10年(2010-2019)高考数学真题分类练习与讲解---第二十八讲 抛物线
十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。
2010-2019十年高考数学(理)真题专题9 解析几何 第28讲 抛物线分类汇编
专题九 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线经过点(2,-1).求抛物线C 的方程及其准线方程;3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若,求l 的方程;(2)若,求.4. (2019全国III 理21)已知曲线C :y =,D 为直线y =上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最2231x y pp+=2:2C x py =-324AF BF +=3AP PB =uu u r uu rAB 22x 12-52小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C .2D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知||AB =||DE =C 的焦点到准线的距离为 A .2 B .4 C .6 D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( )ABC .6332D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( ) A .B .C .D .11.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN = A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 A . B . C . D . 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长O F 2:C y =P C ||PF =POF ∆241C 22221(0,0)x y a b a b-=>>22:2(0)C x py p =>1C 2C 2x y =2x y =28x y =216x y =线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=18.(2014湖南)如图4,正方形的边长分别为,原点为的中点,抛物线经过 .19.(2013北京)若抛物线的焦点坐标为,则 ,准线方程为 . 20.(2012陕西)右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l与C 交于A ,B 两点,||8=AB .ABCD DEFG 和正方形,()a b a b <O AD 22(0)y px p =>,bC F a=两点,则22y px =(1,0)p =l(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;x(Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。
十年真题(2010_2019)高考数学真题分类汇编专题04导数及其应用理(含解析)
专题04导数及其应用历年考题细目表历年高考真题汇编1.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.2.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.3.【2016年新课标1理科07】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.4.【2015年新课标1理科12】设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x时,g′(x)<0,当x时,g′(x)>0,∴当x时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得a<1故选:D.5.【2014年新课标1理科11】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()3•1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.6.【2012年新课标1理科10】已知函数f(x),则y=f(x)的图象大致为()A.B.C.D.【解答】解:设则g′(x)∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)中,,能排除D.故选:B.7.【2012年新课标1理科12】设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)(x>0),则g′(x),由g′(x)0可得x≥ln2,由g′(x)0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.8.【2011年新课标1理科09】由曲线y,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为:S.故选C.9.【2010年新课标1理科03】曲线y在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【解答】解:∵y,∴y′,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.10.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.11.【2013年新课标1理科16】若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2,x2=﹣2,x3=﹣2,当x∈(﹣∞,﹣2)时,f′(x)>0;当x∈(﹣2,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2)时,f′(x)>0;当x∈(﹣2,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2)、(﹣2,﹣2)上是增函数,在区间(﹣2,﹣2)、(﹣2,+∞)上是减函数.又∵f(﹣2)=f(﹣2)=16,∴f(x)的最大值为16.故答案为:16.12.【2010年新课标1理科13】设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【解答】解:由题意可知得,故积分的近似值为.故答案为:.13.【2019年新课标1理科20】已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.【解答】证明:(1)f(x)的定义域为(﹣1,+∞),f′(x)=cos x,f″(x)=﹣sin x,令g(x)=﹣sin x,则g′(x)=﹣cos x0在(﹣1,)恒成立,∴f″(x)在(﹣1,)上为减函数,又∵f″(0)=1,f″()=﹣11+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一的零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;(2)由(1)知,当x∈(﹣1,0)时,f′(x)单调递增,f′(x)<f′(0)=0,f(x)单调递减;当x∈(0,x0)时,f′(x)单调递增,f′(x)>f′(0)=0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f ′()0,由零点存在定理可知,函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f′(x)单调递减,f′(x)>f′(x1)=0,f(x)单调递增;当x ∈()时,f′(x)单调递减,f′(x)<f′(x1)=0,f(x)单调递减.当x ∈(,π)时,cos x<0,0,于是f′(x)=cos x0,f(x)单调递减,其中f ()=1﹣ln(1)>1﹣ln(1)=1﹣ln2.6>1﹣lne=0,f(π)=﹣ln(1+π)<﹣ln3<0.于是可得下表:(结合单调性可知,函数f(x)在(﹣1,]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sin x﹣ln(1+x)<1﹣ln(1+π)<1﹣ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.14.【2018年新课标1理科21】已知函数f(x)x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)1,设g(x)=x2﹣ax+1,当a ≤0时,g (x )>0恒成立,即f ′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, 当a >0时,判别式△=a 2﹣4,①当0<a ≤2时,△≤0,即g (x )≥0,即f ′(x )≤0恒成立,此时函数f (x )在(0,+∞)上是减函数,②当a >2时,x ,f ′(x ),f (x )的变化如下表:,(,综上当a ≤2时,f (x )在(0,+∞)上是减函数, 当a >2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a >2,0<x 1<1<x 2,x 1x 2=1, 则f (x 1)﹣f (x 2)=(x 2﹣x 1)(1)+a (lnx 1﹣lnx 2)=2(x 2﹣x 1)+a (lnx 1﹣lnx 2),则2,则问题转为证明1即可,即证明lnx 1﹣lnx 2>x 1﹣x 2, 则lnx 1﹣ln x 1, 即lnx 1+lnx 1>x 1,即证2lnx 1>x 1在(0,1)上恒成立,设h (x )=2lnx ﹣x,(0<x <1),其中h (1)=0,求导得h ′(x )10,则h (x )在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x0,故2lnx>x,则a﹣2成立.(2)另解:注意到f()=x alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证a﹣2,只要证a﹣2,即证2alnx2﹣ax20,(x2>1),构造函数h(x)=2alnx﹣ax,(x>1),h′(x)0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax0成立,即2alnx2﹣ax20,(x2>1)成立.即a﹣2成立.15.【2017年新课标1理科21】已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)ln0,∴1ln0,即ln1>0,设t,则g(t)=lnt+t﹣1,(t>0),求导g′(t)1,由g(1)=0,∴t1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1ln0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1ln0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(1),则f(n0)(a a﹣2)﹣n0n0n0>0,由ln(1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).16.【2016年新课标1理科21】已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a,令g(x),则g(x1)=g(x2)=﹣a,∵g′(x),∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m),设h(m),m>0,则h′(m)0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.17.【2015年新课标1理科21】已知函数f(x)=x3+ax,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a.因此当a时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min{f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a,则f(1)=a0,∴h(x)=min{f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a,则f(1)=a0,∴h(x)=min{f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0),f(1)=a,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x时,f(x)取得最小值.若0,即,则f(x)在(0,1)内无零点.若0,即a,则f(x)在(0,1)内有唯一零点.若0,即,由f(0),f(1)=a,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a时,函数h(x)有一个零点.当时,h(x)有一个零点;当a或时,h(x)有两个零点;当时,函数h(x)有三个零点.18.【2014年新课标1理科21】设函数f(x)=ae x lnx,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x),由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx,∵f(x)>1,∴e x lnx1,∴lnx,∴f(x)>1等价于xlnx>xe﹣x,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g().设函数h(x)=xe﹣x,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1).综上,当x>0时,g(x)>h(x),即f(x)>1.19.【2013年新课标1理科21】已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].20.【2012年新课标1理科21】已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x当x时,F(x)max即当a时,(a+1)b的最大值为21.【2011年新课标1理科21】已知函数f(x),曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x),求k的取值范围.【解答】解:由题意f(1)=1,即切点坐标是(1,1)(Ⅰ)由于直线x+2y﹣3=0的斜率为,且过点(1,1),故即解得a=1,b=1.(Ⅱ)由(Ⅰ)知,所以).考虑函数(x>0),则.(i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h′(x)<0,可得;当x∈(1,+∞)时,h′(x)<0,可得h(x)>0从而当x>0,且x≠1时,f(x)﹣()>0,即f(x).(ii)设0<k<1.由于当x∈(1,)时,(k﹣1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾.综合得,k的取值范围为(﹣∞,0].22.【2010年新课标1理科21】设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解答】解:(1)a =0时,f (x )=e x﹣1﹣x ,f ′(x )=e x﹣1. 当x ∈(﹣∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0. 故f (x )在(﹣∞,0)单调减少,在(0,+∞)单调增加 (II )f ′(x )=e x﹣1﹣2ax由(I )知e x≥1+x ,当且仅当x =0时等号成立.故f ′(x )≥x ﹣2ax =(1﹣2a )x , 从而当1﹣2a ≥0,即时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e ﹣x>1﹣x (x ≠0). 从而当时,f ′(x )<e x﹣1+2a (e ﹣x﹣1)=e ﹣x(e x ﹣1)(e x﹣2a ),故当x ∈(0,ln 2a )时,f '(x )<0,而f (0)=0,于是当x ∈(0,ln 2a )时,f (x )<0. 综合得a 的取值范围为.考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分与微积分基本定理.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分为重点较佳.最新高考模拟试题1.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( )A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e )【答案】C 【解析】由题意,函数10()ln ,0x xf x x x x ⎧<⎪⎪=⎨⎪>⎪⎩,,要使得函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()()0F x f x kx =-=,可得2ln xk x =, 要使得()0F x =有两个实数解,即y k =和()2ln xg x x=有两个交点,又由()312ln xg x x -'=,令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln x g x x =有两个交点,则1(0,)2k e ∈, 当0x <时,y k =和()1g x x=有一个交点,则0k >,综上可得,实数k 的取值范围是1(0,)2e,故选C.2.已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是( )A .2παβ+< B .2παβ+= C .αβ< D .αβ>【答案】C 【解析】由题意,sin sin βααβ>,sin sin αβαβ∴>,设()sin ,0,2x f x x x π⎛⎫=∈ ⎪⎝⎭, ()2cos sin ',0,2x x x f x x x π-⎛⎫∴=∈ ⎪⎝⎭,设()cos sin ,0,2g x x x x x π⎛⎫=-∈ ⎪⎝⎭, ()'cos sin cos sin 0g x x x x x x x ∴=--=-<,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递减,且()()00g x g <=,()'0f x ∴<,所以()sin x f x x =在0,2π⎛⎫⎪⎝⎭递减, ()()sin sin ,f f αβαβαβ>⇔>αβ∴<,故选C.3.已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈) A .5 B .6C .7D .8【答案】A 【解析】'()ln 2()=1a a x f x a x x f x x x -=-+⇒-=,当x a >时,'()0f x <,函数()f x 单调递减,当0x a <<时,'()0f x >,函数()f x 单调递增,故max ()()ln 2f x f a a a a ==-+,又当0,()x f x →→-∞,所以函数()f x 的值域为(,ln 2]a a a -∞-+,令'()ln 2()ln 11ln ,t a a a a t a a a =-+⇒=+-='1,()0a a Z t a >∈∴>因此()t a 是单调递增函数,因此当2,a a Z ≥∈时, ()(2)2ln 20t a t ≥=>,令()ln 2f x a x x n =-+=由上可知:ln 2n a a a ≤-+,(())()y f f x f n ==,由上可知函数(n)f 在0x a <<时,单调递增,在x a >时,单调递减,要想(())()y f f x f n ==的值域为(,ln 2]a a a -∞-+,只需ln 2a a a a ≤-+,即ln 220a a a -+≥,设()ln 22g a a a a =-+,2,a a Z ≥∈,'()ln 1g a a =-,所以当3,a a Z ≥∈时,函数()g a 单调递增,(2)2ln 240,(3)3ln 340g g =-<=-<,(4)4ln 460,(5)5ln 580g g =-<=->,所以a 的最小值是5,故本题选A.4.已知实数a ,b ,c ,d 满足ln 12113a cb d +-==+-,则22()()ac bd -+-的最小值为( )A .8B .4C .2D【答案】D 【解析】ln 12113a c b d +-==+- ln 11ln 1a b a b +∴=⇒=+,2113c d c d -=⇒=+-∴可以看成()ln f x x =和()1g x x =+之间的最小值'1()f x x= ∴当111x x=⇒=时,即点()1,0到直线()1g x x =+的距离最小∴d ==5.若函数()ln f x x a x =在区间()1,+∞上存在零点,则实数a 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,2e ⎛⎫ ⎪⎝⎭C .()0,∞+D .1,2⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】因为函数()ln f x x a x =,所以22()12a x af x x x'==令()22g x x a =,因为()2g x '==,当(1,)x ∈+∞ 时,10>>,所以()0g x '> 所以()g x 在(1,)+∞上为增函数,则()(1)12g x g a >=-,当120a -≥时,()0g x >,所以()0f x '>,所以()f x 在(1,)+∞上为增函数, 则()(1)0f x f >=,所以()f x 在(1,)+∞上没有零点.当120a -<时,即12a >,因为()g x 在(1,)+∞上为增函数,则存在唯一的0(1,)x ∈+∞,使得0()0g x =,且当0(1,)x x ∈时,()0g x <,当0(,)x x ∈+∞时,()0g x >;所以当0(1,)x x ∈时,()0f x '<,()f x 为减函数,当0(,)x x ∈+∞时,()0f x '>,()f x 为增函数,当0x x =时,min 0()()f x f x =,因为0()(1)0f x f <=,当x 趋于+∞时,()f x 趋于+∞, 所以在0(,)x x ∈+∞内,()f x 一定存在一个零点. 所以1(,)2a ∈+∞, 故答案选D.6.已知函数1()2x a f x e ax x x⎛⎫=-+- ⎪⎝⎭,若对任意(0,)x ∈+∞,都有()()f x xf x '≥-成立,则实数a 的取值范围是( )A .3,2e ⎛⎤-∞-⎥⎝⎦ B .(,-?C .3,2e 轹÷-+?ê÷ê滕 D .)é-+?êë【答案】D 【解析】令2()()(21)xg x xf x x e ax a ==-+-, 则()()()g x f x xf x ''=+,因为对任意(0,)x ∈+∞,都有()()f x xf x '≥-成立, 所以()()()0g x f x xf x ''=+≥在(0,)x ∈+∞上恒成立; 即()(21)20xg x x e ax '=++≥在(0,)x ∈+∞上恒成立;即(21)122x x x e a e x x +⎛⎫-≤=+ ⎪⎝⎭在(0,)x ∈+∞上恒成立; 令1()2xh x e x ⎛⎫=+⎪⎝⎭,(0,)x ∈+∞,则22211(21)()2x x xx x h x e e e x x x +-⎛⎫'=-++= ⎪⎝⎭, 由()0h x '=得2210x x +-=,解得1x =-(舍)或12x =, 所以,当102x <<时,22(21)()0xx x h x e x +-'=<,1()2x h x e x ⎛⎫=+ ⎪⎝⎭单调递减; 当12x >时,22(21)()0xx x h x e x+-'=<,1()2x h x e x ⎛⎫=+ ⎪⎝⎭单调递增;所以min 1()2h x h ⎛⎫==⎪⎝⎭因为(21)122x x x e a e x x +⎛⎫-≤=+ ⎪⎝⎭在(0,)x ∈+∞上恒成立,所以只需2a -≤a ≥-故选D7.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为( ) A .(),2016-∞- B .()2016,2012-- C .(),2018-∞- D .()2016,0-【答案】A 【解析】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-, 即()g x 为R 上奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增不等式()()()22018+2018420x f x f +-<+()()()22018+201842x f x f +<--, ()()()22018+201842x f x f +<即()()20182g x g +<所以20182x +<,解得2016x <- 故选A 项.8.已知函数35791131()135791113x x x x x x f x x =+-+-+-+,则使不等式(1)0f x ->成立的x 的最小整数为( ) A .-3 B .-2C .-1D .0【答案】D 【解析】根据题意,函数35791131()135791113x x x x x x f x x =+-+-+-+,其导数24681012()1f x x x x x x x '=-+-+-+,0x ≠时,()f x '可以看成是1为首项,2x -为公比的等比数列,则有24681012()1f x x x x x x x '=-+-+-+142101x x+=>+, 函数()f x 在R 上为增函数,又由111111(1)1(1)()()()035791113f -=+-+-+-+->, 35791113222222(2)1(2)035791113f ⎛⎫⎛⎫⎛⎫-=+-+-+-+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()f x 在(2,1)--上存在唯一的零点,设其零点为t ,(1)011f x x t x t ->⇒->⇒>+,又由21t -<<-,则110t -<+<,故不等式(1)0f x ->成立的x 的最小整数为0;故选:D .9.直线y ax =是曲线1ln y x =+的切线,则实数a =____. 【答案】1 【解析】解:∵1ln y x =+,∴1y x'=设切点为(,1ln )m m +,得切线的斜率为1m, 所以曲线在点(),1ln m m +处的切线方程为:1ln 1()y m x m m--=⨯-. 即:1ln y m x m-=它过原点,∴ln 0m -=,∴1m =, ∴11a m==. 故答案为:1.10.函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,则实数a 的取值范围为_________. 【答案】1a … 【解析】()21g x x x =--关于x 轴对称的函数为()21h x x x =-++,因为函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,所以()2xf x ae x =-与()21h x x x =-++的图象有交点,方程221x ae x x x -=-++有解,即1x ae x =+有解, 0a =时符合题意,0a ≠时转化为()11xe x a=+有解, 即()1,1xy e y x a==+的图象有交点, ()11y x a =+是过定点()1,0-的直线,其斜率为1a, 设()1,1xy e y x a==+相切时,切点的坐标为(),m m e ,则111m m e m ae a ⎧=⎪⎪+⎨⎪=⎪⎩,解得1a =,切线斜率为11a =,由图可知,当11a ≥,即1a ≤且0a ≠时,()1,1x y e y x a==+的图象有交点, 此时,()2xf x ae x =-与()21h x x x =-++的图象有交点,函数()2xf x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,综上可得,实数a 的取值范围为1a ≤,故答案为1a ≤.11.已知函数()1xf x e =-,若存在实数,()a b a b <使得()()f a f b =,则2+a b 的最大值为________.【答案】32ln 27【解析】作出函数()1xf x e =-图像如下:由题意,令,a b 为方程()f x m =的两个根,由图像易得01m <<; 由1xe m -=得1x e m =±,解得ln(1)x m =+或ln(1)x m =-, 因为a b <,所以ln(1)b m =+,ln(1)a m =-, 因此22ln(1)2ln(1)ln(1)(1)a b m m m m +=-++=-+,令232()(1)(1)1g m m m m m m =-+=--++,01m <<, 则2()321(31)(1)g m m m m m '=--+=--+, 因为01m <<,所以由()0g m '>得103m <<;由()0g m '<得113m <<,即函数()g m 在10,3⎛⎫ ⎪⎝⎭上单调递增;在1,13⎛⎫ ⎪⎝⎭上单调递减;所以2max11132()1133327g m g ⎛⎫⎛⎫⎛⎫==-+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 因此2+a b 的最大值为32ln 27. 故答案为32ln2712.已知实数a ,b ,c 满足2121a c b c e a b e +--+++≤(e 为自然对数的底数),则22a b +的最小值是_______. 【答案】15【解析】设()(1)xu x e x =-+,则()1xu x e '=-,所以函数u(x)的增区间为(0,+∞),减区间为(-∞,0), 所以()(0)0u x u ≥=,即e 1x x ≥+;可知21121121a c b c e a c b a e c b +--++++--+=++≥, 当且仅当210a c b c +=--=时取等; 因为2121a c b c e a b e +--+++≤所以2121a c b c e a b e +--+=++,210a c b c +=--=. 所以1,2c a c b +=-=, 解得22222(1)51144245c c a b c c ++=+=++≥,当且仅当15c =时,取等号.故答案为:1513.已知直线x t =与曲线()()()ln 1,xf x xg x e =+=分别交于,M N 两点,则MN 的最小值为________【答案】1. 【解析】令()()()ln(1)th t g t f t e t =-=-+,1'()()()1t h t g t f t e t =-=-+,显然为增函数,且'(0)0h = 所以当(1,0)t ∈-时,'()0,()h t h t <单调递减; 当(1,)t ∈+∞时,'()0,()h t h t >单调递增. 所以min ()(0)1h t h ==. 故答案为1.14.曲线cos y a x =在6x π=处的切线l 的斜率为12,则切线l 的方程为_____.【答案】206x y π-=【解析】解:曲线cos y a x =,可得'sin y a x =-, 曲线cos y a x =在6x π=处的切线l 的斜率为12, 可得1sin62a π-=, 所以1a =-.所以切点坐标为:(,6π,则切线l 的方程为:126y x π⎛⎫=- ⎪⎝⎭.即:206x y π-=.故答案为:206x y π--=.15.已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22- 【解析】作出()f x 的函数图象如图所示, 由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x <,则2212x x e ==(1)t t =>,则12ln x x t ==,12ln x x t ∴+=-()ln g t t =-4'()4g t t-=, ∴当 18t <<时,()'0g t >,()g t 在()1,8上递增;当8t >时,()'0g t <,()g t 在()8,+∞上递减;∴当8t =时,()g t 取得最大值g(8)=ln82=3ln22--,故答案为3ln 22-. 16.已知函数31,0()2,0ax x f x x ax x x -≤⎧=⎨-+->⎩的图象恰好经过三个象限,则实数a 的取值范围______. 【答案】0a <或2a > 【解析】(1)当0a <时,()f x 在(,0]-∞上单调递减,又(0)1f =-,所以函数()f x 的图象经过第二、三象限,当0x >时,33(1)2,2()(1)2,02x a x x f x x a x x ⎧---=⎨-++<<⎩…,所以223(1),2()3(1),,02x a x f x x a x ⎧--=⎨-+<<⎩'…,①若1a -…时,()0f x '>恒成立,又当0x +→时,()2f x →,所以函数()f x 图象在0x >时,经过第一象限,符合题意;②若10a -<<时,()0f x '>在[2,)+∞上恒成立,当02x <<时,令()0f x '=,解13x =<,所以()f x 在⎛ ⎝上单调递减,在2⎫⎪⎪⎭上单调递增,又(2210f a ⎛=+=-> ⎝ 所以函数()f x 图象在0x >时,经过第一象限,符合题意;(2)当0a =时,()f x 的图象在(,0)-∞上,只经过第三象限,()0f x '>在(0,)+∞上恒成立,所以()f x 的图象在(0,)+∞上,只经过第一象限,故不符合题意;(3)当0a >时,()f x 在(,0)-∞上单调递增,故()f x 的图象在(,0)-∞上只经过第三象限,所以()f x 在(0,)+∞上的最小值min ()0f x <,当02x <<时,令()0f x '=,解得x =2<时,即11a <时,()f x 在(0,)+∞上的最小值为21f ⎛= ⎝,令2102211f a a ⎛=<⇒>∴<< ⎝.211a ≥⇒≥时,则()f x 在02x <<时,单调递减,当2x ≥时,令()0f x '=,解得x =21113a <⇒≤<,()f x 在(2,)+∞上单调递增,故()f x 在(0,)+∞上的最小值为(2)82f a =-,令8204a a -<⇒>,所以1113a ≤<;213a ≥⇒≥,()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增,故()f x 在(0,)+∞上的最小值为2f =,显然20<,故13a ≥;结上所述:0a <或2a >.17.已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(Ⅰ)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x-=-=',此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(Ⅱ)由(Ⅰ)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x<-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.18.已知函数()()21ln 2f x x x ax a =++∈R .(1)讨论()f x 的单调性;(2)若12,x x 为()f x 的两个极值点,证明:()()21212+44282f x f x a a x x f +++⎛⎫-> ⎪⎝⎭.【答案】(1)当2a <-时,()f x 在0,2a ⎛⎫- ⎪ ⎪⎝⎭为增函数,22a a ⎛⎫---+⎪ ⎪⎝⎭减函数,⎫+∞⎪⎪⎝⎭为增函数;当2a ≥-时,()f x 在()0,∞+为增函数.(2)证明见解析.【解析】(1)()f x 的定义域为()0,∞+,()()210x ax f x x x'++=>,对于函数21y x ax =++,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++'∴=≥在()0,∞+恒成立,()f x ∴在()0,∞+为增函数;②当∆>0,即2a <-或2a >时,当2a <-时,由()0f x '>,得2a x -<或2a x ->,0<<()f x ∴在0,2a ⎛⎫-- ⎪ ⎪⎝⎭为增函数,22a a ⎛⎫---+⎪ ⎪⎝⎭减函数,⎫+∞⎪⎪⎝⎭为增函数, 当2a >时,由()210x ax f x x++'=>在()0,∞+恒成立,()f x ∴在()0,∞+为增函数.综上,当2a <-时,()f x 在⎛⎫ ⎪ ⎪⎝⎭为增函数,⎛⎫⎪ ⎪⎝⎭减函数,2a ⎛⎫-++∞⎪ ⎪⎝⎭为增函数; 当2a ≥-时,()f x 在()0,∞+为增函数.(2)由(1)知2a <-,且1212,1x x a x x +=-=, 故()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭()()21222111222121211ln ln 222ln 2222x x x x ax x x ax x x x x a +⎛⎫+++++ ⎪++⎛⎫⎛⎫⎝⎭=--- ⎪ ⎪⎝⎭⎝⎭21ln +228a a ⎛⎫=--- ⎪⎝⎭故只需证明ln 1022a a⎛⎫----> ⎪⎝⎭,令2at =-,故1t >, 原不等式等价于ln 1t t <-对1t >成立, 令1()ln (1),'()0tg t t t g t t-=--=<,所以()ln (1)g t t t =--单调递减,有()ln (1)(1)0g t t t g =--<= 得证.19.已知函数()ln(1)1(1)f x ax x a =+-+…. (Ⅰ)当1a =时,求()f x 的最大值;(Ⅱ)若1()e f x e +…对1,x a ⎛⎫∈-+∞ ⎪⎝⎭恒成立,求实数a 的取值范围. 【答案】(Ⅰ)1;(Ⅱ)[1,e] 【解析】(Ⅰ)当1a =时,()ln(1)1f x x x =+-+,定义域为(1,)-+∞. 1()111x f x x x -'=-=++. 令()0f x '=,得0x =.当(1,0)x ∈-时,()0f x '>,()f x 单调递增, 当(0,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以max ()(0)1f x f ==. (Ⅱ)()11a f x ax '=-+11ax a ax -+-=+,1x a >-.令()0f x '=,得1a x a-=.当11,a x a a -⎛⎫∈-⎪⎝⎭时,()0f x '>,()f x 单调递增;当1,a x a -⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,所以max 11()ln a f x f a a a -⎛⎫==+ ⎪⎝⎭. 依题意有11ln e a a e ++…,设1()ln (1)g a a a a =+…, 则22111()0a g a a a a-'=-=…,所以()g a 在[1,)a ∈+∞上单调递增. 又1e 1(e)ln e e e g +=+=,故1e 1ln ea a ++…()(e)g a g ⇔…1e a ⇒剟, 即实数a 的取值范围为[1,e].20.对于函数()y f x =的定义域D ,如果存在区间[],m n D ⊆,同时满足下列条件:①()f x 在()()f x g x +上是单调函数;②当[],x m n ∈时,()f x 的值域为[]2,2m n ,则称区间()()f x g x +是函数()f x 的“单调倍区间”.已知函数()ln 2,0()02,0a x x x f x a a x ->⎧⎪=>≤ (1)若2a =,求()f x 在点()(),e f e 处的切线方程; (2)若函数()f x 存在“单调倍区间”,求a 的取值范围.【答案】(1)22y x e ⎛⎫=- ⎪⎝⎭;(2)(231,4,2164e e⎛⎤⎤ ⎦⎥⎝⎦【解析】(1)当2a =时,()()2ln 20f x x x x =->∴当0x >时,()22f x x '=-,则:()22f e e'=-,又()22f e e =- ()f x ∴在()(),e f e 处的切线方程为:()()2222y e x e e⎛⎫--=-- ⎪⎝⎭即:22y x e ⎛⎫=-⎪⎝⎭(2)()ln 2,0()02,0a x x x f x a a x ->⎧⎪=>≤ ()()2,000ax xf x a x ⎧->⎪⎪∴=>⎨≤'列表如下:设函数()f x 存在“单调倍区间”是()()f x g x +①当0m n<≤时,由()f x 在(),0-∞上单调递减,则有2222a na m==()2n m =- 2=12=,代入2222a n a m ==得:12221222a n a m ⎧=-⎪⎪⎨⎪=-⎪⎩要使此关于,m n 的方程组在0m n <≤时有解,则使得2y a =与()21202y x x x =-+≥的图象有两个公共点当14x =时,min 38y =,当0x =时,12y =结合两函数图象,则31282a <≤,即:31164a <≤ 即此时满足()f x 存在“单调倍区间”的a 的取值范围是31,164⎛⎤⎥⎝⎦②当02a m n <<≤时,由()f x 在0,2a ⎛⎫⎪⎝⎭上单调递增,则有 ln 22ln 22a m m m a n n n -=⎧⎨-=⎩即:1ln 41ln 4ma mn a n⎧=⎪⎪⎨⎪=⎪⎩。
10年(2010-2019)高考数学真题分类练习与讲解---第三讲 函数的概念和性质
.A 0
.B m
.C 2m
.D 4m
.12 (2015 福建)下列函数为奇函数的是
.A y = x
.B y = sin x
.C y = cos x
.D y = ex − e−x
.13 (2015 广东)下列函数中,既不是奇函数,也不是偶函数的是
.A y = 1+ x2
.B y = x + 1 x
.C
(3. 2019 全国Ⅲ理 11)设 f (x) 是定义域为 R 的偶函数,且在(0,+∞)单调递减,则
. ( )> ( )> ( ) A f log3 1 4
f
−3
22
f
−2
23
. ( )> ( )> ( ) B f log3 1 4
f
−2
23
f
−3
22
. ( )> ( )> ( ) C f
−3
22
则M −m A.与a 有关,且与b 有关 C.与a 无关,且与b 无关
B.与a 有关,但与b 无关 D.与a 无关,但与b 有关
.( 7 2017 天津)已知奇函数 在 f (x) R 上是增函数, g(x) = .若 xf (x) a = , g(−log2 5.1)
b = g(20.8) , c = g(3) ,则 a,b,c 的大小关系为
3 / 13
A.
B.
C.
D.
.4 (2018 全国卷Ⅱ)已知 f (x) 是定义域为 (−∞, +∞) 的奇函数,满足 f (1− x) = f (1+ x) .
若 ,则 f (1) = 2 f (1) + f (2) + f (3) +… + f (50) =
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
28.(2014•陕西•理 T8)原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真
假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3
18.(2016•山东•理 T6)已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面
α 和平面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
13.(2017•天津•理 T4)设 θ∈R,则“
π
- 12
<
π
12”是“sin
1
θ<2”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14.(2017•浙江•理 T6)已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的 ( )
+ ≥ 6, 1.(2019•全国 3•文 T11)记不等式组 2 - ≥ 0 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q ②¬p∨q ③p∧¬q ④¬p∧¬q 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④
河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案
河北省对口招生高考数学历年真题(2010-2019)目录✧..2019年河北省普通高等学校对口招生考试数学试题 (1)✧..2019年河北省对口招生考试数学参考答案 (4)✧..2018年河北省普通高等学校对口招生考试数学试题 (7)✧..2018年河北省对口招生考试数学参考答案 (12)✧..2017年河北省普通高等学校对口招生考试数学试题 (13)✧..2017年河北省对口招生考试数学参考答案 (18)✧..2016年河北省普通高等学校对口招生考试数学试题 (23)✧..2016年河北省对口招生考试数学参考答案 (28)✧..2015年河北省普通高等学校对口招生考试数学试题 (29)✧..2015年河北省对口招生考试数学参考答案 (34)✧..2014年河北省普通高等学校对口招生考试数学试题 (36)✧..2014年河北省对口招生考试数学参考答案 (41)✧..2013年河北省普通高等学校对口招生考试数学试题 (42)✧..2013年河北省对口招生考试数学参考答案 (47)✧..2012年河北省普通高等学校对口招生考试数学试题 (50)✧..2012年河北省对口招生考试数学参考答案 (54)✧..2011年河北省普通高等学校对口招生考试数学试题 (55)✧..2011年河北省对口招生考试数学参考答案 (59)✧..2010年河北省普通高等学校对口招生考试数学试题 (63)✧..2010年河北省对口招生考试数学参考答案 (67)2019年河北省普通高等学校对口招生考试数学试题一、选择题(每题3分,共45分)1.设集合A={b,c,d},则集合A 的子集共有()A.5个B.6个C.7个D.8个2.若22b a <,则下列不等式成立的是()A.ba < B.ba 22< C.0)(log 222<-a b D.||||b a <3.在ABC ∆中,“sinA=sinB ”是“A=B ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.已知一次函数b kx y +=关于原点对称,则二次函数)0(2≠++=a c bx ax y 一定是()A.奇函数B.偶函数C.非奇非偶函数D.奇偶性和c 有关5.函数|cos sin |x x y =的最小正周期为()A.2π B.πC.π2D.π46.设向量b a x b a ∥且),1,(),2,4(==,则x=()A.2B.3C.4D.57二次函数b ax x y ++=2图像的顶点坐标为(-3,1),则b a ,的值为()A.10,6=-=b a B.10,6-=-=b a C.10,6==b a D.10,6-==b a 8.在等差数列}{n a 中,n S 为前n 项和,===642,8,0a S S 则若()A.5B.7C.9D.169.在等比数列}{n a 中,=+=⋅>1047498log log ,161.0a a a a a n 则若()A.-2 B.-1 C.0 D.210.下列四组函数中,图像相同的是()A.x x y x y 220cos sin +==和B.xy x y lg 10==和C.xy x y 222log 2log ==和 D.)2cos(sin x y x y -==π和11.过点A(1,2)且与直线012=-+y x 平行的直线方程为()A.042=-+y x B.052=-+y x C.02=-y x D.032=++y x 12.北京至雄安将开通高铁,共设有6个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12种B.15种C.20种D.30种13.二项式于的展开式中,常数项等122)12(x x -()A.84122⋅C B.84122⋅-C C.66122⋅C D.66122⋅-C 14.在正方体1111D C B A ABCD -中,棱C D D A 11与所成的角为()A.6π B.4π C.3π D.32π15.已知双曲线方程为192522=-y x ,则其渐近线方程为()A.x y 45±=B.xy 35±= C.xy 54±= D.xy 53±=二、填空题(每题2分,共30分)16.已知函数3)(3++=bx ax x f 满足=-=)1(,6)1(f f 则.17.函数|3|lg 37121)(2-++-=x x x x f 的定义域为.18.计算:=-+++|3|281log 45tan2log 31e e π.19.若不等式02<-+b ax x 的解集为(1,2),则)(log 6ab =.20.数列1,22241-3121,,-的通项公式为.21.若|b |3b a 4b a 4|a |→→→→→→==⋅=,则,,,π=.22.已知ααααα2cos 137cos sin 1317cos sin ,则,=-=+=.23.已知以21F F ,为焦点的椭圆1361622=+y x 交x 轴正半轴于点A ,则21F AF ∆的面积为.24.已知99.0log 10099.010099.0100===c b a ,,,则c b a ,,按由小到大的顺序排列为.25.在正方体1111D C B A ABCD -中,与AB 为异面直线的棱共有条.26.某学校参加2019北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.27.已知αβαβαβαβα2sin 81)sin()cos()cos()sin(,则=-++-+=.28.设,,,,)sin 11()1cos 1(A n A m +-=+=→→其中∠A 为ABC ∆的内角.→→⊥n m 若,则∠A=.29.不等式x x 5log )6(log 222>+的解集为.30.一口袋里装有4个白球和4个红球,现在从中任意取3个球,则取到既有白球又有红球的概率为.三、解答题(7个小题,共45分)31.(5分)设集合R B A m x x B x x x A =≥+=>--= ,若,}1|{}012|{2,求m 的取值范围.32.(6分)某广告公司计划设计一块周长为16米的矩形广告牌,设计费为每平方米500元.设该矩形一条边长为x 米,面积为y 平方米.(1)写出y 与x 的函数关系式;(2)问矩形广告牌长和宽各为多少米时,设计费最多,最多费用为多少元?33.(8分)若数列}{n a 是公差为23的等差数列,且前5项和155=S .(1)求数列}{n a 的通项公式;(2)若n a n e b =,求证}{n b 为等比数列并指出公比q ;(3)求数列}{n b 的前5项之积.34.(6分)函数x x y 2sin )23sin(+-=π(1)求该函数的最小正周期;(2)当x 为何值时,函数取最小值,最小值为多少?35.(6分)过抛物线x y 42=的焦点,且斜率为2的直线l 交抛物线于A ,B 两点.(1)求直线l 的方程;(2)求线段AB 的长度.36.(7分)如图所示,底面ABCD 为矩形,PD ⊥平面ABCD ,|PD|=2,平面PBC 与底面ABCD所成角为45°,M 为PC 中点.(1)求DM 的长度;(2)求证:平面BDM ⊥平面PBC.37.(7分)一颗骰子连续抛掷3次,设出现能被3整除的点的次数为ξ,(1)求)2(=ξP ;(2)求ξ的概率分布.P DMCAB2019年河北省对口招生考试数学参考答案一、选择题题号123456789101112131415答案DDCBAACCADBDACD二、填空题16.017.),3()3,(+∞-∞ 18.019.120.21)1(n a n n +-=21.222.169119-23.5824.ba c <<25.426.3027.8128.4π29.),3()2,0(+∞ 30.76三、解答题31.解:}34|{}012|{2-<>=>--=x x x x x x A 或}1|{}1|{m x x m x x B -≥=≥+=因为R B A = 所以431≥-≤-m m 即所以m 的取值范围为),4[+∞.32.解:矩形的另一边长为)(82216米x x-=-则x x x x y 8)8(2+-=-=(0<x<8)(2)16)4(822+--=+-=x x x y 当x=4米时,矩形的面积最大,最大面积为16平方米此时广告费为)(800016500元=⨯所以当广告牌长和宽都为4米时矩形面积最大,设计费用最多,最多费用为8000元.33.解:(1)由已知23,155==d S 得1552)(53515==+=a a a S 解得33=a所以232323)3(3)3(3-=⋅-+=-+=n n d n a a n (2)由)2323(-==n a n eeb n所以n eb 231=+所以23a 111e e e ee b b d a a a n n n n n n ====-+++,又101==e b 所以}{n b 为以1为首项23e 为公比的等比数列.(3)由题意可得155)13(235354321)(e eb b b b b b ===⋅⋅⋅⋅-,所以}{n b 的前5项积为15e .34.解:x x x x x y 2sin 2sin 3cos 2cos 3sin 2sin )23sin(+-=+-=πππ=)32sin(2cos 232sin 21π+=+x x x 所以函数的最小正周期为ππ==22T (2)当1-)(125)(2232小值为时,函数有最小值,最即Z k k x Z k k x ∈-=∈-=+πππππ.35.解:(1)由抛物线方程x y 42=得焦点F(1,0),又直线l 的斜率为2,所以直线方程为022)1(2=---=y x x y 即.(2).设抛物线与直线的交点坐标为),(),,(2211y x B y x A 联立两方程得01322422=+-⎩⎨⎧-==x x x y xy 整理得由韦达定理得1,32121==+x x x x 由弦长公式得549414)(1||212212=-+=-++=x x x x k AB 36.解:(1)因为PD ⊥平面ABCD 所以PD ⊥BC又因为ABCD 为矩形,得BC ⊥CD 所以BC ⊥平面PCD 所以BC ⊥PC所以∠PCD 为平面PBC 与平面ABCD 所成角即∠PCD=45°从而△PDC 为等腰直角三角形在RT ∆PDC 中||||45sin PC PD =︒得2245sin ||||=︒=PD PC 又M 为PC 的中点,则DM ⊥PC所以在2||21||==∆PC DM DMC RT 中,(2)证明:由(1)可知BC ⊥平面PCD 所以BC ⊥DM由(1)可知DM ⊥PC ,且BC PC=C,所以DM ⊥平面PBC又DM ⊆平面BDM ,所以平面BDM ⊥平面PBC37.解:(1)能被3整除的只有3和6,则在一次抛掷中出现的概率为31,从而出现不能被3整除的点的概率为32所以9232()31(223=⨯⨯=C P (2)ξ的可能取值为0,1,2,3且278)32()31()0(3003=⨯⨯==C P ξ94)32(31()1(2113=⨯⨯==C P ξ9232()31()2(1223=⨯⨯==C P ξ271)32()31()3(0333=⨯⨯==C P ξ所以ξ的概率分布为ξ0123P27894922712018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分)1、设集合M={0,1,2,3,4},N={xl0<x ≤3},则N M ⋂=()A{1,2}B{0,1,2}C{1,2,3}D{0,1,2,3}2、若a,b,c 为实数,且a>b,则()A a-c>b-cB a 2>b 2C ac>bcD ac 2>bc 23、2>x 是x>2的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4、下列函数中,既是奇函数又是减函数的是()A xy 31=B 22x y =C 3x y -=D xy 1=5、函数42sin(π-=x y 的图像可以有函数x y 2sin =的图像如何得到()A 向左平移4π个单位B 向右平移4π个单位C 向左平移8π个单位D 向右平移8π个单位6、已知),,3(),2,1(m b a =-=b a b a -=+则m=()A -23B23C 6D -67、下列函数中,周期为π的偶函数是()A xy sin =B xy 2sin =C xy sin =D 2cosx y =8、在等差数列{a n }中,若a 1+a 2+a 3=12,a 2+a 3+a 4=18,则a 3+a 4+a 5=()A 22B 24C 26D 309、记S n 为等比数列{a n }的前n 项和,若S 2=10,S 4=40,则S 6=()A 50B 70C 90D 13010、下列各组函数中,表示同一个函数的是()A x y =与2x y =B x y =与33x y =C x y =与2x y =D 2x y =与33x y =11、过圆2522=+y x 上一点(3,4)的切线方程为()A 3x+4y-25=0B 3x+4y+25=0C 3x-4y-25=0D 3x-4y+25=012、某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组两名队员,分配方案共有()A2种B3种C6种D12种13、设(2x-1)2018=a 0+a 1x+a 2x 2+……….+a 2018x 2018,则a 0+a 1+a 2+…….+a 2018=()A 0B 1C -1D 22018-114、已知平面上三点A (1,-2),B (3,0),C (4,3),则点B 关于AC 中点是对称点的坐标是()A (1,4)B (5,6)C (-1,-4)D (2,1)15、下列命题中正确的是()(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行A(1)(2)B(1)(3)C(1)(4)D(2)(4)二、填空题(共15小题。
2010年高考真题(抛物线部分[含答案])
2010年高考题1.(2010湖南文)设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是A. 4B. 6C. 8D. 12 【答案】B2.(2010陕西文)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为(A )12(B )1(C )2(D )4【答案】 C解析:本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2px -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p3.(2010辽宁理)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为那么|PF|=(A) (B)8 (C) (D) 16 【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。
【解析】抛物线的焦点F (2,0),直线AF 的方程为2)y x =-,所以点(2,A -、(6,P ,从而|PF|=6+2=84.(2010山东文)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为(A )1x = (B)1x =- (C)2x = (D)2x =- 【答案】B5.(2010四川文)抛物线28y x =的焦点到准线的距离是(A ) 1 (B )2 (C )4 (D )8 【答案】C【解析】由y 2=2px =8x 知p =4 又交点到准线的距离就是p6.(2010福建理数)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0 D .22x +y -2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):函数
49.(2016•全国 1•T9)函数 y=2x -e 在[-2,2]的图象大致为( )
2
50.(2016•浙江•文 T3)函数 y=sin x 的图象是( )
x
51.(2016•浙江•文 T7)已知函数 f(x)满足:f(x)≥|x|,且 f(x)≥2 ,x∈R.( )
b
A.若 f(a)≤|b|,则 a≤b B.若 f(a)≤2 ,则 a≤b
cc
A.a <b
cc
B.ab <ba
C.alogbc<blogac
D.logac<logbc
9
46.(2016•全国 3•理 T6)已知 a=2 ,b=4:,c=25 ,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
9
47.(2016•全国 3•文 T7)已知 a=2 ,b=3 ,c=25 ,则( )
!"#
35.(2017•全国 1•文 T8)函数 y= 的部分图象大致为( )
-%&!
!"#
36.(2017•全国 3•文 T7)函数 y=1+x+ 的部分图象大致为( )
5
37.(2017•山东•理
T10)已知当
x∈[0,1]时,函数
2
y=(mx-1)
的图象与
y=√x+m
的图象有且只有一个交点,则正
③f(x)在[-π,π]有 4 个零点 ④f(x)的最大值为 2
其中所有正确结论的编号是( )
A.①②④ B.②④
C.①④
D.①③
6.(2019•全国 3•理 T11 文 T12)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则( )
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( ) A.√2 B.2 C.5√2 D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=√(-1)2+12=√2,故选A.2.(2019·全国·1理T7文T8)已知非零向量a ,b 满足|a|=2|b|,且(a-b)⊥b ,则a 与b 的夹角为( ) A.π6 B.π3C.2π3D.5π6【答案】B【解析】因为(a-b)⊥b , 所以(a-b )·b=a ·b-b 2=0, 所以a ·b=b 2.所以cos<a ,b>=a ·b|a |·|b |=|b |22|b |2=12,所以a 与b 的夹角为π3,故选B.3.(2018·全国1·理T6文T7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 【答案】A【解析】如图,EB ⃗⃗⃗⃗⃗ =-BE⃗⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −14BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=3 4AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ .4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.0【答案】B【解析】a·(2a-b)=2a2-a·b=2-(-1)=3.5.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√3【答案】A【解析】∵b2-4e·b+3=0,∴(b-2e)2=1,∴|b-2e|=1.如图所示,平移a,b,e,使它们有相同的起点O,以O为原点,向量e所在直线为x轴建立平面直角坐标系,则b的终点在以点(2,0)为圆心,半径为1的圆上,|a-b|就是线段AB的长度.要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.7.(2018·天津·理T8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则 A.2116 B.32C.2516D.3【答案】A【解析】如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD=∠CAB =60°,∠ACD=∠ACB =30°,则D(0,0),A(1,0),B (32,√32),C(0,√3).设E(0,y)(0≤y≤√3),则AE⃗⃗⃗⃗⃗ =(-1,y),BE ⃗⃗⃗⃗⃗ =(-32,y-√32),∴AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =32+y 2-√32y=(y-√34)2+2116,∴当y=√34时,AE ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ 有最小值2116.8.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.0【答案】C【解析】连接MN ,∵BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ =3AN ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =3AM⃗⃗⃗⃗⃗⃗ .∴MN ∥BC ,且MN BC =13,∴BC ⃗⃗⃗⃗⃗ =3MN ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ ),∴BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ -|OM ⃗⃗⃗⃗⃗⃗ |2)=3[2×1×(-12)-1]=-6.9.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-32 C.-43 D.-1【答案】B【解析】以BC 所在的直线为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立平面直角坐标系,如图.可知A(0,√3),B(-1,0),C(1,0).设P(x ,y),则PA ⃗⃗⃗⃗ =(-x ,√3-y),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y),PC ⃗⃗⃗⃗ =(1-x ,-y).所以PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =(-2x ,-2y).所以PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )=2x 2-2y(√3-y)=2x 2+2(y -√32)2−32≥-32. 当点P 的坐标为(0,√32)时,PA ⃗⃗⃗⃗ ·(PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )取得最小值为-32,故选10.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3 B.2√2C.√5D.2【答案】A【解析】建立如图所示的平面直角坐标系, 则A(0,1),B(0,0),D(2,1).设P(x ,y),由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45. 易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0).由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P(x ,y)在圆(x-2)2+y 2=45上, 所以圆心C 到直线12x-y+1-z=0的距离d≤r,即√14+1≤2√55,解得1≤z≤3,11.(2017·全国2·文T4)设非零向量a ,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b| 【答案】A【解析】由|a+b|=|a-b|,平方得a 2+2a ·b+b 2=a 2-2a ·b+b 2,即a ·b=0.又a ,b 为非零向量,故a ⊥b ,故选A.12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434 B.494 C.37+6√34 D.37+2√334【答案】B【解析】设△ABC 的外心为D ,则|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2. 以D 为原点,直线DA 为x 轴,过D 点的DA 的垂线 为y 轴,建立平面直角坐标系, 则A(2,0),B(-1,-√3),C(-1,√3). 设P(x ,y),由已知|AP⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1,∵PM ⃗⃗⃗⃗⃗⃗ =MC⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y)与点(-1,-3√3)距离平方的14,∴(|BM⃗⃗⃗⃗⃗⃗ |2)max =14[√32+(0+3√3)22=494, 故选B.13.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.18C.14D.118【答案】B【解析】方法1(基向量法):如图所示,选取AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,则AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )+12×12AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ . 故AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ 2−14AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB⃗⃗⃗⃗⃗ 2 =34−14×1×1×12−12=18.14.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b ,则m=( ) A.-8B.-6C.6D.8【答案】D【解析】由题意可知,向量a+b=(4,m-2).由(a+b)⊥b ,得4×3+(m-2)×(-2)=0,解得m=8.故选D.15.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.2【答案】C【解析】由已知2a+b=(1,0), 所以(2a+b )·a=1×1+0×(-1)=1.故选C.16.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于( )A.-32 B.-53C.53D.32【答案】A【解析】∵a=(1,2),b=(1,1),∴c=(1+k ,2+k). ∵b ⊥c ,∴b ·c=1+k+2+k=0.∴k=-3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 【答案】A【解析】AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(3,-1),所以AD⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5. 18.(2015·山东·理T4)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2 B.-34a 2 C.34a 2 D.32a 2【答案】D【解析】如图,设BA ⃗⃗⃗⃗⃗ =a ,BC⃗⃗⃗⃗⃗ =b. 则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA⃗⃗⃗⃗⃗ =(a+b)·a=a 2+a ·b=a 2+a ·a ·c os 60°=a 2+12a 2=32a 2.19.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M ,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.6【答案】C【解析】如图所示,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =(AB⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ )·(13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ) =13|AB ⃗⃗⃗⃗⃗ |2-316|AD ⃗⃗⃗⃗⃗ |2+14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗=13×36-316×16=9.20.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t ,|AC⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.21【答案】A【解析】以点A 为原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图. 则A(0,0),B (1t ,0),C(0,t), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=(0,1). ∴AP⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4). ∴点P 的坐标为(1,4),PB⃗⃗⃗⃗⃗ =(1t-1,-4),PC ⃗⃗⃗⃗ =(-1,t-4). ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13,当且仅当1t =4t ,即t=12时取“=”. ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为13.21.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) 【答案】A【解析】∵AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3,1),AC ⃗⃗⃗⃗⃗ =(-4,-3), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4). 22.(2015·重庆·理T6)若非零向量a ,b 满足|a|=2√23|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π【答案】A【解析】由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a ·b-2|b|2=0.设a 与b 的夹角为θ,则3|a|2-|a||b|cos θ-2|b|2=0,即3·(2√23|b |)2−2√23|b|2cos θ-2|b|2=0,整理,得cos θ=√22.故θ=π4.23.(2015·重庆·文T7)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3 B.π2C.2π3D.5π6【答案】C【解析】因为a ⊥(2a+b),所以a ·(2a+b)=0, 即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a|2+|a||b|cos θ=0. 又|b|=4|a|,所以2|a|2+4|a|2cos θ=0, 则cos θ=-12,从而θ=2π3.24.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 【答案】A 【解析】如图,∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 25.(2014·全国1·文T6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗C.BC ⃗⃗⃗⃗⃗D.12BC⃗⃗⃗⃗⃗ 【答案】A【解析】EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )-12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-12(BA ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ )=12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12×2AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,故选A.26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a ,b 的夹角为π6,则实数m=( ) A.2√3 B.√3 C.0 D.-√3【答案】B【解析】∵cos<a ,b>=a ·b|a ||b |, ∴cos π6=√3m 2×√32+m 2,解得m=√3.27.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9) 【答案】A【解析】2a-b=(4-(-1),8-1)=(5,7).故选A.28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 【答案】B【解析】由题意得b-a=(3,1)-(1,2)=(2,-1),故选B.29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】对于A ,C ,D ,都有e 1∥e 2,故选B.30.(2014·全国2·理T3文T4)设向量a ,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.5 【答案】A【解析】∵|a+b|=√10,∴(a+b)2=10.∴|a|2+|b|2+2a·b=10,①∵|a-b|=√6,∴(a-b)2=6,∴|a|2+|b|2-2a·b=6,②由①-②得a·b=1,故选A.31.(2014·大纲全国·文T6)已知a,b为单位向量,其夹角为60°,则(2a-b)·b=( )A.-1B.0C.1D.2【答案】B【解析】由已知得|a|=|b|=1,<a,b>=60°,∴(2a-b)·b=2a·b-b2=2|a||b|cos<a,b>-|b|2=2×1×1×c os 60°-12=0,故选B.32.(2014·大纲全国·理T4)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )A.2B.√2C.1D.√22【答案】B【解析】∵(a+b)⊥a,|a|=1,∴(a+b)·a=0.∴|a|2+a·b=0.∴a·b=-1.又(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+|b|2=0.∴|b|2=2.∴|b|=√2.故选B.33.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0 C.3 D.152【答案】C【解析】由已知(2a-3b)⊥c,可得(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,展开化简,得4k-12=0,所以k=3.故选C.34.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A.√22B.12C.0D.-1【答案】C【解析】∵a ⊥b ,∴a ·b=0, ∴-1+2cos 2θ=0,即cos 2θ=0.35.(2012·重庆·理T6)设x ,y ∈R ,向量a=(x ,1),b=(1,y),c=(2,-4),且a ⊥c ,b ∥c ,则|a+b|= ( ) A.√5 B.√10 C.2√5 D.10【答案】B【解析】由a ⊥c ,得a ·c=2x-4=0,解得x=2.由b ∥c 得12=y-4,解得y=-2,所以a=(2,1),b=(1,-2),a+b=(3,-1),|a+b|=√10.故选B.36.(2010·全国·文T2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( ) A.865 B.-865C.1665D.-1665【答案】C【解析】b=(2a+b)-2a=(3,18)-(8,6)=(-5,12), 因此cos<a ,b>=a ·b |a ||b |=165×13=1665.37.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a ,b>= . 【答案】−√210【解析】cos<a ,b>=a ·b|a ||b |=√22+22×√(-8)+62=2√2×10=-√210. 38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b ,则m= . 【答案】8【解析】∵a=(-4,3),b=(6,m),a ⊥b , ∴a ·b=0,即-4×6+3m=0,即m=8.39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 【答案】-1【解析】∵AD ∥BC ,且∠DAB=30°,∴∠ABE=30°. ∵EA=EB ,∴∠EAB=30°.∠AEB=120°.在△AEB 中,EA=EB=2, BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ) =-BA ⃗⃗⃗⃗⃗ 2+BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =-12+2√3×2×c os 30°+5×2√3×c os 30°+5×2×c os 180°=-22+6+15=-1.40.(2019·全国3·理T13)已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos<a ,c>= . 【答案】23【解析】∵a ,b 为单位向量, ∴|a|=|b|=1.又a ·b=0,c=2a-√5b ,∴|c|2=4|a|2+5|b|2-4√5a ·b=9,∴|c|=3. 又a ·c=2|a|2-√5a ·b=2, ∴cos<a ,c>=a ·c|a |·|c |=21×3=23.41.(2019·浙江·T17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 【答案】0 2√5 【解析】(基向量处理)λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |min =0,由于λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =2AB⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |max =2√42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC 的值是 .【答案】√3【解析】如图,过点D 作DF ∥CE ,交AB 于点F , 由BE=2EA ,D 为BC 中点,知BF=FE=EA ,AO=OD.又AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ ) =32(23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC⃗⃗⃗⃗⃗ 2) =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2+32AC⃗⃗⃗⃗⃗ 2, 得12AB ⃗⃗⃗⃗⃗ 2=32AC ⃗⃗⃗⃗⃗ 2,即|AB⃗⃗⃗⃗⃗ |=√3|AC ⃗⃗⃗⃗⃗ |,故AB AC=√3. 43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= . 【答案】-1【解析】由题意,得ma-b=(m+1,-m). ∵a ⊥(ma-b),∴a ·(ma-b)=0,即m+1=0, ∴m=-1.44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 . 【答案】-3【解析】依题意,设E(0,a),F(0,b),不妨设a>b ,则 a-b=2,AE ⃗⃗⃗⃗⃗ =(1,a),BF ⃗⃗⃗⃗ =(-2,b),a=b+2,所以AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b 2+2b-2=(b+1)2-3, 故所求最小值为-3.45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 【答案】3【解析】设A(a ,2a)(a>0),则由圆心C 为AB 的中点得C (a+52,a),☉C:(x-5)(x-a)+y(y-2a)=0.将其与y=2x 联立解得x D =1,D(1,2).因为AB ⃗⃗⃗⃗⃗ =(5-a ,-2a),CD ⃗⃗⃗⃗⃗ =(1-a+52,2-a),AB ⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =0,所以(5-a)·(1-a+52)+(-2a)(2-a)=0,即a 2-2a-3=0,解得a=3或a=-1.因为a>0,所以a=3.46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 【答案】12【解析】2a+b=(4,2),c=(1,λ), 由c ∥(2a+b),得4λ-2=0,得λ=12.47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m ,1),若向量a+b 与a 垂直,则m= . 【答案】7【解析】因为a=(-1,2),b=(m ,1), 所以a+b=(m-1,3).因为a+b 与a 垂直,所以(a+b )·a=0,即-(m-1)+2×3=0,解得m=7.48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b ,则λ= . 【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,∴λ=-3.49.(2017·全国1·理T13)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= . 【答案】2【解析】因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·c os 60°+4|b|2=22+4×2×1×12+4×1=12, 所以|a+2b|=√12=2√3.50.(2017·天津,理13文14)在△ABC 中,∠A =60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 . 【答案】311【解析】由题意,知|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2, AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =3×2×c os 60°=3, AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =λ-23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+2λ3AC ⃗⃗⃗⃗⃗ 2 =λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R),则m+n= . 【答案】3【解析】由tan α=7可得cos α=5√2,sin α=5√2,则5√2=OA⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |·|OC ⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,由cos ∠BOC=√22可得√22=OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OB ⃗⃗⃗⃗⃗⃗ |·|OC⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,因为cos ∠AOB=cos (α+45°)=cos αc os 45°-sin αsin45°=5√2×√22−5√2×√22=-35,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-35,所以m-35n=15,-35m+n=1, 所以25m+25n=65,所以m+n=3.52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 . 【答案】√33【解析】∵e 1,e 2是互相垂直的单位向量, ∴可设a=√3e 1-e 2=(√3,-1),b=e 1+λe 2=(1,λ). 则<a ,b >=60°.∴cos<a ,b>=c os 60°=a ·b|a ||b |=√3-2=12,即√3-λ=2+1,解得λ=√33.53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 . 【答案】[-5√2,1]【解析】设P(x ,y),由PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,易得x 2+y 2+12x-6y≤20.把x 2+y 2=50代入x 2+y 2+12x-6y≤20得2x-y+5≤0. 由{2x -y +5=0,x 2+y 2=50,可得{x =-5,y =-5或{x =1,y =7.由2x-y+5≤0表示的平面区域及P 点在圆上,可得点P 在圆弧EPF 上,所以点P 横坐标的取值范围为[-5√2,1].54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为 .【答案】6【解析】方法1:设P(cos α,sin α),α∈R ,则AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(cos α+2,sin α),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2cos α+4.当α=2k π,k ∈Z 时,2cos α+4取得最大值,最大值为6. 故AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为6. 方法2:设P(x ,y),x 2+y 2=1,-1≤x≤1,AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(x+2,y),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2x+4,故AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为6.55.(2016·北京·文T9)已知向量a=(1,√3),b=(√3,1),则a 与b 夹角的大小为 . 【答案】π6【解析】设a 与b 的夹角为θ,则cos θ=a ·b|a ||b |=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.56.(2016·全国1·文T13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】−23【解析】∵a ⊥b ,∴a ·b=x+2(x+1)=0, 解得x=-23.57.(2016·山东·文T13)已知向量a=(1,-1),b=(6,-4).若a ⊥(ta+b),则实数t 的值为 . 【答案】-5【解析】由a ⊥(ta+b)可得a ·(ta+b)=0, 所以ta 2+a ·b=0,而a 2=12+(-1)2=2,a ·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5. 58.(2016·全国2·文T13)已知向量a=(m ,4),b=(3,-2),且a ∥b ,则m= . 【答案】-6【解析】因为a ∥b ,所以-2m-4×3=0,解得m=-6.59.(2016·全国1·理T13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】-2【解析】∵|a+b|2=|a|2+|b|2, ∴(m+1)2+32=m 2+1+5,解得m=-2.60.(2015·浙江·文T13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|= . 【答案】2√33【解析】因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b|c os 30°=1,所以|b|=1cos30°=2√33. 61.(2015·全国2·理T13)设向量a ,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 【答案】12【解析】由题意知存在实数t ∈R ,使λa+b=t(a+2b),得{λ=t ,1=2t ,解得λ=12.62.(2015·北京·理T13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 【答案】12−16【解析】如图,∵MN ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC⃗⃗⃗⃗⃗ , ∴x=12,y=-16.63.(2014·湖北·理T11)设向量a=(3,3),b=(1,-1).若(a +λb)⊥(a-λb),则实数λ= . 【答案】±3【解析】由题意得(a+λb)·(a-λb)=0,即a 2-λ2b 2=0,则a 2=λ2b 2, λ2=a 2b 2=(√32+32)2[√12+(-1)]=182=9.故λ=±3.64.(2014·陕西·理T3)设0<θ<π2,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a ∥b ,则tan θ= .【答案】12【解析】由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ, 因为0<θ<π2,所以cos θ≠0,所以2sin θ=cos θ. 所以tan θ=12.65.(2014·重庆·文T12)已知向量a 与b 的夹角为60°,且a=(-2,-6),|b|=√10,则a ·b= . 【答案】10【解析】由题意得|a|=2√10,所以a ·b=|a||b|cos<a ,b>=2√10×√10×12=10.66.(2014·全国1·理T15)已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 【答案】90°【解析】由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°.故AB⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 67.(2014·湖北·文T12)若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |= . 【答案】2√5【解析】设B(x ,y),由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,可得√10=√x 2+y 2, ① OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x-3y=0, ② 由①②得x=3,y=1或x=-3,y=-1, 所以B(3,1)或B(-3,-1),故AB ⃗⃗⃗⃗⃗ =(2,4)或AB ⃗⃗⃗⃗⃗ =(-4,2),|AB⃗⃗⃗⃗⃗ |=2√5, 68.(2013·江苏·T10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 【答案】12【解析】由题意作图如图.∵在△ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23.故λ1+λ2=12.69.(2013·北京·理T13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ= .【答案】4【解析】可设a=-i+j ,i ,j 为单位向量且i ⊥j ,则b=6i+2j ,c=-i-3j.∵c =λa +μb=(6μ-λ)i+(λ+2μ)j ,∴{6μ-λ=-1,λ+2μ=-3,解得{λ=-2,μ=-12.∴λμ=4. 70.(2013·全国1·T13)已知两个单位向量a ,b 的夹角为60°,c=ta+(1-t)b.若b ·c=0,则t= .【答案】2【解析】b ·c=ta ·b+(1-t)|b|2.又|a|=|b|=1,且a 与b 的夹角为60°,b ·c=0,∴0=t|a||b|c os 60°+(1-t),0=12t+1-t.∴t=2.71.(2013·全国2·理T13文T14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗ = .【答案】2【解析】以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ }为基底,则AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,而AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , ∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2=-12×22+22=2.72.(2013·天津·理T12)在平行四边形ABCD 中,AD=1,∠BA D=60°,E 为CD 的中点.若AC⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =1,则AB 的长为 .【答案】12【解析】如图所示,在平行四边形ABCD 中,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ . 所以AC ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-12|AB ⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |+1=1,解方程得|AB ⃗⃗⃗⃗⃗ |=12(舍去|AB ⃗⃗⃗⃗⃗ |=0).所以线段AB 的长为12.73.(2013·北京·文T14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 【答案】3【解析】AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC⃗⃗⃗⃗⃗ =(1,2). 设P(x ,y),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1,可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A1B1|=√(4-3)2+22=√5,两直线间距离d=√22+1=√5,∴D的面积S=|A1B1|·d=3.74.(2012·全国·理T13文T15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=√10,则|b|= .【答案】3√2【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a|×|b|c os 45°=√22|b|,|2a-b|2=4-4×√22|b|+|b|2=10,∴|b|=3√2.75.(2012·安徽·文T11)设向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,则|a|= . 【答案】√2【解析】由题意,可得a+c=(3,3m).由(a+c)⊥b,得(a+c)·b=0,即(3,3m)·(m+1,1)=3(m+1)+3m=0,解之,得m=-12.∴a=(1,-1),|a|=√2.76.(2011·全国·文T13)已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k= .【答案】1【解析】由已知可得|a|=|b|=1,且a与b不共线,所以a·b≠1,a·b≠-1.由已知向量a+b与向量ka-b垂直,所以(a+b)·(ka-b)=0,即ka2-b2+(k-1)a·b=0,即k-1+(k-1)a·b=0,所以(k-1)(1+a·b)=0.因为a·b≠-1,即a·b+1≠0,所以k-1=0,即k=1.(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)。
十年(2010-2019年)高考数学真题分类汇编:专题20 空间向量 (含答案解析)
十年(2010-2019年)高考数学真题分类汇编专题20空间向量1.(2014·全国2·理T11)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.√3010D.√22【答案】C【解析】如图,以点C 1为坐标原点,C 1B 1,C 1A 1,C 1C 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 不妨设BC=CA=CC 1=1,可知点A (0,1,1),N (0,12,0),B (1,0,1),M (12,12,0).∴AN ⃗⃗⃗⃗⃗⃗ =(0,-1,-1),BM ⃗⃗⃗⃗⃗⃗ =(-1,1,-1). ∴cos <AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN ⃗⃗⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√3010.根据AN ⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角及AN 与BM 所成角的关系可知,BM 与AN 所成角的余弦值为√30.2.(2013·北京·文T8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ) A.3个B.4个C.5个D.6个【答案】B【解析】设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a ,0),B (a ,a ,0),B 1(a ,a ,a ),A (a ,0,0),A 1(a ,0,a ),P (23a ,23a ,13a),则|PB⃗⃗⃗⃗⃗ |=√19a 2+19a 2+19a 2=√33a , |PD ⃗⃗⃗⃗⃗ |=√49a 2+49a 2+19a 2=a , |PD 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+49a 2+49a 2=2√33a , |PC 1⃗⃗⃗⃗⃗⃗⃗ |=|PA 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+19a 2+49a 2=a ,|PC ⃗⃗⃗⃗⃗ |=|PA ⃗⃗⃗⃗⃗ |=√49a 2+19a 2+19a 2=√63a ,|PB 1⃗⃗⃗⃗⃗⃗⃗ |=√19a 2+19a 2+49a 2=√63a ,3.(2012·陕西·理T5)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.√55B.√53C.2√55D.35【答案】A【解析】不妨设CB=1,则CA=CC 1=2.由题图知,A 点的坐标为(2,0,0),B 点的坐标为(0,0,1),B 1点的坐标为(0,2,1),C 1点的坐标为(0,2,0). 所以BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,1).所以cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >=3√5=√55. 4.(2010·大纲全国·文T6)直三棱柱ABC-A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线BA 1与AC 1所成的角等于( )A.30°B.45°C.60°D.90° 【答案】C【解析】不妨设AB=AC=AA 1=1,建立空间直角坐标系如图所示,则B(0,-1,0),A 1(0,0,1),A(0,0,0),C 1(-1,0,1), ∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1). ∴cos <BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AC1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AC1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2×2=12.∴<BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=60°.∴异面直线BA 1与AC 1所成的角为60°.5.(2019·天津·理T17)如图,AE ⊥平面ABCD,CF ∥AE,AD ∥BC,AD ⊥AB,AB=AD=1,AE=BC=2. (1)求证:BF ∥平面ADE;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E-BD-F 的余弦值为13,求线段CF 的长.【解析】(1)证明依题意,可以建立以A 为原点,分别以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).依题意,AB⃗⃗⃗⃗⃗ =(1,0,0)是平面ADE 的法向量, 又BF⃗⃗⃗⃗⃗ =(0,2,h ),可得BF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE. (2)解依题意,BD ⃗⃗⃗⃗⃗⃗ =(-1,1,0),BE ⃗⃗⃗⃗⃗ =(-1,0,2),CE ⃗⃗⃗⃗⃗ =(-1,-2,2). 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·BD⃗⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +2z =0,不妨令z=1,可得n =(2,2,1).因此有cos <CE ⃗⃗⃗⃗⃗ ,n >=CE ⃗⃗⃗⃗⃗⃗·n |CE⃗⃗⃗⃗⃗⃗ ||n |=-49. 所以,直线CE 与平面BDE 所成角的正弦值为49. (3)解设m =(x ,y ,z )为平面BDF 的法向量, 则{m ·BD⃗⃗⃗⃗⃗⃗ =0,m ·BF ⃗⃗⃗⃗⃗ =0,即{-x +y =0,2y +ℎz =0,不妨令y=1,可得m =1,1,-2ℎ.由题意,有|cos <m,n >|=|m ·n ||m ||n |=|4-2ℎ|3√2+4ℎ2=13,解得h=87,经检验,符合题意. 所以,线段CF 的长为87.6.(2019·浙江·T 19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点, 所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC=AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC. 又因为A 1F ∥AB ,∠ABC=90°,故BC ⊥A 1F. 所以BC ⊥平面A 1EF.因此EF ⊥BC.(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上. 连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC=4,则在Rt △A 1EG 中,A 1E=2√3,EG=√3. 由于O 为A 1G 的中点,故EO=OG=A 1G 2=√152,所以cos ∠EOG=EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC. 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC=AC , 所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1 为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F√32,32,2√3,C (0,2,0).因此,EF⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC.(2)设直线EF 与平面A 1BC 所成角为θ. 由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由{BC⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0.取n =(1,√3,1),故sin θ=|cos <EF⃗⃗⃗⃗⃗ ·n >|=|EF⃗⃗⃗⃗⃗⃗ ·n ||EF⃗⃗⃗⃗⃗⃗ |·|n |=4.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.7.(2019·全国1·理T18)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A-MA 1-N 的正弦值.【解析】(1)连接B 1C ,ME. 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME= B 1C.又因为N 为A 1D 的中点,所以ND= A 1D. 由题设知A 1B 1 DC ,可得B 1C A 1D , 故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED. 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE. (2)由已知可得DE ⊥DA.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz, 则A (2,0,0),A 1(2,0,4),M (1,√3,2),N (1,0,2),A 1A ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,0).设m =(x ,y ,z )为平面A 1MA 的法向量, 则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗⃗ =0.所以{-x +√3y -2z =0,-4z =0.可取m =(√3,1,0). 设n =(p ,q ,r )为平面A 1MN 的法向量, 则{n ·MN⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =0.所以{-√3q =0,-p -2r =0.可取n =(2,0,-1).于是cos <m,n >=m ·n |m ||n |=√32×√5=√155,所以二面角A-MA 1-N 的正弦值为√105.8.(2019·全国2·理T17)如图,长方体ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B-EC-C 1的正弦值.【解析】(1)证明由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE.又BE ⊥EC 1,所以BE ⊥平面EB 1C 1. (2)解由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB=45°, 故AE=AB ,AA 1=2AB.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|DA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系D-xyz , 则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ⃗⃗⃗⃗⃗ =(1,0,0),CE ⃗⃗⃗⃗⃗ =(1,-1,1),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).{CB ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,即{x =0,x -y +z =0,所以可取n=(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则{CC1⃗⃗⃗⃗⃗⃗⃗ ·m =0,CE ⃗⃗⃗⃗⃗ ·m =0,即{2z =0,x -y +z =0,所以可取m =(1,1,0). 于是cos <n,m >=n ·m |n ||m |=-12.所以,二面角B-EC-C 1的正弦值为√32.9.(2019·全国3·理T19)图1是由矩形ADEB,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC 折起使得BE 与BF 重合,连接DG,如图2. (1)证明:图2中的A,C,G,D 四点共面,且平面ABC ⊥平面BCGE; (2)求图2中的二面角B-CG-A 的大小.【解析】(1)证明由已知得AD ∥BE,CG ∥BE,所以AD ∥CG, 故AD,CG 确定一个平面,从而A,C,G,D 四点共面. 由已知得AB ⊥BE,AB ⊥BC,故AB ⊥平面BCGE. 又因为AB ⊂平面ABC, 所以平面ABC ⊥平面BCGE. (2)解作EH ⊥BC,垂足为H.因为EH ⊂平面BCGE,平面BCGE ⊥平面ABC,所以EH ⊥平面ABC. 由已知,菱形BCGE 的边长为2,∠EBC=60°,可求得BH=1,EH=√3.以H 为坐标原点,HC ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A (-1,1,0),C (1,0,0),G (2,0,√3),CG⃗⃗⃗⃗⃗ =(1,0,√3),AC ⃗⃗⃗⃗⃗ =(2,-1,0).则{CG ⃗⃗⃗⃗⃗ ·n =0,AC ⃗⃗⃗⃗⃗ ·n =0,即{x +√3z =0,2x -y =0.所以可取n =(3,6,-√3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos <n,m >=n ·m|n ||m |=√32.因此二面角B-CG-A 的大小为30°.10.(2018·浙江·T 8)已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( ) A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1 【答案】D【解析】当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD,过点H 作HF ∥AB,过点E 作EF ∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH. 由题意可知EF ⊥SF ,故tan θ1=SF EF=SF GH>SHGH=tan θ3. ∴θ1>θ3.又tan θ3=SHGH >SHEH =tan θ2, ∴θ3>θ2.∴θ1>θ3>θ2. 当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2. 综上可知,θ1≥θ3≥θ2.11.(2018·全国3·理T19)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【解析】(1)由题设知,平面CMD ⊥平面ABCD,交线为CD.因为BC ⊥CD,BC ⊂平面ABCD,所以BC ⊥平面CMD,故BC ⊥DM.因为M 为CD⏜上异于C,D 的点,且DC 为直径,所以DM ⊥CM.又BC ∩CM=C,所以DM ⊥平面BMC. 而DM ⊂平面AMD,故平面AMD ⊥平面BMC.(2)以D 为坐标原点, DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz. 当三棱锥M-ABC 体积最大时,M 为 CD⏜的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0). 设n=(x,y,z)是平面MAB 的法向量, 则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0.即{-2x +y +z =0,2y =0.可取n=(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗ |n ||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n,DA ⃗⃗⃗⃗⃗ >=2√55. 所以面MAB 与面MCD 所成二面角的正弦值是2√55.12.(2018·北京·理T16)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC= √5,AC=AA 1=2. (1)求证:AC ⊥平面BEF; (2)求二面角B-CD-C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.【解析】(1)证明在三棱柱ABC-A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF.∵AB=BC ,∴AC ⊥BE ,∴AC ⊥平面BEF.(2)解由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.∵CC 1⊥平面ABC ,∴EF ⊥平面ABC. ∵BE ⊂平面ABC ,∴EF ⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴CD ⃗⃗⃗⃗⃗ =(2,0,1),CB ⃗⃗⃗⃗⃗ =(1,2,0). 设平面BCD 的法向量为n =(a ,b ,c ), 则{n ·CD⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的法向量n =(2,-1,-4),又平面CDC 1的法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n,EB⃗⃗⃗⃗⃗ >=n ·EB ⃗⃗⃗⃗⃗⃗ |n ||EB ⃗⃗⃗⃗⃗⃗ |=-√2121.由图可得二面角B-CD-C 1为钝角,∴二面角B-CD-C 1的余弦值为-√2121. (3)证明平面BCD 的法向量为n=(2,-1,-4), ∵G(0,2,1),F(0,0,2), ∴GF⃗⃗⃗⃗⃗ =(0,-2,1), ∴n ·GF ⃗⃗⃗⃗⃗ =-2,∴n 与GF⃗⃗⃗⃗⃗ 不垂直, ∴FG 与平面BCD 不平行且不在平面BCD 内, ∴FG 与平面BCD 相交.13.(2018·天津·理T17)如图,AD ∥BC 且AD=2BC,AD ⊥CD,EG ∥AD 且EG=AD,CD ∥FG 且CD=2FG,DG ⊥平面ABCD,DA=DC=DG=2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE; (2)求二面角E-BC-F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n0=(x,y,z)为平面CDE 的法向量, 则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,-32,1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n 0=0.(2)依题意,可得BC ⃗⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗⃗ =(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF ⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m =(0,2,1). 因此有cos <m,n >=m ·n |m ||n |=3√1010,于是sin <m,n >=√1010.所以,二面角E-BC-F 的正弦值为√1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP ⃗⃗⃗⃗⃗ =(-1,-2,h ).易知,DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗⃗ |=√ℎ+5.由题意,可得√ℎ+5=sin 60°=√32,解得h=√33∈[0,2].所以,线段DP 的长为√33.14.(2018·全国1·理T18)如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF. (1)证明:平面PEF ⊥平面ABFD; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)由已知可得,BF ⊥PF,BF ⊥EF, 所以BF ⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H-xyz. 由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF.可得PH=√32,EH=32.则H (0,0,0),P (0,0,√32),D (-1,-32,0),DP ⃗⃗⃗⃗⃗ =(1,32,√32),HP ⃗⃗⃗⃗⃗⃗ =(0,0,√32)为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP ⃗⃗⃗⃗⃗⃗ ·DP⃗⃗⃗⃗⃗⃗ |HP ⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ ||=343=√34.所以DP 与平面ABFD 所成角的正弦值为√34.15.(2018·全国2·理T20)如图,在三棱锥P-ABC 中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC;(2)若点M 在棱BC 上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.【解析】(1)因为AP=CP=AC=4,O 为AC 的中点, 所以OP ⊥AC ,且OP=2√3. 连接OB ,因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2. 由OP2+OB2=PB2知PO ⊥OB.由OP ⊥OB,OP ⊥AC 知PO ⊥平面ABC.(2)如图,以O 为坐标原点,OB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz. 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP ⃗⃗⃗⃗⃗ =(0,2,2√3). 取平面PAC 的法向量OB ⃗⃗⃗⃗⃗ =(2,0,0),由AP ⃗⃗⃗⃗⃗ ·n =0,AM ⃗⃗⃗⃗⃗⃗ ·n =0得 {2y +2√3z =9,ax +(4-a )y =0.可取n =(√3(a-4),√3a ,-a ),所以cos <OB ⃗⃗⃗⃗⃗ ,n >=√3(2√3(a -4)+3a 2+a 2.由已知可得|cos <OB ⃗⃗⃗⃗⃗ ,n >|=√32. 所以√32√3(a -4)+3a 2+a 2=√32,解得a=-4(舍去),a=43. 所以n =(-8√33,4√33,-43).又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC ⃗⃗⃗⃗⃗ ,n >=√34. 所以PC 与平面PAM 所成角的正弦值为√34.16.(2018·浙江·T9)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解析】解法一(1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5,由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1,由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB,OC 为x,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1). 因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.17.(2018·上海·T17)已知圆锥的顶点为P,底面圆心为O,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.【解析】(1)∵圆锥的顶点为P,底面圆心为O,半径为2,母线长为4,∴圆锥的体积V=13πr 2h=13×π×22×√42-22=8√3π3. (2)∵PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∴P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0), ∴PM⃗⃗⃗⃗⃗⃗ =(1,1,-4),OB ⃗⃗⃗⃗⃗ =(0,2,0). 设异面直线PM 与OB 所成的角为θ,则cos θ=|PM ⃗⃗⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ ||PM ⃗⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√1+1+(-4)×√0+2+0=√26.∴θ=arccos √26.∴异面直线PM 与OB 所成的角的大小为arccos √26.18.(2017·北京·理T16)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD,点M 在线段PB 上,PD ∥平面MAC,PA=PD=√6,AB=4. (1)求证:M 为PB 的中点; (2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【解析】(1)证明设AC,BD 交点为E,连接ME. 因为PD ∥平面MAC,平面MAC ∩平面PDB=ME,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O,连接OP,OE. 因为PA=PD,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD,且OP ⊂平面PAD,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ), 则{n ·BD⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0).所以cos <n,p >=n ·p |n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3.(3)解由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n,MC⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗ ||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69.所以直线MC 与平面BDP 所成角的正弦值为2√6.19.(2017·全国1·理T18)如图,在四棱锥P-ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C 的余弦值.【解析】(1)证明由已知∠BAP=∠CDP=90°,得AB ⊥AP,CD ⊥PD. 由于AB ∥CD,故AB ⊥PD,从而AB ⊥平面PAD. 又AB ⊂平面PAB,所以平面PAB ⊥平面PAD. (2)解在平面PAD 内作PF ⊥AD,垂足为F. 由(1)可知,AB ⊥平面PAD ,故AB ⊥PF , 可得PF ⊥平面ABCD.以F 为坐标原点,FA⃗⃗⃗⃗⃗ 的方向为x 轴正方向, |AB⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系F-xyz. 由(1)及已知可得A (√22,0,0),P (0,0,√22),B (√22,1,0),C (-√22,1,0).所以PC ⃗⃗⃗⃗⃗ =(-√22,1,-√22),CB⃗⃗⃗⃗⃗ =(√2,0,0),PA ⃗⃗⃗⃗⃗ =(√22,0,-√22),AB ⃗⃗⃗⃗⃗ =(0,1,0). 设n =(x ,y ,z )是平面PCB 的法向量,则{n ·PC ⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,即{-√22x +y -√22z =0,√2x =0.可取n =(0,-1,-√2).设m =(x ,y ,z )是平面PAB 的法向量,则{m ·PA⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,即{√22x -√22z =0,y =0.可取m =(1,0,1).则cos <n,m >=n ·m |n ||m |=-√33.所以二面角A-PB-C 的余弦值为-√33.20.(2017·全国2·理T19)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD, AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.【解析】(1)证明取PA 的中点F,连接EF,BF. 因为E 是PD 的中点,所以EF ∥AD,EF=12 AD. 由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,四边形BCEF 是平行四边形,CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB. (2)解由已知得BA ⊥AD ,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,√3),PC ⃗⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗⃗ =(1,0,0). 设M (x ,y ,z )(0<x<1),则BM ⃗⃗⃗⃗⃗⃗ =(x-1,y ,z ),PM ⃗⃗⃗⃗⃗⃗ =(x ,y-1,z-√3). 因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的法向量,所以|cos <BM ⃗⃗⃗⃗⃗⃗ ,n >|=sin 45°,√(x -1)+y 2+z2=√22,即(x-1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则x=λ,y=1,z=√3−√3λ. ②由①,②解得{ x =1+√22,y =1,z =-√62(舍去),{x =1-√22,y =1,z =√62,所以M (1-√22,1,√62),从而AM ⃗⃗⃗⃗⃗⃗ =(1-√22,1,√62).设m=(x0,y0,z0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗⃗ =0,即{(2-√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m =(0,-√6,2).于是cos <m,n >=m ·n |m ||n |=√105.因此二面角M-AB-D 的余弦值为√105.21.(2017·全国3·理T19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD ⊥平面ABC;(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D-AE-C 的余弦值.【解析】(1)证明由题设可得,△ABD ≌△CBD ,从而AD=DC. 又△ACD 是直角三角形,所以∠ADC=90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO=AO. 又由于△ABC 是正三角形,故BO ⊥AC. 所以∠DOB 为二面角D-AC-B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2,又AB=BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB=90°.所以平面ACD ⊥平面ABC.(2)解由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.则A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1,即E 为DB 的中点,得E (0,√3,1). 故AD ⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AE⃗⃗⃗⃗⃗ =(-1,√32,12).设n =(x ,y ,z )是平面DAE 的法向量,则{n ·AD ⃗⃗⃗⃗⃗=0,n ·AE ⃗⃗⃗⃗⃗ =0,即{-x +z =0,-x +√32y +12z =0.可取n =(1,√33,1).设m 是平面AEC 的法向量,则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AE ⃗⃗⃗⃗⃗ =0.同理可取m =(0,-1,√3).则cos <n,m >=n ·m|n ||m |=√7.所以二面角D-AE-C 的余弦值为√77.22.(2017·山东·理T17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF⏜的中点. (1)设P 是 CE⏜ 上的一点,且AP ⊥BE,求∠CBP 的大小; (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.【解析】(1)因为AP ⊥BE,AB ⊥BE,AB,AP ⊂平面ABP,AB ∩AP=A,所以BE ⊥平面ABP,又BP ⊂平面ABP,所以BE ⊥BP,又∠EBC=120°.因此∠CBP=30°. (2)解法一:取EC⏜的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13.取AG 中点M,连接EM,CM,EC,则EM ⊥AG,CM ⊥AG,所以∠EMC 为所求二面角的平面角. 又AM=1,所以EM=CM=√13-1=2√3. 在△BEC 中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12, 所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.解法二:以B 为坐标原点,分别以BE,BP,BA 所在的直线为x,y,z 轴,建立如图所示的空间直角坐标系. 由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG ⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE⃗⃗⃗⃗⃗ =0,m ·AG ⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2).设n=(x2,y2,z2)是平面ACG 的一个法向量. 由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2). 所以cos <m,n >=m ·n|m ||n |=12.因此所求的角为60°.23.(2017·天津·理T17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC,∠BAC=90°,点D,E,N 分别为棱PA,PC,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2. (1)求证:MN ∥平面BDE; (2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721 求线段AH 的长.【解析】如图,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4), D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB ⃗⃗⃗⃗⃗⃗ =(2,0,-2),设n =(x ,y ,z )为平面BDE 的法向量, 则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0.不妨设z=1,可得n =(1,0,1). 又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n =0. 因为MN ⊄平面BDE,所以MN ∥平面BDE. (2)易知n1=(1,0,0)为平面CEM 的一个法向量. 设n2=(x,y,z)为平面EMN 的法向量, 则{n 2·EM⃗⃗⃗⃗⃗⃗ =0,n 2·MN ⃗⃗⃗⃗⃗⃗⃗ =0.因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2). 因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21,于是sin <n 1,n 2>=√10521. 所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE ⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗|=√ℎ+5×2√3=√721,整理得10h 2-21h+8=0,解得h=85或h=12. 所以,线段AH 的长为85或12.24.(2016·全国1·理T18)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60°. (1)证明:平面ABEF ⊥平面EFDC; (2)求二面角E-BC-A 的余弦值.【解析】(1)证明由已知可得AF ⊥DF,AF ⊥FE, 所以AF ⊥平面EFDC.又AF ⊂平面ABEF,故平面ABEF ⊥平面EFDC.(2)解过D 作DG ⊥EF,垂足为G,由(1)知DG ⊥平面ABEF.以G 为坐 标原点,GF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|GF⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系G-xyz.由(1)知∠DFE 为二面角D-AF-E 的平面角, 故∠DFE=60°,则|DF|=2,|DG|=√3 ,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0, √3). 由已知,AB ∥EF,所以AB ∥平面EFDC. 又平面ABCD ∩平面EFDC=CD, 故AB ∥CD,CD ∥EF.由BE ∥AF,可得BE ⊥平面EFDC,所以∠CEF 为二面角C-BE-F 的平面角,∠CEF=60°.从而可得C (-2,0,√3). 所以EC⃗⃗⃗⃗⃗ =(1,0,√3),EB ⃗⃗⃗⃗⃗ =(0,4,0),AC ⃗⃗⃗⃗⃗ =(-3,-4,√3),AB ⃗⃗⃗⃗⃗ =(-4,0,0), 设n =(x ,y ,z )是平面BCE 的法向量,则{n ·EC ⃗⃗⃗⃗⃗ =0,n ·EB ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,4y =0.所以可取n =(3,0,-√3).设m 是平面ABCD 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,同理可取m =(0,√3,4), 则cos <n,m >=n ·m |n ||m |=-2√1919. 故二面角E-BC-A 的余弦值为-2√1919.25.(2016·全国2·理T19)如图,菱形ABCD 的对角线AC 与BD 交于点O,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54 ,EF 交BD 于点H.将△DEF 沿EF 折到△D'EF 的位置,OD'=√10. (1)证明:D'H ⊥平面ABCD; (2)求二面角B-D'A-C 的正弦值.【解析】(1)证明由已知得AC ⊥BD ,AD=CD. 又由AE=CF 得AE AD =CFCD ,故AC ∥EF. 因此EF ⊥HD ,从而EF ⊥D'H.由AB=5,AC=6得DO=BO=√AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14. 所以OH=1,D'H=DH=3.于是D'H 2+OH 2=32+12=10=D'O 2,故D'H ⊥OH.又D'H ⊥EF ,而OH ∩EF=H , 所以D'H ⊥平面ABCD.(2)解如图,以H 为坐标原点HF⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3), AB ⃗⃗⃗⃗⃗ =(3,-4,0),AC ⃗⃗⃗⃗⃗ =(6,0,0),AD '⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1,3). 设m=(x1,y1,z1)是平面ABD'的法向量, 则{m ·AB⃗⃗⃗⃗⃗ =0,m ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m=(4,3,-5).设n=(x2,y2,z2)是平面ACD'的法向量, 则{n ·AC⃗⃗⃗⃗⃗ =0,n ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x 2=0,3x 2+y 2+3z 2=0,所以可取n=(0,-3,1). 于是cos <m,n >=m ·n |m ||n |=√50×√10=-7√525.sin <m,n >=2√9525.因此二面角B-D'A-C 的正弦值是2√9525.26.(2016·山东·理T17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O'的直径,FB 是圆台的一条母线.(1)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC;(2)已知EF=FB=12AC=2√3,AB=BC ,求二面角F-BC-A 的余弦值.【解析】(1)证明设FC 中点为I,连接GI,HI. 在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF. 又EF ∥OB,所以GI ∥OB.在△CFB 中,因为H 是FB 的中点,所以HI ∥BC. 又HI ∩GI=I,所以平面GHI ∥平面ABC. 因为GH ⊂平面GHI,所以GH ∥平面ABC.(2)解连接OO',则OO'⊥平面ABC.又AB=BC,且AC 是圆O 的直径,所以BO ⊥AC.以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B (0,2√3,0),C (-2√3,0,0). 过点F 作FM 垂直OB 于点M,所以FM=√FB 2-BM 2=3,可得F (0,√3,3). 故BC⃗⃗⃗⃗⃗ =(-2√3,-2√3,0),BF ⃗⃗⃗⃗⃗ =(0,-√3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由{m ·BC ⃗⃗⃗⃗⃗ =0,m ·BF ⃗⃗⃗⃗⃗ =0,可得{-2√3x -2√3y =0,-√3y +3z =0.可得平面BCF 的一个法向量m =(-1,1,√33). 因为平面ABC 的一个法向量n =(0,0,1), 所以cos <m,n >=m ·n|m |·|n |=√77.所以二面角F-BC-A 的余弦值为√77.27.(2016·浙江·理T17)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.【解析】(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形. 取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,√3),A(-1,-3,0),E(12,0,√32),F(-12,0,√32).因此,AC ⃗⃗⃗⃗⃗ =(0,3,0),AK ⃗⃗⃗⃗⃗ =(1,3,√3),AB⃗⃗⃗⃗⃗ =(2,3,0). 设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由{AC ⃗⃗⃗⃗⃗·m =0,AK ⃗⃗⃗⃗⃗ ·m =0得{3y 1=0,x 1+3y 1+√3z 1=0,取m =(√3,0,-1);由{AB ⃗⃗⃗⃗⃗·n =0,AK ⃗⃗⃗⃗⃗ ·n =0得{2x 2+3y 2=0,x 2+3y 2+√3z 2=0,取n =(3,-2,√3). 于是,cos <m,n >=m ·n |m |·|n |=√34.所以,二面角B-AD-F 的平面角的余弦值为√34.28.(2016·全国3·理T19)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点. (1)证明:MN ∥平面PAB;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明由已知得AM=23AD=2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC,故TN AM,四边形AMNT 为平行四边形,于是MN ∥AT. 因为AT ⊂平面PAB,MN ⊄平面PAB, 所以MN ∥平面PAB.(2)解取BC 的中点E,连接AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD, 且AE=√AB 2-BE 2=√AB 2-(BC2)2=√5.以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向, 建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2).设n =(x ,y ,z )为平面PMN 的法向量, 则{n ·PM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0,可取n =(0,2,1).于是|cos <n,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗⃗||n ||AN ⃗⃗⃗⃗⃗⃗⃗ |=8√525. 29.(2015·全国2·理T19)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.【解析】(1)交线围成的正方形EHGF 如图: (2)作EM ⊥AB ,垂足为M , 则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE ⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n=(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗⃗ =0,n ·HE ⃗⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF⃗⃗⃗⃗⃗ =(-10,4,8), 故|cos <n,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗⃗||n ||AF ⃗⃗⃗⃗⃗⃗ |=4√515.所以AF 与平面EHGF 所成角的正弦值为4√515.30.(2015·上海·理T19)如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E ,F 分别是棱AB ,BC 的中点.证明A 1,C 1,F ,E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.【解析】如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1),C 1(0,2,1),E (2,1,0),F (1,2,0),C (0,2,0),D 1(0,0,1).因为A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,2,0),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 所以A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,因此直线A 1C 1与EF 共面, 即A 1,C 1,F ,E 四点共面.设平面A 1C 1FE 的法向量为n =(u ,v ,w ), 则n ⊥EF ⃗⃗⃗⃗⃗ ,n ⊥FC 1⃗⃗⃗⃗⃗⃗⃗ ,又EF ⃗⃗⃗⃗⃗ =(-1,1,0),FC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1), 故{-u +v =0,-u +w =0,解得u=v=w. 取u=1,得平面A 1C 1FE 的一个法向量n =(1,1,1). 又CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),故CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=-√1515.因此直线CD 1与平面A 1C 1FE 所成的角的大小为arcsin √1515.31.(2015·北京·理T17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O 为EF 的中点. (1)求证:AO ⊥BE;(2)求二面角F-AE-B 的余弦值; (3)若BE ⊥平面AOC,求a 的值.【解析】(1)证明因为△AEF 是等边三角形,O 为EF 的中点, 所以AO ⊥EF.又因为平面AEF ⊥平面EFCB,AO ⊂平面AEF, 所以AO ⊥平面EFCB,所以AO ⊥BE. (2)解取BC 中点G,连接OG. 由题设知EFCB 是等腰梯形, 所以OG ⊥EF.由(1)知AO ⊥平面EFCB, 又OG ⊂平面EFCB,所以OA ⊥OG.如图建立空间直角坐标系O-xyz ,则E (a ,0,0),A (0,0,√3a ), B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE ⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0). 设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-ax +√3az =0,(a -2)x +√3(a -2)y =0.令z=1,则x=√3,y=-1. 于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0). 所以cos <n,p >=n ·p |n ||p |=-√55.由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55. (3)解因为BE ⊥平面AOC , 所以BE ⊥OC ,即BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0. 因为BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2. 由BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43. 32.(2015·浙江·理T17)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD-B 1的平面角的余弦值.【解析】(1)证明设E 为BC 的中点,由题意得A 1E ⊥平面ABC , 所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A , 所以A 1AED 为平行四边形.故A 1D ∥AE. 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.(2)解以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E-xyz ,如图所示. 由题意知各点坐标如下:A 1(0,0,√14),B (0,√2,0),D (-√2,0,√14),B 1(-√2,√2,√14).因此A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√14), BD ⃗⃗⃗⃗⃗⃗ =(-√2,-√2,√14),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,√2,0).。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分
(1)f(x)存在唯一的极值点;
(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
49.(2019·江苏,19,16 分,难度)设函数 f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f'(x)的零点均在集合{-3,1,3}中,求 f(x)的极小值;
3
38.(2015·全国 1·文 T14)已知函数 f(x)=ax +x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a= .
2
39.(2015·全国 2·文 T16)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax +(a+2)x+1 相切,则 a= .
x
1
40.(2015·陕西·理 T15)设曲线 y=e 在点(0,1)处的切线与曲线 y=x (x>0)上点 P 处的切线垂直,则 P 的坐
T13) 已 知 函 数
y=f(x) 的 图 象 是 折 线 段
ABC, 其 中
A(0,0),B
1 2
,5
,C(1,0). 函 数
y=xf(x)(0≤x≤1)的图象与 x 轴围成的图形的面积为________________.
44.(2012·全国·文 T13)曲线 y=x(3ln x+1)在点(1,1)处的切线方程为 .
34.(2017·天津,文 10)已知 a∈R,设函数 f(x)=ax-ln x 的图象在点(1,f(1))处的切线为 l,则 l 在 y 轴上的
截距为 .
10年(2010-2019)高考数学真题分类练习与讲解---第二十九讲 曲线与方程
连结
DF1.已知
DF1=
5 2
.
(1)求椭圆 C 的标准方程;
(2)求点 的坐标.
1/8
(4. 2019 全国 III 理 21(1))已知曲线 :C y= x2 ,D 为直线 y= − 1 上的动点,过 D 作 C
2
2
的两条切线,切点分别为 ,A B. (1)证明:直线 AB 过定点:
(2)若以 , E(0 5 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 ADBE 2
xOy
中,椭圆
C:
x2 a2
+
y2 b2
= 1(a
>
b
>
0)
的焦
点为 F(1 –1、0),F(2 1,0).过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2:(x −1)2 + y2 = 4a2
交于点 A,与椭圆 C 交于点 D.连结 AF1并延长交圆 F2于点 B,连结 BF2交椭圆 C 于点 E,
5
.
5
(Ⅰ)求椭圆的方程;
(Ⅱ)设点 P 在椭圆上,且异于椭圆的上、下顶点,点 M 为直线 PB 与 x 轴的交点,点 N
在 y 轴的负半轴上.若| ON |=| OF |(O 为原点),且OP ⊥ MN ,求直线 PB 的斜率.
解答题
2010-2018 年
.(1 2018 江苏)如图,在平面直角坐标系 xOy 中,椭圆C 过点( 3, 1),焦点 2
率的取值范围.
.5 (2016 年全国 II)已知椭圆 E : x2 + y2 =1的焦点在 x 轴上, A 是 E 的左顶点,斜率为 t3 k(k > 0) 的直线交 E 于 A, M 两点,点 N 在 E 上, MA ⊥ NA . (Ⅰ)当t = 4,| AM |=| AN | 时,求 ∆AMN 的面积; (Ⅱ)当2 AM = AN 时,求k 的取值范围.
十年真题(2010_2019)高考数学真题分类汇编专题10平面解析几何选择填空题文(含解析)
∪[4,+∞) 【解答】解:假设椭圆的焦点在 x 轴上,则 0<m<3 时,
C.(0,1]∪[4,+∞) D.(0, ]
设椭圆的方程为:
(a>b>0),设 A(﹣a,0),B(a,0),M(x,y),y>0,
则 a2﹣x2
,
∠MAB=α,∠MBA=β,∠AMB=γ,tanα
,tanβ
,
则 tanγ = tan[π ﹣ ( α+β ) ] = ﹣ tan ( α+β )
,
∴e
.
故选:D. 2.【2019 年新课标 1 文科 12】已知椭圆 C 的焦点为 F1(﹣1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则 C 的方程为( )
A. y2=1
B.
1
C.
1
D.
1
【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|, 又|AB|=|BF1|,∴|BF1|=3|BF2|,
∴△APF 的面积 S 丨 AP 丨×丨 PF 丨 ,
3
同理当 y<0 时,则△APF 的面积 S , 故选:D.
5.【2017 年新课标 1 文科 12】设 A,B 是椭圆 C:
1 长轴的两个端点,若 C 上存在点 M 满足∠AMB
=120°,则 m 的取值范围是(
)
A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,
点 A 的坐标是(1,3),则△APF 的面积为(
)
A.
B.
C.
D.
【解答】解:由双曲线 C:x2
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版): 复数
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
1
42.(2014·全国 1·文 T3)设 z=1+ +i,则|z|=( )
1
√2
√3
A.2
B. 2
C. 2
D.2
43.(2013·全国 1·理 T2)若复数 z 满足(3-4i)z=|4+3i|,则 z 的虚部为( )
A.-4
4
B.-5
4
C.4
D.√2
1+2i
8.(2018·全国 2·理 T1) =( )
1-2i
4
A.-5
−
3
5i
4
B.-5
+
3
5i
3
C.-5
−
4
5i
3
D.-5
+
4
5i
9.(2018·全国 2·文 T1)i(2+3i)=( )
A.3-2i
B.3+2i
1
C.-3-2i
D.-3+2i
10.(2018·全国 3·理 T2 文 T2)(1+i)(2-i)=( )
A.√3
B.√5
C.3
D.5
4.(2019·全国 2·文 T2)设 z=i(2+i),则 =( )
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
5.(2019·全国 1·理 T2)设复数 z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1
B.(x-1)2+y2=1
2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)
17.(2016 年全国 I)设 (1 i)x 1 yi ,其中 x, y 是实数,则 x yi =
A.1
B. 2
C. 3
D.2
【答案】B. 18.(2016 年全国 II)已知 z (m 3) (m 1)i 在复平面内对应的点在第四象限,则实数 m
的取值范围是
A. 3,1
B.第二象限
C.第三象限
D.第四象限
【答案】B.
23.(2015
山东)若复数
z
z
满足
1i
i
,其中 i
为虚数单位,则
z
=
A.1 i
B.1 i
C. 1 i
D. 1 i
【答案】A.
24.(2015 四川)设 i 是虚数单位,则复数 i3 2 = i
A. i
B. 3i
C. i
D. 3i
57.(2011 山东)复数 z = 2 i ( i 为虚数单位)在复平面内对应的点所在象限为 2i
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D.
58.(2011 安徽)设 i 是虚数单位,复数 ai 为纯虚数,则实数 a 为 i
A.2
B. 2
C.
D.
B. 1,3
C. 1 , +
D. - , 3
【答案】A.
19.(2016 年全国 III)若 z 1 2i ,则 4i zz 1
A.1
B. 1
C.i
D. i
【答案】C.
20.(2015
新课标
1)设复数
z
1
满足
十年(2010-2019年)高考数学真题分类汇编:专题18 坐标系与参数方程 (含答案解析)
十年(2010-2019年)高考数学真题分类汇编专题18坐标系与参数方程1.(2018·北京·理T10)在极坐标系中,直线ρcos θ+ρsin θ=a(a>0)与圆ρ=2cos θ相切,则a=___________. 【答案】√2 +1【解析】由题意,可得直线的直角坐标方程为x+y=a(a>0),圆的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1. 由直线与圆相切,可知√1+1=1,即|1-a|=√2,解得a=1±√2.∵a>0,∴a=√2+1. 2.(2019·全国1·理T22文T22)在直角坐标系xOy 中,曲线C 的参数方程为{x =1-t 21+t 2,y =4t 1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+√3 ρsin θ+11=0. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解析】(1)因为-1<1-t 21+t2≤1,且x2+(y 2)2=(1-t 21+t2)2+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x≠-1).l 的直角坐标方程为2x+√3y+11=0.(2)由(1)可设C 的参数方程为{x =cosα,y =2sinα(α为参数,-π<α<π). C 上的点到l的距离为√3sinα+11√7=4cos (α-π3)+11√7.当α=-2π时,4cos (α-π)+11取得最小值7,故C 上的点到l 距离的最小值为√7.3.(2019·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在极坐标系中,O 为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l 过点A(4,0)且与OM 垂直,垂足为P. (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【解析】(1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2√3.由已知得|OP|=|OA|cos π3=2.设Q(ρ,θ)为l 上除P 的任意一点.在Rt △OPQ 中,ρcos θ-π3=|OP|=2. 经检验,点P 2,π3在曲线ρcos θ-π3=2上. 所以,l 的极坐标方程为ρcos θ-π3=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是π4,π2.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈π4,π2.4.(2019·全国3·理T22文T22)[选修4—4:坐标系与参数方程]如图,在极坐标系Ox中,A(2,0),B(√2,π4),C(√2,3π4),D(2,π),弧AB⏜,BC⏜,CD⏜所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M1是弧AB⏜,曲线M2是弧BC⏜,曲线M3是弧CD⏜.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=√3【解析】(1)由题设可得,弧所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.所以M 1的极坐标方程为ρ=2cos θ0≤θ≤,M2的极坐标方程为ρ=2sin θ≤θ≤,M3的极坐标方程为ρ=-2cos θ≤θ≤π.(2)设P(ρ,θ),由题设及(1)知若0≤θ≤,则2cos θ=,解得θ=;若≤θ≤,则2sin θ=,解得θ=或θ=;若≤θ≤π,则-2cos θ=,解得θ=.综上,P的极坐标为.5.(2018·全国1·文T理22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解析】(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C 1是过点B(0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以√k +1=2,故k=-43或k=0.经检验,当k=0时,l 1与C 2没有公共点;当k=-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以|k+2|√k +1=2,故k=0或k=43,经检验,当k=0时,l 1与C 2没有公共点;当k=43时,l 2与C 2没有公共点. 综上,所求C 1的方程为y=-43|x|+2.6.(2018·全国2·理T22文T22)[选修4—4:坐标系与参数方程] 在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 【解析】(1)曲线C 的直角坐标方程为=1.当cos α≠0时,l 的直角坐标方程为y=tan α·x+2-tan α, 当cos α=0时,l 的直角坐标方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 (1+3cos 2α)t 2+4(2cos α+sin α)t-8=0,①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-,故2cos α+sin α=0,于是直线l 的斜率k=tan α=-2.7.(2018·全国3·文T 理22)[选修4—4:坐标系与参数方程] 在平面直角坐标系xOy 中,☉O 的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l与☉O 交于A,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)☉O的直角坐标方程为x2+y2=1.当α=时,l与☉O交于两点.当α≠时,记tan α=k,则l的方程为y=kx-,l与☉O交于两点当且仅当<1,解得k<-1或k>1,即α∈或α∈.综上,α的取值范围是.(2)l的参数方程为t为参数,<α<.设A,B,P对应的参数分别为t A,t B,t P,则t P=,且t A,t B满足t2-2tsin α+1=0.于是t A+t B=2sin α,t P=sin α.又点P的坐标(x,y)满足所以点P的轨迹的参数方程是α为参数,<α<.8.(2017·全国1·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解析】(1)曲线C的普通方程为+y2=1.当a=-1时,直线l的普通方程为x+4y-3=0.由解得从而C与l的交点坐标为(3,0),.(2)直线l的普通方程为x+4y-a-4=0,故C上的点(3cos θ,sin θ)到l的距离为d=.当a≥-4时,d的最大值为.由题设得,所以a=8;当a<-4时,d的最大值为.由题设得,所以a=-16.综上,a=8或a=-16.9.(2017·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;),点B在曲线C2上,求△OAB面积的最(2)设点A的极坐标为(2,π3大值.【解析】(1)设P的极坐标为(ρ,θ)(ρ>0),M的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP|=ρ,|OM|=ρ1=.由|OM|·|OP|=16得C2的极坐标方程ρ=4cos θ(ρ>0).因此C2的直角坐标方程为(x-2)2+y2=4(x≠0).(2)设点B的极坐标为(ρB,α)(ρB>0).由题设知|OA|=2,ρB=4cos α,于是△OAB面积S=|OA|·ρB·sin∠AOB=4cos α·=2≤2+.当α=-时,S取得最大值2+.所以△OAB面积的最大值为2+.10.(2017·全国3·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)- √2 =0,M为l3与C的交点,求M的极径.【解析】(1)消去参数t得l1的普通方程l1:y=k(x-2);消去参数m得l2的普通方程l2:y=(x+2).设P(x,y),由题设得消去k 得x 2-y 2=4(y≠0).所以C 的普通方程为x 2-y 2=4(y≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π). 联立得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-,从而cos 2θ=,sin 2θ=. 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为.11.(2017·江苏·T21)在平面直角坐标系xOy 中,已知直 线l 的参数方程为(t 为参数),曲线C 的参数方程为(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【解析】直线l 的普通方程为x-2y+8=0. 因为点P 在曲线C 上,设P(2s 2,2s),从而点P 到直线l 的距离d=.当s=时,d min =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值.12.(2016·全国1·理T23文T23)在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a. 【解析】(1)消去参数t 得到C 1的普通方程x 2+(y-1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.13.(2016·全国2·理T23文T23)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.【解析】(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|==.由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.14.(2016·全国3·理T23文T23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解析】(1)C1的普通方程为+y2=1.C2的直角坐标方程为x+y-4=0.(2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)=.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.15.(2015·全国1·理T23文T23)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(ρ∈R),设C2与C3的交点为M,N,(2)若直线C3的极坐标方程为θ=π4求△C2MN的面积.【解析】(1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.16.(2015·全国2·理T23文T23)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【解析】(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4.故当α=时,|AB|取得最大值,最大值为4.17.(2015·陕西·理T23文T23)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=2sin θ.(1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 【解析】(1)由ρ=2sin θ,得ρ2=2ρsin θ,从而有x 2+y 2=2y,所以x 2+(y-)2=3.(2)设P,又C(0,),则|PC|=,故当t=0时,|PC|取得最小值, 此时,点P 的直角坐标为(3,0).18.(2015·湖南·理T16文T16)已知直线l:(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5, √3 ),直线l 与曲线C 的交点为A,B,求|MA|·|MB|的值. 【解析】(1)ρ=2cos θ等价于ρ2=2ρcos θ. ①将ρ2=x2+y2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x2+y2-2x=0.② (2)将代入②,得t 2+5t+18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA|·|MB|=|t 1t 2|=18.19.(2014·全国1·理T23文T23)已知曲线C:=1,直线l:(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值. 【解析】(1)曲线C 的参数方程为{x =2cosθ,y =3sinθ(θ为参数).直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为d=√55|4cos θ+3sin θ-6|,则|PA|=d sin30°=2√55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为22√55. 当sin(θ+α)=1时,|PA|取得最小值,最小值为2√55.20.(2014·全国2·理T23文T23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈[0,π2]. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标. 【解析】(1)C 的普通方程为(x-1)2+y2=1(0≤y≤1).可得C 的参数方程为(t 为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C 是以C(1,0)为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,tan t=,t=.故D 的直角坐标为,即.21.(2013·全国2·理T23文T23)已知动点P,Q 都在曲线 C:(t 为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【解析】(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为(α为参数,0<α<2π).(2)M 点到坐标原点的距离 d=(0<α<2π).当α=π时,d=0,故M 的轨迹过坐标原点.22.(2013·全国1·理T23文T23)已知曲线C1的参数方程为(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 【解析】(1)将消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C 1:x 2+y 2-8x-10y+16=0.将代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsinθ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C2的普通方程为x2+y2-2y=0.由解得所以C1与C2交点的极坐标分别为.23.(2013·江苏·T21)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【解析】因为直线l的参数方程为(t为参数),由x=t+1得t=x-1,代入y=2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),.24.(2012·全国·理T23文T23)已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解析】(1)由已知可得A,B,C,D,即A(1,),B(-,1),C(-1,-),D(,-1).(2)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].25.(2011·全国·理T23文T23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解析】(1)设P(x,y),则由条件知M.由于M点在C1上,所以即从而C2的参数方程为(α为参数).(2)曲线C1的极坐标方程为ρ=4sin θ,曲线C2的极坐标方程为ρ=8sin θ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2-ρ1|=2.26.(2010·全国·理T23文T23)已知直线C1:(t为参数),圆C2:(θ为参数).(1)当α=时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.【解析】(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.联立方程组解得C1与C2的交点坐标为(1,0),.(2)C1的普通方程为xsin α-ycos α-sin α=0.A点坐标为(sin2α,-cos αsin α),因此当α变化时,P点轨迹的参数方程为(α为参数). P点轨迹的普通方程为+y2=.故P点轨迹是圆心为,半径为的圆.。
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
十年高考真题分类汇编(2010—2019)数学(20210417120444)
十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。
1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。
泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。
所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。
的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。
理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线答案
专题九 解析几何第二十八讲 抛物线答案部分2019年1.D 解析 由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D . 2.解析(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. 3.解析 设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x ⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =uu u r uu r可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =.4.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或 2010-2018年1.D 【解析】通解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,解得1=x 或4=x ,所以12=⎧⎨=⎩x y ,或44=⎧⎨=⎩x y ,不妨设(1,2)M ,(4,4)N ,易知(1,0)F ,所以(0,2)=u u u u r FM ,(3,4)=u u u rFN ,所以8⋅=u u u u r u u u rFM FN .故选D .优解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,设11(,)M x y ,22(,)N x y ,则10>y ,20>y ,根据根与系数的关系,得125+=x x ,124=x x .易知(1,0)F ,所以11(1,)=-u u u u r FM x y ,22(1,)=-u u u rFN x y ,所以12121212(1)(1)()1⋅=--+=-+++u u u u r u u u rFM FN x x y y x x x x 45188=-++=.故选D .2.A 【解析】由已知1l 垂直于x 轴是不符合题意,所以1l 的斜率存在设为1k ,2l 的斜率为2k ,由题意有121k k ⋅=-,设11(,)A x y ,22(,)B x y ,33(,)D x y ,44(,)E x y 此时直线1l 方程为1(1)y k x =-,取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=同理得 22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++=≥当且仅当121k k =-=(或1-)时,取得等号.3.C 【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则22,22p FP pt pt ⎛⎫=- ⎪⎝⎭u u u r ,∵13FM FP =u u u u r u u u r ,∴22,2362,3p p p x t pt y ⎧-=-⎪⎪⎨⎪=⎪⎩,∴22,332,3p p x t pt y ⎧=+⎪⎪⎨⎪=⎪⎩∴22112122OM t k t t t ==≤=++∴max ()2OM k =,故选C . 4.B 【解析】由题意,不妨设抛物线方程为22(0)y px p =>,由||AB =,||DE =4(A p,(2pD -,设O 为坐标原点,由||||OA OD =,得2216854p p +=+,得4p =,所以选B . 5.A 【解析】如图,11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A . 6.D 【解析】当直线l 的斜率不存在时,这样的直线l 恰好有2条,即5x r =±,所以05r <<;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设11(,)A x y ,22(,)B x y ,00(,)M x y ,则12012022x x x y y y +=⎧⎨+=⎩.又21122244y x y x ⎧=⎨=⎩,两式相减得121212()()4()y y y y x x +-=-,121212042AB y y k x x y y y -===-+.设圆心为(5,0)C ,则005CM y k x =-,因为直线l 与圆相切,所以000215y y x ⋅=--, 解得03x =,于是2204y r =-,2r >,又2004y x <,即2412r -<,所以04r <<,又05r <<,2r >所以24r <<,选D .7.C 【解析】过点Q 作QQ l '⊥交l 于点Q ',因为4PF FQ =u u u r u u u r,所以||:||3:4PQ PF =,又焦点F 到准线l 的距离为4,所以||||3QF QQ '==.故选C .8.D 【解析】易知抛物线中32p =,焦点3(,0)4F ,直线AB 的斜率k =故直线AB 的方程为3)4y x =-,代人抛物线方程23y x =,整理得22190216x x -+=. 设1122(,),(,)A x y B x y ,则12212x x +=,由物线的定义可得弦长 12||12AB x x p =++=,结合图象可得O 到直线AB 的距离3sin 3028p d ==o , 所以OAB ∆的面积19||24S AB d =⋅=. 9.D 【解析】∵(2,3)A -在抛物线22y px =的准线上,∴22p-=-.∴4p =, ∴28y x =,设直线AB 的方程为(3)2x k y =--①,将①与28y x =联立, 得2824160y ky k -++=②,则△=2(8)4(2416)0k k --+=, 即22320k k --=,解得2k =或12k =-(舍去), 将2k =代入①②解得8,8x y ==,即(8,8)B , 又(2,0)F ,∴43BF k =,故选D .10.C 【解析】∵OF =,由抛物线的定义可得P 点的坐标(±,∴POF ∆的面积为1122P OF y ==.11.C 【解析】依题意可得AF 所在直线方程为12xy +=代入24x y =得y =,又||:||(1):(1)1:FM MN y y =-+=12.C 【解析】设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=13.D 【解析】因为双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2,所以2.cb a=⇒=又渐近线方程为0,bx ay ±=所以双曲线1C 的渐近线0.y ±=而抛物22:2(0)C x py p =>的焦点坐标为(0,),2p||28p p =⇒=.故选D . 14.C 【解析】设抛物线的方程为22y px =,易知||212AB p ==,即6p =,∵点P 在准线上,∴P 到AB 的距离为6p =,所以ABP ∆面积为36,故选C . 15.2【解析】解法一 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为(1)y k x =-(0)k ≠,由2(1)4y k x y x=-⎧⎨=⎩,消去y 得22(1)4k x x -=, 即2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =.由2(1)4y k x y x=-⎧⎨=⎩,消去x 得214(1)y y k =+, 即2440y y k --=,则124y y k+=,124y y =-, 由90AMB ∠=o,得1122(1,1)(1,1)MA MB x y x y ⋅=+-⋅+-u u u r u u u r1212121241()10x x x x y y y y =++++-++=,将212224k x x k ++=,121x x =与124y y k+=,124y y =-代入,得2k =. 解法二 设抛物线的焦点为F ,11(,)A x y ,22(,)B x y ,则21122244y x y x ⎧=⎨=⎩,所以2212124()y y x x -=-,则1212124y y k x x y y -==-+,取AB 的中点00(,)M x y ',分别过点A ,B 做准线1x =-的垂线,垂足分别为A ',B ',又90MB ∠=o,点M 在准线1x =-上,所以111||||(||||)(||||)222MM AB AF BF AA BB '''==+=+. 又M '为AB 的中点,所以MM '平行于x 轴,且01y =,所以122y y +=, 所以2k =.16.6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==, 故336FN FM NM =+=+=.17.22y px =的准线方程为2p x =-,又0p >,所以2px =-必经过双曲线221x y -=的左焦点(,所以2p-=,p = 18.1BC CD =,结合抛物线的定义得点D 为抛物线的焦点,所以||AD p a ==,(,0)2p D ,(,)2pF b b +,将点F 的坐标代入抛物线的方程得222()22p b p b a ab =+=+,变形得22()10b b a a--=,解得1b a =+1b a =,所以1b a=19.2,1x =-【解析】1,22p p ==;准线12px =-=-.20.62【解析】建立直角坐标系,使拱桥的顶点O 的坐标为(0,0),设抛物线的方程为22x py =-,l 与抛物线的交点为A 、B ,根据题意知(2,2)A --,(2,2)B - 则有()222-⨯=-a ,∴21-=a∴抛物线的解析式为221x y -= 水位下降1米,则3y =-,此时有6=x 或6-=x∴此时水面宽为62米.21.4【解析】利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B22.【解析】(1)因为抛物线22y px =经过点(1,2)P ,所以42p =,解得2p =,所以抛物线的方程为24y x =. 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为1y kx =+(0k ≠).由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得0k <或01k <<. 又PA ,PB 与y 轴相交,故直线l 不过点(1,2)-.从而3k ≠-. 所以直线l 斜率的取值范围是(,3)(3,0)(0,1)-∞--U U . (2)设11(,)A x y ,22(,)B x y . 由(1)知12224k x x k -+=-,1221x x k=. 直线PA 的方程为1122(1)1y y x x --=--. 令0x =,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以1212121212112()1111111(1)(1)1M N x x x x x x y y k x k x k x x λμ---++=+=+=⋅-----2222241=211k k k k k -+=⋅-. 所以11λμ+为定值.23.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--, 即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.24.【解析】(1)设00(,)P x y ,211(,)4y A y ,222(,)4y B y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程221014()422y x y y ++=⋅即2210100280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(2)由(1)可知1202120028y y y y y x y +=⎧⎨=-⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB ∆的面积32212001||||4)2PABS PM y y y x ∆=⋅-=-. 因为220014y x +=0(0)x <,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB ∆面积的取值范围是4. 25.【解析】(1)设()A x ,y 11,()B x ,y 22,l :2x ym =+由222x my y x=+⎧⎨=⎩可得y my --=2240,则y y =-124 又y x 211=2,y x 222=2,故()y y x x 21212=4=4因此OA 的斜率与OB 的斜率之积为y y x x ⋅1212-4==-14,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得y y m 12+=2,()x x m y y m +21212+=++4=24故圆心M 的坐标为()m m 2+2,,圆M 的半径r =由于圆M 过点(4,2)P -,因此0AP BP =u u u r u u u rg ,故()()()()121244++2+2=0x x y y -- 即()()x x x x y y y y -++++=121212124+2200由(1)可得y y 12=-4,x x 12=4. 所以2m m --=210,解得m =1或m =-12. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M的半径为,圆M 的方程为()()x y -+-=223110当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=. 26.【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-。
十年(2011-2020)高考真题数学分项详解(全国版)专题28抛物线(原卷版..
专题28抛物线年份题号考点考查内容2011理20抛物线直线与抛物线位置关系,抛物线几何性质的应用文9抛物线直线与抛物线位置关系,抛物线几何性质的应用2012理20圆,抛物线圆的方程,抛物线的定义、直线与抛物线的位置关系文20圆,抛物线圆的方程,抛物线的定义、标准方程及其几何性质2013卷1文8抛物线抛物线的定义及几何性质卷2理11圆,抛物线圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式文10抛物线抛物线的定义,直线与抛物线的位置关系2014卷1理10抛物线抛物线的定义、标准方程文10抛物线抛物线的定义、标准方程卷2理10抛物线抛物线的定义、标准方程,抛物线焦点弦长的计算文10抛物线抛物线的定义、标准方程,抛物线焦点弦长的计算2015卷1理20抛物线直线与抛物线的位置关系,抛物线存在问题的解法2016卷1理10圆,抛物线圆的几何性质,抛物线的标准方程及其几何性质,直线与抛物线的位置关系文20抛物线直线与抛物线的位置关系卷2文5抛物线抛物线的几何性质,反比例函数的性质卷3文理20抛物线抛物线定义与几何性质,直线与抛物线位置关系,轨迹方程求法2017卷1理10抛物线抛物线定义与几何性质,直线与抛物线位置关系文20抛物线抛物线的几何性质,直线与抛物线位置关系卷2理16抛物线抛物线的几何性质,直线与抛物线位置关系文12抛物线抛物线的几何性质,直线与抛物线位置关系,点到直线距离公式2018卷1理8抛物线抛物线的几何性质,直线与抛物线的位置关系文20抛物线直线与抛物线的位置关系卷2理19文20抛物线抛物线的几何性质,直线与抛物线的位置关系,圆的方程的求法卷理16抛物线抛物线的几何性质,直线与抛物线的位置关系2019大数据分析考点95抛物线的定义及标准方程1.(2016全国II文)设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=()(A)12(B)1(C)32(D)22.(2012山东文理)已知双曲线1C:22221(0,0)x y a ba b-=>>的离心率为2.若抛物线22:2(0)C x py p=>的焦点到双曲线1C的渐近线的距离为2,则抛物线2C的方程为()A.2x y=B.2x y=C.28x y=D.216x y=考点96抛物线的几何性质3.【2020全国Ⅰ理4】已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y轴的距离为9,则p =()A .2B .3C .6D .94.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线()A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP5.【2020天津7】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为()A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=6.【2019全国Ⅱ文】若抛物线y 2=2px (p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=A .2B .3C .4D .87.(2016全国I 理)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知||AB =,||DE =C 的焦点到准线的距离为A .2B .4C .6D .88.【2016四川文科】抛物线24y x =的焦点坐标是()(A)(0,2)(B)(0,1)(C)(2,0)(D)(1,0)9.(2016四川理)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF上的点,且PM =2MF ,则直线OM 的斜率的最大值为A .3B .23C .2D .110.(2015陕西文)已知抛物线22y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐标为A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)11.(2013新课标1文理)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为A .2B .C .D .412.(2015陕西理)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =.13.(2014湖南文理)如图,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则.14.(2013北京文理)若抛物线22y px =的焦点坐标为(1,0),则p =,准线方程为.15.(2012陕西文理)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.考点97直线与抛物线的位置关系16.(2020全国Ⅲ文7理5)设O 为坐标原点,直线2x =与抛物线()2:20C y px p =>交于,D E 两点,若OD OE ⊥,则C 的焦点坐标为()A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .()1,0D .()2,017.(2018全国Ⅰ理8)设抛物线x y C 4:2=的焦点为F ,过点()2,0-且斜率为32的直线与C 交于,M N 两点,则FM FN ⋅=()A .5B .6C .7D .818.(2017新课标Ⅰ理)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为()A .16B .14C .12D .1019.(2017全国Ⅱ文)过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .22C .23D .3320.(2015浙江理)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF --B .2211BF AF --C .11BF AF ++D .2211BF AF ++21.(2015四川文理)设直线l 与抛物线24y x =相交于,A B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是A .()13,B .()14,C .()23,D .()24,22.(2014新课标1文理)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .223.(2014新课标2文理)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为A 334B 938C .6332D .9424.(2014辽宁文理)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为()A .12B .23C .34D .4325.(2013江西文理)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .2B .1:2C .1:D .1:326.(2011新课标文理)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .4827.(2020山东)斜率为的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.28.【2020山东13】2:4C y x =的焦点,且与C 交于A ,B 两点,则AB =__________.29.【2019北京文】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.30.【2018全国3理16】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.31.【2018北京文】已知直线l 过点(1,0)且垂直于轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.32.(2017新课标Ⅱ理)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN =.33.【2019全国Ⅰ理】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若3AP PB =,求|AB|.34.【2018全国I 文20】(本小题满分12分)设抛物线2:2C y x =,点()()2,0,2,0A B -,过点A 的直线l 与C 交于,M N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.35.(2018全国II 文20理19)(本小题满分12分)设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A ,B 两点.8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.36.(2017新课标Ⅰ文)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.37.(2017新课标Ⅲ理)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.38.(2017北京理)已知抛物线C :22y px =过点(1,1)P .过点1(0,2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A 为线段BM 的中点.39.(2015浙江文)如图,已知抛物线1C :214y x =,圆2C :22(1)1x y +-=,过点(,0)(>0)P t t 作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,,A B 为切点.(Ⅰ)求点,A B 的坐标;(Ⅱ)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.40.(2015福建文)已知点F 为抛物线:E 22y px =(0p >)的焦点,点()2,m A 在抛物线E 上,且3ΑF =.(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点()1,0G -,延长ΑF 交抛物线E 于点Β,证明:以点F 为圆心且与直线GΑ相切的圆,必与直线GΒ相切.41.(2014陕西文理)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b +=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2.(Ⅰ)求,a b 的值;(Ⅱ)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若APAQ ⊥,求直线l 的方程.42.(2012新课标文理)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两点.已知| AB | = 4 ,2 | DE | = 2 5 ,则C 的焦点到准线的距离为
.A 2
.B 4
.C 6
.D 8
.(5 2015 浙江)如图,设抛物线 y2 = 4x 的焦点为 F ,不经过焦点的直线上有三个不同的
点 A, B,C ,其中点 A, B 在抛物线上,点C 在 y 轴上,则∆BCF 与 ∆ACF 的面积之比是
A、 2
、B 2 2
、C 4
、D 8
.( 13 2012
山东)已知双曲线 C1 :
x2 a2
− y2 b2
的离心 率为 =1(a > 0,b > 0)
2.若抛物线
C2 : x2 = 2py(p > 0)的焦点到双曲线C1 的渐近线的距离为2,则抛物线C2 的方程为
.A x2 = 8 3 y 3
.B x2 = 16 3 y 3
2
2
条切线,切点分别为 ,A B. (1)证明:直线 AB 过定点:
(2)若以 , E(0 5 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 2
ADBE 的面积.
一、选择题
2010-2018 年
.1 (2018 全国卷Ⅰ)设抛物线C :y2 = 4x 的焦点为 F ,过点(−2,0) 且斜率为 2 的直线与C 3
交于
M
,
N
两点,则
uuuur FM
⋅
uuur FN
=
.A 5
.B 6
.C 7
.D 8
.(2 2017 新课标Ⅰ)已知 F 为抛物线C :y2 = 4x 的焦点,过 F 作两条互相垂直的直线l1,
l2 ,直线l1与C 交于 A 、B 两点,直线l2 与C 交于 D 、E 两点,则| AB | + | DE | 的最
交于点 M ,与其准线相交于点 N ,则| FM |:| MN |=
. . A 2: 5 B 1:2
.C 1: 5
.D 1:3
.( 12 2012 新课标)等轴双曲线C 的中心在原点,焦点在 x 轴上,C 与抛物线 y2 =16x的
准线交于 A 、 B 两点,| AB |= 4 3 ,则C 的实轴长为
A. 1
B. 2
C. 3
D. 4
2
3
4
3
.( 10 2013 新课标 1)O 为坐标原点,F 为抛物线C : y2 = 4 2x 的焦点,P 为C 上一点,
若| PF |= 4 2 ,则 ∆POF 的面积为( )
A. 2
.B 2 2
.C 2 3
D. 4
.( 11 2013 江西)已知点 A(2,0) ,抛物线C : x2 = 4y 的焦点为 F ,射线 FA 与抛物线C 相
10 年(2010-2019)高考数学真题分类练习与讲解
第二十八讲 抛物线
2019 年
(1. 2019 全国 II 理 8)若抛物线 的焦点是椭圆 y2=2px(p>0) x2 + y2 =1的一个焦点,则 p= 3p p
.A 2
.B 3
.C 4
.D 8
(2. 2019 北京理 18(1))已知抛物线C : x2 = −2 py 经过点(2,-1).求抛物线 C 的方程及其准 线方程;
1/7
小值为 . . A 16 B 14
.C 12
.D 10
.3 (2016 年四川)设O 为坐标原点,P 是以 F 为焦点的抛物线 y2 = 2px( p > 0) 上任意一点,
M 是线段 PF 上的点,且 PM =2 MF ,则直线OM 的斜率的最大值为
A. 3
B. 2
C. 2
.D 1
3
3
2
.4 (2016 年全国 I)以抛物线C 的顶点为圆心的圆交C 于 A ,B 两点,交C 的准线于 D ,E
A.(1,3) B.(1,4)
C. ( 2,3知抛物线C : y2 = 8x 的焦点为 F ,准线为l , P 是l 上一点,Q 是
直线
PF
与
C
的一个焦点,若
uuur FP
=
uuur 4FQ
,则
|
QF
|
=
A. 7
B. 5
2
2
.C 3
.D 2
.(8 2014 新课标 2)设 F 为抛物线 C:y2 = 3x 的焦点,过 F 且倾斜角为 30°的直线交C 于
3.(2019 全国 I 理 19)已知抛物线 :C y2=3x 的焦点为 F,斜率为 3 的直线 l 与 C 的交点 2
为 A,B,与 x 轴的交点为 P.
(1)若 AF + BF = 4,求 l 的方程;
( )若 ,求 . uuur uur 2 AP = 3PB AB
4. (2019 全国 III 理 21)已知曲线 :C y= x2 ,D 为直线 y= − 1 上的动点,过 D 作 C 的两
. BF −1
A
AF −1
. BF 2 −1
B AF 2 −1
. BF +1
C
AF +1
. BF 2 +1
D AF 2 +1
.(6 2015 四川)设直线l 与抛物线 y2 = 4x 相交于 A, B 两点,与圆( x − 5)2 + y2 = r2 (r > 0)
相切于点M ,且M 为线段 AB 的中点.若这样的直线l 恰有 4 条,则r 的取值范围是
线与C 交于 A , B 两点.若 ∠AMB = 90o ,则 k = . ______
.( 16 2017 新课标Ⅱ)已知 F 是抛物线C : y2 = 8x 的焦点,M 是C 上一点,FM 的延长
3/7
线交 y 轴于点 N .若 M 为 FN 的中点,则| FN |=
.
.( 17 2015 陕西)若抛物线 y2 = 2 px( p > 0) 的准线经过双曲线 x2 − y2 =1的一个焦点,则
.C x2 = 8y
.D x2 = 16y
.( 14 2011 新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于 A ,
B 两点,| AB |=12 , P 为C 的准线上一点,则∆ABP 的面积为
.A 18
.B 24
.C 36
.D 48
二、填空题
.15 (2018 全国卷Ⅲ)已知点 M (−1,1) 和抛物线C : y2 = 4x ,过C 的焦点且斜率为 k 的直
A,B 两点,O 为坐标原点,则△OAB 的面积为( )
2/7
.A 3 3 4
.B
93 8
.C
63 32
.D
9 4
.(9 2014 辽宁)已知点 A(−2,3)在抛物线 C: y2 = 2 px 的准线上,过点 A 的直线与 C 在第
一象限相切于点 B,记 C 的焦点为 F,则直线 BF 的斜率为( )