2019高考卷-2019年浙江卷数学高考试题答案

合集下载

2019年浙江省高考数学试卷(原卷答案解析版)

2019年浙江省高考数学试卷(原卷答案解析版)
A.当 B.当
C.当 D.当
【答案】A
【解析】
【分析】
本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.
【详解】选项B:不动点满足 时,如图,若 ,
排除
如图,若 为不动点 则
选项C:不动点满足 ,不动点为 ,令 ,则 ,
排除
选项D:不动点满足 ,不动点为 ,令 ,则 ,排除.
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
2019年普通高等学校招生全国统一考试(浙江卷)数学
参考公式:
若事件 互斥,则
若事件 相互独立,则
若事件 在一次试验中发生的概率是 ,则 次独立重复试验中事件 恰好发生 次的概率
台体的体积公式
其中 分别表示台体的上、下底面积, 表示台体的高
(2)当 时,分三种情况,如图 与 若有三个交点,则 ,答案选D
下面证明: 时,
时 , ,则 ,才能保证至少有两个零点,即 ,若另一零点在
【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..
10.设 ,数列 中, , ,则( )
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )

2019年浙江省高考数学试卷(理科)答案与解析

2019年浙江省高考数学试卷(理科)答案与解析

浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}【考点】交、并、补集的混合运算.【专题】集合.【分析】欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合的常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.4.(5分)(2009•浙江)在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点明斜线和平面所成的角的值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.【考点】直线与圆锥曲线的综合问题;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合的包含关系判断及应用.【专题】集合.【分析】理解新的运算,根据新定义A﹣B知道,新的集合A﹣B是由所有属于A但不属于B的元素组成.【解答】解:Q﹣P是由所有属于Q但不属于P的元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合的运算,是一道创新题,具有一定的新意.要求学生对新定义的A﹣B有充分的理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}的公比,前n项和为S n,则=15.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基础题.12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同的长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下的长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面的长方体底面是个正方形,边长为3,高为1,易知与下面的长方体体积相等,因此易得该几何体的体积为9×2=18.【点评】本题考查学生的空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3y的最小值是4.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组的可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.568 50及以下的部分0.288超过50至200的部分0.598 超过50至200的部分0.318超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为148.4元(用数字作答)【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先计算出高峰时间段用电的电费,和低谷时间段用电的电费,然后把这两个电费相加.【解答】解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数的函数值的求法,体现了分类讨论的数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理的应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳的能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(,1).【考点】平面与平面垂直的性质;棱锥的结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C 点时,分别求出此两个位置的t值即可得到所求的答案【解答】解:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此t的取值的范围是(,1)故答案为(,1)【点评】考查空间图形的想象能力,及根据相关的定理对图形中的位置关系进行精准判断的能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.【考点】二倍角的余弦;平面向量数量积的运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形的问题.涉及了三角函数中的倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【考点】等可能事件的概率;离散型随机变量及其分布列;离散型随机变量的期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含的所有事件是从9个数字中选3个,而满足条件的事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数,结合变量对应的事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含的所有事件是C93,而满足条件的事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξ的分布列为ξ0 1 2p∴ξ的数学期望为.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.【考点】直线与平面平行的判定;点、线、面间的距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,O为AC的中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直的三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOE的一个法向量垂直即可,而根据坐标,平面的一个法向量可求,从而得证;对于(II),在第一问的基础上,课设点M的坐标,利用FM⊥平面BOE求出M的坐标,而其道OA、OB的距离就是点M 横纵坐标的绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOE的法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点M的坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点M的坐标为(8分)在平面直角坐标系xoy中,△AOB的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点M的坐标得点M到OA,OB的距离为.(12分)【点评】本题考查直线与平面的平行的判定以及距离问题,建立了空间坐标系,所有问题就转化为向量的运算,使得问题简单,解决此类问题时要注意空间向量的使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.【考点】圆锥曲线的综合;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(I)根据题意,求出a,b的值,然后得出椭圆的方程.(II)设出M,N,P的坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求的椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,直线MN的方程为y=2tx﹣t2+h,将上式代入椭圆C1的方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同的交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MN的中点的横坐标是x3,则,设线段PA的中点的横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中的△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此h的最小值为1.【点评】本题考查圆锥图象的综合利用,椭圆方程的应用,通过构造一元二次方程,利用根的判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【专题】导数的综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.。

2019年浙江省高考数学试卷及答案(理科)

2019年浙江省高考数学试卷及答案(理科)

2019年浙江省高考数学试卷及答案(理科)第 1 页 共 11 页2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆ (B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆2.某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k(C )?6>k(D )?7>k3.设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S (A )11 (B )5(C )-8(D )-114.设20π<<x ,则“1sin 2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.对任意复数i R y x yi x z ),,(∈+=为虚数单位,则下列结论正确的是(A )y z z 2||=- (B )222y x z += (C )x z z 2||≥- (D )||||||y x z +≤6.设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若αα⊥⊂⊥l m m l 则,, (B )若αα⊥⊥m m l l 则,//,(C )若m l m l //,,//则αα⊂(D )若m l m l //,//,//则αα7.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且y x +的最大值为9,则实数=m(A )-2(B )-1(C )1(D )28.设F 1,F 2分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点。

2019浙江卷(高考学科试卷归类,语文,数学(文理),英语,理综,文综)

2019浙江卷(高考学科试卷归类,语文,数学(文理),英语,理综,文综)

常言道:”为什么明白了很多道理,可还是过不好这一生?”。

考试学习也是如此,泱泱中华数千年,考试是咱最最拿手的好戏了,如何考高分任谁都能讲出一火车来,可学生之间的差距却大到如中国足球和巴西足球的差距,归根结底还是一个字:做!刷题。

2019年各地高考题分享给大家,愿大家都能刷出好成绩。

2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A BI ð=A.{}1-B.{}0,1C.{}1,2,3-D.{}1,0,1,3-2.渐近线方程为x±y=0的双曲线的离心率是A.2B.1C.2D.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12)(a>0,且a≠1)的图象可能是7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时,A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B 的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β9.已知,a b∈R,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b=--恰有3个零点,则A.a<–1,b<0 B.a<–1,b>0 C.a>–1,b<0 D.a>–1,b>0 10.设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,b*∈N,则A.当b=12时,a10>10 B.当b=14时,a10>10C.当b=–2时,a10>10 D.当b=–4时,a10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)

2019年高考数学浙江卷(附答案)1.已知全集 $U=\{-1.0.1.2.3\}$,集合 $A=\{0.1.2\}$,$B=\{-1.0.1\}$,则 $(A\cup B)^c$ 等于A。

$\{-1\}$ B。

$\{0.1\}$ C。

$\{-1.2.3\}$ D。

$\{-1.0.1.3\}$2.渐近线方程为 $x\pm y=0$ 的双曲线的离心率是A。

$\sqrt{2}$ B。

$1$ C。

$2$ D。

$\frac{\sqrt{2}}{2}$3.若实数 $x$,$y$ 满足约束条件 $\begin{cases} 3x-y-4\leq 0 \\ x+y\geq 0 \end{cases}$,则 $z=3x+2y$ 的最大值是A。

$-1$ B。

$1$ C。

$10$ D。

$12$4.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式 $V_{\text{柱体}}=Sh$,其中 $S$ 是柱体的底面积,$h$ 是柱体的高。

若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm$^3$)是A。

$158$ B。

$162$ C。

$182$ D。

$324$非选择题部分(共110分)一、填空题:本大题共8小题,每小题5分,共40分。

请将答案填写在答题纸上。

1.设 $f(x)=\frac{1}{x-1}$,则 $f^{-1}(x)=$______________。

2.已知函数 $f(x)=x^2-2ax+a^2+1$,$a$ 为常数,若$f(1)=0$,$f(x)$ 的最小值为 $2$,则 $a=$______________。

3.已知 $\triangle ABC$,$\angle A=90^\circ$,$AB=3$,$BC=4$,则 $\sin\angle ACB=$______________。

4.已知函数 $f(x)=\log_2(x+1)-\log_2(x-1)$,则$f\left(\frac{1}{3}\right)=$______________。

2019高考理科数学真题12 数列(解析版)

2019高考理科数学真题12 数列(解析版)

专题12 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12- B .10- C .10D .12【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d ,的关系,从而求得结果.5.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230l n a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥6.【2017年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C . 【秒杀解】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C .【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.7.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 8.【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏D .9盏【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.9.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.11.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=___________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.12.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.13.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.14.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.15.【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.16.【2018年高考北京卷理数】设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为___________.【答案】63n a n =-【解析】设等差数列的公差为d ,()133343663616 3.n a d d d a n n =∴+++=∴=∴=+-=-,,, 【名师点睛】先根据条件列出关于公差的方程,求出公差后,代入等差数列通项公式即可.在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.17.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.18.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【答案】21nn + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 【名师点睛】等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.19.【2017年高考全国III 卷理数】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 =___________.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.20.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.21.【2017年高考北京卷理数】若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________. 【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法. 22.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【答案】(1)见解析;(2)1122n n a n =+-,1122n nb n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.23.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【答案】(1) 1,3,5,6(答案不唯一);(2)见解析;(3)见解析. 【解析】(1)1,3,5,6.(答案不唯一) (2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤.所以00m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中. 又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.24.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(1)31n a n =+;32nn b =⨯(2)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(2)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.25.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.26.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N 证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.27.【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.28.【2018年高考全国III 卷理数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.29.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S . 由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+下面讨论数列的最大值和数列的最小值().①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.31.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N ,(i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【答案】(1)12n n a -=,n b n =;(2)(i )122n n T n +=--;(ii )见解析.【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑. 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.32.【2017年高考天津卷理数】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(14)324343434(31)44(314n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 33.【2017年高考山东卷理数】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积.【答案】(1)12n n x -=;(2) 【解析】(1)设数列的公比为q ,由已知0q >.由题意得,所以,nT (21)21.2n n n T -⨯+={}n x 1121132x x q x q x q +=⎧⎨-=⎩23520q q --=因为0q >,所以,因此数列的通项公式为(2)过…,向轴作垂线,垂足分别为…,, 由(1)得记梯形的面积为. 由题意, 所以…+=…+ ①, 又…+ ②, ①-②得121132(222)(21)2n n n T n ----=⨯++++-+⨯= 所以 【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. 34.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k nnnk n ka aa a aa --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.12,1q x =={}n x 12.n n x -=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b 101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.35.【2017年高考北京卷理数】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(1)详见解析;(2)详见解析. 【解析】(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-.所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列.③当10d <时,当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当n m ≥时,nc M n>. 【名师点睛】近几年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对新的信息的理解和接受能力,本题考查数列的有关知识及归纳法证明,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二问难度较大,适合选拔优秀学生. 36.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,。

2019年浙江卷数学高考试题及解答

2019年浙江卷数学高考试题及解答

2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式 343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U AB ð=A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-答案:A2.渐近线方程为x ±y =0的双曲线的离心率是 AB .1CD .2答案:C3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .12答案:C4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .32答案:B5.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件B .必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12),(a>0且a≠0)的图像可能是答案:D7.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案:D8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β答案:B9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0 C .a >-1,b >0D .a >-1,b <0答案:C10.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10答案:A非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=O P O F ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c∴a=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t ktk k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。

(2019年高考浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1垂直平面ABC,

(2019年高考浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1垂直平面ABC,

(2019年高考浙江卷)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.解:方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上. 连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故122A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅. 因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B1,0),1B,3,22F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑一、选择题1.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——数学(浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C U A)∩B=( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}3.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.【来源】2019年高考真题——理科数学(天津卷)设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.【来源】2019年高考真题——理科数学(天津卷)设集合A={-1,1,2,3,5},B={2,3,4},{|13}C x x =∈≤<R ,则()A C B =A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4} 6.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面7.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B= A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)8.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B= A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}9.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知集合}242{60{}M x x N x x x =-<<=--<,,则M∩N=A .}{43x x -<<B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<10.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知集合A={x|x -1≥0},B={0,1,2},则A∩B= A .{0}B .{1}C.{1,2}D .{0,1,2}11.【来源】2018年高考真题——理科数学(北京卷)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a<0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 12.【来源】2018年高考真题——理科数学(北京卷)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件13.【来源】2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|<2},B={–2,0,1,2},则A∩B = (A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}14.【来源】2018年高考真题——理科数学(天津卷)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件15.【来源】2018年高考真题——理科数学(天津卷)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C){12}x x ≤<(D){02}x x <<16.【来源】2018年高考真题——理科数学(全国卷II )已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .417.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知集合A={x|x 2-x -2>0},则C R A= A.{ x|-1<x <2} B. { x|-1≤x≤2}C. { x| x <-1}∪{ x|x >2}D. { x| x≤-1}∪{ x|x≥2} 18.【来源】2016年高考真题——理科数学(天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q<0”是“对任意的正整数n ,a 2n−1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 19.【来源】2016年高考真题——理科数学(天津卷)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1}(B ){4}(C ){1,3}(D ){1,4}20.【来源】2017年高考真题——理科数学(北京卷)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件21.【来源】2017年高考真题——理科数学(北京卷)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}22.【来源】2017年高考真题——数学(浙江卷)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.【来源】2017年高考真题——数学(浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=A. (-1,2) B. (0,1) C. (-1,0) D.(1,2)二、填空题24.【来源】2019年高考真题——数学(江苏卷)已知集合A={-1,0,1,6},{}|0,B x x x R =>∈,则A∩B=_____. 25.【来源】2018年高考真题——理科数学(北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.26.【来源】2018年高考真题——数学(江苏卷)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .27.【来源】2018年高考真题——数学(江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B = ▲ . 28.【来源】2017年高考真题——理科数学(北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 29.【来源】2017年高考真题——数学(江苏卷)已知集合A={1,2},B={a ,a 2+3},若A∩B={1},则实数a 的值为________ 三、解答题(本题共1道小题,第1题0分,共0分) 30.【来源】2018年高考真题——理科数学(北京卷)(本小题14分)设n 为正整数,集合A=12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n=3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.试卷答案1.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 2. A【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 3. C【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C. 4. B化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B. 5.因为{1,2}A C =, 所以(){1,2,3,4}A C B =.6. B根据面面平行的判定定理易得答案.选B. 7. A{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A .8. A}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .9. C由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C .10. C详解:由集合A 得 ,所以故答案选C. 11. D分析:求出 及 所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则 ,此命题的逆否命题为:若 ,则有,故选D.12. C分析:先对模平方,将 等价转化为0,再根据向量垂直时数量积为零得充要关系. 详解:,因为a ,b 均为单位向量,所以a ⊥b ,即“”是“a⊥b”的充分必要条件.选C.A分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集. 详解:因此A∩B= ,选A.14. A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件.本题选择A 选项. 15. B分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项. 16. A 详解: ,当 时, ; 当 时, ; 当时,;所以共有9个,选A. 17. B 解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.18. C试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 19.D试题分析:{1,4,7,10},A B {1,4}.B ==选D. 20. A若0λ∃<,使m n λ=,即两向量反向,夹角是180°,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 21. A{}21A B x x =-<<-,故选A.22.C试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 +S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件. 23.A试题分析:利用数轴,取P 、Q 所有元素,得P ∪Q=(-1,2)【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24. {1,6} 【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.【点睛】本题主要考查交集的运算,属于基础题. 25.y=sinx (答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数. 又如,令f (x )=sinx ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.26.27分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 详解:设 ,则由得 所以只需研究是否有满足条件的解, 此时 , ,m 为等差数列项数,且. 由得满足条件的n 最小值为27.27.{1,8} 分析:根据交集定义求结果. 详解:由题设和交集的定义可知:.28.1,2,3---(答案不唯一) 123,1(2)3->->--+-=-29.1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为130.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x 2,…,x n)|( x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x 2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x 2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。

2019年浙江省高考数学试卷和答案

2019年浙江省高考数学试卷和答案

2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B ={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3}2.(4分)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.23.(4分)若实数x,y满足约束条件则z=3x+2y的最大值是()A.﹣1B.1C.10D.124.(4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324 5.(4分)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.7.(4分)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.(4分)设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P 是棱V A上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β9.(4分)设a,b∈R,函数f(x)=若函数y=f(x)﹣ax﹣b恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>010.(4分)设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=﹣2时,a10>10D.当b=﹣4时,a10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

(完整版)2019年高考数学浙江卷(附答案)

(完整版)2019年高考数学浙江卷(附答案)

绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð= A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x±y=0的双曲线的离心率是A.2B.1CD.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12)(a>0,且a≠1)的图象可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >010.设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A .当b =12时,a 10>10B .当b =14时,a 10>10C .当b =–2时,a 10>10D .当b =–4时,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)2019年浙江省高考数学试卷一、选择题:1.已知全集 $U=\{-1,0,1,2,3\}$,集合 $A=\{0,1,2\}$,$B=\{-1,1\}$,则 $(U-A) \cap B=$()。

A。

$\{-1\}$。

B。

$\{0,1\}$。

C。

$\{-1,2,3\}$。

D。

$\{-1,1,3\}$2.渐进线方程为 $x^2-y^2=4$ 的双曲线的离心率是()。

A。

$\sqrt{2}$。

B。

$1$。

C。

$2$。

D。

$\sqrt{2}/2$3.若实数 $x,y$ 满足约束条件 $\begin{cases}3x-y\leq 4 \\ x+y\geq 1\end{cases}$,则 $z=3x+2y$ 的最大值是()。

A。

$-1$。

B。

$1$。

C。

$10$。

D。

$12$4.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式$V_{\text{柱体}}=sh$,其中$s$ 是柱体的底面积,$h$ 是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()。

A。

$158$。

B。

$162$。

C。

$182$。

D。

$324$5.若 $a>0,b>0$,则“$a+b^4$ 是 $ab^4$ 的”()。

A。

充分不必要条件。

B。

必要不充分条件C。

充分必要条件。

D。

既不充分也不必要条件6.在同一直角坐标系中,函数 $y=\dfrac{11}{a^2x}$,$y=\log_a(x+1)$,$(a>0,a\neq 1)$ 的图象可能是()。

7.设 $0<a<1$。

随机变量 $X$ 的分布列是begin{array}{c|cc}X & 1 & 2 \\XXXP & a & 1-aend{array}则当 $a$ 在 $(0,1)$ 内增大时,()。

A。

$D(X)$ 增大。

2019年浙江卷数学高考试题(含答案)

2019年浙江卷数学高考试题(含答案)
参考公式:
A.158B.162C.182
D.324
5.若a>0,b>0,则“a+b≤4”是 “ab≤4”的
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
若事件A,B互斥,则P(AB)P(A)P(B)
柱体的体积公式VSh
6.在同一直角坐标系中,函数y=1
,y=log (x+1)(a>0,且a≠1)的图象可能
7.设0<a<1,则随机变量X的分布列是
则当a在(0,1)内增大时,
A.1C.1,2,3
2.渐近线方程为x±y=0的双曲线的离心率是
B.0,1D.1,0,1,3
A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大
8.设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则
若事件A,B相互独立,则P(AB)P(A)P(B)
若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率
P(k)Ckpk(1p)nk(k0,1, 2,,n)
台体的体积公式V1(SS)h
312
其中S1,S2分别表示台体的上、下底面积,h表示台体的高
其中S表示柱体的底面积,h表示柱体的高
本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页;非选择题部分3至4页。满分150
分。考试用时120分钟。考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

2019年全国高考试题数学浙江卷附答案详解

2019年全国高考试题数学浙江卷附答案详解

2019年全国高考试题数学浙江卷一、选择题1.已知全集{1,0,1,2,3}U =-,集合{0,1,2}A =,{1,0,1}B =-,则()U C A B ⋂=( )A.{1}-B.{0,1}C.{1,2,3}-D.{1,0,1,3}- 答案:A解答:{1,3}U C A =-,则(){1}U C A B ⋂=-. 2.渐近线方程为0x y ±=的双曲线的离心率是( )B.1D.2答案:C解答:因为双曲线的渐近线为0x y ±=,所以1a b ==,则c ==ce a==3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A.1-B.1C.10D.12 答案:C解答:在平面直角坐标系内画出题中的不等式组表示的平面区域为以(1,1)-,(1,1)-,(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数32z x y =+经过平面区域内的点(2,2)时,32z x y =+取得最大值max 322210z =⨯+⨯=.4.祖恒是我国南北朝时代的伟大科学家,他提出“幂势既同,则积不容异”称为祖恒原理,利用该原理可以得到柱体的体积公式V Sh =,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是( )A.158B.162C.182D.182 答案:B解答:由三视图得该棱柱的高为6,底面可以看作是两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个上底为2,下底6,高为3,则该棱柱的体积为264633616222()++⨯+⨯⨯=. 5.若0a >,0b >,则“4a b +≤” 是“4ab ≤”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案:A解答:当0a >,0b >时,a b +≥4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当1a =,4b =时,满足4ab ≤,但此时54a b +=>,必要性不成立,综上所述,“4a b +≤” 是“4ab ≤”的充分不必要条件. 6.在同一直角坐标系中,函数1x y a =,1log ()2a y x =+,(0a >且0a >)的图像可能是( )答案:D解答:当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log ()2a y x =+过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log ()2a y x =+过定点1(,0)2且单调递增,各选项均不符合.综上,选D.7.设01a <<,随机变量X 的分布列是则当a 在(0,1)内增大时( )A.()D X 增大B.()D X 减小C.()D X 先增大后减小D.()D X 先减小后增大 答案:D解答:由分布列得1()3aE X +=,则222111111()01333()())33(3a a a D X a +++=-⨯+-⨯+-⨯=221192()6a -+,则当a 在(0,1)内增大时,()D X 先减小后增大.8.设三棱锥V ABC -的底面是正三角形侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A.βγ<,αγ<B.βα<,βγ<C.βα<,γα<D.αβ<,γβ< 答案:B解答:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过点D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 于点F ,过D 作//DH AC ,交BG 于H ,则BPF α=∠,PBD β=∠,PED γ=∠,则cos cos PE EG DH BDPB PB PB PB αβ===<=,即αβ>, tan tan PD PDED BDγβ=>=,即γβ>.综上所述,答案为B.9.已知函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,函数()()F x f x ax b =--恰有3个零点,则( ) A.1a <-,0b > B.1a <-,0b < C.1a >-,0b > D.1a >-,0b < 答案:D解答:当0x <时,x ax b =+,即1b x a =-,最多一个零点(取决于1bx a=-与0的大小),所以关键研究当0a ≥时,即方程3211(1)32x a x ax ax b -++=+的解得个数,即3221113(1)(1)()323]2[b x a x x x a g x =-+=-+=,于是利用奇穿偶回画右边三次函数()g x 的函数,我们可以发现讨论的依据是3(1)2a +与0的大小关系.(1)若3(1)02a +<,即1a <-时,0x =处为偶重零点反弹,3(1)2x a =+为奇重零点穿过,显然在0x ≥时()g x 单调递增,故与y b =做多只有一个交点,不符合题意了; (2)若3(1)02a +=,即1a =-,0处为3次零点穿过,也不符合;(3)若3(1)02a +>,即1a >-,0x =处为偶重零点反弹,3(1)2x a =+为奇重零点穿过,当0b <时,()g x 与y b =可以有两个交点,且此时要求01bx a=<-,故11a -<<,11a -<<,选C .10.设,a b R ∈,数列{}n a 中1a a =,21n n a a b +=+,21n n a a b +=+,则( )A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当2b =-时,1010a > 答案:A解答:选项B :不动点满足2211()042x x x -+=-=,如图,若11(0,)2a a =∈,12n a <,排除;如图若a 为不动点12,则12n a =;选项C :不动点满足22192()024x x x --=--=,不动点为2x =,令2a =,则210n a =<,排除;选项D :不动点满足221174()024x x x --=--=,不动点为122x =±,令122a =±,则1102n a =<,排除; 选项A :证明:当12b =时,2211122a a =+≥,2321324a a =+≥,2431171216a a =+≥≥,处理一:可依次迭代到n a ;处理二:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>,则1217()(4)16n n a n +≥≥,则641022617164(646311114710161616210()6a ⨯≥=+=++⨯+>++>,故选A.二、填空题 13.复数11z i=+(i 为虚数单位),则||z = .答案:2解答:1|||1|2z i ===+ 12.已知圆C 的圆心坐标是(0,)m ,半径长是r ,若直线230x y -+=与圆相切于点(2,1)A --,则m = ,r = .答案:2-解答:可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===13.在二项式9)x 的展开式中,常数项是 ,系数为有理数的项的个数是 .答案:,5解答:9)x的通项为919(0,1,2,,9)r r rr T C x r -+==,可得常数项为0919T C ==因系数为有理数1,3,5,7,9r =,有246820,,,,T T T T T 共5个项.14.在ABC ∆中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD = ,cos ABD ∠= .答案:,4.5解答:如图所示,设CD x =,则5AD x =-,再设DBC α∠=,2ABD πα∠=-,在BDC ∆中,正弦定理有:3sin sin sin4x απα==⇒=ABD ∆中,正弦定理有:54cos 3sin s ()in 24αππα===-,2222(5)sin cos 11832x x αα-+=+=,解得135x =(舍去),29922x BD =⇒=,在ABD ∆中,正弦定理有:0.84sin sin 4ABD π=⇒∠sin cos 5ABD ABD ∠=⇒∠=. 15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .解答:由题意可知||||2OF OM c ===,由中位线定理可得1||2||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,联立方程22195x y +=,可解得32x =-,212x =(舍),点P 在椭圆上且在x轴的上方,求得3(2P -,所以212PF k ==.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是 . 答案:max 43a =解答:22|()2222|(2)()|6128261282333)3|(f t f t a t t a t t +-≤⇔++-≤⇔-≤++-≤有解22483612()8128)6(3a t t t t ⇔≤≤++++有解,因26128[2,)t t ++∈+∞,可得242(0,]3(6128)3t t ∈++,284(0,]36128)3(t t ∈++有解,所以只需要403a <<,即max43a =. 17.已知正方形ABCD 的边长为1,当每个)6,5,4,3,2,1(=i i λ取遍1±时,+++321|λλλ|654λλλ++的最小值是 ,最大值是答案:520解析:AB AB BD AC DA CD BC AB )()(65426531654321λλλλλλλλλλλλλλ-+-+-+--=+++++要使|654321λλλλλλ+++++取得最小值,只需要0||||65426531=-+-=-+--λλλλλλλλ只需要1,1,1,1,1,1654321====-==λλλλλλ此时0||min 654321=+++++λλλλλλ由于265±=+λλ或AD 2±,取其中一种265=+λλ讨论此时AD AB BD AC DA CD BC AB )()2(4231654321λλλλλλλλλλ-++-=+++++ 要使得||654321λλλλλλ+++++取得最大值, 只需要|||,2|4231λλλλ-+-最大取1,1,1,14321=-===λλλλ此时52|24|||max 654321=+=+++++λλλλλλ 三、解答题18.设函数()sin f x x =,x R ∈.(1)已知[0,2]θπ∈,函数()f x θ+是偶函数,求θ的值; (2)求函数22()[()][()]124g x f x f x ππ=+++的值域.解答:(1)()sin()f x x θθ+=+,又[0,2]θπ∈,结合函数图像不难求得:当2πθ=或32πθ=时,函数()f x θ+是偶函数. (2)2222[()][()]sin ()sin ()124124f x f x x x ππππ+++=+++1cos(2)1cos(2)1162sin cos(2)122226x x x x πππ-+-+=+=-++1113sin 2sin 2)1sin 12224x x x x x =--+=+)[1]x ϕ=+∈+. 19.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11AA AC AC ==,E ,F 分别是AC ,11A B 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值. 解答:法一:(1)连接1A E ,则1A E AC ⊥,所以1A E BC ⊥,又AB BC ⊥,所以1A F BC ⊥,于是BC ⊥面1A EF ,所以BC EF ⊥. (2)取BC 中点M ,连接FM ,EM ,1A M ,如图,因为E 为中点,所以//EM AB ,则有EM BC ⊥,所以易证1A EMF 为矩形,且面1A EMF ⊥面ABC ,所以直线EF 与平面1A BC 所成角就是EMN ∠,设2AC =,4EN =,4MN =,2EM =,所以151533cos 5θ+-==.法二:(1)建立如图所示的空间直角坐标系A xyz -,设边2AC =,则有(0,1,0)E ,(0,0,0)A,3,0)22B ,(0,2,0)C,1(0,1A,135,22B ,1C ,因为E ,F 分别为中点,所以744F ,33(,44EF =, 又1(,,0)22BC =-,于是0EF BC ⋅=,所以EF BC ⊥. (2)设面1A BC 的法向量为(,,)n x y z =,则10n BC n AC ⎧⋅=⎪⎨⋅=⎪⎩,1(,,0)22BC =-,1(0,1,AC =,所以取(1,3,1)n =,设直线EF 与平面1A BC 所成角为θ,4sin 5θ==,设直线EF 与平面1A BC 所成角的余弦值是35.20.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.解答: (1)由题意得31413124333a a d a a d S a d=+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩,从而2(1)n a n =-,2(1)(1)2n n nS n n -==-.又212()()()n n n n n n S b S b S b +++=++, 从而22121122212()2n n n n n n n n n n n n n n n S S S SS b S S b S S b S S S ++++++++-+=++⇒=+-22(1)(1)(1)(2)2(1)(1)(1)(1)(2)2(1)2n n n n n n n n n n n n n n n n +--+++===+-+++-+. (2)法一:n c ===<=, 从而122(10211)2n c c c n n n +++<-+-++--=法二:不妨设数列{}n c 的前n 项和为n T , ①当1n =时,1102T c ==<=,显然成立; ②假设当n k =时条件成立,即k T < 则当1n k =+时,11k k k TT c++=+<欲证<<<=.综上①②可知,对任意*n N ∈,均有12n c c c +++<.21.过焦点(1,0)F 的直线与抛物线 22(0)y px p =>交于A ,B 两点,点C 在抛物线上,ABC ∆的重心P在x 轴上,直线AC 交x 轴于点Q (点Q 在点F 点右侧). (1)求抛物线的方程及准线方程;(2)记AFP ∆,CQP ∆的面积为1S ,2S ,求1S 的最小值及此时点P 点坐标. 解答:(1)因为24y x =,设2(,2)A t t ,由焦点弦性质得:1A B x x =,所以点212(,)B t t -,222((2),2)C t t t t--,此时G :22222(,0)3t t +-,222253t t PF +-=, 利用A ,Q ,C 三点共线,得22222(2)201()Qt t t t t x t t t---=---,解得2(1,0)Q t -, 所以2222222221133t t t t GQ t +---=-==,2422214222222252(252)21(2)(1)12()A C t GF S y t t t t t S GQ y t t t t t t t+--+===------, 令222(252)(2)(21)21()223(2)(1)(2)(1)(1)1(2)42x x x x x x x f x x x x x x x x x x -+---===-=---+-+---++-221≥==当且仅当2(2)3x -=,解得2x =,即22t =+,代入得:2222223t t +-=,所以G :(2,0).(2)设211(,)4y A y ,222(,)4y B y ,233(,)4y C y ,由重心坐标公式得312y y y =--,所以21212()(,)4y y C y y +--,21212()(,0)6y y y y G +-,根据对称性,下设10y >,直线AC 方程:211124()4y y y y y y -=-+,即1313134y y y x y y y y =+++,令0y =,得21311244Q y y y y y x +=-=.设AB 直线方程:1x my =+(0m ≠,若0m =则30y =不符合题意),由2214404x my y my y x=+⎧⇒-+=⎨=⎩,则124y y m +=,124y y =,12y m =+下面重新改写相关点坐标:282(,0)3m G +,21(1,0)4y Q -,34y m =-,由题知Q 在P 右侧,则22821138m m +>⇒>. 2221231182114422433y m m S QF y m m ++=⋅=--⋅=⋅,2212S S ==224114m +===+2224111m +≥+=,当且仅当2231m m =+,即212m =时取等号,此时(2,0)G ,12S S 的1+. 22.已知实数0a ≠,设函数()ln 0)f x a x x =+>.(1)当34a =-时,求函数()f x 单调区间; (2)对任意21[,)x e ∈+∞,()f x ≤恒成立,求a 的取值范围. 解答:33()ln ()44f x x f x x '=-⇒=-+=,()03f x x '=⇒=,34x =-(舍),当(0,3)x ∈,()0f x '<,(3,)x ∈+∞时,()0f x '>,所以()f x 单调增区间为(3,)+∞,减区间为(0,3).(2)∵ln a x +21[,)x e∈+∞恨成立,令1x =12a <,∴04a <<,ln 2a x a +<等价转化得122a <,①令12t a =(0,]s e ∈,①式变为2ln 0t t s s +≥恒成立,2114ln (4ln )s s s s s s s ∆=+-=+-,令1()4ln G s s s s=+-,2221441()1s s G s s s s --'=--=,(0,]s e ∈,()0G s '<,∴(0,]s e ∈,()G x 单调递减,0s →,()G s =+∞,1()40G e e e=+-<,∴在(0,]e 存在0s 使得0()0G s =,0(0,]s s ∈,()0G s >,0(,]s s e ∈,()0G s <,∴∆在0(,]s s e ∈,0∆<,则恒成立. 0(0,]s s ∈,t ≥令()2F s =,()0F s '==,∴1s =,max 0()max{(1),()}F s F F s ==,∵200014ln 0s s s +-=,0(0,]s e ∈,∴max F ==<.∴t >12a>(0,4a ∈.。

2019年高考浙江卷数学真题试题(word版,含答案与解析)

2019年高考浙江卷数学真题试题(word版,含答案与解析)

2019年高考数学真题试卷(浙江卷)原卷+解析一、选择题:本大题共10小题,每小题4分,共40分。

1.(2019•浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则=()A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3}【答案】 A【考点】交、并、补集的混合运算【解析】【解答】解:,所以={-1}.故答案为:A.【分析】根据集合的补写出即可得到.2.(2019•浙江)渐近线方程为x±y=0的双曲线的离心率是()A. B. 1 C. D. 2【答案】 C【考点】双曲线的简单性质【解析】【解答】解:根据双曲线的渐近线方程,得,所以离心率e= .故答案为:C.【分析】根据双曲线的渐近线方程,得到,即可求出离心率e.3.(2019•浙江)若实数x,y满足约束条件,则z=3x+2y的最大值是()A. -1B. 1C. 10D. 12【答案】 C【考点】简单线性规划的应用【解析】【解答】作出可行域和目标函数相应的直线,平移该直线,可知当过(2,2)时,目标函数取最大值10.故答案为:C.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值.4.(2019•浙江)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】 B【考点】由三视图求面积、体积【解析】【解答】根据三视图,确定几何体为五棱柱,其底面积,所以体积V=27 .故答案为:B.【分析】根据三视图确定几何体的结构特征,根据祖暅原理,即可求出相应的体积.5.(2019•浙江)若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】 A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】作出直线y=4-x和函数的图象,结合图象的关系,可确定“a+b≤4“是“ab≤4”的充分不必要条件.故答案为:A.【分析】作出函数的图象,结合图象确定充分必要性即可.6.(2019•浙江)在同一直角坐标系中,函数y= ,y=log a(x+ ),(a>0且a≠0)的图像可能是()A B C D【答案】 D【考点】函数的图象【解析】【解答】当a>1时,y= 的底数大于0小于1,故过(0,1)单调递减;y=log a(x+ )过(,0)单调递增,没有符合条件的图象;当0<a<1时,y= 的底数大于1,故过(0,1)单调递增;y=log a(x+ )过(,0)单调递减;故答案为:D.【分析】对a的取值分类讨论,结合指数函数和对数函数的特点,确定函数的图象即可.7.(2019•浙江)设0<a<1随机变量X的分布列是X 0 a 1P则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大【答案】 D【考点】离散型随机变量的期望与方差【解析】【解答】解:E(X)= ,,根据二次函数的单调性,可知D(X)先减小后增大;故答案为:D.【分析】根据期望的公式求出E(X),结合方差的计算公式及二次函数的性质即可确定D(X)先减小后增大.8.(2019•浙江)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。

2019年高考数学试题浙江卷数学

2019年高考数学试题浙江卷数学

2019·浙江卷(数学)1.A1[2019·浙江卷]已知全集U={-1,0,1,2,3},集合A={0,1,2}, B={-1,0,1},则(∁U A)∩B= ( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}1.A [解析] 由题知,∁U A={-1,3},∴(∁U A)∩B={-1},故选A.2.H6[2019·浙江卷]渐近线方程为x±y=0的双曲线的离心率是( )A. B.1 C. D.22.C [解析] ∵=-=1,∴e=,故选C.3.E5[2019·浙江卷]若实数x, y满足约束条件---则z=3x+2y的最大值是( )A.-1B.1C.10D.123.C [解析] 作出可行域如图中阴影部分所示.由z=3x+2y,得y=-x+,易知当直线y=-x+过点A时,z取得最大值,由---得A(2,2),所以z=3x+2y的最大值为10.4.G2,G7[2019·浙江卷]祖暅是我国南北朝时期的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图1-1所示(单位:cm),则该柱体的体积(单位:cm3)是( )图1-1A.158B.162C.182D.3244.B [解析] 由三视图可得该柱体为五棱柱ABCDE -A1B1C1D1E1,如图所示,其中AB=2,BC=6,CD=4,过E作EF⊥BC,垂足为F,则EF=6,底面积S=S梯形ABFE+S梯形=×(2+6)×3+×(4+6)×3=27,CDEF所以该柱体的体积V=Sh=27×6=162.5.A2,E6[2019·浙江卷]设a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.A [解析] 由题知a>0,b>0,若a+b≤4,则ab≤≤4,当且仅当a=b=2时等号成立;若ab≤4,取a=6,b=,则a+b>4.所以“a+b≤4”是“ab≤4”的充分不必要条件.6.B6,B7[2019·浙江卷]在同一直角坐标系中,函数y=,y=log a(a>0,且a≠1)的图像可能是( )A BC D图1-26.D [解析] 两函数的底数分别为,a,显然两函数的单调性不一致,所以排除B.对数函数y=log a的图像过定点,排除A,C,所以选D.7.B5,K6[2019·浙江卷]设0<a<1,随机变量X的分布列是则当a在(0,1)内增大时, ( )A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大7.D [解析] 方法一:因为E(X)=0×+a×+1×=,所以D(X)=-×+-×+-×=(a2-a+1),其图像的对称轴为a=,所以选D.方法二:因为E(X)=0×+a×+1×=,所以E(X2)=0×+a2×+1×=,所以D(X)=E(X2)-E2(X)=(a2-a+1),其图像的对称轴为a=,所以选D.8.G11,G12[2019·浙江卷]设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则( ) A.β<γ,α<γ B.β<α,β<γC.β<α,γ<αD.α<β,γ<β8.B [解析] 由最小角定理知,线面角β是直线PB与平面ABC内任意直线所成的线线角中最小的角,所以β<α. 二面角P-AC-B即为二面角V-AC-B, 二面角V-AC-B即为侧面与底面所成二面角.由于三棱锥V-ABC为正三棱锥,所以二面角V-AB-C和二面角V-AC-B相等,易知二面角V-AB-C的平面角是平面VAB内任意直线与平面ABC所成的线面角中最大的角,所以β<γ.所以选B.9.B1,B12[2019·浙江卷]设a,b∈R,函数f(x)=-若函数y=f(x)-ax-b恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>09.C [解析] 令F(x)=f(x)-ax-b=----当x≥0时,F(x)=x3-(a+1)x2-b,F'(x)=x2-(a+1)x=x[x-(a+1)].当a≤-1时,F(x)在R上单调递增, 不符合题意,舍去.当a>1时,F(x)在(-∞,0)上单调递减,在[0,a+1]上单调递减,在(a+1,+∞)上单调递增,不符合题意,舍去.当a=1时,F(x)在(-∞,0)上为定值,在[0,2]上单调递减,在(2,+∞)上单调递增,不符合题意,舍去.当-1<a<1时,F(x)在(-∞,0)上单调递增,在[0,a+1]上单调递减,在(a+1,+∞)上单调递增,若函数F(x)=f(x)-ax-b 恰有3个零点,则需F(0)=-b>0,F(a+1)=-(a+1)3-b<0,所以-1<a<1且-(a+1)3<b<0.故选C.10.D5[2019·浙江卷]设a,b∈R,数列{a n}满足a1=a,a n+1=+b,n∈N*,则( )A.当b=时,a10>10B.当b=时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>1010.A [解析] a2=a2+b≥b,a n+1=+b,所以当b越大时,a10越大.四个选项中A中的b最大,当b=时,a n+1=+,所以a2≥,a3≥,a4≥,a5≥>,a6>,a7>>8,a8>64,所以a10>a9>a8>10.故选A.11.L4[2019·浙江卷]复数z=(i为虚数单位),则|z|= .11.[解析] z==--=-,所以|z|=-=.12.H3,H4[2019·浙江卷]已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m= ,r= .12.-2 [解析] ∵k AC==-,∴m=-2,r=|AC|==.13.J3[2019·浙江卷]在二项式(+x)9的展开式中,常数项是,系数为有理数的项的个数是.13.16 5 [解析] (+x)9=a0+a1x+...+a9x9,其中a r=×()9-r,r=0,1,2, (9)常数项为a0=×()9=16,系数为有理数即r为奇数,所以r=1,3,5,7,9,共5项.14.C5,C8[2019·浙江卷]在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD= ,cos∠ABD= .14.[解析] ∵∠ABC=90°,AB=4,BC=3,∴AC=5,sin∠ACB=.∵在△BCD中,由正弦定理得∠=∠,∴BD=×=.∵cos∠CBD=-cos(∠BCD+∠BDC)=sin∠BCDsin∠BDC-cos∠BCDcos∠BDC=×-×=,0°<∠CBD<90°,∠ABD+∠CBD=90°,∴cos∠ABD=sin∠CBD=.15.H5[2019·浙江卷]已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.15.[解析] 由题意得F(-2,0),设PF的中点M(2cos θ,2sin θ),则P(4cos θ+2,4sin θ),将P点坐标代入椭圆方程得+=1,化简得5(16cos2θ+16cos θ+4)+144(1-cos2θ)=45,即64cos2θ-80cos θ-119=0,得cos θ=-舍去.又sin θ>0,∴sinθ=,∴P-,∴k PF=.16.B3,B14[2019·浙江卷]已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤,则实数a的最大值是.16.[解析] |f(t+2)-f(t)|=|a(t+2)3-(t+2)-(at3-t)|=|a(6t2+12t+8)-2|.令m=6t2+12t+8=6(t+1)2+2∈[2,+∞),则设g(m)=f(t+2)-f(t)=am-2.当a=0时,g(m)=-2,不符合题意;当a>0时,g(m)∈[2a-2,+∞),∵|g(m)|≤有解,∴2a-2≤,得0<a≤;当a<0时,g(m)∈(-∞,2a-2],∵|g(m)|≤有解,∴2a-2≥-,得a≥,与a<0矛盾.综上可知,0<a≤,即a的最大值为.17.F1,F2[2019·浙江卷]已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是,最大值是.17.0 2[解析] 以A为原点,AB为x轴,AD为y轴建立平面直角坐标系(图略),则A(0,0),B(1,0),C(1,1),D(0,1),∴=(1,0),=(0,1),=(-1,0),=(0,-1),=(1,1),=(-1,1),∴λ1+λ2+λ3+λ4+λ5+λ6=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),∴|λ1+λ2+λ3+λ4+λ5+λ6|=---.∵λi∈{-1,1},i=1,2,3,4,5,6,∴|λ1-λ3+λ5-λ6|=0或2或4,|λ2-λ4+λ5+λ6|=0或2或4.①当λ1=λ3=λ4=λ5=λ6=-λ2时取到最小值0.②当|λ1-λ3+λ5-λ6|=4时,λ1,-λ3,λ5,-λ6同号,当|λ2-λ4+λ5+λ6|=4时,λ2,-λ4,λ5,λ6同号,显然λ5,λ6同号与λ5,-λ6同号不能同时成立,∴---≤=2,当λ1=λ2=λ5=-λ3=-λ4=-λ6时取到最大值2.18.C3,C5,C6[2019·浙江卷]设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=+的值域.18.解:(1)因为f(x+θ)=sin(x+θ)是偶函数,所以对任意实数x都有sin(x+θ)=sin(-x+θ),即sin xcos θ+cos xsin θ=-sin xcos θ+cos xsin θ,故2sin xcos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或.(2)y=+=sin2+sin2=-+-=1--=1-cos.因此,函数的值域是-.19.G5,G9,G11[2019·浙江卷]如图1-3,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.图1-3(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.19.解:方法一:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又A1E∩A1F=A1,所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,连接A1G交EF于O,则四边形EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.由于O为A1G的中点,故EO=OG==,所以cos∠EOG=-=.因此,直线EF与平面A1BC所成角的余弦值是.方法二:(1)证明:连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A1(0,0,2),B(,1,0),B1(,3,2),F,C(0,2,0).因此,=,=(-,1,0).由·=0得EF⊥BC.(2)设直线EF与平面A1BC所成角为θ.由(1)可得=(-,1,0),=(0,2,-2).设平面A1BC的法向量为n=(x,y,z).由得--取n=(1,,1),故sin θ=|cos<,n>|==.因此,直线EF与平面A1BC所成角的余弦值为.20.D2,D3,D4,M3[2019·浙江卷]设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.(1)求数列{a n},{b n}的通项公式;(2)记c n=,n∈N*,证明:c1+c2+…+c n<2,n∈N*.20.解:(1)设数列{a n}的公差为d,由题意得a1+2d=4,a1+3d=3a1+3d,解得a1=0,d=2,从而a n=2n-2,n∈N*.所以S n=n2-n,n∈N*.由S n+b n,S n+1+b n,S n+2+b n成等比数列得(S n+1+b n)2=(S n+b n)(S n+2+b n),解得b n=(-S n S n+2),所以b n=n2+n,n∈N*.(2)c n==-=-,n∈N*.我们用数学归纳法证明.①当n=1时,c1=0<2,不等式成立;②假设n=k(k∈N*)时不等式成立,即c1+c2+…+c k<2.那么,当n=k+1时,c1+c2+…+c k+c k+1<2+<2+<2+=2+2(-)=2,即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2对任意n∈N*成立.21.H7,H8,E6[2019·浙江卷]如图1-4,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.图1-4(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.21.解:(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=-y+1,代入y2=4x,得y2--y-4=0,故2ty B=-4,即y B=-,所以B-.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0,得C--,G-.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而==------=--=2---.令m=t2-2,则m>0,=2-=2-≥2-=1+. 当m=时,取得最小值1+,此时G(2,0).22.B3,B11,B12[2019·浙江卷]已知实数a≠0,设函数f(x)=aln x+,x>0.(1)当a=-时,求函数f(x)的单调区间;(2)对任意x∈均有f(x)≤,求a的取值范围.注:e=2.718 28…为自然对数的底数.22.解:(1)当a=-时,f(x)=-ln x+,x>0.f'(x)=-+=-,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤,得0<a≤.当0<a≤时,f(x)≤等价于--2ln x≥0.令t=,则t≥2.设g(t)=t2-2t-2ln x,t≥2,则g(t)=---2ln x.(i)当x∈时,≤2,则g(t)≥g(2)=8-4-2ln x.记p(x)=4-2-ln x,x≥,则p'(x)=--==-.故x变化时p'(x),p(x)的变化情况如下所以,p(x)≥p(1)=0.因此,g(t)≥g(2)=2p(x)≥0.(ii)当x∈时,g(t)≥g=.令q(x)=2ln x+(x+1),x∈,则q'(x)=+1>0,故q(x)在上单调递增,所以q(x)≤q.由(i)得,q=-p<-p(1)=0.所以,q(x)<0.因此,g(t)≥g=->0.由(i)(ii)知对任意x∈,t∈[2,+∞),g(t)≥0,即对任意x∈,均有f(x)≤. 综上所述,所求a的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 17
1 17
取 a1 2 ,所以 a2 2 ,…, an 2 10 ,
所以当 b 4 时, a10 10 ,故D错误;
2
对于A, a2
a2
1
1
, a3
a
2
1
13 ,
22
2 2 4
2
a4
a4
a2
3
19
1 17 1,
4 2 16 2 16
an1 an 0 ,{an}递增,
3
3
由 3t2 6t 4 3(t 1)2 11 ,
4
4
可得 0a ,可得a的最大值为 .
3
3
17. 0, 2 5 解析:正方形ABCD的边长为1,
可得 AB AD AC , BD AD AB , AB AD 0 ,
| 1 AB 2 BC 3CD 4 DA 5 AC 6 BD |
又平面A1ACC1⊥平面ABC,A1E 平面A1ACC1,
平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC.
如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E–xyz.
不妨设AC=4,则
33 A1(0,0,2 3 ),B( 3 ,1,0), B1( 3,3, 2 3) , F ( , , 2 3) ,C(0,2,0).
5.
4 1
5
13.16 2,5
9
9r
解析:二项式 2 x 的展开式的通项为Tr1 C9r ( 2)9r xr 2 2 C9r xr .
由 r 0 ,得常数项是T1 16 2 ;当r=1,3,5,7,9时,系数为有理数,所以系数为有理数的项的个数是
5个.
12 2 7 2
4
14.
,
解析:在直角三角形ABC中, AB 4 , BC 3 , AC 5 , sin C ,
过D作 DH∥AC ,交BG于H,
则 BPF , PBD , PED ,
PF EG DH BD 则 cos cos ,可得 ;
PB PB PB PB PD PD tan tan ,可得 . ED BD
3
解法二:由最小值定理可得 ,记V AC B 的平面角为 (显然 ), 由最大角定理可得 ;
大值为 2 5 .
三、解答题:本大题共5小题,共74分。 18.本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。满分14分。
(I)因为 f (x ) sin(x ) 是偶函数,所以,对任意实数x都有 sin(x ) sin(x ) ,
即 sin x cos cos x sin sin x cos cos x sin ,
故 2 sin x cos 0 ,
所以 cos 0 .
π 3π 又 [0, 2π) ,因此 或 .
22
2
2
π
(Ⅱ)
y
f
x
12
π
f
x
4
sin
2
x
π 12
sin 2
x
π 4
3
π
π
1
cos
2x 2
6
1
cos
2x 2
2
1
1 2
3
3
2
cos
2x
2 2
4
16.
3
2 解析:存在 t R ,使得| f (t 2) f (t) | ,
3
即有| a(t 2)3 (t 2) at3 t | 2 , 3
化为| 2a(3t2 6t 4) 2 | 2 , 3
3
可得 2 2a(3t2 6t 4) 2 2 ,
3
3
即 2 a(3t2 6t 4) 4 ,
| 1 AB 2 AD 3 AB 4 AD 5 AB 5 AD 6 AD 6 AB |
| (1 3 5 6 ) AB (2 4 5 6 ) AD |
(1 3 5 6 )2 (2 4 5 6 )2 ,
由于 i (i 1, 2,3, 4, 5, 6)
(Ⅰ)设数列 {an } 的公差为d,由题意得
a1 2d 4, a1 3d 3a1 3d ,
解得 a1 0, d 2 . 从而 an 2n 2, n N* .
22
3 3
因此, EF ( , , 2 3) , BC ( 3,1, 0) .
22
由 EF BC 0 得 EF BC .
(Ⅱ)设直线EF与平面A1BC所成角为 ,
由(Ⅰ)可得 BC ( 3,1, 0) , A1C (0, 2, 2 3) ,
设平面A1BC的法向量为 n (x, y, z) ,
上有2个零点, 如下图:
3
b 0
b
所以
1
a
0

1 3
(a
1)2
b
0

解得 b 0 ,1 a 0 , b 1 (a 1)3 . 6
故选C.
10.A 解析:对于B,令 x2 1 0 ,得 1 ,
4
2
1
1
1
取 a1 ,所以 a2 ,, an 10 ,
合题意;
当 a 1 0 ,即 a 1 时,令 y 0 得 x (a 1, ) ,函数递增,令 y 0 得 x (0, a 1) ,函数递减;
函数最多有2个零点;
根据题意函数 y f (x) ax b 恰有3个零点 函数 y f (x) ax b 在 (, 0) 上有一个零点,在[0, )
c 为 e 2 ,故选C.
a
3.C
x3y 4 0 解析:作出 3x y 4 0 表示的平面区域,如图所示
x y 0
分别联立其中两个方程,得A(2,2),B(-1,1),C(1,-1),则 zmax 3 2 2 2 10 .故选C.
4.B 解析:由三视图还原原几何体如图,
该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解, 3
2
1 27
a
2
1
2a
2
3
a
2
2
2 9
(a2
a
1)
2 9
a
1 2
1
6
因为 0 a 1,所以 D( X ) 先减小后增大.
故选D.
8.B 解析:解法一:如图G为AC的中点,V在底面的射影为O,则P在底面上的射影D在线段AO上,
作 DE AC 于E,易得 PE∥VG ,过P作 PF∥AC 于F,
1
1
S 即 五边形ABCDE
2
(4 6) 3
(2 6) 3 2
27 ,高为6,
则该柱体的体积是V 27 6 162 .
故选B.
5.A 解析:因为a>0,b>0,若a+b≤4,则 2 aba b4 ,则 ab4 ,即 a b4 ab4 . 反之,若 ab4 ,取 a 1, b 4 ,则 ab 44 ,但 a b 5 , 即 ab4 推不出a+b≤4,所以a+b≤4是 ab4 的充分不必要条件.故选A.
又平面A1ACC1⊥平面ABC,A1E 平面A1ACC1,
平面A1ACC1∩平面ABC=AC, 所以,A1E⊥平面ABC,则A1E⊥BC. 又因为A1F∥AB,∠ABC=90°,故BC⊥A1F. 所以BC⊥平面A1EF. 因此EF⊥BC.
(Ⅱ)取BC中点G,连接EG,GF,则EGFA1是平行四边形. 由于A1E⊥平面ABC,故AE1⊥EG,所以平行四边形EGFA1为矩形. 由(I)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1, 所以EF在平面A1BC上的射影在直线A1G上. 连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).
2,3,4,5, 取遍 1,
可得 1 3 5 6 0 , 2 4 5 6 0 ,可取 5 6 1, 1 3 1, 2 1, 4 1 ,可得所求
最小值为0;
由 1 3 5 6 4 ,2 4 5 6 4 ,可取 2 1, 4 1, 5 6 1, 1 1, 3 1, 可得所求最
1
当 n4 时,
an1 an
an
2 an
1
1 2
3 2

3
a5
a4
3 2
a6 所以 a5
3 2
,所以 a10 a4
6
3
2
,所以 a10
729 64
10 故A正确.故选A.
a10
a9
3 2
二、填空题:本题考查基本知识和基本运算。多空题每题6分,单空题每题4分,共36分。
2
11.
2
2
.
10
15. 15 解析:设椭圆的右焦点为 F ,连接 PF ,
线段PF的中点A在以原点O为圆心,2为半径的圆,
连接AO,可得 PF 2 AO 4 ,
2
3
15
设P的坐标为(m,n),可得 3 m 4 ,可得 m , n ,
3
2
2
15
由 F (2, 0) ,可得直线PF的斜率为 2 15 . 3
1
1
1
1
6.D
解析:由函数
y
ax
,y
loga
x
2
,单调性相反,且函数
y
loga
x
2
图像恒过
2
,0
可各满足要求的图象为D.故选D.
1 1 1 a 1 7.D 解析: E( X ) 0 a ,
33 3 3
2
2
2
a 1 1 a 1 1 a 1 1
D(X ) a 1 3 3 3 3 3 3
绝密★启用前
2019 年普通高等学校招生全国统一考试(浙江卷)
相关文档
最新文档