(一)说明: 1.本卷共有六个大题, 30个小题;全卷满分120分;2.考试时间120分钟;3.考试可以使用计算器.一、选择题(本大题共12小题,每小题3分,共36分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.) 1.一个数的相反数是-2,则这个数是( ) A .12-B .12C .2-D .22.下列各式计算结果正确的是( )A .2x x x +=B .2(2)4x x =C .22(1)1x x +=+D .2x x x =3.小明设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入23后,输出的结果应为( )A .10B .11C .12D .13 4.若分式211x x --的值为0,则x 等于( )A .1,-1B .1C .-1D .1,0,-1 5.将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能...的是( )6.下列现象不属于...平移的是( ) A .小华乘电梯从一楼到三楼 B .足球在操场上沿直线滚动C .一个铁球从高处自由落下D .小朋友坐滑梯下滑7.将32x xy -分解因式,正确的是( ) A .()()x x y x y +- B .22()x x y +C .2()x x y -D .()xy x y -8.近视眼镜的度数()y 度与镜片焦距(m )x 成反比例,已知400度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为( )A .400y x=B .14y x=C .100y x=D .1400y x=9.如图用两道绳子....捆扎着三瓶直径均为8cm的酱油瓶,若不A .B .C .D .计绳子接头(π取3),则捆绳总长是( ) A .24cm B .48cmC .96cmD .192cm10.加热一定量的水时,如果将温度与加热量的关系用图表示,一开始是直线,但是当到达100℃时,温度会持续一段时间,而后因为沸腾后汽化需要吸收大量热量,图形就完全变了,反应这一现象正确的图形是( )11.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为21424y n n =-+-,则该企业一年中应停产的月份是( ) A .1月、2月、3月 B .2月、3月、4月 C .1月、2月、12月D .1月、11月、12月12.将如右图所示的圆心角为90 的扇形纸片AO B 围成圆锥形纸帽,使扇形的两条半径O A 与O B 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是( )二、填空题(本题共8小题,每小题3分,共24分) 13.化简:2()a b a --=.14.如图,数轴上的两个点A B ,所表示的数分别是a b ,,化简:a b += .15.选做题(从下面两题中只选做一题,如果做了两题的,只按第(........................1.)题评分....). (Ⅰ)方程0251x =.的解是 . (Ⅱ)用计算器计算:133142-.≈ .(结果保留三个有效数字)16.如图,A B 是半圆O 的直径,30BAC ∠=,B C为半圆的切线,A .B .C .D .第14题图BAx且43BC =,则点O 到A C 的距离O D = .17.小松在一次以“我为世博会加油”为主题的演讲比赛中,“演讲内容”、“语言表达”、“演讲技能”、“形象礼仪”的各项得分依次为9.8;9.4;9.2;9.3.若其“综合得分”按“演讲内容”50%,“语言表达”20%,“演讲技能”20%,“形象礼仪”10%的比例进行计算,则他的“综合得分”是 . 18.如图,在A B C △中,A B A C =,M ,N 分别是A B ,A C 的中点,D ,E 为BC 上的点,连结D N ,EM . 若13cm A B =,10cm B C =,5cm DE =,则图中阴影部分的面积为2cm .19. 观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见; 如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……, 则第⑥个图中,看不见...的小立方体有___ ___个.20.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3B C =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是 .三、(本大题共4小题,每小题各4分,共16分)21.化简:221(23)32x x x x x ⎡⎤-+-÷⎣⎦.22.解不等式组413230x x x +⎧>+⎪⎨⎪+≥⎩,并解集在数轴上表示出来.① ②③ (第20题)O1y x =xA BC1x =4y x=y23.已知:如图,AB ED ∥,AB D E =,点F ,点C 在A D 上,AF D C =.求证:B C E F ∥.24.有两个可以自由转动的均匀转盘A ,B ,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.用树状图或列表法,求两数相加和为零的概率四、(本大题共4小题,每小题5分,共20分)25.将一箱苹果分给一群个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位 小朋友分8个苹果,则最后有一个小朋友只分到2个苹果.求这群小朋友的人数.26.如图,A B C △内接于O ,点D 在O C 的延长线上,已知:30B CAD ∠=∠=.(1)求证:A D 是O 的切线; (2)若O D A B ⊥,求sin BAC ∠的值.27.在平面直角坐标系xOy 中,已知:直线y x =-反比例函数k y x=的图象的一个交点为(3)A a ,.(1)试确定反比例函数的解析式;3 211-2-3-第24题图 A B A BCF EDBCDAO(2)写出该反比例函数与已知直线l的另一个交点坐标.28.某初级中学为了解学生的身高状况,在1500名学生中抽取部分学生进行抽样统计,结果如下:组别分组频数频率1 130.5~140.5 3 0.052 140.5~150.5 m0.153 150.5~160.5 27 n4 160.5~170.5 18 0.305 170.5~180.5 3 0.05合计请你根据上面的图表,解答下列问题:(1)m=,n=;(2)补全频率分布直方图.五、(本大题共1小题,每小题12分,共12分)29.把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O 点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的516?若存在,求出此时x的值;若不存在,说明理由.AG(O)B HAG(O)ECBαK频率组距130.5 140.5 150.5 160.5 170.5 180.5 身高(cm)频率分布直方图第28题图六、(本大题共1小题,每小题12分,共12分)30.给出函数1 y xx =+(1)写出自变量x的取值范围;(2)请通过列表、描点、连线画出这个函数的图象;①列表:x…-4 -3 -2 -1-12-13-141413121 2 3 4 …y……②描点(在下面给出的直角坐标中描出上表对应的各点):③连线(将上图中描出的各点用平滑曲线连接起来,得到函数图象)(3)观察函数图象,回答下列问题:①函数图象在第象限;②函数图象的对称性是()A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形③在0x>时,当x=时,函数y有最(大,小)值,且这个最值等于;在0x<时,当x=时,函数y有最(大,小)值,且这个最值等于;④在第一象限内,x在什么范围内,y随着x增大而减小,x在什么范围内,y随x增大而增大.(4)方程121x xx+=-+是否有实数解?说明理教育城中考网:/zhaokao/zk第8页。
2012年初中中考模拟数学试卷及答案
2012年初中考模拟数学试卷题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页, 第Ⅰ卷(选择题)答案填涂在机读卡上,第Ⅱ卷(非选择题)写在答题卡上. 满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共30分)一、单项选择题:本大题共10小题,每小题3分,共30分. 1. 计算:=23·x xA .xB .5xC .6xD .52x2. 函数xx y 2+=中自变量x 的取值范围是 A .2-≥x 且0≠x B .2->x 且0≠x C .0≥x 且2-≠x D .0>x 且2-≠x 3. 如图,把一块直角三角板的直角顶点放在直尺的一边上, 如果︒=∠321,那么=∠2A .︒60 B. ︒45 C. ︒58 D. ︒55 4. 下列说法错误的是A .随机事件的概率介于0至之间B .“明天降雨的概率是%50”表示明天有一半的时间降雨C .在同一年出生的367名学生中,至少有两人的生日是同一天D .“彩票中奖的概率是%1”,小明买该彩票100张,他不一定中奖 5.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②③C .③④D .②④ 6.如图,在菱形ABCD 中,AB DE ⊥,3cos 5A =, 则=∠DBE tan21ADBCEA .12B .2 CD7c bx +2的图象如图所示,则一次函数ac b bx y 42-+=与反比例函数y =在同一坐标系内的图象大致为8. 菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程03)12(22=++-+m x m x 的根,则m 的值为A. 3-B. 5C. 5或3-D. 5-或3 9.如图,在ABC ∆中,10=AB ,8=AC ,6=BC ,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P 、D ,则线段PD 长度的最小值是A .8.4B .75.4C .5D .10.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于F ,连接BF .下列结论: ①ACD ACE △≌△;②CDE △为等边三角形; ③2=BEEF; ④CF AF S S EFC EBC =∆∆. 其中结论正确的是 A .只有①② B .只有①②④ C .只有③④D .①②③④二、填空题(共18分,每小题3分)11. 若2=x 是关于x 的方程0132=-+m x 的解,则=m .xxx xy y y yOO OODCBADCFE BACB ADP12.从,2,3,… 20这二十个整数中任意取一个数,这个数是3的倍数的概率是 .13. 如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋︒45后,B 点的坐标为 .14.在半径为的⊙O 中,弦AB 、AC 的长分别为2和3,则BAC ∠的度数为 . 15.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC边上,点F 在AB 边上. 沿EF 折叠,使点A 落在BC 边上 点D 的位臵,且ED BC ⊥,则CE 的长等于 . 16.如图,直线221+-=x y 与x 轴交于C ,与y 轴交 于D ,以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线)0(<=k xky 经过点B 与直线CD 交于E ,x EF ⊥轴于F ,则=BEFC S 四边形 .三、(共27分,每小题9分)17. 如图,数轴上点A 表示的数为12+,点A 在数轴上向左平移3个单位到达点B ,点B 表示的数为m . ① 求m 的值;② 化简:0)2(|1|m m -++.18. 已知关于x 的方程0)32(2=--+m x m x 的两个不相等的实数根为α、β满足111=+βα,求m 的值.19. 如图,等腰直角ABC ∆中,︒=∠90ABC ,点D 在AC 上,xAO xyAO CBA BCDF Ex y BF oEDAC AD将ABD ∆绕顶点B 沿顺时针方向旋︒90后得到CBE ∆. (1)求DCE ∠的度数;(2)当10=AB ,3:2:=DC AD 时,求DE 的长.四、(共30分,每小题10分)20.如图,台风中心位于点P ,并沿东北方向PA 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏 东︒75方向上,与P 点相距320千米. (1)请你说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.21.“五·一”假期,某单位组织部分员工到A 、B 、C 三地旅游,单位购买前往各地的车票种类、数量绘制成如图所示的条形统计图.根据统计图回答下列问题: (1)前往A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若单位决定采用随机抽取的方式把车票分配给 100名员工,在看不到车票的条件下,每人抽取一张(所有车 票的形状、大小、质地完全相同且充分洗匀),那么员 工小王抽到去B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字,2,3,4的正四面体骰子的方法来确定,具体规则是:每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李. 试用列表法或画树状图的方法分析,这个规则对双方是否公平?22. 如图,在平面直角坐标系中,一次函数b kx y +=的图象与x 轴交于点1(-A ,)0,与反比例函数x m y =在第一象限内的图象交于点21(B ,)n . 连结OB ,若1=∆AOB S . (1)求反比例函数与一次函数的关系式;⎪⎩⎪⎨⎧+>>b kx xmx 0A北PB地点车票(张)5040302010CB A yB(2)直接写出不等式组 的解集.五、(共20分,每小题10分,其中第23题为选做题)23.甲:某供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行)0(≥t t 小时后,乙开抢修车载着所需材料出发.(1)若83=t 小时,抢修车的速度是摩托车的5.1倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到,则的最大值是多少?乙:如图,分别以ABC Rt ∆的直角边AC 及斜边AB 向外作等边ACD ∆、等边ABE ∆.若︒=∠30BAC ,AB EF ⊥,垂足为F ,连结DF . 求证:(1)ABC ∆≌EAF ∆;(2)四边形ADFE 是平行四边形.24.如图,在ABC Rt ∆中,︒=∠90C ,点O 在AB 上,以O 为圆心、OA 为半径的圆与AC 交于点D ,且CBD A ∠=∠.(1)判断直线BD 与⊙O 的位臵关系,并证明你的结论; (2)若5:8:=AO AD ,2=BC ,求BD 的长;六、(共25分,第1小题12分,第2小题13分)25. 如图,在等腰ABC Rt ∆中,AC AB =,D 为斜边BC 上的动点,若nCD BD =,ADBF ⊥交AD 于E 、AC 于F .(1)如图1,若3=n 时,则ACAF= ; (2)如图2,若2=n 时,求证:AE DE 32=;ECBAF DOC BAD(3)如图3,当n = 时,DE AE 2=.26.如图,在平面直角坐标系中,抛物线c bx x y ++-=232经过0(A ,)4-、1(x B ,)0、 2(x C ,)0,且512=-x x .(1)求抛物线的解析式;(2)在抛物线上是否存在一点D ,使得DBO ∆是以OB 为底边的等腰三角形?若存在,求出点D 的坐标,并判 断这个等腰三角形是否为等腰直角三角形?若不存在, 请说明理由;(3)连接AB ,P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象 交于点E ,设线段PE 的长为h ,点P 的横坐标为x , 求h 与x 之间的函数关系式,并写出自变量x 的取值范围.xyCBAoCECE CE 图3图2图1FF F ABBABADD D。
浙江省三门县教研室中小学教师命题评比2012年中考数学模拟考试试1 浙教版
浙江省台州市2012年初中毕业学业考试数学模拟试卷一、选择题(本大题共l0小题,每小题4分,共40分.)1.12-的相反数是( ) A .2 B .12 C .2- D .12-2.(改编)我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为A .0.75×10-4B .7.5×10-4C .7.5×10-5D .75×10-63.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )。
:4.(改编) 函数y =x -2x中,自变量x 的取值范围是( ) A x ≥-2 B x ≥2 C. x ≤-2 D. x ≤2 5.分式方程25322x x x-=--的解是( ), A .2x =- B .2x = C .1x = D .1x =或2x =6.如图所示,已知在三角形纸片ABC 中,BC =3, 6AB =,∠BCA=90°在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则D E的长度为A.6B.3C.7.已知直线y kx b =+经过点(k ,3)和(1,k),则k 的值为( )A...8.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD=( )A 、116°B 、32°C 、58°D 、64°9.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )CA .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +10.(改编)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数y = ax的图象在同一坐标系中大致是( )A .B .C .D .二、填空题(本大题共6小题.每小题5分.共30分.) 11.一个角的余角是36°35’.这个角是________。
2012年中考数学模拟试题
2012年中考数学模拟试题一、选择题;共36分1.下列运算正确的是 ( ) A. B.C .D .2.下列说法中正确的是 ( ) A. B.函数y =x 的取值范围是1x > C .8的立方根是2±D .若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为5 3.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( )A .6sin15°cmB .6cos15°cmC .6tan15° cmD .6tan15cm 4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 5.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ) A 、1 B 、-1 C 、1或-1 D 、21B(第7题)O CBADMEDCBA6. 5月7日,在NBA 西部半决赛中,湖人队在主场以111∶98击败火箭队的比赛十分精彩,据网上的资料显示收看这场比赛的中国观众约4579万人,4579万用科学记数法表示为(精确到十万位)( )A. 4.58×107B.45.8×106C.4.579×107D.4.58×106 7.一个几何体是由若干个小正方体组成的, 其主视图和左视图都是右图,则组成这 个几何体需要的小正方体的个数最少是( ) A 、7个 B 、6个 C 、5个 D 、4个 8.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 且ED BC ⊥,则CE 的长是()A .15 . B .10-C .5 D. 20-9.如图,将边长为2cm 的两个正方形纸片完全重合,按住其中一个不动,另一个绕点B 顺时针旋转一个角度,若使重叠部分的面积为334cm 2,则这个旋转角度为( ) A.30 B. 35 C.45 D.6010..如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠的值等于( )A .OM 的长B .2OM 的长C .CD 的长D .2CD 的长11.如图,直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,点E 是AB 的中点,且AD +BC =DC .下列结论中:①△ADE ∽△BEC ;②DE 2=DA •DC ;③若设AD =a ,CD =b ,BC =c ,则关于x 的方程20ax bx c ++=有两个不相等的实数根;④若设AD =a ,AB =b ,BC =c ,则关于x 的方程20ax bx c ++=有两个相等的实数根.其中正确的结论有( )个. A.1个B.2个C.3个D.4个1B..12、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->0二、填空题15分13.分解因式:x 2-x-1= 。
2012年云浮郁南中考数学模拟防真卷及答案
2012年广东省初中毕业生学业考试数学模拟试卷(防真卷)说明:1.全卷共8页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答卷上填写自己的试室号、座位号准考证号、姓名、写在试卷密封线内,不得在试卷上作任何标记. 3.答题可用黑色或蓝色字迹的钢笔、签字笔按各题要求答在试卷上,不能用铅笔、圆珠笔和红笔.1.下列运算中,正确的是 ( ) A .x 3·x 3=x 6B .3x 2+2x 3=5x 5C .(x 2)3=x 5D .(x +y 2)2=x 2+y 42.我国是世界上13个贫水国之一,人均水资源占有量只有2 520立方米,用科学记数法表示2 520立方米是______立方米. ( ) A .0.5×104B .2.52×10-3C .2.52×103D .2.52×1023.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 ( ) A .60米B .40米C .30米D .25米4.在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是 ( )5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有 ( ) A .3种B .4种C .6种D .12种6.函数y =x 的取值范围是___________________; 7.如图,E 、F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个适当的条件:______________,使四边形AECF 是平行四边形.第7题第9题8.小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元.其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为________元.9.如图,AB是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC于D .若AC =8cm ,DE =2cm ,则OD 的长为________________.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角中有一个角为50°,则∠BAC 等于________________度.11.画图:作出线段AB 的中点O . (要求:用尺规作图,保留作图 痕迹,写出作法,不用证明).二、填空题(本大题共5小题,每小题4分,共20分,请把下列各题的正确答案填写在横线上)(本大题共5小题,每小题3分,共15分,每小题给出的4个选项中只有一个是正确的,请将所选选项的字母写在题目后面的括号内)三、解答题(本大题共5小题,每小题6分,共30分,)AB………密………………………………………………..…封………………………………………………...线………DCBA EF G12.先化简:2221()111x x x x -÷-+-,然后在11x -≤≤中选一个整数x 求原式的值13.如图,A 、B 、C 为平行四边形的三个顶点,且A 、B 、C 三个顶点的标分别为(3,3)、(6,4)、(4,6)(1)请直接写出这个平行四边形的第四个顶点坐标; (2)求此平行四边形的面积.14.如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,//BF DE ,交AG 于F .求证:AF BF EF =+.15.已知关于x 的一元二次方程x 2+(4m +1)x +2m -1=O .(1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足121112x x +=-,求m 的值.请根据表格提供的信息回答下列问题:(1)甲班众数为______分,乙班众数为______分,从众数看成绩较好的是______班. (2)甲班的中位数是_______分,乙班的中位数是______分. (3)若成绩在85分以上为优秀,则成绩较好的是______班.17.随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y (吨)是每吨的销售价x (万元)的一次函数,密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………A DCBEGF且0.6x =时, 2.4y =;1x =时,2y =.(1)求出销售量y (吨)与每吨的销售价x (万元)之间的函数关系式; (2)若销售利润为w (万元),请写出w 与x 之间的函数关系式,并求出销售价为每吨2万元时的销售利润。
2012年中考数学模拟试题四
2012年中考数学模拟试题四总分:150分.答卷时间:120分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有..一项..是符合题目要求的,请将正确选项的序号填写在题前的括号内. 【 】1.2-的绝对值是A .12-B .21 C .2- D .2【 】 2.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为A .10.5410⨯B .1.05⨯510C .1.05⨯610D .0.105610⨯【 】3.右图是由4个相同的小正方体组成的几何体,其俯视图为A .B .C .D .【 】4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为A .37B .35C .33.8D .32【 】5.关于x 的方程12m x x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <2【 】6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A .B .C .D .【 】7.下列命题中,假命题的是A .经过两点有且只有一条直线B .平行四边形的对角线相等C .两腰相等的梯形叫做等腰梯形D .圆的切线垂直于经过切点的半径【 】8.下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是A .1y x =-+B .21y x =-C .1y x=D .1y x=-【 】9.如图,已知AD ∥BC ,∠B =30º,DB 平分∠ADE ,则∠CED 的度数为(第3题)(第4题)A .30ºB .60ºC .90ºD .120º【 】10.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD=BE=1.沿直线DE 将△BDE 翻折,点B 落在点B ′处.则点B ′的坐标为A .(1,2)B .(2,1)C .(2,2)D .(3,1)二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在题后的横线上)11.在二元一次方程2x -y =3中,当x =2时,y =____________. 12.若式子3x -有意义,则实数x 的取值范围是____________.13.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为 .14.如图,已知菱形ABCD 的边长为5,对角线AC ,BD 相交于点O ,BD =6,则菱形ABCD的面积为 .15.如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结PA 、PB .则∠APB 的大小为°.(第15题) (第16题) (第17题)16.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为 . 17.如图,一次函数b kx y +=(0k <)的图象经过点A .当3y <时,x 的取值范围是 .18.活动课上,小华从点O 出发,每前进1米,就向右转体a °(0<a <180),照这样走下去,如果他恰好能回到O 点,且所走过的路程最短,则a 的值等于_ .得分 评卷人ABDCE 30º(第9题)(第10题)O BD CA(第14题)1 2 3 4-1 -2 -3 -4 三、解答题:本大题共10小题,共96分.请在题后空白区域内作答,解答时应写出文字说明、证明过程或演算步骤.(19题10分)19.(1)计算:0112(31)2sin 30()2--+-+︒-;(2)化简:3a b a b a ba b-++--.(20题9分,21题8分,22题8分)20.已知三个一元一次不等式:2x >4,2x ≥x -1,x -3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来. (1)你组成的不等式组是⎩⎨⎧_______________①_______________②;(2)解:21.如图,A 、B 是⊙O 上的两点,∠AOB =120°,C 是 AB 的中点,求证四边形OACB 是菱形.得分 评卷人得分 评卷人AOCB22.如图,平面直角坐标系中,直线1122y x =+与x 轴交于点A ,与双曲线xk y =在第一象限内交于点B ,BC ⊥x 轴于点C ,OC =2AO .求双曲线的解析式.(23题9分,24题8分)23. 2011年7月1日,中国共产党90华诞,某校组织了由八年级700名学生参加的建党90周年知识竞赛.李老师为了了解学生对党史知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按优秀、良好、及格、不及格4个级别进行统计,并绘制成了如图的条形统计图和扇形统计图(部分信息未给出) 请根据以上提供的信息,解答下列问题: (1)求被抽取的部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数; (3)请估计八年级的700名学生中达到良好和优秀的总人数.24.为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x 个,购买篮球和排球的总费用y 元. (1)求y 与x 之间的函数关系式;得分评卷人(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?(25题8分,26题10分)25.爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.小明:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票. 小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有放回...地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次). (1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小强设计的游戏方案对双方是否公平?不必说理.26.每年的农历三月初一为通州风筝节.这天,小刘同学正在江海明珠广场上放风筝,如图风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和广场边旗杆PQ 的顶点P 在同一直线上. (1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 为多少米?(结果可保留根号)得分评卷人(27题12分)27.四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.得分评卷人得分评卷人图(2)PAB CD y图(3)AB CD O x 图(1)MNQAB CDP(28题14分)28.如图1,抛物线y =nx 2-11nx +24n (n <0) 与x 轴交于B 、C 两点(点B 在点C 的左侧),抛物线上另有一点A 在第一象限内,且∠BAC =90°.(1)填空:点B 的坐标为(_ ),点C 的坐标为(_ ); (2)连接OA ,若△OAC 为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC 沿x 轴翻折后得△ODC ,点M 为①中所求的抛物线上点A 与点C 两点之间一动点,且点M 的横坐标为m ,过动点M 作垂直于x 轴的直线l 与CD 交于点N ,试探究:当m 为何值时,四边形AMCN 的面积取得最大值,并求出这个最大值.参考答案一、选择题(每小题3分,共30分)1.D 2.B 3.B 4.B 5.C 6.A 7.B 8.D 9.B 10.B 二、填空题(每小题3分,共24分) 11.112.3x ≥13.11214.24 15.45 16.6 17.x >2 18.120三、解答题(10小题,共96分)19.(1)解:原式=2+1+1-2 ………………3分=2 ………………5分 (2)解:原式3a b a ba b -++=- ………………3分22a b a b -=- ………………4分2()2a b a b-==- ………………5分20.说明:求出解集,数轴没表示出给7分 解法一:(1)不等式组:⎩⎨⎧2x >4①2x ≥x -1②………………1分COAyxBCOA yxDB MNl 图1图2(2)解:解不等式组①,得x >2, ………………3分 解不等式组②,得x ≥-1, ………………5分∴不等式组的解集为x >2, ………………7分………………9分解法二:(1)不等式组:⎩⎨⎧2x >4①x -3<0②………………1分(2)解:解不等式组①,得x >2, ………………3分 解不等式组②,得x <3, ………………5分 ∴不等式组的解集为2<x <3, ………………7分………………9分解法三:(1)不等式组:⎩⎨⎧2x ≥x -1①x -3<0②………………1分(2)解:解不等式组①,得x ≥-1, ………………3分 解不等式组②,得x <3, ………………5分 ∴不等式组的解集为-1≤x <3, ………………7分………………9分21.解:∵∠AOB =120°,C 是 AB 的中点,∴∠AOC =∠BOC =60° ………………3分 ∵AO =BO =OC∴△AOC ,△BOC 都是等边三角形 ………………5分 ∴AO =BO =BC =AC ………………6分 ∴四边形OACB 是菱形 ………………8分22.解:∵直线1122y x =+与x 轴交于点A ,∴11022x +=.解得1x =-.∴AO =1. ………………2分∵OC =2AO ,∴OC =2. ………………3分 ∵BC ⊥x 轴于点C ,∴点B 的横坐标为2. ∵点B 在直线1122y x =+上,∴1132222y =⨯+=.∴点B 的坐标为3(22,). ………………5分第20题0 12 3 4-1 -2 -3 -4 第20题0 12 3 4-1 -2 -3 -4 第20题0 12 3 4-1 -2 -3 -4∵双曲线xk y =过点B 3(22,),∴322k =.解得3k =.∴双曲线的解析式为3y x=. ………………8分23.解:(1)100(人); ………………2分(2)如图所示:扇形统计图中表示及格的扇形的圆心角度数是108° ………………6分(3)∵4020700420100+⨯=(人) ………………8分∴700名学生中达到良好和优秀的总人数约是420人. ………………9分24.解:(1)y =80x +60(20-x )=1200+20 x ………………3分 (2)x ≥3(20-x ) 解得x ≥15 ………………5分 要使总费用最少,x 必须取最小值15 ………………6分 y =1200+20×15=1500 ……………7分答:购买篮球15个,排球5个,才能使总费用最少 ……………7分 最少费用是1500元. ……………8分25.解:(1)小明的设计游戏方案不公平. ……………1分可能出现的所有结果列表如下:1234 4 8 12 551015或列树状图如下: ……………4分∴P (小明得到门票)= P (积为偶数)=46=23,P (小强得到门票)= P (积为奇数)=13, ……………5分∵23≠13,∴小明的设计方案不公平. ……………6分(2)小强的设计方案不公平. ……………8分26.解:(1)在Rt △BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ =103, ……………2分又在Rt △APQ 中,∠PAB =45°,小明积 小强图8则AQ =tan45°×PQ =10,即:AB =(103+10)(米) ……………5分 (2)过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB =103+10, ∴ AE =sin30°×AB =12(103+10)=53+5, ……………7分∵∠CAD =75°,∠B =30° ∴ ∠C =45°, ……………8分 在Rt △CAE 中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ……………10分27.(1)证明:作BC 的中垂线MN ,在MN 上取点P ,连接PA 、PB 、PC 、PD , 如图(1)所示,∵MN 是BC 的中垂线,所以有PA =PD ,PC =PB , 又四边形ABCD 是矩形,∴AC =DB∴△PAC ≌△PDB (SSS ) ……………3分(2)证明:过点P 作KG //BC ,如图(2) ∵四边形ABCD 是矩形,∴AB ⊥BC ,DC ⊥BC ∴AB ⊥KG ,DC ⊥KG , ∴在Rt △PAK 中,PA 2=AK 2+PK 2同理,PC 2=CG 2+PG 2 ;PB 2= BK 2+ PK 2,PD 2=+DG 2+PG 2PA 2+PC 2= AK 2+PK 2+ CG 2+PG 2, ,PB 2+ PD 2= BK 2+ PK 2 +DG 2+PG 2 AB ⊥KG ,DC ⊥KG ,AD ⊥AB ,可证得四边形ADGK 是矩形,∴AK =DG ,同理CG =BK ,∴AK 2=DG 2,CG 2=BK 2∴PA 2+PC 2=PB 2+PD 2……………6分(3)∵点B 的坐标为(1,1),点D 的坐标为(5,3) ∴BC =4,AB =2 ∴ABCD S 矩形=4×2=8 作直线HI 垂直BC 于点I ,交AD 于点H ①当点P 在直线AD 与BC 之间时421=⋅=+∆∆HI BC S S PBC PAD即x +y =4,因而y 与x 的函数关系式为y =4-x ……………8分②当点P 在直线AD 上方时,421=⋅=-∆∆HI BC S S PAD PBC即y -x =4,因而y 与x 的函数关系式为y =4+x ……………10分③当点P 在直线BC 下方时, 421=⋅=-∆∆HI BC S S PBC PADH I AB C DOxy P图(3)图(1)MN QABCDP图(2) K G PA BCD即x - y =4,因而y 与x 的函数关系式为y =x -4 ……………12分28.解:(1)B (3,0),C (8,0) ………………4分(2)①作AE ⊥OC ,垂足为点E∵△OAC 是等腰三角形,∴OE =EC =12×8=4,∴BE =4-3=1又∵∠BAC =90°,∴△ACE ∽△BAE ,∴AE BE =CE AE∴AE 2=BE ·CE =1×4,∴AE =2 ………………6分 ∴点A 的坐标为 (4,2) ………………7分把点A 的坐标 (4,2)代入抛物线y =nx 2-11nx +24n ,得n =-12∴抛物线的解析式为y =-12x 2+112x -12 ………………9分 ②∵点M 的横坐标为m ,且点M 在①中的抛物线上∴点M 的坐标为 (m ,-12m 2+112m -12),由①知,点D 的坐标为(4,-2), 则C 、D 两点的坐标求直线CD 的解析式为y =12x -4 ∴点N 的坐标为 (m ,12m -4) ∴MN =(-12m 2+112m -12)-(12m -4)=-12m 2+5m -8 …………11分 ∴S 四边形AMCN =S △AMN +S △CMN =12MN ·CE =12(-12m 2+5m -8)×4 =-(m -5)2+9 ……………13分 ∴当m =5时,S 四边形AMCN =9 ……………14分。
2012年6月聊城中考数学模拟一
2012年中考数学第一次模拟考试试题亲爱的同学们,请你在答题之前,一定要仔细阅读以下说明:1.试题由第Ⅰ卷和第Ⅱ卷组成,共6页,第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分,考试时间为120分钟.2.将试题的答案直接写在答卷上.3.不允许使用计算器。
愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
第Ⅰ卷(选择题 共36分)一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.-43的绝对值的相反数是 ( )A.-34 B. 34 C. -43 D. 432.下列运算正确的是 ( )A.a 2+a 3=a 5B.a 2·a 3=a 6C.a 3÷a 2=aD.(a 2)3=a 8 3. 一组数据为1,5,3,4,5,6,这组数据的极差、众数、中位数分别为( )A. 3,4,5B. 5,5,4.5C. 5,5,4D. 5,3,2 4.一个几何体的三视图如图,那么这个几何体是( )第4题图 A B C D 5.如图,AB ∥CD ,∠E=37°,∠C=20°,则∠EAB 的度数为( )A.57°B.60°C.63°D.123°第1页 共6页6. 下列说法正确的是 ( ) 第5题图 A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式 C .一组数据6,8,7,8,8,9,10的众数和中位数都是8 D .若甲组数据的方差S甲2 =0.01,乙组数据的方差S乙2 =0.1,则乙组数据比甲组数据稳定7.在矩形ABCD 中,对角线AC 、BD 相交于点O,∠AOB =60°,AB =5,则AD 的长是 ( )A.52B.53C.5D.108.下列函数图象中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A B C D9.若点A 的坐标为(6 ,3),O为坐标原点,将OA 绕点O按顺时针方向旋转90°得到OA /,则点A /的坐标为 ( )A.(3 , -6)B.(-3 ,6)C.(-3 ,-6)D.(3 ,6) 10.如图,⊙O的直径CD =5cm ,AB 是⊙O的弦,AB ⊥CD ,垂足为M ,OM ︰OD =3︰5,则AB 的长是 ( )A. 2cmB. 3cmC. 4cmD. 221 cm第2页 共6页学校-----------------------------------------------------------班级----------------------姓名---------------------考号-------------------------------- ---------------------------------密-----------------------------------------------封-----------------------------------------线-----------------------------第10题图 第11题图11.如图所示,都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为 ( )A.55B.42C.41D.2912.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c(a ≠0).若此炮弹在第6秒与第14秒时高度相等,则在下列时间中炮弹所在的高度最高的是 ( )A.第8秒B. 第10秒C. 第12秒D. 第15秒第Ⅱ卷(非选择题 共84分)二、填空题(本题共5个小题,每小题3分,共15分。
全套2012年初中数学中考模拟试卷
2012年中考模拟试卷 数学卷考生须知:1. 本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2. 答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4. 考试结束后,上交试题卷和答题卷。
一.仔细选一选(本小题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案。
1. 下列计算正确的是( )A .-2+∣-2∣=0 B. 02÷3=0 C. 248= D.2÷3³13=2 2.抛掷三枚均匀的硬帀,三枚都是同一面朝上的概率是 ( )(原创) A.12 B. 23 C. 14 D. 132的相反数的倒数的积是( )(原创)A .4- B. 16- C. -4.化简22x y y x x y+--的结果( )(原创) A. x y -- B. y x - C. x y - D. x y +5. Rt △ABC 中,斜边AB =4,∠B =060,将△ABC 绕点B 旋转060,顶点C 运动的路线长是( ) A.3πB. πC. 23πD. 43π6.在△ABC ∣1cos 2C -∣=0,且∠B ,∠C 都是锐角,则∠A 的度数是 ( )(改编自05年中考第10题)A. 015 B. 060 C. 075 D. 0307.点P 在第三象限内,P 到X 轴的距离与到y 轴的距离之比为2:1P 的坐标为 ( )(改编自08年中考第3题)A .(1,2)- B. (2,1)-- C. (1,2)-- D. (1,2)-8.要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需要安装这种喷水龙头的个数最少是 ( )A.3B.4C.5D.69.已知方程32530a a a -+=三个根分别为1a ,2a ,3a ,则计算123()a a a ++213()a a a ++312()a a a +的值( )(原创)A .5- B.6 C. 6- D.310.如图,钝角等腰三角形AOB ,EFG 的顶点O ,B ,E 在x 轴上,A ,F 在函数0)y x =〉图像上,且AE 垂直X 轴于点E ,∠ABO =∠FGE =0120,则F 点的坐标为( )(原创)A. 11(,)22B. 1)C. 3()22 D. 1(,22二.认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:2(2)8a b ab +- =____12平坦的草地上有A ,B ,C 三个小球,若已知A 球与B 球相距3米,A 球与C 球相距1米,则B 球与C 球的距离可能的范围为____13. 函数y =x 的取值范围____14. 如图,正三角形ABC 内接于圆O ,AD ⊥BC 于点D 交圆于点E ,动点P 在优 弧BAC 上,且不与点B ,点C 重合,则∠BPE 等于 ____(原创)15. 已知如图,平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点C ,点D 的坐标分别为 (0,4),(5,0),12OC OA =,点P 在BC 边上运动(不与B ,C 重合),当△ODP 是腰长为5的等腰三角形时,点P 的坐标为____ (改编自09年片月考卷第18题)16. 点P (a,-a )在曲线y 上,则点P 叫做曲线y 上的一个不动点,那么若曲线25y x x k =++不存在这样的不动点,则k 的取值范围是___(原创) 三.全面答一答(本题有8小题,共66分)17.(本小题满分6分)若关于x 的方程2233x m x x -=--无解,求m 的值 18. (本小题满分6分) 学校操场上有一块如图所示三角形空地,量得AB =AC =10米,∠B =022.5,学校打算种上草皮,并预定 53.610⨯平方厘米草皮,请你通过计算说明草皮是否够用。
2012年天津市中考数学模拟试题及答案
2012年天津市中考数学模拟试题及答案4分,共48分)–3的相反数是…………………………………………………………………………( )13B.3C. -13D.-3“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为…………………………………………………………………( ) ×1020B.7×1023C.0.7×1023D.7×1022下列几个图形是国际通用的交通标志,其中不是中心对称图形的是……………( )粮仓顶部是圆锥形,这个圆锥的底面半径为2m,母线长为3m,为防雨需在仓顶部铺上油毡, ( ) 2 B.6πm 2 C.12m 2 D.12πm 2下列图中能过说明∠1>∠2的是…………………………………………………… ( )A.B.C.D.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则 t=4时,该物体所经过的路程为……………………………………………………( ) .28米 B . 48米 C .68米 D . 88米已知方程x 2-5x =2-x x 52-, 用换元法解此方程时,可设y=x x 52-,则原方程 2-y +2=0 B.y 2-y -2=0 C.y 2+y -2=0 D.y 2+y +2=如图,直线AD 与△ABC 的外接圆相切于点A ,B =60°,则∠CAD 等于………………………………( ) ° B.60° C.90° D.120°⑴⑵ ⑶炮象将9. 如图,△ABC 中,D 、E 分别在AB 、AC 上,且DE ∥BC ,若 AE ∶EC =1∶2,AD =6,则AB 的长为………………………( ) A.18 B.12 C.9 D.310. 如图,若在象棋盘上建立直角坐标系,使“将” 位于点(1,-2),“象”位于点(3,-2), 则炮位于点………………………………( ) A.(1,3) B.(-2,1) C.(-1,2) D.(-2,2)11. 如图,已知⊙O 的弦AB ,CD 交于点P ,且OP ⊥CD ,若CD =4, 则AP •BP 的值为……………………………………………………( ) A.2 B.4 C.6 D.812.设“●、■、▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架也平衡,那么“?”处应放“■”的个数为……………………………( ) A.5 B.4 C.3 D.2 二、填空题(每题5分,共30分)13.请你写出一个图象经过点(1,1)的函数解析式:.14.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三 人随机坐到其他三个座位上。
2012年中考数学模拟试题七
中考数学模拟试题七注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,44分;第Ⅱ卷为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在答题卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡和答题卷一并收回.第Ⅰ卷(选择题共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1. 6的相反数是(A)-6 (B)1 6(C)±6 (D)62.下列运算正确的是(A)a+b=ab(B)a2×a3=a5(C)a2+2ab-b2=(a-b)2(D)3a-2a=13.定义一种运算☆,其规则为a☆b=11a b,根据这个规则计算2☆3的值是(A)56(B)15(C)5 (D)64.小明从家里骑自行车到学校,每小时骑15 km,可早到10分钟,每小时骑12 km就会迟到5分钟,问他家到学校的路程是多少千米?设他家到学校的路程是x km,则据题意列出的方程是(A)10515601260x x +=- (B)10515601260x x -=+(C)10515601260x x -=- (D)1051512xx +=-5. 设一元二次方程(x -1)(x -2)=0的两根分别为α、β,且a <β,则a ,β分别是(A) α=1,β=2 (B) α=2,β=1 (C) α=﹣1,β=﹣2 (D) α=﹣2,β=﹣16. 不等式组3043326x x x ->⎧⎪⎨+>-⎪⎩的最小整数解为(A) 0 (B) 1 (C) 2(D) ﹣17. 将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 (A) y =13x +90 (B) y =12x (C) y =12x +90(D) y =13x 8. 如图,直线122y x =-+与x 轴交于C ,与y 轴交于D , 以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线y =xk (k<0)经过点B ,则k 的值为(A)1 (B)3 (C)4 (D) -6AD yxOBC9. 2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表: 月用水量(吨)4 5 6 8 9 户 数45731则关于这20户家庭的月用水量,下列说法错误的是 (A)中位数是6吨 (B)平均数是5.8吨 (C)众数是6吨(D)极差是4吨10. 如图,在正方形网格上有五个三角形,其中与△ABC 相似(不包括△ABC 本身)有 (A)1个 (B)2个 (C)3个 (D)4个11. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 (A)点(0,3)(B)点(2,3) (C)点(5.1) (D)点(6,1)12. 则在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F . 若∠ABC =120°,FG ∥CE ,FG =CE ,分别连接DB 、DG 、BG ,∠BDG 的大小是度(A )30° (B )45° (C )60°A B CA B CxO y 11 ABE C DFG(D)75°数学试题第Ⅱ卷(非选择题共76分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.2012年3月5日,国务院总理温家宝在第十一届全国人民代表大会第五次会议上作政府工作报告.指出2011年,我国粮食产量57121万吨,将57121用科学计数法表示为(保留2个有效数字)14.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是个.15.如图,点A,B,C,D都在⊙O上, C D的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=______度.16. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为17.在直角梯形A B C D中,A D B C∥,90ABC AB BC E∠==°,,为A B边上一DCBEAH第17题点,15B C E ∠=°,且AE AD =.连接D E 交对角线A C 于H ,连接B H .则C D E △为三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分6分)化简 aa a a a -+-÷--2244)111(19. (本题满分6分)已知平面直角坐标系xOy ,一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .求点M 的坐标.20. (本题满分8分)设y x A +=,其中x 可取1-、2,y 可取1-、2-、3. 试求A 是正值的概率.21. (本题满分9分)如图,△A BC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,BC =3,CD=1.(1)求证tan ∠AEC =CDBC ;(2)请探究BM 与DM 的关系,并给出证明.22. (本题满分9分)在平面直角坐标系xOy 中,边长为4的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O ),顶点C 、D 都在第一象限. (1)当∠BAO =45°时,求点P 的坐标;(2)无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 是否在直线y x =上,ABCDEMBCDPy如果在,请给出证明,如果不在,请说明理由.23. (本题满分9分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13E M P ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)当点E 在AC 边上,且若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与 △ENB 的顶点E 、N 、B 对应)时,求AP 的长.24. (本题满分9分)如图,一次函数y =-2x +t 的图象与x 轴,y 轴分别交于点C ,D . (1)求点C ,点D 的坐标;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一个动点, 若以点C ,点D 为直角顶点的△PCD 与△OCD 相似。
2012年中考数学模拟试题3
2012年中考数学模拟试题考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,必须在答题卷密封区内写明校名,姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,上交试题卷和答题卷.试 题 卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1. 下列运算正确的是A4=±B.4=-C.44-=-D.2416-= 2. 如图,AB //CD ,EF ⊥AB 于E ,EF 交CD 于F ,已知∠1=63°,则∠2=A .63°B .53°C .37°D . 27°3. 设A ,B 表示两个集合,我们规定“A ∩B ”表示A 与B 的公共部分,并称之为A 与B 的交集.例如:若A ={正数},B ={整数},则A ∩B ={正整数}. 如果A ={矩形},B ={菱形},则所对应的集合A ∩B 是A.{平行四边形}B.{矩形}C.{菱形}D.{正方形}4. 某厂生产世博会吉祥物“海宝”纪念章8万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查300个,合格298个.下列说法正确的是 A.总体是8万个纪念章,样本是300个纪念章B.总体是8万个纪念章的合格情况,样本是300个纪念章的合格情况C.总体是8万个纪念章的合格情况,样本是298个纪念章的合格情况D.总体是8万个纪念章的合格情况,样本是1个纪念章的合格情况5. 解关于x 的不等式⎩⎨⎧-<>a x a x ,正确的结论是(第2题)A .无解 B.解为全体实数 C.当a >0时无解 D.当a <0时无解6. 某市2005年至2011年国内生产总值年增长率(%)变化情况如统计图,从图上看,下列结论中不正确的是 A .2005年至2011年,该市每年的国内生产总值有增有减. B. 2005年至2008年,该市国内生产总值的年增长率逐年减小.C. 自2008年以来,该市国内生产总值的年增长率开始回升.D. 2005年至2011年,该市每年的国内生产总值不断增长. 7. 如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是A.相离B.相交C.相切D.无法确定 8. 如图,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA =15,则sin ∠CBD 的值为A.3B.21C.13132 D.131339. 已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是8,则k 的值为A .43或-4 B .43-或4 C .43或-2 D .2或-210.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,交OC 于点E ,连结CD ,OD .给出以下四个结论:①S △DEC△AEO ;②AC ∥OD ;③线段OD 是DE 与DA 的比例中项;④ABCE CD⋅=22.其中结论正确的是A. ①②③B. ①②④C. ②③D. ②④二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11. 如果()222+=2ba +(a ,b 为有理数),那么b a +等于 .(第6题)(第10题)第7题12. 如图,二次函数21y ax bx c =++和一次函数2y m x n =+的图象,观察图象,写出y 2≤y 1时x 的取值范围 . 13. 已知_________,311的值为代数式yxy x y xy x xy-+--=-.14. 一张圆桌旁有四个座位,甲先坐在如图所示的座位上,乙,丙,丁三人随机坐到其他三个座位,则甲与乙不相邻而坐的概率为 .15. 如图,已知直角三角形OAB 的直角边OA 在x 轴上,双曲线)0(1>=x xy 与直角边AB 交于点C ,与斜边OB 交于点D ,OB OD 31=,则△OBC 的面积为 .16. 如图,⊙O 的半径OD 经过弦AB (不是直径)的中点C ,OE //AB 交⊙O 于点E ,PE ∥OD ,延长直径AG , 交PE 于点H ,直线DG 交OE 于点F ,交PE 于K .若EF =2,FO =1,则KH 的长度等于 .三.全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤. 如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以. 17.(本小题满分6分)写出一个只含字母x 的代数式,要求(1)要使此代数式有意义,字母x 必须取全体大于1的实数,(2)此代数式的值恒为负数.18.(本小题满分8分)某校九年级学生共600人,为了解这个年级学生的体能,从中随机抽取部分学生进行1分钟的跳绳测试,并指定甲,乙,丙,丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图).(第12题)(第14题)(第16题)(第15题)(第18题)乙:跳绳次数不少于105次的同学占96%.丙:第①,②两组频率之和为0.12,且第②组与第⑥组频数都是8. 丁:第②,③,④组的频数之比为4:17:15. 根据这四名同学提供的材料,请解答如下问题: (1)这次跳绳测试共抽取多少名学生?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少? 19.(本小题满分8分)如图①,P 为△ABC 内一点,连接PA ,PB ,PC ,在△PAB ,△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.已知△ABC 中,∠A <∠B <∠C(1)利用直尺和圆规,在图②中作出△ABC 的自相似点P (不写作法,但需保留作图痕迹);(2)若△ABC 的三内角平分线的交点P 是该三角形的自相似点,求该三角形三个内角的度数.20.(本小题满分10分)将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余).第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……(1)请你在图中画出第一次分割的示意图;(2)若原正六边形的面积为a ,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:① ②(第19题)(第20题)(3)观察所填表格,并结合操作,请你猜想:第n 次分割后所得的正六边形面积S n与分割次数n 有何关系?(S n 用含a 和n 的代数式表示,不需要写出推理过程).21.(本小题满分10分)某校为开展“阳光体育”活动,计划拿出不超过3600元的资金购买一批篮球,足球和排球.已知篮球,足球,排球的单价比为9:6:4,且其单价和为190元.(1)请问篮球,足球,排球的单价分别为多少元?(2)若要求购买篮球,足球,排球的总数量为50个,篮球数量是排球数量的2倍,且足球不超过10个,请问有几种购买方案?22.(本小题满分12分)如图,△ABC 中,∠BAC =90°,正方形的一边GF 在BC 上,其余两个顶点D ,E 分别在AB ,AC 上.连接AG ,AF 分别交DE 于M ,N 两点. (1)求证:GFMN BGDM =.(2) 求证:EN DM MN ⋅=2.(3)若AB=AC=2,求MN 的长.23.(本小题满分12分)(第22题)已知抛物线234y x x =-++交y 轴于点A ,交x 轴于点B ,C (点B 在点C 的右侧).过点A 作垂直于y 轴的直线l. 在位于直线l 下方的抛物线上任取一点P ,过点P 作直线PQ 平行于y 轴交直线l 于点Q .连接AP .(1)写出A ,B ,C 三点的坐标; (2)若点P 位于抛物线的对称轴的右侧:①如果以A ,P ,Q 三点构成的三角形与△AOC 相似,求出点P 的坐标;②若将△APQ 沿AP 对折,点Q 的对应点为点M .是否存在点P ,使得点M 落在x 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.评分标准及参考答案一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDBCACCAD二、填空题(每题4分,共24分)11. 10 ; 12. 21-≤≥x x 或; 13.21;14.31 ; 15. 4 ; 16.2 .三、解答题 17.(满分6分)答案为形如11-⋅x m (m 为负实数)的均可.---------------6分(第23题)(满足条件(1)“要使此代数式有意义,字母x 必须取全体大于1的数”得3分; 满足条件(2)“此代数式的值恒为负数”得3分.)18.(满分8分)(1)解:(1)第①组频率为1-96%=0.04,∴第②组频率为0.12-0.04=0.08,10008.08=,∴这次跳绳测试共抽取学生人数为100人. -------------------4分 (2)第⑤,⑥两组的频率之和为0.16+0.08=0.24,14460024.0=⨯∴估计全年级达到跳绳优秀的有144人.-----------------------4分 19.(满分8分)(1)①作图(略). ---------------------------------------- 4分 作法如下:(i )在∠ABC 内,作∠CBD =∠A ;(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB,PC .∵P 为△ABC 的内心,∴12P B C A B C ∠=∠,12P C B A C B ∠=∠.P 为△ABC 的自相似点,由条件可知,只能是△BCP ∽△ABC . ∴∠PBC =∠BAC ,∠BCP =∠ABC=2∠PBC =2∠BAC , ∠ACB =2∠BCP=4∠BAC .∵∠BAC+∠ABC+∠ACB =180°. ∴∠BAC+2∠BAC+4∠BAC =180°,∴7180oBAC =∠.----------------2分∴该三角形三个内角的度数分别为1807,3607,7207.----------- 2分20.(满分10分)(1)解:(1) ----------------------------------------------2分 (2)--------------6分(3)nn a S 4=--------------------------------------------------- 2分21.(满分10分)解:⑴篮球,足球和排球的单价比为9︰6︰4,设它们的单价分别为x 9元,x 6元,x 4元.由题意得130469=++x x x ,解得10=x .故篮球,足球和排球的单价分别为90元,60元和40元. ---------------------------------------------------------------------------------- 4分 ⑵设购买排球y 个,则篮球y 2个,足球(50-y-2y)个.根据题意得 ⎩⎨⎧≤--≤+⨯+②10250①36002y)-y -60(502y 9040y y y -------------------------------------------2分由不等式①,得15≤y ,由不等式②,得3113≥y ,∴不等式组的解集为153113≤≤y .因为y 是整数,所以y 只能取14或15.-------2分因此,一共有两个方案:方案一,当14=y 时,排球购买14个,篮球购买28个,足球购买8个;------1分 方案二,当15=y 时,排球购买15个,篮球购买30个,足球购买5个.------1分 22.(满分12分)(1)证明:∵四边形DGFE 是正方形,∴DN ∥BF , ∴△ADM ∽△ABG , ----------------------1分 ∴AG AM BG DM =,同理可得AGAM GFMN =. -----2分∴GFMN BGDM =. ------------------------ 1分(2)证明: 由(1)可知GF MN BG DM =,同理也可以得到GFMN FCNE =,∴GFBG MNDM =,NEMN FCGF =.-----------------2分∵∠B +∠C =90°,∠CEF +∠C =90°. ∴∠B =∠CEF ,又∵∠BGD =∠EFC=Rt ∠, ∴△BGD ∽△EFC . ∴FCEF DGBG =.-----------1分∵DG ,GF ,EF 是同一个正方形的边长,∴DG =GF =EF . ∴FCGF GFBG=∴NEMN MNDM =, ∴MN 2=DM·EN -----------1分(3) ∵2,90==︒=∠AB AC BAC ∴22=BC --------1分 ∵∠B=∠C =45o , 四边形DEFG 是正方形, ∴322=====FC EF GF DG BG ----------------------1分∵ 由(1)(2)可得FCNE GFMN BGDM ==∴922===EN MN DM ---------------------------------2分23.(满分12分)(1)A (0,4),B (4,0),C (-1,0) -------------------3分(2) ①AQ AO AQ CO QPCOQPAO==或--------------------2分 2431x x x=-2134x x x=-或解得134x =或7x =, 均在抛物线对称轴的右侧.---2分∴点P 的坐标为1351(,)-416或(7,24).---------------1分 ② Q (x ,4) ,P (x ,2-34x x ++) ----------------1分 PQ =23x x -=PM ,△AEM ∽△MFP . 则有A M M P M EP F=.∵ME =OA =4,AM=AQ =x , PM =PQ =23x x -,所以234x x x PF-=.得PF =4x -12,∴ OM =(4x -12)-x =3x -12.Rt △AOM 中,由勾股定理得222OM OA AM +=,∴222(312)4x x -+=,解得x 1=4,x 2=5.,均在抛物线对称轴的右侧. -----------2分 ∴点P 的坐标为(4,0)或(5,-6).--------------------------------------1分(图1)(图2)。
河南省2012年中招数学模拟数学试题和详细解答表析
2012年河南省初中学业水平暨高级中等学校招生考试模拟试卷数学河南亓振海12012年河南省初中学业水平暨高级中等学校招生考试模拟试卷数 学 河南亓振海注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟请用蓝、黑色钢笔或圆珠 笔直接答在试卷上.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a--. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.3-的绝对值是 【 】(A )3- (B )3 (C ) 31 (D )31- 1.【答案】B . 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点3-到原点的距离是3,所以3-的绝对值是3,故选B .2.下列计算正确的是 【 】(A )532a a a =+ (B )ab a =⋅÷1(C )3332)2(b a ab =-- (D )a a a 332=÷(A )x ≤2 (B )x ≥2 (C )2<x (D )2>x3.【答案】A .【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0可知:02≥-x ,解得x 的范围. 【解答】解:根据题意得:02≥-x ,解得:2≤x .所以选A . 【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;【第6题图】 图图② 图③ ②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数为非负数.4.一组数据2,4,m 的平均数...为4,另一组数据1-,m ,1,3,n 的唯一众数..为1-,则数据1-,m ,1,3,n 的中位数...为 【 】 (A )1- (B )0 (C )1 (D )2 4.【答案】C .【考点】中位数;算术平均数;众数. 【专题】计算题.【分析】根据平均数求得m 的值,然后根据众数求得n 的值后再确定新数据的中位数. 【解答】解:∵一组数据2,4,m 的平均数为4,∴3442⨯=++m . 解得6=m .∵一组数据1-,6,1,3,n 的唯一众数为1-,∴316、、≠n .1-=n . ∴数据1-,6,1,3,1-按照大小排列为:1-,1-,1,3,6, ∴数据1-,6,1,3,1-的中位数为 1.【点评】本题考查了平均数、众数及中位数的定义,解题的关键是根据概念求得未知数的值.5.下列不等式组的解集,在数轴上表示为如图所示的是 【 】(A )1020x x ->⎧⎨+≤⎩ (B )1020x x -≤⎧⎨+<⎩(C )1020x x +≥⎧⎨-<⎩ (D )1020x x +>⎧⎨-≤⎩5.【答案】D.【考点】解一元一次不等式组,在数轴上表示不等式的解集.【分析】分别解出各个不等式组,根据在数轴上表示不等式的解集的方法进行检验即可:A 不等式组无解;B 不等式组的解集为x <-2;C 不等式组的解集为-1≤x <2;D 不等式组的解集为-1<x ≤2.故选D .6.如图,将一块矩形纸片ABCD 放置在平面直角坐标系中, 使点D 与点O 重合,点C A 、分别在轴y 、轴x 上,如图①.8=AB ,6=AD .将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,如图②,再将AED ∆沿DE 向右翻折,如图③所示,则AE 与BC 的交点F 的坐标为 【 】(A ))2,8( (B ))1.2,8( (C ))2.2,8( (D ))25.2,8(二、填空题 (每小题3分,共27分)【第5题图】8.今年参加郑州市初中毕业学业考试的考生约有37 000人,请将数37 000用科学记数法表示为 .9.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果︒=∠691,那么2∠的度数是 . 9.【答案】︒21.【考点】平行线的性质;余角和补角. 【专题】计算题.【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知︒=∠+∠9021,所以︒=︒-︒=∠-︒=∠2169901902. 【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.10.下列图形:①三角形,②平行四边形,③梯形,④四边形,⑤菱形,⑥矩形,⑦正方形,的关键.用到的知识点为:概率=所求情况数与总情况数之比,难度适中.【第12题解答图】11.如图,锐角ABC ∆的高BM 、CN 相交于点O .请你添加一对相等线段或一对相等角的条件,使CN BM =.你所添加的条件是.11.【答案】MCB NBC ∠=∠或NCB MBC ∠=∠或AC AB =或AN AM =等. 【考点】全等三角形的判定与性质. 【专题】开放型.【分析】由ABC ∆的高BM 、CN 相交于点O ,可得︒=∠=∠90CNB BMC ,又由要使CN BM =,只需BMC ∆≌CNB ∆,根据全等三角形的判定定理与性质,可求得正确答案. 【解答】解:此题答案不唯一,如NCB MBC ∠=∠或MCB NBC ∠=∠或AC AB =或AN AM =等.∵ABC ∆的高BM 、CN 相交于点O , ∴︒=∠=∠90CNB BMC , ∵CB BC =,要使CN BM =,只需BMC ∆≌CNB ∆,当CM BN =时,利用HL 即可证得BMC ∆≌CNB ∆;当MCB NBC ∠=∠时,利用AAS 即可证得BMC ∆≌CNB ∆; 同理:当NCB MBC ∠=∠也可证得BMC ∆≌CNB ∆(AAS ); 当AC AB =时,得ACB ABC ∠=∠,∴当AC AB =时,也可证得BMC ∆≌CNB ∆(AAS )等.故答案为:MCB NBC ∠=∠或NCB MBC ∠=∠或AC AB =或AN AM =等.【点评】此题考查了全等三角形的判定与性质,此题属于开放题.解题的关键是理解题意,掌握全等三角形的判定定理.12. 如图,已知AB 是⊙O 的弦,⊙O 的直径cm CD 5=,且CD AB ⊥,垂足为M 点,3=OM .则AB 的长是 cm . cm 2. 【第11题图】MN【第9题图】12【第12题图】【第14题图】【第13题图】13. 如图,这是一圆锥的主视图和左视图,根据信息可以推算出此圆锥的侧面展开图的圆心14.如图,双曲线ky=经过点)1,1(A与点)2(aB,,则AOB∆的面积为________.【第14题图】M N15. 如图,若线段AB 的长为a ,以AB 为边在AB 的下方作正方形ABCD .取AB 边上一点M ,以AM 为边在AB 的上方作正方形AMEF .过M 作CD MN ⊥,垂足为N 点.当正三、解答题 (本大题共8个小题,满分75分)16.(8分)先化简再求值:412)121(22-++÷-+x x x x ,其中012=-x .17. (9分)如图,□ ABCD 的一条对角线为BD ,ABD ∠的平分线BE 交AD 于点E ,CDB ∠的平分线DF 交BC 于点F .求证:ABE ∆≌CDF ∆.18.(9分)小明与小亮玩游戏.他们先利用如图的一个转盘,转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定转盘,转动指针,并使之自由停止,记录指针所指数字(当指针指在边界线上时视为无效,重转);然后在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌,记录牌面数字.若两次所得数字的积为奇数,则小明获胜;若两次所得数字的积为偶数,则小亮获胜.该游戏是否公平,说明理由.……………………………………………………………………………………(8分)所以建筑物AB 的高度约为0.49米.…………………………………………………(9分)19.(9分)如图所示,九年级2班“好玩数学”兴趣小组用高为7.1米的仪器测量建筑物AB 的高度.由距AB 一定距离的C 处用仪器观察建筑物顶部A 的仰角为︒=45α,在B 和C 之间选一点D ,由D 处用仪器观察建筑物顶部A 的仰角为︒=60β.测得C ,D 之间的距离为20米,求建筑物AB 的高度(73.13≈,结果精确到.01米)., ……………………………………………………………………………………(8分)所以建筑物AB 的高度约为0.49米.…………………………………………………(9分)α AD C BEFGβ20.(10分)2011年8月,深圳世界大学生运动会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用21000元购进了一批这种运动服,上市后很快脱销,商场又用72000元购进第二批这种运动服,所购数量是第一批购进数量的3倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)所以每套运动服的售价至少是93元.………………………………………………(10分)21.(10分)2012年5月22日,小强来到“一中考点”参加本市进行的初三毕业生联考,进场时,发现准考证忘在家里,此时离考试开始还有25分钟,于是立即步行回家取准考证.同时,他父亲从家里出发骑电动自行车以他3倍的速度给他送准考证,两人在途中相遇,相遇后小强立即坐父亲的电动自行车赶回“一中考点”.下图中线段AB 、OB 分别表示父、子俩送准考证、取准考证过程中,离.“.一中考点....”.的路程...S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑电动自行车和步行的速度始终保持不变):(1)请求点B 的坐标并解释图中点B 的实际意义;(2)求AB 所在直线的函数关系式;(3)小强能否在考试开始前到达“一中考点”?21.解:(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟.设小强步行的速度为x 米/分,则小强父亲骑车的速度为3x 米/分依题意得:15x+45x =3600.解得:x =60.所以两人相遇处离“一中考点”的距离为60×15=900米.所以点B 的坐标为(15,900).……………………………………………(3分)图中点B 的实际意义为:小强从“一中考点”回家准考证,第15分钟时,在距离“一中考”点900米处,遇到来送准考证的父亲;……………………………………(4分)(2)设直线AB 的函数关系式为s =kt+b (k ≠0).由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,. 解之,得1803600k b =-⎧⎨=⎩,.【第21题图】22. (10分)如图①,两个全等的直角三角板,其中cm AB 6=,cm BC 8=,∠ABC=90°.重叠放在直线l 上,如图②所示,将ABC Rt ∆在直线l 上左右平移,如图③所示.(1)连接AD ,则四边形ACFD 的对角线AF 、CD 的关系一定是 ;(2)当ABC Rt ∆向 移动 cm 时,可以使四边形ACFD 为菱形;22. 解:(1)互相平分;【解析】四边形ACFD 为ABC Rt ∆平移形成的,所以,AD ∥CF ,AC ∥DF ,所以,四边形ACFD 为平行四边形.所以,AF 、CD 互相平分.…………………………………………………………(3分)(2)左、右平移cm 10;【解析】要使得四边形ACFD 为菱形,即使AD =AC 即可,在ABC Rt ∆中,cm AB 6=,cm BC 8=,∠ABC=90°,根据勾股定理求得cm AC 10=.故将ABC Rt ∆向左、右平移cm 10均可以使得到的四边形ACFD 为菱形;………(6分)(3)将ABC Rt ∆向左平移cm 4,即cm BE 4=,即EG 为ABC Rt ∆的中位线,所以,G 为DE 的中点,所以,CEG ∆的面积均为26cm ,所以,四边形DGCF 的面积为218624cm =-.…………………………………(10分)23.(11分)如图,在平面直角坐标系中,已知点)44(-,A ,2=OB ,抛物线c bx ax y ++=2经过点O 、B 、A 三点.(1)求抛物线的函数表达式;(2)若点C 是抛物线对称轴上一点,试求BC AC +的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 、O 、B 、A 为顶点的四边形是梯形.若存在,求点P 的坐标;若不存在,请说明理由.23.解:(1)由2=OB ,可知)0,2(B .将)44(-,A ,)0,2(B ,)0,0(O 三点坐标代入抛物线c bx ax y ++=2,得:(3)分为以下三种情况讨论:①若AP ∥OB 时,此时点A 与点P 关于对称轴直线1x =对称,由已知)44(-,A 得)42(--,P .【第23题图】②若OA ∥PB 时,设直线OA 的函数表达式为kx y =,将点)44(-,A 代入得:x y -=.因为此时OA ∥PB ,所以设直线PB 的函数表达式为b x y +-=,由)0,2(B 得,b +-=20, 解得,2=b 即4m =-,所以,直线PB的函数表达式为2+-=x y . 当2=x 时,0=y ,此时,点)0,2(P 与点)0,2(B 重合, 所以OA ∥PB 时,不存在点P ,使得以点P 、O 、B 、A 为顶点的四边形是梯形. ③若AB ∥OP 时,设直线AB 的函数表达式为b kx y +=,因为)44(-,A 、)0,2(B ,所以⎩⎨⎧+=+=-b k b k 2044,解得⎩⎨⎧=-=42b k .所以,直线AB 的函数表达式为42+-=xy .所以直线OP 的函数表达式为x y 2-=.将61=x 代入x y 2-=得,12-=y .所以)126(-,P . 综上所述,存在两点)42(--,P 或)126(-,P 使得以点P 与点O 、A 、B 为顶点的四边形是梯形.………………………………………………………………………………(11分)【第23题解答图】C D。
2012年中考数学模拟试题1
2012年中考数学模拟试题考生注意:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1、2-的相反数是…………………………………………………()A、2B、-2C、4 D2、2009年我省GDP突破万亿达到10052.9亿元,这意味着安徽已经成为全国GDP万亿俱乐部的第14个成员,10052.9亿元用科学记数法表示为(保留三个有效数字)………………()元A、121.0010⨯B、121.00510⨯C、121.0110⨯D、121.0052910⨯3、如图,把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为……………………………………………………………………()A、55°B、65°C、125°D、135°4、如图是一个几何体的三视图,根据图中标注的数据求出这个几何体的体积为……()A、24πB、32πC、36πD、48π5、小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为……………………………………………………………………………()A、16B、18C、19D、5186、已知⊙O1和⊙O2的半径是方程2560x x-+=两根,且两圆的圆心距等于5,则⊙O1和⊙O2的位置是……………………………………………………………………………()A、相交B、外离C、外切D、内切7、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上,点A、B的读数分别为86°、30°,则∠ACB的大小为………………………………………………()A 、15°B 、28°C 、29°D 、34°8、如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射照到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,且AC=3,BD=6,CD=12,则t a n α值为…………………( ) A 、35B 、43C 、45D 、349、如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),对称轴为1x =,给出四个结论:①240b ac ->;②20a b +=;③0a b c ++=;④当1x =-或3x =时,函数y的值都等于0。
2012年中考数学模拟
(5题图)(6题图)(7题图)2010年中考数学模拟试题8一、选择题(每题4分,共48分) 1.12-的相反数是( ) A .12B .12-C .2D .2-2.下列计算正确的是( ) A.=B=C3=D3=-3.如图所示零件的左视图是( )A .B .C .D .4.2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元5.如图,把线段AB 平移,使得点A 到达点C(4,2),点B 到达点D ,那么点D 的坐标是( ) A . (7,3) B . (6,4) C . (7,4) D . (8,4)6.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( ) A.7、7 B.8、7.5C.7、7.5D. 8、6.57.如图,⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( ) A .3cm B .4cm C .5cm D .6cm8. 若352++n m x y与323y x -是同类项,则=n m ( )A .21 B .21- C .1 D.-2 第3题图时间(分钟)(11题图)(12题图)9.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色, ,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个B .15个C .12个D .10个10.若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0有一个根为0,则m 的值等于( ) A . 1 B . 2 C . 1或2 D . 011.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A .37.2分钟 B .48分钟C .30分钟D .33分钟12.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA =23,则该函数的解析式为( ) A .x y 3=B .x y 3-=C .x y 9=D .xy 9-= 二、填空题(每题3分,共15分)13.化简:22444a a a -=++ 14.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是 (结果保留π) 15.如图,在四边形ABCD 中,E F G H ,,,分别是AB BD CD AC ,,,的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是16.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=55°,则∠BDF= °.17.如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n-是质数,那么)12(21--n n 是一个完全数,请你根据这个结论写出6之后的下一个完全数是三、解答题(共57分)BE(第15题图)18.(7分)(1)解方程:250x x --=. (2)若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩整数解是关于x 的方程24x ax -=的根,求a 的值.19.(7分)(1)已知:如图,B 、E 、F 、C 四点在同一条直线上, AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .(2)如图2,已知AB 是⊙O 的直径,BC 是弦,30ABC ∠=.过圆心O 作OD BC ⊥交弧BC 于点D ,连接DC ,求∠DCB 的度数20. (8分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4图2ABCOD四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?如何修改规则使游戏公平?21.(8分)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~18∶00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表:信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元. 根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?22.(9分)如图所示,A B ,两地之间有条河,原来从A 地到B 地需要经过桥DC ,沿折线A D C B →→→到达.现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知11km BC =,45A ∠= ,37B ∠= ,桥DC 和AB 平行,则现在从A 地到B 地可比原来少走多少路程?(结果精确到0.1km1.41,sin 370.60 ≈,cos370.80≈)23(9分)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A BCD ER P H Q24.(9分)如图,在矩形ABCD 中,(16,12)B ,E 、F 分别是OC 、BC 上的动点,8EC CF +=. ⑴当60AFB ∠=︒时,ABF ∆沿着直线AF 折叠,折叠后,落在平面内G 点处,求G 点的坐标. ⑵当F 运动到什么位置时,AEF ∆的面积最小,最小为多少?⑶当AEF ∆的面积最小时,直线EF 与y 轴相交于点M ,P 点在x 轴上,⊙P 与直线EF 相切于点M ,求P 点的坐标.x。
徐州市2012年中考数学模拟试题及答案(2)
徐州市2012年初中毕业、升学模拟考试(2)数 学 试 题本卷满分:120分 考试时间:120分钟 总分 题号 一 二 三得分一 选择题(本大题共8小题,每小题2分,共16分) 1. -7的相反数的倒数是 ( ) A .7 B .-7 C .17D .-172.计算a 3²a 4的结果是( )A .a 5B .a 7C .a 8D .a 123. 右图中几何体的正视图是( )4. 一方有难、八方支援,截至5月26日12时,徐州巿累计为某地震灾区捐款约为11180万元,该笔善款可用科学记数法表示为()A. 11.18³103万元 B. 1.118³104万元 C. 1.118³105万元 D. 1.118³108万元5.已知半径分别为3 cm 和1cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .5cm D .7cm6. 某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是( )AB CD7. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 --------( )A.B.C.D.(第3题)A.203525-=x x B.x x 352025=- C.203525+=x xD.xx 352025=+8. 抛物线c bx axy ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b cy x++=在同一坐标系内的图像大致为( )第15题图二 填空题(每题2分,共20分) 9. 分解因式:=-a ax162.10. 一次考试中7名学生的成绩(单位:分)如下:61,62,71,78,85,85,92,这7名学生的极差是 分,众数是 分。
2012年陕西省中考数学试卷-答案
【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AOBA 'B '(第5题图)……2012年中考数学模拟试卷考生须知: 1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,描写清楚.4.本卷共四页,22小题. 全卷满分为120分,考试时间为100分钟.一、选择题(本题有5个小题,每小题3分,共15分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1、下列图形中,既是轴对称图形,又是中心对称图形的是( )A . B. C. D.2、下列运算中,正确的是( )A 、x 2+x 4=x 6B 、2x+3y=5xyC 、x 6÷x 3=x 2D 、(x 3)2=x 6 3、二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,4、下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于0 5、如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α 角度得到的.若点A '在AB 上, 则旋转角α的大小可以是( ). A .30° B .45° C .60° D .90°二、填空题(本大题共有5小题,每小题4分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)6、因式分解:x 2y -16y = 。
7、某红外线遥控器发出的红外线波长为0.000 000 85m ,用科学记数法表示这个数是______ _______. 8、已知点A (-2,3)在反比例函数xk y 1+=的图象上,则k 的值是______ _______. 9、已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm , 则1O ⊙与2O ⊙的位置关系是 .10、如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第n 个图中,共有________个正三角形.AFCEDB12题11.(本题满分6分).计算:101|sin 452-⎛⎫+-+ ⎪⎝⎭°12.(本题满分6分).如图,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点. 求证:四边形DECF 是平行四边形.13.(本题满分6分).已知0342=+-x x ,求)x 1(21x 2+--)(的值.14.(本题满分6分).在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽, 如图所示,某学生在河东岸点A 处观测河对岸水边点C ,测得C 在 A 北偏西30°的方向上,沿河岸向北前行30米到达B 处,测得C 在 B 北偏西60°的方向上,请你根据以上数据,帮助该同学计算出这 条河的宽度.(答案带根号)15.(本题满分6分).如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF , 垂足分别为点E 、F .求证:BE =CF .CB 东北14题解方程:22111x x =---17.(本题满分7分).已知正比例函数y kx =的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的 横坐标是2. (1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点, 且120x x <<,试比较12y y ,的大小.18.(本题满分7分).小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小刚得1分。
这个游戏双方公平吗?若公平,请说明理由;若不公平,如何修改规则才能使游戏对双方公平?19.(本题满分7分).在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有__________套,B 型玩具有__________套,C 型玩具有__________套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为____________,每人每小时能组装C 型玩具____________套.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元, 中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.21.(本题满分9分).如图,AB 是半圆的直径,O 为圆心,BD 是半圆的弦,且∠PDA=∠PBD. (1)判断直线PD 是否为⊙O 的切线,并说明理由; (2)如果60BDE ∠=°,PD,求P A 的长.22.(本题满分9分).轴的两个交点分别为与线已知:如图所示,抛物x c bx x y ++-=2 A (1,0),B (3,0)。
(1)求抛物线的解析式;()设点在该抛物线上滑动,且满足条件的点有几个?并求出21P S P PAB ∆=所有点P 的坐标;(3)设抛物线交y 轴于点C ,问该抛物线对称轴上是否存在点M ,使得△MAC 的周长最小。
若存在,求出点M 的坐标;若不存在,请说明理由。
答案:1-5:B 、D 、A 、A 、C 6、y(x+4)(x-4) 7、8.5×10-7 8、-7 9、外切 10、(4n-3) 11.解:原式=112、中位线定理→两组对边分别平行→平行四边形13、解:)x 1(21x 2+--)( x 221x 2x 2--+-= 1x 4x 2--=由,03x 4x 2=+-得3x 4x 2-=- 所以,原式413-=--=14、解:过C 作CD 交AB 于D ∵∠CAB=30°∠CBD=60° ∴AB=BC∴CD=315233060sin 0=⨯=BC ∴这条河的宽度为315m15、证明 ∵在△ABC 中,AD 是中线,∴BD =CD ,∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90°, 在△BED 与△CFD 中,∵∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED ≌△CFD ,∴BE =CF .16、解:3-=x .17、解:(1)由题意,得522kk -=, ···················· 1分 解得1k =.所以正比例函数的表达式为y x =,反比例函数的表达式为4y x=. ········ 2分 由4x x=,解得2x =±.由y x =,得2y =±. ················ 4分 所以两函数图象交点的坐标为(2,2),(22)--,. ··············· 5分(2)因为反比例函数4y x=的图象分别在第一、三象限内, y 的值随x 值的增大而减小, ························ 6分C16题18、解:公平。
将两个转盘所转到的数字求积,列表如下:从表中得出:,积为奇数积为偶数P P ==2646∴小明的积分为26223⨯=, 小刚的积分为46123⨯=∴游戏对双方公平19、(1)132,48,60; (2)4,6.20、解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.(2)依题意得x -20< x . 解得x >10.∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,y=22×11+800=1 042(万元). 此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.21、解:(1)PD 是⊙O 的切线. ………………(1分) 如图1,连接OD .,2.OB OD PBD =∴∠=∠∴2PDA ∠=∠.…………………………………(3分)又AB 是半圆的直径,∴90ADB ∠=°.即1290∠+∠=°. ∴190PDA ∠+∠=°. 即.OD PD ⊥∴PD 是⊙O 的切线. ……………………………(5分)(2)方法一:60BDE ∠=°,90ODE ∠=°,90ADB ∠=°, 230∴∠=°,160∠=°.OD OA =, A O D∴∆是等边三角形. 60POD ∴∠=°. 30P PDA ∴∠=∠=°.PA AD AO OD ∴===.………………………(7分)在Rt PDO ∆中,设OD x =, ()2222x x ∴+=,121,1x x ∴==-(不合题意,舍去). 1.PA =…………………(9分)方法二:,,60OD PE AD BD BDE ⊥⊥∠=°,230PBD PDA ∴∠=∠=∠=°,60OAD ∴∠=°,30P ∴∠=°..PA AD OD ∴==………………(7分)在Rt PDO ∆中,30P ∠=°,PD =,OD PD P ∴=∠·tantan 30°13=. 1.PA ∴=……………(9分)22、解:()依题意有110930-++=-++=⎧⎨⎩b c b c∴,b c ==-43∴抛物线解析式为y x x =-+-243(2)如图,设P (x ,y )∵,AB S PAB ==21∆ ∴1221⨯⨯=y ∴y =±1 当时,y x ==12当时,y x =-=±122 ∴满足条件的点P 有三个坐标分别为(,),(,),(,)21221221+---()若在抛物线的对称轴上存在点,使的周长3432y x x M AC =-+-∆M 最小过点C 作抛物线的对称轴的对称点C'∵点(,),对称轴为032-=x ∴(,)C'43-设直线的解析式为,则AC y kx b k b k b '=++=+=-⎧⎨⎩043∴,k b =-=11∴直线的解析式为AC y x '=-+1直线与对称轴的交点为(,),即(,)AC x m '=--22121∴存在点(,),可使的周长最小M AMC 21-∆。