【高一数学试题精选】高一数学对数及运算测试题及答案11

合集下载

高一数学对数运算及对数函数试题

高一数学对数运算及对数函数试题

高一数学对数运算及对数函数试题一:选择题1.若log 7[log 3(log 2x )]=0,则为( )B==.2.23(log 9)(log 4)⋅=( ) (A )14 (B )12(C ) 2 (D )4 【答案】D3.的值是( C )=log 4.实数﹣•+lg4+2lg5的值为( D )﹣+lg4+2lg5= B.6.lgx+lgy=2lg(x﹣2y),则的值的集合是()•=18.设,则a,b,c的大小顺序为()解:因为9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)B10.若非零实数a、b、c满足,则的值等于(),11.已知f(x)=,则f(log23)的值是(A)B=12.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)B C D13.若log a <13,则a 的取值范围是 ( ) A .a >1 B .a 20<<3 C .a 2<<13 D .a 20<<3或a >1【答案】D14.函数2()ln(43x )f x =+-x 的单调递减区间是( ) A. 3(,]2-∞ B. 3[,)2+∞ C. 3(1,]2- D. 3[,4)2【答案】D15.已知函数()()x x f a-=2log 1在其定义域上单调递减,则函数()()21log x x g a -=的单调减区间是( )A. (]0,∞-B. ()0,1-C. [)+∞,0D. [)1,0 【答案】B16.已知函数212()log ()f x x ax a =--,在1()2-∞-,上是增函数,则实数a 的取值范围是( )A .[1)-+∞,B .1[1)2-,C .1[1]2-, D .(1]-∞-,【答案】C17.已知函数xa x f =)(0(>a 且1≠a )与函数x x g a log )(=0(>a 且1≠a )的图象有交点,函数)()()(x g x f x +=ϕ在区间]2,1[上的最大值为21,则)(x ϕ在区间]2,1[上的最小值为( ) A. 21-; B. 21; C. 45; D. 43-. 【答案】D18.当102x <≤时,4log x a x <,则a 的取值范围是 ( )A .(0)B .,1)C .(1)D .,2) 【答案】B二:填空题19.若5a=2,b=log53,则53a﹣2b=.,故答案为:.20.求值:=..故答案为:.21.设=.=t=故答案为:22.方程的解为.时,时,故答案为:23.若函数23()log log 2f x a x b x =++,且()52012f =,则(2012)f 的值为 _ . 【答案】-124.函数y ________.【答案】31{|10}44x x x <≤-≤<或 25.已知函数21()log ()2a f x ax x =-+(01a a >≠且)在[1,2]上恒正,则实数a 的取值范围为 . 【答案】153(,)(,)282+∞ 三:解答题 26.计算.27.若2()f x x x b =-+,且22(log )log [()]2(1)f a b f a a ==≠,.(1)求2(log )f x 的最小值及对应的x 值;(2)若不等式2(log )(1)f x f >的解集记为A ,不等式2log [()](1)f x f <的解集记为B ,求A B .解:(1) ∵ 2()f x x x b =-+∴ 2222(log )log log f a a a b b =-+=,∴ 22log 1log 0a a ==或 ∴ a = 2或a = 1(舍)又 ∵ 2222log [()]log ()log (2)2f a a a b b =-+=+= ∴ 24b += ∴ b = 2∴ 2()2f x x x =-+,22222217(log )log log 2(log )24f x x x x =-+=-+∴ 当21log 2x x =,即2(log )f x 的最小值为74(2) 由2222(log )(1)log log 22f x f x x >-+>得 ∴ 22log (log 1)0x x ->∴ 22log 0log 1x x <>或 ∴ 012x x <<>或,即{|012}A x x x =<<>或 由222log [()](1)log (2)2f x f x x <-+<得 ∴ 202412x x x <-+<-<<解得 ∴ {|12}B x x =-<< ∴ {|01}AB x x =<<28.设函数22()log (4)log (2)f x x x =⋅,144x ≤≤, 若x t 2log =,求t 取值范围;(2)求()f x 的最值,并给出最值时对应的x 的值。

(word完整版)高一数学对数函数经典题及详细答案

(word完整版)高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -答案A 。

∵3a =2→∴a=log 32则: log 38-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-22、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1答案B 。

∵2log a (M-2N )=log a M+log a N ,∴log a (M-2N)2=log a (MN ),∴(M-2N)2=MN ,∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2-5n m +4=0,设x=n m→x 2-5x+4=0→(x 2⎩⎨⎧==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0∴n m =1答案为:43、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -答案D 。

∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n→loga(1-x ²)=m-n →∵ x ²+y ²=1,x>0,y>0, → y ²=1- x ²→loga(y ²)=m-n∴2loga(y)=m-n →loga(y)=21(m-n)4. 若x 1,x 2是方程lg 2x +(lg3+lg2)lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).61答案D∵方程lg 2x+(lg2+lg3)lgx+lg2lg3=0的两根为1x 、2x ,[注:lg 2x 即(lgx)2,这里可把lgx 看成能用X ,这是二次方程。

高一 对数与对数函数知识点+例题+练习 含答案

高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。

高一数学对数练习题

高一数学对数练习题

高一数学对数练习题1. 计算下列对数:a) log8 2b) log5 125c) log2 1d) log10 0.12. 化简下列对数表达式:a) log2 8 + log4 0.25b) log5 125 - log5 25c) log7 49 - log7 73. 解下列方程:a) log2 x = 3b) log3 (x + 1) = 2c) log5 (x - 2) = -14. 已知 log2 a = 3,log2 b = 4,求 log2 (a^2 - b^2) 的值。

5. 求证:logx (a/b) = logx a - logx b,其中 a > 0,b > 0,且x ≠ 1。

6. 若 log2 x = p,log3 x = q,log4 x = r,则 p,q,r之间的关系是什么?7. 若 loga b = x,logb c = y,logc a = z,求证:xy + yz + zx = 0。

8. 若 log2 x = a,log3 x = b,求证:log6 x = (a + b) / (ab)。

9. 某种细菌的数量 N 满足 N(t) = N(0) * 2^(t/3),其中 N(t) 表示时间为 t 时的细菌数量。

如果经过 6 小时后细菌数量翻倍,求控制细菌数量的增长速率。

10. 某城市的人口数量 N(t) 满足 N(t) = N(0) * e^(kt),其中 N(t) 表示时间为 t 时的人口数量,N(0) 表示初始人口数量,k 是常数。

如果经过10 年后人口数量增加到原来的 2 倍,求该城市的人口增长率。

以上是一些高一数学对数的练习题,希望能够帮助你巩固对数的相关知识。

请认真思考每个问题,并使用正确的方法求解。

对于解方程的题目,要记得检验解的合理性。

加油!。

高一数学同步练习——对数函数练习题及解答解析

高一数学同步练习——对数函数练习题及解答解析

对数资料(1) 对数与对数函数测试题一、 选择题: 1.已知3a=5b= A ,且a 1+b1= 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x= lg(10a)+lga1,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2) lg x +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).61 4.若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(21,1) (D).(1,+∞) 5. 已知x =31log 121+31log 151,则x 的值属于区间( ).(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lgba )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a= 4b= 6c,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ).(A).20 (B).19 (C).21 (D).22 10.若log 7[ log 3( log 2x)] = 0,则x 21为( ).(A).321 (B).331 (C).21 (D).42 11.若0<a <1,函数y = log a [1-(21)x]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <012.已知不等式log a (1-21+x )>0的解集是(-∞,-2),则a 的取值范围是( ). (A).0<a <21 (B).21<a <1 (C).0<a <1 (D).a >1 二、 填空题13.若lg2 = a ,lg3 = b ,则lg 54=_____________. 14.已知a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是_______________.15.log12-(3+22) = ____________.16.设函数)(x f = 2x(x ≤0)的反函数为y =)(1x f -,则函数y =)12(1--x f 的定义域为________.三、 解答题17.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求xcb 11+·yac 11+·xba 11+的值.18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系. 19.设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值. 20.已知log 2[ log 21( log 2x)] = log 3[ log 31( log 3y)] = log 5[ log 51( log 5z)] = 0,试比较x 、y 、z 的大小.21.已知a >1,)(x f = log a (a -a x).⑴ 求)(x f 的定义域、值域; ⑵判断函数)(x f 的单调性 ,并证明; ⑶解不等式:)2(21--x f>)(x f .22.已知)(x f = log 21[ax2+2(ab)x -bx2+1],其中a >0,b >0,求使)(x f <0的x 的取值范围.参考答案:一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D). 提示:1.∵3a+5b= A ,∴a = log 3A ,b = log 5A ,∴a 1+b1= log A 3+log A 5 = log A 15 = 2,∴A =15,故选(B).2.10x= lg(10 a)+lga 1= lg(10a ·a1) = lg10 = 1,所以 x = 0,故选(B). 3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg 61,所以x 1x 2=61,故选(D).4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >21,综合得21<a <1,所以选(C). 5.x = log 3121+log 3151= log 31(21×51) = log 31101= log 310,∵9<10<27,∴ 2<log 310<3,故选(D).6.由已知lga +lgb = 2,lga ·lgb =21,又(lg ba )2= (lga -lgb)2= (lga +lgb)2-4lga ·lgb = 2,故选(C).7.设3a= 4b= 6c= k ,则a = log 3k ,b= log 4k ,c = log 6k ,从而c 1= log k 6 = log k 3+21log k 4 =a 1+b 21,故c 2=a 2+b1,所以选(B). 8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,则函数u(x) = ax 2+2x +1应取遍所有正实数,当a = 0时,u(x) = 2x +1在x >-21时能取遍所有正实数; 当a ≠0时,必有⎩⎨⎧≥-=∆.44,0a >a ⇒0<a ≤1.所以0≤a ≤1,故选(A).9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a = 1003.19,即a 有20位,也就是M = 20,故选(A).10.由于log 3( log 2x) = 1,则log 2x = 3,所以x = 8,因此 x 21-= 821-=81=221=42,故选(D). 11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(21)x <1,所以y = log a [1-(21)x]在定义域上是减函数且y >0,故选(C). 12.由-∞<x <-2知,1-21+x >1,所以a >1,故选(D). 二、填空题13.21a +23b 14.b <a <c . 15.-2. 16.21<x ≤1 提示: 13.lg 54=21lg(2×33) =21( lg2+3lg3) =21a +23b . 14.0<a = log 7.00.8<log 7.00.7 = 1,b = log 1.10.9<0,c = 1.19.0>1.10= 1,故b <a <c .15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-,∴log 12-(3+22) =log 12-(2-1)2-=-2.16.)(1x f-= log 2x (0<x ≤1=,y =)12(1--x f 的定义域为0<2x -1≤1,即21<x ≤1为所求函数的定义域. 三。

【高一数学试题精选】对数与对数运算训练题(含答案)

【高一数学试题精选】对数与对数运算训练题(含答案)
A47 B27
c72 D74
解析选Dx=a2=b=c4,所以(abc)4=x7,
所以abc=x74即lgx(abc)=74
7.若a 0,a2=49,则lg23a=________
解析由a 0,a2=(23)2,可知a=23,
∴lg23a=lg2323=1
答案1
8.若lg(lnx)=0,则x=________
4.方程lg3(2x-1)=1的解为x=________
解析2x-1=3,∴x=2
答案2
1.lgab=1成立的条是( )
A.a=b B.a=b,且b 0
c.a 0,且a≠1 D.a 0,a=bห้องสมุดไป่ตู้1
解析选Da 0且a≠1,b 0,a1=b
2.若lga7b=c,则a、b、c之间满足( )
A.b7=ac B.b=a7c
解析选A2lg3x=2-2,∴lg3x=-2,∴x=3-2=19
5.若lg2(lg3x)=lg3(lg4)=lg4(lg2z)=0,则x++z的值为( )
A.9 B.8
c.7 D.6
解析选A∵lg2(lg3x)=0,∴lg3x=1,∴x=3
同理=4,z=2∴x++z=9
6.已知lgax=2,lgbx=1,lgcx=4(a,b,c,x>0且≠1),则lgx(abc)=( )
(3)lg3x=6(x>0); (4)43=64;
(5)3-2=19;(6)(14)-2=16
解(1)24=16(2)(13)-3=27
(3)(3)6=x(4)lg464=3
(5)lg319=-2(6)lg1416=-2
11.计算23+lg23+35-lg39
解原式=23×2lg23+353lg39=23×3+359=24+27=51

高中数学对数试题及答案

高中数学对数试题及答案

高中数学对数试题及答案一、选择题1. 对数函数y=log_a x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 如果log_a b = c,那么a的值为:A. b^cB. c^bC. b^(1/c)D. b^c3. 对于任意正数a和b,下列哪个等式是正确的?A. log_a a = 1B. log_a b = log_b aC. log_a b^2 = 2log_a bD. log_a b = log_b a二、填空题4. 根据换底公式,我们可以将log_10 100转换为以e为底的对数,其结果为 _______。

5. 如果log_5 25 = x,那么x的值为 _______。

三、解答题6. 解对数方程:log_3 x + log_3 (x - 1) = 1。

7. 已知log_2 8 = y,求以2为底的对数3的值。

四、证明题8. 证明:对于任意正数a(a≠1),log_a a = 1。

答案一、选择题1. 答案:A. (0, +∞) 对数函数的定义域是正实数。

2. 答案:C. b^(1/c) 根据对数的定义,log_a b = c 意味着 a^c = b。

3. 答案:C. log_a b^2 = 2log_a b 根据对数的幂运算法则。

二、填空题4. 答案:2 因为换底公式 log_a b = log_c b / log_c a,将log_10 100转换为以e为底的对数,即log_e 100 = log_10 100 / log_10 e = 2 / log_10 e = 2。

5. 答案:2 因为25是5的平方,所以log_5 25 = 2。

三、解答题6. 解:由题意得 log_3 x + log_3 (x - 1) = log_3 (x(x - 1)) = 1,根据对数的乘积法则,我们得到 x(x - 1) = 3^1,即 x^2 - x - 3 = 0。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数是定义在上的奇函数,且当时,,则= .【答案】.【解析】,且函数是定义在上的奇函数,且当时,,.【考点】函数的奇偶性.2.对于任意实数x,符号表示不超过x的最大整数,例如,;,那么的值为.【答案】857.【解析】由题意可设,则,;为增函数,当时,,则,时,;当时,同理,时,;时,;时,;时,;时,;【考点】对数的性质、归纳推理.3..【答案】【解析】.【考点】指数式与对数式的运算.4.已知函数是定义在R上的偶函数,且在区间单调递增. 若实数满足, 则的取值范围是( )A.B.C.D.【答案】D【解析】因为函数是定义在R上的偶函数,又因为.所以由可得.区间单调递增且为偶函数.所以.故选D.【考点】1.对数的运算.2.函数的奇偶性、单调性.3.数形结合的数学思想.5.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.6.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式7.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算8. .【答案】1【解析】对数的运算性质,故.【考点】对数的运算性质.9.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算10.设,则使函数的定义域为R且为奇函数的所有的值为()A.-1,3B.-1,1C.1,3D.-1,1,3【答案】C【解析】根据题意定义域为R得,时,函数定义域为[0,+∞)所以不可能是奇函数,所以排除A,B,D选项.所以的值为1,3.故选C.【考点】本题考查幂函数的知识点,当指数为正,负时的函数图像走向.11.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算12.已知函数(1)判断函数的奇偶性,并说明理由。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。

有分析可知在这两种情况下均为单调函数,所以的值域即为。

解关于m的不等式即可求得m。

所以本问的重点就是讨论单调性求其值域。

试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。

求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。

把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。

令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

对数练习题及答案

对数练习题及答案

对数练习题及答案对数是数学中的一个重要概念,广泛应用于科学、工程和经济等领域。

对数练习题是帮助学生巩固对数知识的重要工具,通过解答这些练习题,学生可以加深对对数的理解和应用能力。

本文将介绍一些常见的对数练习题及其答案,希望能对学生们的学习有所帮助。

一、基础练习题1. 计算log2(8)的值。

解答:由于2的几次方等于8,所以log2(8)的值为3。

2. 计算log5(125)的值。

解答:由于5的几次方等于125,所以log5(125)的值为3。

3. 计算log10(1000)的值。

解答:由于10的几次方等于1000,所以log10(1000)的值为3。

二、进阶练习题1. 计算log2(16)的值。

解答:由于2的几次方等于16,所以log2(16)的值为4。

2. 计算log3(81)的值。

解答:由于3的几次方等于81,所以log3(81)的值为4。

3. 计算log7(49)的值。

解答:由于7的几次方等于49,所以log7(49)的值为2。

三、应用练习题1. 假设某公司的年利率为5%,求多少年后投资金额会翻倍?解答:设投资金额为P,年利率为r,年数为t。

根据复利计算公式P(1+r)^t=2P,化简得(1+r)^t=2。

将r=0.05代入,解得t=log(2)/log(1.05)≈14.21年。

所以,投资金额会在大约14.21年后翻倍。

2. 一种细菌的数量每小时增加50%,如果初始数量为100个,求4小时后的细菌数量。

解答:设初始数量为N,增长率为r,时间为t。

根据复利计算公式N(1+r)^t,将r=0.5代入,得到N(1+0.5)^4≈N(1.5)^4≈N(2.25)≈225。

所以,4小时后的细菌数量为225个。

通过以上练习题的解答,我们可以看到对数在各种计算中的应用。

对数不仅可以帮助我们简化复杂的计算,还可以帮助我们解决实际问题。

因此,掌握对数的概念和运算规则对我们的学习和工作都具有重要意义。

然而,对数的学习并不仅仅局限于解答练习题。

对数及其运算的练习题(附答案)

对数及其运算的练习题(附答案)

姓名_______ §2。

2。

1 对数与对数运算一、课前准备 1,.对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

2。

对数的运算性质及换底公式。

如果 a 〉 0,a ≠ 1,b 〉0,M 〉 0, N 〉 0 ,则:(1)log ()a MN = ; (2)nm mn b a =log (3)log aMN= ;(4) log n a M = 。

(5) b a b a =log 换底公式log a b = 。

(6) b aba=log (7)ba b a nn log 1log =考点一: 对数定义的应用例1:求下列各式中的x 的值; (1)23log27=x; (2)32log 2-=x ; (3)9127log =x (4)1621log =x例2:求下列各式中x 的取值范围; (1))10(2log-x (2)22)x )1(log +-(x (3)21)-x )1(log (+x例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log3=x (2)6log 64-=x (3)9132-= (4)1641=x )(考点二 对数的运算性质1.定义在R 上的函数f (x )满足f (x)=⎩⎨⎧>---≤-)0(),2()1(log )0(),4(2x x f x f x x ,则f(3)的值为__________2.计算下列各式的值: (1)245lg 8lg 344932lg 21+- (2)8.1lg 10lg 3lg 2lg -+3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x :y 的值4.计算: (1))log log log 582541252++()log log log 812542525++( (2)3473159725log log log log ••+)5353(2log --+(3)求0.32log ⎝⎭的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56。

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案一、单选题(本大题共8小题)1. 化简的结果为( )A. B. C. D.2. 已知,且,则的值为( )A. B. C. D.3. 已知,,,则,,的大小关系为( )A. B. C. D.4. 下列结论正确的是( )A. B. 若,则C. D. 若,则5. 已知,则用表示为( )A. B. C. D.6. 我们可以把看作每天的“进步率都是,一年后是;而把看作每天的“落后”率都是,一年后是,可以计算得到,一年后的“进步”是“落后的,倍,如果每天的“进步率和“落后”率都是,大约经过天后,“进步”是“落后”的倍( )A. B. C. D.7. 设,,则( )A. B. C. D.8. ( )A. B. C. D.二、多选题(本大题共4小题)9. 下列计算正确的是( )A. B.C. D.10. 下列各式正确的是( )A. B. C. D.11. 若,,则下列说法正确的是( )A. B. C. D.12. 已知,且,则( )A. B.C. D.三、填空题(本大题共4小题)13. .14. 已知正实数,满足,则的最小值为.15. 已知,,则用,表示16. 基础建设对社会经济效益产生巨大的作用,某市投入亿元进行基础建设,年后产生亿元社会经济效益若该市投资基础建设年后产生的社会经济效益是投资额的倍,则再过_______年,该项投资产生的社会经济效益是投资额的倍.四、解答题(本大题共2小题)17. 求值:;.18. 求值:;若,求与的值.参考答案1.【答案】【解答】解:.2.【答案】【解答】解:,,则,,故选D.3.【答案】【解答】解:,,,,,,故选:4.【答案】【解答】解:,,故A正确;若,则,故B不正确;,,没意义,故C不正确;若,则,故D不正确.故选A.5.【答案】【解答】解:,,.故选D.6.【答案】【解答】解:经过天后,“进步”与“落后”的比,,两边取以为底的对数得,,,所以大约经过天后,“进步”是“落后”的倍.故选:.7.【答案】【解答】解:,,,,故选:.8.【答案】【解答】解:.故选A .9.【答案】【解答】解:对,,正确;对,,正确;对,,错误;对,,正确;故选ABD.10.【答案】【解答】解:,A错误;,B错误;,C正确;D正确.11.【答案】【解答】解:,,,,,故A正确;,故B错误;,故C正确;,即,故D正确.故选:.12.【答案】【解答】解:因为,且,对,,所以,故A正确;对,取,此时,故B错误;对,,当且仅当时取等号,又因为,当且仅当时取等号,所以,当且仅当时取等号,因为,所以不能取等号,故C正确;对,当时,,所以;当时,,所以,当且仅当时取等号,因为,所以不能取等号,故D正确.13.【答案】【解答】解:.故答案为:.14.【答案】【解答】解:,,即,,,,当且仅当即,时,等号成立,的最小值为,故答案为:.15.【答案】【解答】解:因为,所以,又,所以.故答案为.16.【答案】【解答】解:由已知可得,,则,即,设投资年后,产生的社会经济效益是投资额的倍,则有,解得,所以再过年,该项投资产生的社会经济效益是投资额的倍.17.【答案】解:.18.【答案】解:;因为,所以,所以,即,所以,所以,即;所以,即,所以,因为所以.。

高一对数与对数函数练习题及答案(20200220104414)

高一对数与对数函数练习题及答案(20200220104414)

-8-
1
55 .
1
2
1
1
3
1
∵y =3 3 = 3 6 = 9 6 ,∴ x = 2 2 = 2 6 = 8 6 ,∴ y>x,
1
5
1
1
2
1
又∵ x = 2 2 = 2 10 = 32 10 ,z = 5 5 = 5 10 = 25 10 ,∴ x>z.
故 y> x>z.
21.为使函数有意义,需满足 a-a x >0,即 a x < a,当注意到 a>1 时,
a
a
(B) .
3.由 lg x
1 +lg x
2 =- (lg3 +lg2) ,即 lg x
1 x 2 = lg
1 6
,所以
1 x 1x 2 = 6

故选 (D) .
4.∵当 a≠ 1 时, a 2 +1>2a,所以 0< a< 1,又 log a 2a< 0,∴ 2a> 1,
即 a> 1 ,综合得 1 <a<1,所以选 (C) .
,所以选 (B) .
8.由函数 y = log 0.5 (ax 2 +2x+1) 的值域为 R,则函数 u(x) = ax 2 +2x
+1 应取遍所有正实数, 当 a = 0 时, u(x) = 2x +1 在 x>- 1 时能取遍所有正实数;
2
-6-
a> 0,
当 a≠ 0 时,必有
0<a≤1.
4 4a .
所以函数 f ( x) 为减函数.
⑶易求得 f ( x) 的反函数为 f 1 (x ) = log a (a -a x ) (x <1) , 由 f 1 ( x 2 2) > f ( x) ,得 log a (a -a ( x2 2) ) >log a (a -a x ) , ∴a (x 2 2) < a x ,即 x 2 -2<x,解此不等式,得- 1<x<2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴1x=1lg336=1lg3636lg363=lg363,
1=1lg436=1lg3636lg364=lg364,
∴2x+1=2lg363+lg364
=lg36(9×4)=1
一、选择题(每小题5分,共20分)
1.(2018年湖南卷)lg22的值为( )
A.-2 B2
c.-12 D12
【解析】lg22=12lg22=12故选D
【答案】2c
=(lg 5)2+(1+lg 5)(1-lg 5)
=(lg 5)2+1-(lg 5)2=1
(2)方法一原式=lg(2×7)-2lg73+lg 7-lg(32×2)
=lg 2+lg 7-2(lg 7-lg 3)+lg 7-(2lg 3+lg 2)=0
方法二原式=lg 14+lg732+lg 7-lg 18
=lg14×7732×18=lg 1=0
(3)原式=lg13279=lg133=-1
(4)原式=lg9lg8×lg32lg3=2lg33lg2×5lg2lg3=103
8.已知2=2=a,3=b,0且≠1,得lga=2,lgb=3;
∴2lga+lgb=2×2+3=7
高一数学对数及运算测试题及答案11
c 1.lg123+lg124等于( )
A.7 B.12
c.1 D.lg127
【解析】lg123+lg124=lg12(3×4)=1故选c
【答案】c
2.lg52 lg25的值为( )
A12 B.1
c32 D.2
【解析】lg52 lg25=lg52 lg55lg52=1故选B
【解析】由lg38-2lg36=3lg32-2(lg32+lg33)=3a-2(a+1)=a-2
【答案】A
4.(lg43+lg83)(lg32+lg98)等于( )
A56 B2512
c94 D.以上都不对
【解析】原式=lg33lg34+lg33lg38 lg32+lg38lg39
=12lg32+13lg32 lg32+3lg322
=56lg32×52lg32=2512故选B
【答案】B
二、填空题(每小题5分,共10分)
5.lg327=________
【解析】lg327=lg3(3)6=6
【答案】6
6.已知2x=5=10,则1x+1=________
【解析】由2x=5=10得x=lg210,=lg510,
1x+1=1lg210+1lg510
9.(10分)已知ln a+ln b=2ln(a-2b),求lg2ab的值.
【解析】因为ln a+ln b=2ln(a-2b),解得ab=(a-2b)2
a2-5ab+4b2=0,解得a=b或a=4b,
又a 0,b 0,a-2b 0所以a 2b 0,故a=4b,lg2ab=lg24=2,
即lg2ab的值是2
=lg2+lg5=1
【答案】1
三、解答题(每小题10分,共20分)
7.求下列各式的值
(1)(lg 5)2+lg 50 lg 2;
(2)lg 14-2lg 73+lg 7-lg 18;
(3)lg1327-lg139;
(4)lg89×lg332
【解析】(1)原式=(lg 5)2+lg(10×5)lg 105
【答案】D
2.若lg 2=a,lg 3=b,则lg 15lg 12等于( )
A1+a+b2a+b B1+a+ba+2b
c1-a+b2a+b D1-a+ba+2b
¥资%~网【答案】c
3.已知a=lg32,用a表示lg38-2lg36是( )
A.a-2 B.5a-2
c.3a-(1+a)2 D.3a-a2-1
【答案】B
3.已知lg2=a,lg7=b,那么lg898=________
【解析】lg898=lg98lg8=lg(72×2)lg23
=lg72+lg23lg2=2lg7+lg23lg2
=2b+a3a
【答案】2b+a3a
4.设3x=4=36,求2x+1的值.
【解析】(1)∵3x=36,4=36,
∴x=lg336,=lg436,
相关文档
最新文档