高三数学必修5复习单元检测试题31(含答案)
高中数学必修5测试题附答案.docx
高一数学必修 5 试题一. 选择题 本大题共 10 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.由a 1 1 , d3确定的等差数列a n,当 a n 298 ,序号 n 等于 ()A. 99B. 100C. 96D. 1012.ABC 中,若 a 1, c2, B60 , ABC 的面( )A .1B .3 D.3223. 在数列 { a n } 中, a 1 =1, a n 1a n 2 , a 51 的()A . 99 B. 49C. 102 D. 1014. 已知数列 3 ,3,15 , ⋯, 3(2n 1) , 那么 9 是数列的( )()第12()第13()第14()第15ABCD5. a 1 11 a n1在等比数列中,, q2 ,, 数 n()232A. 3B. 4C. 5D. 66.△ ABC 中, cosA a, △ ABC 一定是( )cos BbA .等腰三角形B .直角三角形C .等腰直角三角形D .等 三角形7. 定函数 yf ( x) 的 象在下列 中,并且 任意a 1 (0,1) ,由关系式 a n 1f (a n ) 得到的数列 { a n } 足 a n 1a n (n N * ) , 函数的 象是( )yyy y1111o1o1o1xo1xxxABCD8. 在ABC 中 , a 80,b 100, A 45 , 此三角形解的情况是()A. 一解B.两解 C. 一解或两解D. 无解9. 在△ ABC 中,如果 sin A :sin B :sin C 2:3: 4 ,那么 cos C 等于()2211A.B. -C. -D. -333410. 一个等比数列 { a n } 的前 n 和 48,前 2n 和 60, 前 3n和()A 、 63B 、108C 、75D 、 8311. 在△ ABC 中,∠ A = 60° ,a = 6 ,b = 4 , 足条件的△ ABC( )(A) 无解 (B) 有解(C)有两解(D)不能确定12. 数列 { a n } 中, a 11, a n2a n(nN) , 2是 个数列的第几()12101a n二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分。
人教版高中数学必修5测试题及答案全套【最新整理】
第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45(B)35(C)920(D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( )(A)1∶2∶3(B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( )(A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式:①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0 (B)1(C)2 (D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________. 9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________. 10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向. 问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数. 2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n (B)a n =4n(C)a n =94(10n -1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( )(A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( )(A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( )(A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +).(1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( )(A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( )(A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( )(A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b - (B)1+-n a b (C)1++n a b (D)2+-n a b5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( )(A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( )(A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4 (B)23 (C)916(D)34.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( )(A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列. 其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=1,a 42=1,a 54=5.(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( )(A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( )(A)100 (B)-100 (C)200 (D)-200 4.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n (B)122+n n (C)24+n n (D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( )(A)7000 (B)7250 (C)7500 (D)14950 二、填空题6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________.9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( )(A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( )(A)5 (B)10 (C)15 (D)203.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( )(A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是( )5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________. 10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( )(A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( )(A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )(A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( )(A)-2 (B)2 (C)-4 (D)4 5.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )(A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a aa a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元. (1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题 15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q =f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小. 2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( )(A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2 (D)a >b ⇒ac 2>bc 2 2.若-1<α<β<1,则α-β 的取值范围是( )(A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3.设a >2,b >2,则ab 与a +b 的大小关系是( )(A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( )(A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a 5.设1<x <10,则下列不等关系正确的是( )(A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x 二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________. 8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41(D)有最大值212.若a >0,b >0,且a ≠b ,则( )(A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a (B)2a (C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( )(A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )(A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量x x 9+的最小值是________;取到最小值时,x =________.7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明. 12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式.测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( )(A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( )(A){x |x >1,或x <-2}(B){x |-2<x <1}(C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( )(A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a } 4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( )(A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0) 二、填空题6.不等式x 2+x -12<0的解集是________.7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________. 三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B );(2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70 (D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8 (D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )(A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M 二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状. 10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( )(A)A ,B 都在l 上方 (B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方 (D)A 在l 下方,B 在l 上方2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y (C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y (D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种 二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限. 7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________.8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2 (B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 24.设函数f (x )=222xx x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( ) (A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-22 5.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( )(A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________.7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值.” 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}.(1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题 13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0<ba<1(C)ab <2ba + (D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( )(A))31,21( (B))31,21(-(C))31,21(-- (D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( )(A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( )(A)1∶3∶2 (B)1∶2∶3 (C)2∶3∶1 (D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( )(A)31 (B)34 (C)68 (D)70 7.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( )(A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A 点行驶到B 点所用的时间为3s ,则此车的速度介于( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h 二、填空题9.不等式x (x -1)<2的解集为________.10.在△ABC 中,三个内角A ,B ,C 成等差数列,则cos(A +C )的值为________. 11.已知{a n }是公差为-2的等差数列,其前5项的和S 5=0,那么a 1等于________. 12.在△ABC 中,BC =1,角C =120°,cos A =32,则AB =________. 13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥030420,0y x y x y x ,所表示的平面区域的面积是________;变量z =x +3y 的最大值是________.14.如图,n 2(n ≥4)个正数排成n 行n 列方阵,符号a ij (1≤i ≤n ,1≤j ≤n ,i ,j ∈N )表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若a 11=21,a 24=1,a 32=41,则q =________;a ij =________.三、解答题15.已知函数f (x )=x 2+ax +6.(1)当a =5时,解不等式f (x )<0;(2)若不等式f (x )>0的解集为R ,求实数a 的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34cos cos ==a b B A . (1)证明角C =90°; (2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配用煤(吨) 用电(千瓦) 产值(万元) 甲种产品 7 2 8 乙种产品 3 5 1119.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值;(2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式;(2)求证:⋅<++++531111321n a a a a参考答案 第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°,由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B .10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10.所以AB =10.(3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc ,由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R cR b R a >+,即a 2+b 2>c 2.所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0). (2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC .所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ),故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°,即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a . 所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).所以数列{a 2m }是等差数列.故S 10=5a 1+5a 2+2)15(5-⨯×2=35.三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1(-⨯n n ×2=n 2+11n ,∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1(-n n d =50n +2)1(-n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4. 14.∵3a n +1=3a n +2,∴a n +1-a n =32, 由等差数列定义知:数列{a n }是公差为32的等差数列. 记a 1+a 3+a 5+…+a 99=A ,a 2+a 4+a 6+…+a 100=B , 则B =(a 1+d )+(a 3+d )+(a 5+d )+…+(a 99+d )=A +50d =90+3100. 所以S 100=A +B =90+90+3100=21331. 测试五 等比数列一、选择题1.B 2.C 3.A 4.B 5.D 提示:5.当a 1=0时,数列{a n }是等差数列;当a 1≠0时,数列{a n }是等比数列;当a 1>0时,数列{a n }是递增数列;当a 1<0时,数列{a n }是递减数列. 二、填空题6.-3 7.12 8.279 9.216 10.-2 提示:10.分q =1与q ≠1讨论.当q =1时,S n =na 1,又∵2S n =S n +1+S n +2, ∴2na 1=(n +1)a 1+(n +2)a 1, ∴a 1=0(舍).。
高中数学必修五单元测试题全套带答案
章末综合测评(第一章)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,若AB=13,BC=3,∠C=120°,则AC=( )A.1 B.2C.3 D.4【解析】由余弦定理得AB2=BC2+AC2-2BC·AC cos C即13=9+AC2-2×3AC×(-12),解得AC=1或AC=-4(舍去)【答案】A2.在△ABC中,B=π4,AB=2,BC=3,则sin A=( )【解析】在△ABC中,由余弦定理得AC2=BA2+BC2-2BA·BC·cos B=(2)2+32-2×2×3×22=5,解得AC= 5.再由正弦定理得sin A=BC·sin BAC=3×225=31010.故选C.【答案】C3.已知锐角三角形的三边长分别为1,3,a,那么a的取值范围为( )A.(8,10) B.(22,10)C.(22,10) D.(10,8)【解析】设1,3,a所对的角分别为C,B,A,由余弦定理知a2=12+32-2×3cos A<12+32=10,32=1+a2-2×a cos B<1+a2,∴22<a<10.【答案】 B4.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .82【解析】 ∵a sin A=b sin B=c sin C=2R =8,∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.【答案】 C5.△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )【解析】 p ∥q ⇒(a +c )(c -a )-b (b -a )=0,即c 2-a 2-b 2+ab =0⇒a 2+b 2-c 22ab =12=cos C ,∴C =π3.【答案】 B6.在△ABC 中,若sin B sin C =cos 2A2,则下面等式一定成立的是( )A .A =B B .A =C C .B =CD .A =B =C【解析】 由sin B sin C =cos 2A 2=1+cos A2⇒2sin B sin C =1+cos A ⇒cos(B -C )-cos(B+C )=1+cos A .又cos(B +C )=-cos A ⇒cos(B -C )=1,∴B -C =0,即B =C . 【答案】 C7.一角槽的横断面如图1所示,四边形ADEB 是矩形,且α=50°,β=70°,AC =90mm ,BC =150 mm ,则DE 的长等于( )图1A .210 mmB .200 mmC .198 mmD .171 mm【解析】 ∠ACB =70°+50°=120°,AB 2=AC 2+BC 2-2·AC ·BC ·cos∠ACB =902+1502-2×90×150×cos120° =4 410 0,AB =210,即DE =210 mm. 【答案】 A8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3D .33【解析】 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.【答案】 C9.已知在△ABC 中,sin A +sin B =sin C (cos A +cos B ),则△ABC 的形状是( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形【解析】 由正弦定理和余弦定理得a +b =c b 2+c 2-a 22bc +a 2+c 2-b 22ac,即2a 2b +2ab 2=ab 2+ac 2-a 3+a 2b +bc 2-b 3,∴a 2b +ab 2+a 3+b 3=ac 2+bc 2,∴(a +b )(a 2+b 2)=(a +b )c 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形,故选D.【答案】 D10.在△ABC 中,sin 2A =sin 2B +sin B sin C +sin 2C ,则A =( ) A .30° B .60° C .120°D .150°【解析】 由已知得a 2=b 2+bc +c 2,∴b 2+c 2-a 2=-bc ,∴cos A =b 2+c 2-a 22bc =-12,又0°<A <180°,∴A =120°. 【答案】 C11.在△ABC 中,A ∶B =1∶2,∠ACB 的平分线CD 把△ABC 的面积分成3∶2两部分,则cos A 等于( )D .0【解析】 ∵CD 为∠ACB 的平分线, ∴D 到AC 与D 到BC 的距离相等,∴△ACD 中AC 边上的高与△BCD 中BC 边上的高相等. ∵S △ACD ∶S △BCD =3∶2,∴AC BC =32. 由正弦定理sin B sin A =32,又∵B =2A ,∴sin 2A sin A =32,即2sin A cos A sin A =32,∴cos A =34. 【答案】 C12.如图2,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100米到达B 后,又测得C 对于山坡的斜度为45°,若CD =50米,山坡对于地平面的坡角为θ,则cos θ=( )图2 A.23+1 B.23-1-1 +1【解析】在△ABC中,BC=AB sin∠BAC sin∠ACB=100sin 15°sin45°-15°=50(6-2),在△BCD中,sin∠BDC=BC sin∠CBDCD=506-2sin 45°50=3-1,又∵cos θ=sin∠BDC,∴cos θ=3-1.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知△ABC为钝角三角形,且C为钝角,则a2+b2与c2的大小关系为________.【解析】∵cos C=a2+b2-c22ab,且C为钝角,∴cos C<0,∴a2+b2-c2<0,故a2+b2<c2.【答案】a2+b2<c214.设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C=________.【解析】由3sin A=5sin B,得3a=5b.又因为b+c=2a,所以a=53b,c=73b,所以cos C=a2+b2-c22ab=⎝⎛⎭⎪⎫53b2+b2-⎝⎛⎭⎪⎫73b22×53b×b=-12.因为C∈(0,π),所以C=2π3.【答案】2π315.在锐角△ABC中,BC=1,B=2A,则ACcos A的值等于________,AC的取值范围为________.【解析】设A=θ⇒B=2θ.由正弦定理得ACsin 2θ=BCsin θ,∴AC2cos θ=1⇒ACcos θ=2.由锐角△ABC得0°<2θ<90°⇒0°<θ<45°.又0°<180°-3θ<90°⇒30°<θ<60°,故30°<θ<45°⇒22<cos θ<32,∴AC=2cos θ∈(2,3).【答案】 2 (2,3)16.如图3,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M 点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.图3【解析】根据图示,AC=100 2 m.在△MAC中,∠CMA=180°-75°-60°=45°.由正弦定理得ACsin 45°=AMsin 60°⇒AM=100 3 m.在△AMN 中,MNAM =sin 60°,∴MN =1003×32=150(m). 【答案】 150三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sinB +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .【解】 (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2, 得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2. 可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°. 18.(本小题满分12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值. 【解】 (1)∵cos B =35>0,且0<B <π,∴sin B=1-cos2B=4 5 .由正弦定理得asin A =bsin B,sin A=a sin Bb=2×454=25.(2)∵S△ABC=12ac sin B=4,∴12×2×c×45=4,∴c=5.由余弦定理得b2=a2+c2-2ac cos B=22+52-2×2×5×35=17,∴b=17.19.(本小题满分12分)在△ABC中,∠A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.【解】设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos ∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin ∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsinπ-2B=6sin B2sin B cos B=3cos B=10.20.(本小题满分12分)某观测站在城A南偏西20°方向的C处,由城A出发的一条公路,走向是南偏东40°,在C处测得公路距C处31千米的B处有一人正沿公路向城A走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走多少千米可到达城A【解】 如图所示,设∠ACD =α,∠CDB =β.在△CBD 中,由余弦定理得cos β=BD 2+CD 2-CB 22BD ·CD =202+212-3122×20×21=-17,∴sin β=437.而sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314.在△ACD 中,21sin 60°=ADsin α,∴AD =21×sin αsin 60°=15(千米).所以这人还要再走15千米可到达城A .21.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值.【解】 (1)∵cos 2C +22cos C +2=0,∴2cos 2C +22cos C +1=0,即(2cos C +1)2=0, ∴cos C =-22. 又C ∈(0,π),∴C =3π4. (2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A ,∴sin A =15sin C =1010.∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B ,∴12ab sin C =22sin A sin B , ∴absin A sin Bsin C =2,由正弦定理得⎝ ⎛⎭⎪⎫c sin C 2sin C =2,解得c =1.22.(本小题满分12分)已知函数f (x )=m sin x +2cos x (m >0)的最大值为2. (1)求函数f (x )在[0,π]上的单调递减区间;(2)若△ABC 中,f ⎝ ⎛⎭⎪⎫A -π4+f ⎝⎛⎭⎪⎫B -π4=46sin A sin B ,角A ,B ,C 所对的边分别是a ,b ,c ,且C =60°,c =3,求△ABC 的面积.【解】 (1)由题意,f (x )的最大值为m 2+2,所以m 2+2=2. 又m >0,所以m =2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4.令2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ). 所以f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤π4,π.(2)设△ABC 的外接圆半径为R ,由题意,得2R =csin C =3sin 60°=2 3.化简f ⎝ ⎛⎭⎪⎫A -π4+f ⎝ ⎛⎭⎪⎫B -π4=46sin A sin B ,得sin A +sin B =26sin A sin B .由正弦定理,得2R (a +b )=26ab ,a +b =2ab .①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0.②将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或ab=-32(舍去),故S△ABC=12ab sin C=334.章末综合测评(第二章)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1, 2,3,…,n【解析】A为递减数列,B为摆动数列,D为有穷数列.【答案】C2.已知数列{a n}是首项a1=4,公比q≠1的等比数列,且4a1,a5,-2a3成等差数列,则公比q等于( )B.-1 C.-2 D.2【解析】由已知,2a5=4a1-2a3,即2a1q4=4a1-2a1q2,所以q4+q2-2=0,解得q2=1,因为q≠1,所以q=-1.【答案】B3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个【解析】 设开始的细胞数和每小时后的细胞数构成的数列为{a n }. 则⎩⎨⎧a 1=2,a n +1=2a n -1,即a n +1-1a n -1=2, ∴a n -1=1·2n -1 ,a n =2n -1+1,a 7=65. 【答案】 B4.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列 {b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项【解析】 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项. 【答案】 C5.已知数列{a n }的前n 项和S n =a n -1(a ≠0),则{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列 【解析】 ∵S n =a n -1(a ≠0), ∴a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2,即a n =⎩⎨⎧a -1,n =1,a -1a n -1,n ≥2,当a =1时,a n =0,数列{a n }是一个常数列,也是等差数列;当a ≠1时,数列{a n }是一个等比数列.【答案】 C6.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100C.145 D.190【解析】设公差为d,∴(1+d)2=1×(1+4d),∵d≠0,∴d=2,从而S10=100.【答案】B7.记等差数列{a n}的前n项和为S n,若S2=4,S4=20,则该数列的公差d=( ) A.2 B.3C.6 D.7【解析】S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.【答案】B8.已知数列{a n}满足a1=5,a n a n+1=2n,则a7a3=( )A.2 B.4 C.5【解析】依题意得an+1an+2anan+1=2n+12n=2,即an+2an=2,数列a1,a3,a5,a7,…是一个以5为首项,2为公比的等比数列,因此a7a3=4.【答案】B9.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( ) A.49 B.50C.51 D.52【解析】 ∵2a n +1-2a n =1, ∴a n +1-a n =12,∴数列{a n }是首项a 1=2,公差d =12的等差数列,∴a 101=2+12(101-1)=52.【答案】 D10.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如图1所示:图1则第七个三角形数是( ) A .27 B .28 C .29D .30【解析】 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28. 【答案】 B11.数列{a n }满足递推公式a n =3a n -1+3n-1(n ≥2),又a 1=5,则使得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ3n 为等差数列的实数λ=( )A .2B .5C .-12【解析】 a 1=5,a 2=23,a 3=95,令b n =a n +λ3n ,则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27,∵b 1+b 3=2b 2, ∴λ=-12.【答案】 C12.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A .S 17B .S 18C .S 19D .S 20【解析】 ∵a 10<0,a 11>0,且a 11>|a 10|, ∴a 11+a 10>0.S 20=20a 1+a 202=10·(a 11+a 10)>0. S 19=19a 1+a 192=192·2a 10<0. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为________.【解析】 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[a 1+b 1+a 100+b 100]2=50×(25+75+100)=10 000. 【答案】 10 00014.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.【解析】 由a n =a n -1+n (n ≥2),得a n -a n -1=n ,则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 【答案】 1515.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是________. 【解析】 设a 1=-24,公差为d ,∴a 10=-24+9d >0且a 9=-24+8d ≤0,∴83<d ≤3.【答案】 ⎝ ⎛⎦⎥⎤83,316.已知公差不为零的正项等差数列{a n }中,S n 为其前n 项和,lg a 1,lg a 2,lg a 4也成等差数列,若a 5=10,则S 5=________.【解析】 设{a n }的公差为d ,则d ≠0. 由lg a 1,lg a 2,lg a 4也成等差数列, 得2lg a 2=lg a 1+lg a 4,∴a 22=a 1a 4, 即(a 1+d )2=a 1(a 1+3d ),d 2=a 1d .又d ≠0,故d =a 1,a 5=5a 1=10,d =a 1=2,S 5=5a 1+5×42×d =30. 【答案】 30三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.【解】 设该数列的公差为d ,前n 项和为S n .由已知可得 2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ), 所以a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和S n =4n 或S n =3n 2-n2.18.(本小题满分12分)设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.【解】(1)∵a1+2a2+3a3+…+na n=(n-1)·S n+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.(2)证明:∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),①∴当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)S n-1+2(n-1),②①-②得na n=(n-1)S n-(n-2)S n-1+2=na n-S n+2S n-1+2,∴-S n+2S n-1+2=0,即S n=2S n-1+2.∴S n+2=2(S n-1+2).∵S1+2=4≠0.∴S n-1+2≠0,∴Sn+2Sn-1+2=2.即{S n+2}是以4为首项,2为公比的等比数列.19.(本小题满分12分)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等【解】(1)设等差数列{a n}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以a n=4+2(n-1)=2n+2(n=1,2,…).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63,所以b6与数列{a n}的第63项相等.20.(本小题满分12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*),满足a n b n +1-a n+1b n+2b n+1b n=0.(1)令c n=anbn,求数列{c n}的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n . 【解】 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2.所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1, 3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n .相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.21.(本小题满分12分)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值. 【解】 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以q =2. 从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列.故a n =2n .(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n >1 000.因为29=512<1 000<1 024=210,所以n ≥10. 于是使|T n -1|<11 000成立的n 的最小值为10.22.(本小题满分12分)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式; (2)设b n =,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .【解】 (1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n ==n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n +1). 因为b n +1-b n =2(n +1),可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n24+2n 2=n n +22,当n 为奇数时,T n =T n -1+(-b n )=n -1n +12-n (n +1)=-n +122.所以T n=⎩⎪⎨⎪⎧-n +122,n 为奇数,n n +22,n 为偶数.章末综合测评(第三章)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于任意实数a,b,c,d,下列四个命题中:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b>0,c>d,则ac>bd.其中真命题的个数是( )A.1 B.2C.3 D.4【解析】若a>b,c<0时,ac<bc,①错;②中,若c=0,则有ac2=bc2,②错;③正确;④中,只有c>d>0时,ac>bd,④错,故选A.【答案】A2.直线3x+2y+5=0把平面分成两个区域.下列各点与原点位于同一区域的是( ) A.(-3,4) B.(-3,-4)C.(0,-3) D.(-3,2)【解析】当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0.【答案】A3.设A=ba+ab,其中a,b是正实数,且a≠b,B=-x2+4x-2,则A与B的大小关系是( )A.A≥B B.A>BC.A<B D.A≤B 【解析】∵a,b都是正实数,且a≠b,∴A =b a +a b >2b a ·ab=2,即A >2, B =-x 2+4x -2=-(x 2-4x +4)+2 =-(x -2)2+2≤2, 即B ≤2,∴A >B . 【答案】 B4.已知0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 <1bC .a b >1D .lg(b -a )<0【解析】 由0<a <b <1,可得a 3<b 3,A 错误;1a >1b,B 错误;a b <1,C 错误;0<b-a <1,lg(b -a )<0,D 正确.【答案】 D5.在R 上定义运算☆:a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)【解析】 根据定义得,x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得-2<x <1,所以所求的实数x 的取值范围为(-2,1).【答案】 B6.已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2【解析】 0<x <y <a <1,即0<x <a,0<y <a,0<xy <a 2.又0<a <1,f (x )=log a x 是减函数, log a (xy )>log a a 2=2,即log a (xy )>2. 【答案】 D 7.不等式2≤12的解集为( ) A .(-∞,-3] B .(-3,1]C .[-3,1]D .[1,+∞)∪(-∞,-3]【解析】 由已知得 2≤2-1,所以x 2+2x -4≤-1,即x 2+2x -3≤0,解得-3≤x ≤1.【答案】 C8.x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )或-1 B .2或12C .2或1D .2或-1【解析】 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.【答案】 D9.已知正实数a ,b 满足4a +b =30,当1a +1b取最小值时,实数对(a ,b )是( )A .(5,10)B .(6,6)C .(10,5)D .(7,2)【解析】 1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·130·30=130⎝ ⎛⎭⎪⎫1a +1b (4a +b ) =130⎝ ⎛⎭⎪⎫5+b a +4a b≥130⎝⎛⎭⎪⎫5+2b a ·4a b =310. 当且仅当⎩⎨⎧b a =4a b,4a +b =30,即⎩⎨⎧a =5,b =10时取等号.【答案】 A10.在如图1所示的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值是( )图1A .-3B .3C .-1D .1【解析】 若最优解有无数个,则y =-1a x +za与其中一条边平行,而三边的斜率分别为13,-1,0,与-1a对照可知a =-3或1, 又因z =x +ay 取得最小值,则a =-3. 【答案】 A11.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设车站到仓库距离为x ,土地费用为y 1,运输费用为y 2,由题意得y 1=k 1x,y 2=k 2x ,∵x =10时,y 1=2,y 2=8,∴k 1=20,k 2=45,∴费用之和为y =y 1+y 2=20x +45x ≥220x ×45x =8,当且仅当20x =4x5,即x =5时取等号. 【答案】 A12.设D 是不等式组⎩⎨⎧x +2y ≤10,2x +y ≥3,0≤x ≤4,y ≥1表示的平面区域,则D 中的点P (x ,y )到直线x +y =10的距离的最大值是( )B .22C .3 2D .42【解析】 画出可行域,由图知最优解为A (1,1),故A 到x +y =10的距离为d =4 2.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.函数y =2-x -4x(x >0)的值域为________.【解析】 当x >0时,y =2-⎝⎛⎭⎪⎫x +4x ≤2-2x ×4x =-2.当且仅当x =4x,即x =2时取等号.【答案】 (-∞,-2]14.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k <3,则k 的取值范围为________.【解析】 由题意得k +1+k <3,即(k +2)·(k -1)<0,且k >0,因此k 的取值范围是(0,1).【答案】 (0,1)15.若x ,y 满足约束条件⎩⎨⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为________.【解析】 根据约束条件画出可行域如图所示,平移直线y =-13x ,当直线y =-13x +z3过点A 时,目标函数取得最大值.由⎩⎨⎧y -x =1,x +y =3,可得A (1,2),代入可得z =1+3×2=7.【答案】 716.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.【解析】 要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需 ⎩⎨⎧f m <0,f m +1<0,即⎩⎨⎧2m 2-1<0,m +12+mm +1-1<0,解得-22<m <0.【答案】 ⎝ ⎛⎭⎪⎫-22,0三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=x 2+2x,解不等式f (x )-f (x -1)>2x -1.【解】 由题意可得x 2+2x -(x -1)2-2x -1>2x -1,化简得2xx -1<0,即x (x -1)<0, 解得0<x <1.所以原不等式的解集为{x |0<x <1}.18.(本小题满分12分)设x ∈R ,比较11+x 与1-x 的大小.【解】 作差:11+x -(1-x )=x 21+x ,①当x =0时,∵x 21+x=0,∴11+x=1-x ; ②当1+x <0,即x <-1时, ∵x 21+x<0,∴11+x<1-x ; ③当1+x >0且x ≠0,即-1<x <0或x >0时, ∵x 21+x >0,∴11+x>1-x . 19.(本小题满分12分)已知x ,y ,z ∈R +,且x +y +z =1,求证:1x +4y +9z≥36.【证明】 ∵(x +y +z )⎝⎛⎭⎪⎫1x +4y +9z =14+y x +4x y +z x +9x z +4z y +9y z ≥14+4+6+12=36, ∴1x +4y +9z≥36.当且仅当x 2=14y 2=19z 2,即x =16,y =13,z =12时,等号成立.20.(本小题满分12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润【解】 设水稻种x 亩,花生种y 亩,则由题意得⎩⎨⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0,即⎩⎨⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,画出可行域如图阴影部分所示.而利润P =(3×400-240)x +(5×100-80)y =960x +420y (目标函数), 可联立⎩⎨⎧x +y =2,3x +y =5,得交点B ,.故当x =,y =时,P 最大值=960×+420×=1 650,即水稻种亩,花生种亩时所得到的利润最大.21.(本小题满分12分)已知函数f (x )=x 2+3x -a (x ≠a ,a 为非零常数).(1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值.【解】 (1)f (x )<x ,即x 2+3x -a <x ,整理得(ax +3)(x -a )<0.当a >0时,⎝ ⎛⎭⎪⎫x +3a (x -a )<0,∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-3a<x <a; 当a <0时,⎝ ⎛⎭⎪⎫x +3a (x -a )>0,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-3a 或x <a. (2)设t =x -a ,则x =t +a (t >0),∴f (x )=t 2+2at +a 2+3t=t +a 2+3t +2a≥2t ·a 2+3t+2a=2a 2+3+2a .当且仅当t =a 2+3t ,即t =a 2+3时,等号成立, 即f (x )有最小值2a 2+3+2a . 依题意有2a 2+3+2a =6, 解得a =1.22.(本小题满分12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16, (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围. 【解】 (1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0, ∴-2<x <4,∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8.当x>2时,f(x)≥(m+2)x-m-15恒成立,∴x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).∵对一切x>2,均有不等式x2-4x+7x-1≥m成立,而x2-4x+7x-1=(x-1)+4x-1-2≥2x-1×4x-1-2=2(当且仅当x=3时等号成立),∴实数m的取值范围是(-∞,2].模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )>1b>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3,∴a1=a2-d=1-3=-2.【答案】A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A .3∶2∶1 ∶2∶1 ∶2∶1D .2∶3∶1【解析】 ∵A ∶B ∶C =3∶2∶1,A +B +C =180°, ∴A =90°,B =60°,C =30°,∴a ∶b ∶c =sin 90°∶sin 60°∶sin 30° =1∶32∶12=2∶3∶1. 【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--1=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎥⎤0,12恒成立,则a 的最小值为( ) A .0 B .-2 C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n n -12d ,∴S 4=4a 1+6d,dS4=4a1d+6d2=-23d2<0.【答案】B9.在数列{a n}中,a1=2,a n+1-2a n=0(n∈N*),b n是a n和a n+1的等差中项,设S n为数列{b n}的前n项和,则S6=( )A.189 B.186C.180 D.192【解析】由a n+1=2a n,知{a n}为等比数列,∴a n=2n,∴2b n=2n+2n+1,即b n=3·2n-1,∴S6=3·1+3·2+…+3·25=189.【答案】A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一:取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二:由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=3,则c=( ) A.2 3 B.2D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2 .又0<A<π,∴A=π6,∴B=2A=π3,∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+32=2.【答案】B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A.13项B.12项C.11项D.10项【解析】设该数列的前三项分别为a1,a1q,a1q2,后三项分别为a1q n-3,a1q n-2,a1q n-1,所以前三项之积a31q3=2,后三项之积a31q3n-6=4,两式相乘,得a61q3(n-1)=8,即a21q n-1=2.又a1·a1q·a1q2·…·a1q n-1=64,所以a n1·q=64,即(a21q n-1)n=642,即2n=642,所以n=12.【答案】B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC中,BC=2,B=π3,当△ABC的面积等于32时,sin C=________.【解析】由三角形的面积公式,得S=12AB·BC sinπ3=32,易求得AB=1,由余弦定理,得AC2=AB2+BC2-2AB·BC·cos π3,得AC=3,再由三角形的面积公式,得S=12AC ·BC sin C =32,即可得出sin C =12. 【答案】1214.若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6,12-22+32-42=-10,…照此规律,第n个等式可为12-22+32-…+(-1)n-1n2=________.【解析】分n为奇数、偶数两种情况.第n个等式为12-22+32-…+(-1)n-1n2.当n为偶数时,分组求和:(12-22)+(32-42)+…+[(n-1)2-n2]=-(3+7+11+15+…+2n-1)=-n2×3+2n-12=-n n+12.当n为奇数时,第n个等式为(12-22)+(32-42)+…+[(n-2)2-(n-1)2]+n2=-n n-12+n2=n n+12.综上,第n个等式为12-22+32-…+(-1)n-1n2=(-1)n+1n n+12.【答案】(-1)n+1n n+12三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,若m=(a2+c2-b2,-3a),n=(tan B,c),且m⊥n,求B的值.【解】由m⊥n得(a2+c2-b2)·tan B-3a·c=0,即(a2+c2-b2)tan B=3ac,得a2+c2-b2=3ac tan B,所以cos B=a2+c2-b22ac=32tan B,即tan B cos B=32,即sin B=32,所以B=π3或B=2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6.【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8, ∴b 26=b 5·b 7=a 5 ·a 7=32, ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ; 当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4,∴c =2,∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154,∴sin A =a sin C c =1542=158∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝ ⎛⎭⎪⎫1582=78. 21.(本小题满分12分)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列, ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).。
数学必修五测试题及答案
数学必修五测试题及答案一、选择题1. 若一元二次方程x^2 - px + q = 0的两个根互为相反数,则p和q的关系是:A. p^2 - 4q < 0B. p^2 - 4q = 0C. p^2 - 4q > 0D. p^2 + 4q = 0答案:B. p^2 - 4q = 02. 已知函数f(x) = ax^2 - bx + c经过点(1, 4)和(2, 7),则a,b,c的值分别为:A. a = 2, b = 1, c = 1B. a = 1, b = 3, c = 2C. a = 3, b = 1, c = 2D. a = 1, b = 2, c = 3答案:A. a = 2, b = 1, c = 13. 在等差数列{an}中,已知a1 = 3,a6 = 15,则d(公差)的值为:A. 2B. 3C. 4D. 5答案:C. 44. 若sinθ + cosθ = √2sin(π/4 + θ),则θ的取值范围是:A. [0, π/2]B. [0, π]C. [π/4, π/2]D. [π/6,π/4]答案:D. [π/6, π/4]5. 设ΔABC中,∠B = 90°,AB = AC = 5,则三角形ABC的面积为:A. 10B. 12.5C. 25D. 50答案:D. 50二、填空题1. 设函数f(x) = x^3 - 3x^2 - 4x + 12,则f(2) = 。
答案:42. 设函数f(x) = x^3 + ax^2 + bx + c,已知f(x) = (x + 1)(x - 2)(x + 3),则a,b,c的值分别为。
答案:a = 4, b = -11, c = -63. 过点P(3, 4)作直线l与椭圆x^2/4 + y^2/9 = 1交于点A和B,则线段AB的中点坐标为。
答案:(1,2)4. 在等比数列{an}中,已知a1 = 3,an = 24,则n的值为。
人教版高中数学必修5第三章单元测试(一)-Word版含答案
1.下列说法正确的是(
)
11 A .若 a b ,则
ab
3
B .若 ac
3
bc
,则
a
b
C.若 a b , k N ,则 a k bk
D.若 a b , c d ,则 a d b c
2.已知 x
1, y
1 ,且
1 ln
x
,
1
,
ln
y 成等比数列,则
xy (
)
4
4
A .有最大值 e
B .有最大值 e
C.有最小值 e
x2 的解集是(
)
x 2, x 0
A. 1,1
B . 2,2
C. 2,1
D . 1,2
8.若 a 0 , b 0 ,且 a b 4 ,则下列不等式中恒成立的是(
)
A. 1 1 ab 2
B. 1
1 1
ab
C. ab 2
1
1
D. a2 b2 8
xy0 9.设变量 x ,y 满足约束条件 2x y 2 ,则目标函数 z x 3y 的最大值为 ( )
a
b
c
的取值范围是(
)
A.
1 0,
8
B.
1 ,1
8
C. 1,8
D . 8,
12.函数 f x
x2 2x
1
2
, x 0,3 ,则(
)
x 2x 1
7 A. f x 有最大值
4
B. f x 有最小值 1
C. f x 有最大值 1
D. f x 有最小值 1
二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分,把正确答案填在题中横 线上) 13.已知 t 0 ,则函数 y t 2 4t 1 的最小值为 ___________.
最新人教版高中数学必修5第三章模块综合测评(附答案)
数学人教B必修5 模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={y|y=2x,x∈R},B={-1,0,1},则下列结论正确的是().A.A∪B=(0,+∞)B.(R A)∪B=(-∞,0]C.(R A)∩B={-1,0} D.(R A)∩B={1}2.在等差数列{a n}中,若a2+a8=12,S n是数列{a n}的前n项和,则S9等于().A.48B.54C.60D.663.在△ABC中,∠B=135°,∠C=15°,a=5,则此三角形的最大边长为().A.B.C.D.4.已知在△ABC中,sin A∶sin B∶sin C=3∶2∶4,那么cos C的值为().A.14B.23-C.23D.14-5.已知c<d,a>b>0,则下列不等式中必成立的一个是().A.a+c>b+d B.a-c>b-dC.ad>bc D.a b c d >6.在△ABC中,∠B=60°,b2=ac,则这个三角形是().A.等腰三角形B.不等边三角形C.等边三角形D.直角三角形7.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=().A.8 B.7 C.6 D.58.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则ad等于().A.3 B.2 C.1 D.-29.函数y=log2(x+11x-+5)(x>1)的最小值为().A.-3 B.3 C.4 D.-410.已知变量x,y满足约束条件20,1,70,x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩则yx的取值范围是().A.(3,6) B.(95,3)C.[95,6] D.(3,+∞)11.已知x,y为正实数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则2 1212a ab b (+)的取值范围是().A .RB .(0,4]C .[4,+∞)D .(-∞,0]∪[4,+∞)12.(2011·广东高考)已知平面直角坐标系xOy 上的区域D由不等式组02,,x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M (x ,y )为D 上的动点,点A 的坐标为1),则z OM OA =⋅的最大值为( ).A. B. C .4 D .3二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =π3C ∠=,则∠A =________.14.若方程x 2+(m +2)x +m +5=0只有正根,则m 的取值范围是__________.15.设{a n }为公比q >1的等比数列,若a 2 009和a 2 010是方程4x 2-8x +3=0的两根,则a 2 011+a 2 012=________.16.已知a ,b ,c 分别为△ABC 的三边,且3a 2+3b 2-3c 2+2ab =0,则tan C =________. 三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知在等差数列{a n }中,a 3+a 4=15,a 2a 5=54,公差d <0. (1)求数列{a n }的通项公式a n ;(2)求数列的前n 项和S n 的最大值及相应的n 的值.18.(本小题满分12分)已知关于x 的不等式2251x x m m+->+. (1)当m >0时,解这个不等式;(2)若此不等式的解集为{x |x >5},试求实数m 的值.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长.已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值. 20.(本小题满分12分)某工厂修建一个长方体形无盖蓄水池,其容积为4 800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米.(1)求底面积并用含x 的表达式表示池壁面积S ;(2)怎样设计水池能使总造价最低?最低造价是多少? 21.(本小题满分12分)如图所示,有相交成60°角的两条直线ZZ ′,YY ′,交点是O .甲、乙分别在OZ ,OY 上,起初甲在离O 点3 km 的A 点,乙在离O 点1 km 的B 点,后来两人同时用4 km/h 的速度,甲沿ZZ ′方向,乙沿Y ′Y 方向步行.(1)起初两人的距离是多少?(2)用包含t 的式子表示t h 后两人的距离;(3)多长时间后,两人之间的距离最短,最短距离是多少?22.(本小题满分14分)设数列{a n }的前n 项和为S n ,若对于任意的n ∈N +,都有S n =2a n-3n ,(1)求数列{a n }的首项与递推关系式a n +1=f (a n ). (2)先阅读定理:若数列{a n }有递推关系a n +1=Aa n +B ,其中A ,B 为常数,且A ≠1,B ≠0,则数列{1n Ba A-}-是以A 为公比的等比数列.请你在(1)的基础上应用本定理,求数列{a n }的通项公式.(3)求数列{a n }的前n 项和S n .参考答案1. 答案:C ∵A ={y |y >0},∴R A ={y |y ≤0},∴(R A )∩B ={-1,0}.2. 答案:B 192899()9()5422a a a a S ++===. 3. 答案:A 依题意,知三角形的最大边为b .由于∠A =30°,根据正弦定理,得sin sin b a B A =,所以sin 5sin135sin sin30a B b A ︒===︒4. 答案:D ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶4, ∴令a =3k ,b =2k ,c =4k (k ≠0),∴22222294161cos 22324a b c k k k C ab k k +-+-===-⋅⋅. 5. 答案:B 由不等式的性质可知,c <d ,∴-c >-d .又∵a >b >0,∴a +(-c )>b +(-d ),即a -c >b -d .6. 答案:C cos B =cos 60°=222221222a cb ac ac ac ac +-+-==, ∴(a -c )2=0.∴a =c .又∵∠B =60°,∴△ABC 为等边三角形.7. 答案:D ∵S k +2-S k =24,∴a k +1+a k +2=24. ∴a 1+kd +a 1+(k +1)d =24. ∴2a 1+(2k +1)d =24. 又a 1=1,d =2,∴k =5.8. 答案:B ∵y =x 2-2x +3的顶点为(1,2),∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴12a =,d =4.∴ad =2. 9. 答案:B ∵x >1,∴x -1>0, ∴y =log 2(x +11x -+5)=log 2(x -1+11x -+6)≥log 2(2+6)=log 28=3.当且仅当x -1=11x -,即x =2时等号成立. 10. 答案:C 作出可行域,如图阴影部分所示.目标函数00y y z x x -==-的几何意义是可行域内的点(x ,y )与原点(0,0)间连线的斜率.由图可知k OC ≤z ≤k OB .易求得B (1,6),C (52,92),因为95OC k =,661OB k ==,所以95≤z ≤6.11. 答案:C 原式=222()22x y x x y y x yx y x y y x+++==++,又∵x ,y ∈R +,∴2224x y y x ++≥=,当且仅当x y y x =,即x =y 时等号成立.12. 答案:C z OM OA =⋅=(x ,y1)+y .由02,x y x ⎧≤≤⎪≤⎨⎪≤⎩ 画出可行域,如图阴影部分所示.作直线l 0:y =,平移直线l 0至l 1位置时,z 取得最大值,此时l1过点2),故max 24z =.13. 答案:π6 由正弦定理,得sinsin a cA C=sin 1sin 2a C A c ===,所以∠A =π6. 14. 答案:(-5,-4] 设方程的正根为x 1,x 2,由题意,得21212(2)4(5)0,(2)0,50,m m x x m x x m ⎧∆=+-+≥⎪+=-+>⎨⎪=+>⎩解得-5<m ≤-4.15. 答案:18 ∵a 2 009和a 2 010是方程4x 2-8x +3=0的两根,而方程的两个根是12x =,32x =,又∵{a n }的公比q >1,∴ 2 00912a =, 2 01032a =,∴q =3.∴a 2 011+a 2 012=a 2 009q 2+a 2 010q 2=(a 2 009+a 2 010)q 2=(1322+)×32=18.16. 答案:- 2221cos 23a b c C ab +-==-,所以∠C >90°,sin 3C =.所以sin tan cos CC C==-17. 答案:分析:首先由等差数列的性质得a 2+a 5=a 3+a 4=15,再与a 2·a 5=54联立求出a 2,a 5,进而求出通项a n ,S n ;再由S n 得出S n 的最大值及相应的n 值.解:(1)∵{a n }为等差数列,∴a 2+a 5=a 3+a 4.∴252515,54,0,a a a a d +=⎧⎪=⎨⎪<⎩ 解得259,6,a a =⎧⎨=⎩∴11,10,d a =-⎧⎨=⎩∴a n =11-n .(2)∵a 1=10,a n =11-n ,∴21()121222n n n a a S n n +==-+. 又102-<,对称轴为212,故当n =10或11时,S n 取得最大值,其最大值为55.18. 答案:分析:(1)解含参不等式要就参数的取值范围进行讨论,本题在系数化为1时,要注意m -1的符号.(2)不等式的解集是不等式所有解的集合,必须注意元素的确定性,和恒成立问题不同,从函数、方程、不等式的统一角度来认识,5应是方程2251x x m m+-=+的根.或者根据(1)对m 进行讨论.解:(1)原不等式可化为m (x +2)>m 2+x -5, (m -1)x >m 2-2m -5,若0<m <1,不等式的解集为225{|1m m x x m --<}-;若m =1,则不等式的解集为R ; 若m >1,则不等式的解集为225{|1m m x x m -->}-.(2)由题意和(1)知,m >1且满足225{|{|5}1m m x x x x m -->}=>-,于是22551m m m --=-,解得m =7. 19. 答案:分析:由题意可知b 2=ac ,将此式代入a 2-c 2=ac -bc ,然后利用余弦定理求出∠A ;再由正弦定理或三角形面积公式求出sin b Bc的值. 解:(1)∵a ,b ,c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc , ∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得2221cos 22b c a A bc +-==,∴∠A =60°.(2)解法一:在△ABC 中,由正弦定理得sin sin b AB a=. ∵b 2=ac ,∠A =60°,∴2sin sin60sin 60b B b c ac ︒==︒=解法二:在△ABC 中,由三角形面积公式得11sin sin 22bc A ac B =, ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B ,∴sin sin 2b B Ac ==. 20. 答案:解:(1)设水池的底面积为S 1,池壁的面积为S ,则有1480016003S ==(平方米), 则池底长方形宽为1600x 米,所以S =6x +6×1600x =6(x +1600x)(x >0).(2)设总造价为y ,则y =150×1 600+120×6(x +1600x)≥240 000+57 600=297 600, 当且仅当1600x x=,即x =40时,等号成立, 即x =40时,总造价最低为297 600元.21. 答案:分析:第(1)问可用余弦定理直接求解,第(2)问分类讨论的依据要把握好,当甲驶过O 点时,甲、乙两人行驶的路线的夹角发生了变化,因此,讨论的依据是t 与34的大小关系.这是本题应注意的一个方面.解:(1)设甲、乙两人起初的位置分别是A 与B ,则AB 2=OA 2+OB 2-2OA ·OB ·cos 60°=32+12-2×3×1×12=7.(2)设甲、乙两人t h 后的位置分别是P ,Q ,则AP =4t ,BQ =4t ,当0≤t ≤34时,PQ 2=(3-4t )2+(1+4t )2-2(3-4t )(1+4t )cos 60°,当34t >时,PQ 2=(4t -3)2+(1+4t )2-2(4t -3)·(1+4t )cos 120°,注意到,上面的两式实际上是统一的.所以PQ 2=48t 2-24t +7,t ∈[0,+∞),即PQ =t ∈[0,+∞).(3)因为PQ 2=48(t -14)2+4,所以当14t =h 时,即在第15 min 末,两人的距离最短,最短距离是2 km.22. 答案:分析:(1)要建立a n 与a n +1之间的关系,可由a n +1=S n +1-S n 得出. (2)给出定理,需认真阅读,考查了观察问题、研究问题的能力. (3)可用拆项法求和.解:(1)令n =1,则S 1=2a 1-3,所以a 1=3.又S n +1=2a n +1-3(n +1),S n =2a n -3n .两式相减得a n +1=2a n +3.(2)按照定理,得A =2,B =3,则31BA=--.所以{a n +3}是公比为2的等比数列,其首项为a 1+3=6,所以a n +3=(a 1+3)·2n -1=6·2n -1,所以a n =6·2n -1-3.(3)S n =a 1+a 2+…+a n =(6·20-3)+(6·2-3)+(6·22-3)+…+(6·2n -1-3)=(6·20+6·21+6·22+…+6·2n -1)-(3+3+…+3)=6(20+21+22+…+2n -1)-3n =6×1212n---3n =6·2n-3n -6.。
最新人教版高中数学必修5各单元测试题(全册 共3章 附解析)
最新人教版高中数学必修各单元测试题(全册 共3章 附解析)第一单元评估验收(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a cos ⎝ ⎛⎭⎪⎫π2-A =b cos ⎝ ⎛⎭⎪⎫π2-B ,则△ABC 的形状是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .等腰三角或直角三角形解析:原式可化为a sin A =b sin B ,由正弦定理知a 2=b 2,所以a =b ,所以△ABC 为等腰三角形.答案:B2.在△ABC 中,已知a =2,b =2,B =45°,则角A =( )A .30°或150°B .60°或120°C .60°D .30°解析:由正弦定理a sin A =b sin B得,sin A =a b sin B = 22sin 45°=12,又因为b >a ,故A =30°.答案:D3.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56解析:由正弦定理得a b =sin A sin B ,所以a =52b 可化为 sin A sin B =52. 又A =2B ,所以sin 2B sin B =52, 所以cos B =54. 答案:B4.要测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m ,由此可得河宽为(精确到1 cm)( )A .170 mB .98 mC .95 mD .86 m解析:在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin 45°sin 60°=40 6. 设△ABC 中,AB 边上的高为h ,则h 即为河宽,。
必修五数学测试题及答案
必修五数学测试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为偶函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = |x|2. 已知等差数列{a_n}的前n项和为S_n,若S_5 = 5a_3,则a_3的值为()A. 5B. 10C. 15D. 203. 函数y = 3x^2 - 2x + 1的顶点坐标为()A. (1/3, 2/3)B. (1, 2)C. (-1, 4)D. (0, 1)4. 已知圆x^2 + y^2 = 9的圆心为()A. (0, 0)B. (3, 0)C. (0, 3)D. (3, 3)5. 函数f(x) = 2x + 1在区间[-1, 2]上的最大值是()A. 3B. 5C. 3D. 56. 已知向量a = (3, -4),向量b = (-1, 2),则向量a与向量b的点积为()A. -14B. 10C. -2D. 147. 已知直线y = 2x + 3与直线y = -x + 5平行,则两直线之间的距离为()A. 2B. 3C. 4D. 58. 函数y = x^3 - 3x^2 + 4x - 2的导数为()A. 3x^2 - 6x + 4B. 3x^2 - 6x + 1C. 3x^2 - 9x + 12D. 3x^2 - 9x + 49. 已知函数f(x) = x^2 - 4x + 4,若f(a) = 0,则a的值为()A. 2B. -2C. 0D. 410. 已知复数z = 1 + i,其共轭复数为()A. 1 - iB. 1 + iC. -1 + iD. -1 - i二、填空题(每题5分,共20分)1. 已知等比数列{a_n}的公比为2,首项为1,则a_5 = _______。
2. 函数y = x^2 - 6x + 8的对称轴方程为x = _______。
3. 已知圆心在原点,半径为3的圆的方程为x^2 + y^2 = _______。
人教版高中数学必修5测试题及答案全套
第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3(B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式: ①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0 (B)1(C)2 (D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)3 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________.10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数. 2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1) (D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1Λ=________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n Λ(n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b - (B)1+-n a b (C)1++n a b (D)2+-n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100. 测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23 (C)916 (D)3 4.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列. 其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=1,a 42=1,a 54=5.(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100 (C)200 (D)-200 4.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n (B)122+n n (C)24+n n (D)12+n n 5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.nn +++++++++11341231121Λ=________.7.数列{n +n 21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________. 9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯Λ=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111++++n n a a a a a a Λ.13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n Λ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( )(A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5 (B)10 (C)15 (D)20 3.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是()5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n n n 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( ) (A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2 (B)2 (C)-4 (D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元. (1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)? (3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q =f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小. 2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) (A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2 (D)a >b ⇒ac 2>bc 2 2.若-1<α<β<1,则α-β 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3.设a >2,b >2,则ab 与a +b 的大小关系是( ) (A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( ) (A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a 5.设1<x <10,则下列不等关系正确的是( ) (A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x 二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________. 8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值21 2.若a >0,b >0,且a ≠b ,则( ) (A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a (B)2a (C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( ) (A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) (A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________. 7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题 11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明. 12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式. 测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( ) (A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( ) (A){x |x >1,或x <-2}(B){x |-2<x <1} (C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( ) (A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a } 4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( ) (A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0) 二、填空题6.不等式x 2+x -12<0的解集是________.7.不等式05213≤+-x x 的解集是________. 8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________.三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B );(2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70 (D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8 (D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( ) (A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M 二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( ) (A)A ,B 都在l 上方 (B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方 (D)A 在l 下方,B 在l 上方 2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y(C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y(D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种 二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( ) (A)ac 2>bc 2(B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)6 3.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 2 4.设函数f (x )=222x x x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-22 5.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________. 7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值.” 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121ΛΛ.测试十五 必修5模块自我检测题一、选择题1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设a >b >0,则下列不等式中一定成立的是( ) (A)a -b <0 (B)0<ba<1 (C)ab <2ba +(D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( )(A))31,21((B))31,21(-(C))31,21(-- (D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( ) (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<0 5.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) (A)1∶3∶2(B)1∶2∶3(C)2∶3∶1(D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( ) (A)31 (B)34 (C)68 (D)70 7.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( ) (A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A 点行驶到B 点所用的时间为3s ,则此车的速度介于( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h 二、填空题9.不等式x (x -1)<2的解集为________.10.在△ABC 中,三个内角A ,B ,C 成等差数列,则cos(A +C )的值为________. 11.已知{a n }是公差为-2的等差数列,其前5项的和S 5=0,那么a 1等于________. 12.在△ABC 中,BC =1,角C =120°,cos A =32,则AB =________. 13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥030420,0y x y x y x ,所表示的平面区域的面积是________;变量z =x+3y 的最大值是________.14.如图,n 2(n ≥4)个正数排成n 行n 列方阵,符号a ij (1≤i ≤n ,1≤j ≤n ,i ,j ∈N )表示位于第i 行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若a 11=21,a 24=1,a 32=41,则q =________;a ij =________.三、解答题15.已知函数f (x )=x 2+ax +6.(1)当a =5时,解不等式f (x )<0;(2)若不等式f (x )>0的解集为R ,求实数a 的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34cos cos ==a b B A . (1)证明角C =90°; (2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.用煤(吨)用电(千瓦)产值(万元)甲种产品 7 2 8 乙种产品351119.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值; (2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式;(2)求证:⋅<++++531111321n a a a a Λ参考答案第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°,由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10. 所以AB =10. (3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R cR b R a >+, 即a 2+b 2>c 2. 所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0). (2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°, 即a 2+c 2+ac =13 又a +c =4,解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.151 10.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *). 所以数列{a 2m }是等差数列.故S 10=5a 1+5a 2+2)15(5-⨯×2=35. 三、解答题。
数学必修五测试题及答案
数学必修五测试题及答案# 数学必修五测试题及答案## 一、选择题(每题3分,共15分)1. 已知函数\( f(x) = 3x^2 - 4x + 5 \),求\( f(2) \)的值。
- A. 9- B. 11- C. 13- D. 152. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值。
- A. 1- B. -1- C. 0- D. \( \sqrt{2} \)3. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
- A. 23- B. 25- C. 27- D. 294. 圆的方程为\( (x - 1)^2 + (y - 2)^2 = 9 \),求圆心到直线\( x + y - 4 = 0 \)的距离。
- A. 1- B. 2- C. 3- D. 45. 函数\( y = \log_{10}(x) \)的导数是:- A. \( \frac{1}{x} \)- B. \( \frac{1}{10x} \)- C. \( \frac{10}{x} \)- D. \( \frac{10}{\ln 10} \)## 二、填空题(每题4分,共20分)6. 已知\( \cos \theta = \frac{5}{13} \),且\( \theta \)在第二象限,求\( \sin \theta \)的值。
__________。
7. 若\( a_n = 2n - 1 \),求前\( n \)项和\( S_n \)。
__________。
8. 已知\( \int_{0}^{1} x^2 dx \),求该定积分的值。
__________。
9. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x\to 0} \frac{\sin 2x}{2x} \)的值。
高中数学必修五第三章《不等式》单元测试题含答案
高中数学必修五第三章单元测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0D .a 2-b 2<03.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .PMC .MP D .∁U M ∩P =∅4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0)D .(-4,0]10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C.4 D.1 211.函数y=3x2+6x2+1的最小值是( )A.32-3 B.-3 C.6 2 D.62-312.设a>0,b>0.若3是3a与3b的等比中项,则1a+1b的最小值为( )A.8 B.4C.1 D.1 4二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.14.函数y=13-2x-x2的定义域是________.15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm2(图中阴影部分),上下空白各2 dm,左右空白各1 dm,则四周空白部分面积的最小值是________dm2.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=144v(v>0).v2-58v+1 225(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)和g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f(0)=10,g(0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?高中数学必修五第三章单元测试题《不等式》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .MP D .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B =(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0) C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0);y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案 C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4D.12答案 D 11.函数y =3x 2+6x 2+1的最小值是( ) A .32-3B .-3C .6 2D .62-3答案 D 12.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 答案 B解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.答案 (23,+∞) 14.函数y =13-2x -x2的定义域是________. 答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x )≥8+2×2x ×144x =56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x ≥2x ×4x =4,当且仅当x =4x ,即x =2时,等号成立.所以f (x )=x +4x ,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值. 答案 16解析 由于x >0,y >0,1x +9y=1, 所以x +y =(x +y )(1x +9y )=y x +9x y+10 ≥2y x ·9x y +10=16. 当且仅当y x =9x y 时,等号成立,又由于1x +9y=1. 所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1.求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1,∴1-a =b +c ≥2bc >0,1-b =a +c ≥2ac >0,1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc .∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧ x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧ x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144v v 2-58v +1 225(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式.解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12, 当且仅当v =1 225v,即v =35时等号成立, ∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12.(2)由题意,得y =144v v 2-58v +1225>9. ∵v 2-58v +1225=(v -29)2+384>0,∴144v >9(v 2-58v +1225).∴v 2-74v +1225<0.解得25<v <49.即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧ y ≥f x =14x +10, ①x ≥g y =y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0, ∴(y -4)(4y +15)≥0.∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。
高考数学理一轮总复习 必修部分开卷速查31 数列求和(含解析)新人教A版-新人教A版高三必修数学试题
开卷速查(三十一) 数列求和A 级 基础巩固练1.数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 6等于( )A.142B.45C.56D.67解析:因为a n =1nn +1=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D2.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 014 B.-2 014 C .3 021 D.-3 021 解析:∵a 1=tan225°=1, ∴a 5=13a 1=13, 则公差d =a 5-a 15-1=13-14=3,∴a n =3n -2.方法一:∵(-1)na n =(-1)n(3n -2),∴S 2 014=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2 012-a 2 011)+(a 2 014-a 2 013)=1 007d =3 021.方法二:(错位相减)由于(-1)n a n =(-1)n(3n -2),则S 2 014=1×(-1)1+4×(-1)2+7×(-1)3+…+6 037×(-1)2 013+6 040×(-1)2 014,①①式两边分别乘以-1,得(-1)×S 2 014=1×(-1)2+4×(-1)3+7×(-1)4+…+6 037×(-1)2 014+6 040×(-1)2 015,②①-②得2S 2 014=-1+3×1--12 0131--1-6 040(-1)2 015=6 042,∴S 2 014=3 021.答案:C3.在数列{a n }中,已知a 1=1,a n +1-a n =sin n +1π2,记S n 为数列{a n }的前n 项和,则S 2 016=( )A .1 006 B.1 007 C .1 008 D.1 009解析:由题意,得a n +1=a n +sinn +1π2,所以a 2=a 1+sinπ=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin2π=0,a 5=a 4+sin 5π2=1,…,因此,数列{a n }是一个以4为周期的周期数列,而2 016=4×504,所以S 2 016=504×(a 1+a 2+a 3+a 4)=1 008,故选C.答案:C4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101 C.99100D.101100解析:设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×5-12d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n n +1=1n -1n +1,∴数列{1a n a n +1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 答案:A5.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( )A .n ·2nB.(n -1)·2n -1-1C .(n -1)·2n+1 D.2n+1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n,即a n=10n,∴2n -1lg a n =2n -1lg10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n -1)·2n+1. 答案:C6.数列{a n }满足a 1=2,a 2=1,并且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),则数列{a n }的第100项为( )A.12100 B.1250 C.1100 D.150解析:∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),∴数列{a n -1a na n -1-a n}是常数数列,设a n -1a na n -1-a n=k ,∴1a n -1a n -1=1k .∴1k =1-12=12. ∴1a n =1a n -1a n -1+1a n -1-1a n -2+…+1a 2-1a 1+1a 1=12(n -1)+12,∴1a 100=992+12=50. ∴a 100=150.故选D.答案:D7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,则数列{a n b n }的前n 项和S n =__________.解析:由条件易求出a n =n ,b n =2n -1(n ∈N *).∴S n =1×1+2×21+3×22+…+n ×2n -1,①2S n =1×2+2×22+…+(n -1)×2n -1+n ×2n.②由①-②,得-S n =1+21+22+…+2n -1-n ×2n,∴S n =(n -1)·2n+1. 答案:(n -1)·2n +1 8.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n a n +1,则数列{b n }的前n 项和为__________.解析:∵a n =n n +12n +1=n2, ∴b n =8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1. ∴b 1+b 2+…+b n =8⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=8n n +1.答案:8n n +19.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________.解析:令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1). 与已知式相减,得a n =(n 2+3n )-(n -1)2-3(n -1)=2n +2.∴a n =4(n +1)2.∴n =1时,a 1适合a n . ∴a n =4(n +1)2.∴a nn +1=4n +4,∴a 12+a 23+…+a n n +1=n 8+4n +42=2n 2+6n .答案:2n 2+6n10.[2014·大纲全国]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解析:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =113-3n10-3n =13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…⎦⎥⎤+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n1010-3n.B 级 能力提升练11.已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1、S 2、…、S 2 014中,有理数项的项数为( )A .42B .43C .44D .45 解析:1a n=(n +1)n +n n +1=n +1n (n +1+n )=n +1n⎝ ⎛⎭⎪⎫1n +1-n , a n =n +1-n n +1n =1n -1n +1,S n =a 1+a 2+a 3+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1问题等价于在2,3,4,…,2 015中有多少个数可以开方设2≤x 2≤2 015且x ∈N ,因为442=1 936,452=2 025,所以2≤x ≤44且x ∈N ,共有43个.选B.答案:B12.在数列{a n }中,已知a 1=1,a n +1=-1a n +1,记S n 为数列{a n }的前n 项和,则S 2 014=__________.解析:a 2=-1a 1+1=-11+1=-12,a 3=-1a 2+1=-1-12+1=-2,a 4=-1a 3+1=-1-2+1=1,因此a 4=a 1,依次下去,得到a n +3=a n ,因此数列{a n }是以3为周期的周期数列, ∵2 014=3×671+1,∴S 2 014=671×(a 1+a 2+a 3)+a 1=671×⎝ ⎛⎭⎪⎫1-12-2+1=-2 0112. 答案:-2 011213.[2015·某某某某三中、某某一中统考]已知数列{a n }的前n 项和S n 和通项a n 满足2S n+a n =1,数列{b n }中,b 1=1,b 2=12,2b n +1=1b n +1b n +2(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)数列{}满足=a n b n ,求证:c 1+c 2+c 3+…+<34.解析:(1)由2S n +a n =1,得S n =12(1-a n ).当n ≥2时,a n =S n -S n -1=12(1-a n )-12(1-a n -1)=-12a n +12a n -1,即2a n =-a n +a n -1,∴a n a n -1=13(由题意可知a n -1≠0). {a n }是公比为13的等比数列,而S 1=a 1=12(1-a 1),∴a 1=13,∴a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n,由2b n +1=1b n +1b n +2,1b 1=1,1b 2=2,得d =1b 2-1b 1=1(d 为等差数列⎩⎨⎧⎭⎬⎫1b n 的公差), ∴1b n =n ,∴b n =1n.(2)=a n b n =n ⎝ ⎛⎭⎪⎫13n,设T n =c 1+c 2+…+,则T n =1×⎝ ⎛⎭⎪⎫131+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1,由错位相减,化简得:T n =34-34×⎝ ⎛⎭⎪⎫13n -12n ⎝ ⎛⎭⎪⎫13n =34-2n +34×13n <34.14.[2014·某某]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解析:(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14n 2n -12n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1.当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+-1n -12n +1)。
人教版高中数学必修5测试题及答案全套05723
第一章解三角形测试一正弦定理和余弦定理I 学习目标1掌握正弦定理和余弦定理及其有关变形2 •会正确运用正弦定理、余弦定理及有关三角形知识解三角形 .n 基础训练题一、选择题在厶ABC 中,若BC = .2 , AC = 2, B = 45°,则角 A 等于(10. 在△ ABC 中,若 tanA = 2, B = 45°, BC = %;5,贝U AC = ____________ .三、解答题11. 在△ ABC 中,三个内角 A , B , C 的对边分别是 a , b , c ,若a = 2, b = 4, C = 60°,试解△ ABC. 12. 在△ ABC 中,已知 AB = 3, BC = 4, AC = .13 .(1)求角B 的大小;⑵若D 是BC 的中点,求中线 AD 的长.13. 如图,△ OAB 的顶点为 0(0, 0), A(5, 2)和B(— 9, 8),求角 A 的大小.(A)60(B)30 °(C)60 或 120°2. 在厶ABC 中, 三个内角 A , B , C 的对边分别是a ,,c , 若 a(D)30。
或 150 °1=2, b = 3, cosC= ---------- ,贝V c 等于( --------------------------------- ) (A)23. 在厶ABC 中, (A);(B)3已知 cosB - ,sinC 5(B)53(C)42AC= 2,3-I?(D)5那么边AB 等于()12 (D) —54. 在厶ABC 中, 三个内角 A , B , C 的对边分别是 a , b , c ,已知B = 30°, c = 150, b = 50 i 3,那么这个三角形5. 是() (A)等边三角形 (C)直角三角形在厶ABC 中, 三个内角 A , B , C 的对边分别是a , b , c ,(B)等腰三角形(D)等腰三角形或直角三角形如果 A : B : C = 1 : 2 : 3,那么a : b : c 等于(6. 7. 8. 9. (A)1 : 2 : 3 、填空题在厶ABC 中, 在厶ABC 中, 在厶ABC 中, 角形•在厶ABC 中, 三个内角 三个内角 三个内角 三个内角 (B)1 :A , A , A , (C)1 : 4 : 9(D)1 : 一 2C 的对边分别是 C 的对边分别是 C 的对边分别是 C 的对边分别是 a , a , a , a , b , b , b , b , c , c ,c , c , a = 2, B = 45°, a = 2, b = 2 3C = 75°,贝V b = c =4,贝U A =若 2cosBcosC = 1 — cosA ,则△ ABC 形状是若 a = 3, b = 4, B = 60°,贝V c =、选择题1.在△ ABC 中,三个内角 A , B , C 的对边分别是a , b , c ,若 b 2+ c 2— a 2= be ,则角 A 等于( )nn2 n 5 n(A)-(B) —(C) —(D) —63362. 在△ ABC 中,给出下列关系式:A BC①sin(A + B)= sinC ②cos(A + B)= cosC ③ sin^~B cosC2 2其中正确的个数是( )、填空题6. _____________________________________________________________________________________________ 在△ ABC 中,三个内角 A , B , C 的对边分别是 a , b , c ,若a = V 2 , b = 2, B = 45°,则角 A= __________________ .7. ___________________________________________________________________________________________ 在△ ABC 中,三个内角 A , B , C 的对边分别是 a , b , c ,若a = 2, b = 3, c = 7T9,则角C= _____________________ .3&在厶ABC 中,三个内角A , B , C 的对边分别是a , b , c ,若b = 3, c = 4, cosA = — ,则此三角形的面积为 ____________59. 已知△ ABC 的顶点 A(1, 0), B(0 , 2) , C(4 , 4),则 cosA = ________ .10. ________________________________________________________________________________________________ 已知△ ABC 的三个内角 A , B , C 满足2B = A + C ,且AB = 1, BC = 4,那么边 BC 上的中线 AD 的长为 ________________14 .在△ ABC 中,已知 2cos(A + B) = 1.(1)求角C 的度数; ⑵求AB 的长; (3)求厶ABC 的面积.测试二解三角形全章综合练习I 基础训练题(A)0(B)1(C)23. 在厶ABC 中, 三个内角 A , B , C 的对边分别是a ,b p .,c.右(D)323a = 3, sinA = , sin(A + C)=,贝Vb 等于()3 4(A)4(B)8(C)6(用84. 在厶ABC 中, 三个内角 A , B , C 的对边分别是a ,,c ,右 a = 3, b = 4,2sinC =-,则此三角形的面积是(5. (A)8在厶ABC 中, 此三角形的形状是( 三个内角 (B)6 A ,B , )(C)4C 的对边分别是 a , b , c , 若 (a + b + c)(b + c — a) = 3bc ,且 sinA = 2sinBcosC ,则(D)3(A)直角三角形(B)正三角形 (C)腰和底边不等的等腰三角形(D)等腰直角三角形=0的两根, BC = a , AC = b三、解答题11. 在△ ABC 中,a , b , c 分别是角A , B , C 的对边,且a= 3 , b= 4 , C= 60 ° .⑴求c;(2)求 sinB.12. 设向量 a , b 满足 a • b = 3, |a|= 3, |b|= 2.(1) 求〈a , b 〉; (2) 求 |a - b|.13. 设△ OAB 的顶点为 0(0, 0), A(5, 2)和 B(- 9, 8),若 BD 丄 OA 于 D.(1) 求高线BD 的长; (2) 求厶OAB 的面积.14. 在△ ABC 中,若 sin 2A + sin 2B >sin 2C ,求证:C 为锐角.15. 如图,两条直路 OX 与OY 相交于O 点,且两条路所在直线夹角为 60°,甲、乙两人分别在 OX 、OY 上的A 、B 两点,| OA |= 3km , | OB |= 1km ,两人同时都以4km/h 的速度行走,甲沿 XO 方向,乙沿OY 方向. 问:⑴经过t 小时后,两人距离是多少 俵示为t 的函数)?(2)何时两人距离最近?(1)求角B 的值;⑵若b = ■ 13 , a + c = 4,求厶ABC 的面积.(提示:利用正弦定理 a b csin A sin B sinC2R ,其中RABC 外接圆半径)n 拓展训练题16.在△ ABC 中,a , b , c 分别是角 A , B , C 的对边,且cosB cosCb 2a c3第二章数列测试三数列 I 学习目标1•了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数2 •理解数列的通项公式的含义,由通项公式写出数列各项3•了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项 n 基础训练题 一、选择题 1.数列{a n }的前四项依次是:4, 44, 444, 4444,…则数列{a n }的通项公式可以是()(A) a n = 4n(B)a n = 4n 4 (C) a n = (10n — 1)(D)a n = 4 x 11n92.在有一定规律的数列0, 3, 8, 15, 24, x , 48,63,……中,x 的值是( )10. ____________________________________________________________ 数列{a n }的通项公式为a n = 2n 2— 15n + 3,则它的最小项是第 ___________________________________________________ 项.三、解答题11. 已知数列{a n }的通项公式为a n = 14— 3n.(1) 写出数列{a n }的前6项; (2) 当n 》5时,证明a n V 0. 12 .在数列{a n }中,已知a n =1 它的前五项依次是 _________ ,2 0. 98是其中的第 _________ 项.在数列{a n }中,a 1 = 2, a n +1 = 3a n + 1,贝U a 4 =(A)30 (B)35 (C)36 3.数列{a n }满足:a 1= 1, a n = a n —1 + 3n , 则a 4等于( )(A)4 (B)13 (C)28 4. 156是下列哪个数列中的一项 ( )(A){ n 1 2+ 1} (B){ n 2— 1} (C){ n 2 + n}5. 若数列{a n }的通项公式为a n 5 3n , 则数列{ a n }是( )(A)递增数列 (B)递减数列 (C)先减后增数列 ― 、填空题6. (D)42 (D)43(D){ n 2+ n — 1}(D)以上都不对7. 数列的前5项如下,请写出各数列的一个通项公式: 2 12 1 (1) 1,—, , , , , a n3 2 5 3 (2) 0, 1 , 0, 1, 0,… 一个数列的通项公式是a n = ______2na n =2~A .n 2 18. a n + 19.数列{a n }的通项公式为a n (2n 1) (n € N *),贝U a 3=(1) 写出a10, a n+1, a n2 ;2(2) 79 —是否是此数列中的项?若是,是第几项?113.已知函数 f(x) x ,设 a n = f(n)(n € N + ). x(1) 写出数列{a n }的前4项;(2) 数列{ a n }是递增数列还是递减数列?为什么?测试四等差数列 I 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题 .2.掌握等差数列的前 n 项和公式,并能应用公式解决一些简单问题.3. 能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系n 基础训练题一、选择题6. ____________________________________________ 在等差数列{a n }中,a 2与a 6的等差中项是 .7. _______________________________________________________________ 在等差数列{a n }中,已知 a 1 + a 2= 5, a 3 + a 4 = 9,那么 a 5 + a 6 = ____________________________________________________ . &设等差数列{a n }的前n 项和是S n ,若S 17 = 102,则a 9= ______________ .9. _____________________________________________________________ 如果一个数列的前 n 项和S n = 3n 2 + 2n ,那么它的第n 项a “= _______________________________________________________ . 10. 在数列{a n }中,若 a 1= 1, a 2= 2, a n +2 — a n = 1 + (— 1)n (n € N *),设{ a n }的前 n 项和是 S n ,贝U S 10= _______ 三、解答题11. 已知数列{a n }是等差数列,其前 n 项和为S n , a 3= 7, S 4= 24.求数列{a n }的通项公式 12. 等差数列{a n }的前n 项和为S n ,已知a 10= 30, a 20 = 50.(1) 求通项a n ; (2) 若 S n = 242,求 n.13. 数列{a n }是等差数列,且 a 1= 50, d =— 0. 6.(1) 从第几项开始a n V 0 ;(2) 写出数列的前n 项和公式S n ,并求S n 的最大值.川拓展训练题14. 记数列{a n }的前 n 项和为 S n ,若 3a n +1= 3a n + 2(n € N *), a 1 + a 3 + a 5+・・・+ a 99= 90,求 S 100.1. 2. 3. 数列{a n }满足:a 1 = 3, (A)98 数列{a n }是首项a 1= 1, (A)667 在等差数列{a n }中,若(A)15 a n +1 = a n — 2,贝V a 1oo 等于()(B) — 195 (C) — 201公差d = 3的等差数列,如果 a n = 2008,(B)668 (C)669a 7 + a 9= 16, a 4= 1,贝U a 12 的值是((B)30(D)—198 那么n 等于((D)670 (D)64 4. 在a 和b(a ^ b)之间插入n 个数,使它们与 b a (A)-n 设数列{a n }是等差数列,且 (A)S 4V S 55. b a (B)—7 n1 a 2=— 6,(B)S 4= S 5(C)31 a , b 组成等差数列,则该数列的公差为b a b a (C) (D)- n 1 n 2 a 8= 6, S n 是数列{a n }的前n 项和,则( (C)S 6V S 5 (D)S 6= S测试五等比数列I 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题2 •掌握等比数列的前n项和公式,并能应用公式解决一些简单问题.3•能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系n 基础训练题一、选择题1.数列{a n}满足:a1 = 3, a n+1= 2a n,贝U a4等」()(A)8(B)24(C)48(D)542 . 在各项都为正数的等比数列{a n}中,,首项a1 = 3, 前三项和为21,贝U a3+ a4 + a5 等于((A)33(B)72(C)84(D)1893.在等比数列{a n}中,如果a6= 6, a9= 9,那么a3等于()(A)4(B)-(C)16(D)3294.在等比数列{a n}中,若a2= 9, a5= :243,则{a n}的前四项和为()(A)81(B)120(C)168(D)1925 .若数列{a n}满足a n= a1q n—1(q> 1), 给出以下四个结论:①{a n}是等比数列;②{a n}可能是等差数列也可能是等比数列;③{a n}是递增数列;④{a n}可能是递减数列.其中正确的结论是()(A)①③(B)①④(C)②③(D)②④二、填空题6. __________________________________________________________________ 在等比数列{a n}中,a i, a io是方程3x2 + 7x—9= 0的两根,则a4a7=_________________________________________________7. ______________________________________________________________ 在等比数列{a n}中,已知a i + a2= 3, a3 + a4 = 6,那么a5 + a6 = ___________________________________________________ .1 山&在等比数列{a n}中,若a5= 9, q =一,则{a n}的前5项和为_____________ .29. 在8和岂之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_________3 210. ________________________________________________________________________________ 设等比数列{a n}的公比为q,前n项和为S n,若3+1, S n, 3+2成等差数列,则q = ___________________________________三、解答题11. 已知数列{a n}是等比数列,a2= 6, a5= 162.设数列{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)若S n= 242,求n.12. 在等比数列{a n}中,若a2a6= 36, a3 + a5= 15,求公比q.13. 已知实数a, b, c成等差数列,a+ 1, b+ 1, c+ 4成等比数列,且a+ b + c= 15,求a, b, c.川拓展训练题14. 在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q,每列上的数从上到1 5下都成等差数列.a j表示位于第i行第j列的数,其中a24= , a42 = 1, a54 = .(1) 求q 的值; (2) 求a j 的计算公式. 测试六数列求和 I 学习目标1•会求等差、等比数列的和,以及求等差、等比数列中的部分项的和 2•会使用裂项相消法、错位相减法求数列的和 n 基础训练题1. 、选择题 已知等比数列的公比为 (A)152. 若数列{a n }是公差为3. (A)60数列{a n }的通项公式(A)100 2,且前4项的和为 (B)17 1 丄的等差数列,它的前 2(B)72.5 a n = (— 1)n 1 (B)—100 1,那么前8项的和等于() (C)19(D)21 100 项和为 145,贝U a i + a 3+ a 5+- + (C)85 (D)120 • 2n(n € N *),设其前n 项和为S n ,则S 100等于( (D) — 200 (C)200 4.数列(2n 1)(2 n 1)的前n 项和为(a 99的值为(n(A)k2n (B)- 2n 1设数列{a n }的前n 项和为S n , a 1= 1, (A)7000 一、填空题 2n(计5. (B)7250(C) 4n 2 a 2 = 2,且 a n +2= a n + 3(n = 1, 2, 3,…),贝V S 100等于((C)7500 (D)149506. 1 、2 17. 数列{n + 丄}的前n 项和为2n2 2 2 a ? + a ; +…+a 2 9. 设 n € N *, a € R , 则 1 + a + a 2+…+ a n = 1 1 1 1 10 .1 2 3 — n n = 2 4 8 2n 数列{a n }满足:a 1= 1, a n +1 = 2a n ,则 8. 三、解答题 11 .在数列{a n }中,a 1 = 11, a n +1= a n + 2(n € N *),求数列{| a n |}的前 n 项和 S n . 12.已知函数 f(x)= a 1x + a 2x 2+ a 3x 3+…+ a n x n (n € N *, x € R),且对一切正整数 n 都有 f(1) = n 2成立.(1)求数列{a n }的通项a n ;1a n a n 11113.在数列{a n }中,a i = 1,当n 》2时,a n = 12 4川拓展训练题14. 已知数列{ a n }是等差数列,且 a 1 = 2, a 1+ a 2 + a 3= 12.(1)求数列{a n }的通项公式;⑵令b n = a n x n (x € R),求数列{b n }的前n 项和公式.测试七数列综合问题I 基础训练题、选择题(A)0二、填空题(B) — 3(C) 3、3(D )y1丄a n ,n 为偶数6.设数列{a n }的首项a 1 =1且an 12 1 贝U a 2=, a 3=4a n ,n 为奇数47.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2 + a 4 + a 6+・・・+ a 20= __________ . &某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由________ 个.9. _______________________________________________________ 在数列{a n }中,a 1 = 2, a n +1 = a n + 3n(n € N ),贝V a n = __________________________________________________ .10. 在数列{a n }和{b n }中,a 1= 2,且对任意正整数 n 等式3a n +1— a n = 0成立,若b n 是a n 与a n +1的等差中项,则{b n } 的前n 项和为 ___________ . 三、解答题11. 数列{a n }的前n 项和记为 S n ,已知a n = 5S — 3( n € N *).(1)求 a 1, a 2, a 3;,求数列的前 n 项和S n .1.等差数列{a n }中, a 1= 1,公差d 丰0,如果a 1, a 2, a 5成等比数列,那么d 等于( (A)3 (B)2 (C) - 2 (D)2 或一22.等比数列{a n } 中, a n >0,且 a 2a 4+ 2a 3a 5 + a 4a 6= 25,贝U a 3 + a 5等于((A)5(B)10(C)15 3.如果a 1, a 2, a 3,…,a 8为各项都是正数的等差数列,公差(D)20 d 丰0,则((A) a 1a 8> a 4a 5 (B) a 1a 8V a 4a 5 (C)a 1 + a 8> a 4 + a 5(D) a 1a 8 = a 4a 54.一给定函数y = f(x)的图象在下列图中,并且对任意a 1 € (0, 1),由关系式 a n (n € N *),则该函数的图象是()a n + 1= f(a n )得到的数列{a n }满足a n + 1>1个繁殖成⑵求数列{a n}的通项公式;(3) 求 a i + a 3+・・・+ a 2n -1的禾口 .2 2 *12. 已知函数 f(x)= r (x >0),设 a i = 1, a * i • f(a n ) = 2(n € N ),求数列{a n }的通项公式.x 413. 设等差数列{a n }的前n 项和为 3,已知a 3= 12, S 12>0, S 13V 0.(1) 求公差d 的范围;(2) 指出S 1,S 2,…,S 12中哪个值最大,并说明理由.川拓展训练题14. 甲、乙两物体分别从相距 70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前 1分钟多走1m ,乙每 分钟走5m.(1) 甲、乙开始运动后几分钟相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1分钟多走1m ,乙继续每分钟走 5m ,那么开始运动几分钟后第二次相遇?15. 在数列{a n }中,若a 1, a 2是正整数,且a n = |a n -1 — a n -2|, n = 3, 4, 5,…则称{a n }为"绝对差数列”(1) 举出一个前五项不为零的“绝对差数列”(只要求写出前十项);(2) 若“绝对差数列” {a n }中,a 1= 3, a 2= 0,试求出通项a n ; (3) *证明:任何“绝对差数列”中总含有无穷多个为零的项测试八数列全章综合练习I 基础训练题、选择题5. 若{a n }是等差数列,首项a 1> 0, a 2007 + a 2008> 0, a 2007 • a 2008V 0,则使前n 项和S n >0成立的最大自然数6. _______________________________________________________________ 已知等比数列{a n }中,a 3 = 3, a 10= 384,则该数列的通项 a n = _____________________________________________________ .7. _________________________________________________________________________________ 等差数列{a n }中,a 1+ a 2+ a 3= — 24, a 18+ a 19+ a 20= 78,则此数列前 20项和 S 20= __________________________________ &数列{a n }的前n 项和记为S n ,若S n =『一 3n + 1 ,贝V a n = _____________ . 9. 等差数列{a n }中,公差0,且a 1, a 3, a 9成等比数列,则10. ______________________________________________________________________________________________ 设数列{a n }是首项为1的正数数列,且(n + 1)a :1 — na : + a n + 1a n = 0(n € N *),则它的通项公式 a n = ___________________ 三、解答题(A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( )(A)5880 (B)5539 (C)5208 (D)4877 3.右 a , b , c 成等比数列,则函数 y = ax 2 + bx + c 的图象与x 轴的交点个数为((A)0 (B)1(C)2 (D)不能确定 4.在等差数列 {a n }中,如果前5项的和为 S s = 20,那么a 3等于( )1 .在等差数列{a n }中,已知a 1 + a 2= 4, a 3 + a 4 = 12,那么a 5 + a 6等于() )(A) — 2 (B)2(C) — 4(D)4 (A)4012 、填空题(B)4013 (C)4014 (D)4015 a 3 a 6a 9a 4 a 7 a1011. 设等差数列{ a n}的前n项和为S n,且a3+ a7 —a10 = 8, an —a4= 4,求S13.12. 已知数列{ a n}中,a1 = 1,点(a n, a n+1+ 1)(n€ N*)在函数f(x) = 2x+ 1 的图象上.(1)求数列{a n}的通项公式;⑵求数列{a n}的前n项和S n;(3) 设c n= S n,求数列{c n}的前n项和T n.13. 已知数列{a n}的前n项和S n满足条件S n= 3a n + 2.(1) 求证:数列{a n}成等比数列;(2) 求通项公式a n.14 .某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1) 写出该渔船前四年每年所需的费用(不包括购买费用);(2) 该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3) 若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?n 拓展训练题(1)求a n;2 2 2 一一" 亠im …⑵设b n= a n 1+ a n 2+…+ a2n 1,是否存在最小正整数m,使对任意n€ N*有b n v 成立?若存在,求出m25的值,若不存在,请说明理由.16•已知f是直角坐标系平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q= f(P).设P1(X1, y1), P2= f(P1) , P3= f(P2),…,P n= f(P n-1),….如果存在一个圆,使所有的点P n(x n, y n)(n € N*)都在这个圆内或圆上,那么称这个圆为点P n(x n, y n)的一个收敛圆•特别地,当P1= f(P1)时,则称点P1为映射f 下的不动点•1若点P(x, y)在映射f下的象为点Q( —x + 1, y).2(1)求映射f下不动点的坐标;⑵若P1的坐标为(2, 2),求证:点P n(x n, y n)(n € N*)存在一个半径为2的收敛圆.第三章不等式测试九不等式的概念与性质I 学习目标1•了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小2 •理解不等式的基本性质及其证明.n 基础训练题一、选择题1 . 设a, b, c€ R,则下列命题为真命题的是()(A)a> b a—c> b—c(B) a > b ac> bc(C)a> b a2> b2(D)a > b ac2> bc215.已知函数f(x) =1 、,—2(x v —2),数列{a n}满足a1 = 1, a n = f(—一x 41an 1)(n € N*).2 . 若—1 v v v 1,贝U -- 的取值范围是()(A)( —2, 2)(B)( —2,—1)(C)( —1, 0)(D)( —2, 0)3 . 设a>2, b>2,贝U ab与a+ b的大小关系是( )(A) ab> a+ b(B) ab v a + b(C)ab= a + b(D)不能确定4 . 使不等式 1 1 a > b和丄a b同时成立的条件是()(A)a> b> 0(B)a> 0 > b(C)b > a> 0(D)b> 0 > a5 . 设1v x v 10,则下列不等关系正确的是()(A)ig 2x>lgx2> ig(lgx) (B)lg 2x> lg(lg x)> igx2 (C)ig x2> lg2x> Ig(lgx) (D)lg x2> lg(lgx) > lg2x二、填空题6. 已知a v b v 0, c v 0,在下列空白处填上适当不等号或等号:c c(1)(a—2)c _______ (b —2)c; (2) —_______ - ;(3)b—a ______ ⑻一|b|.a b7. _____________________________________________________________ 已知a v 0, —1v b v 0,那么a、ab、ab2按从小到大排列为 ________________________________________________________ .a&已知60v a v 84, 28v b v 33,则a—b的取值范围是;一的取值范围是 _________ .ba b9. 已知a, b, c€ R,给出四个论断:①a>b;②ac2>be2;③二④a—c>b — c.以其中一个论断作条件,另c c一个论断作结论,写出你认为正确的两个命题是 ____________ __________ ; ________ ___________ .(在“ ”的两侧填上论断序号).310. 设a>0, 0v b v 1,贝y P= J 2与Q ^,-(a 1)(a 2)的大小关系是.三、解答题11. 若a>b>0, m>0,判断b与b―m的大小关系并加以证明.a a m12 .设a>0, b> 0,且a丰 b, p a , q a b .证明:p> q.b a注:解题时可参考公式x3+ y3= (x+ y)(x2—xy+ y2).川拓展训练题13 .已知a> 0,且1,设M = log a(a3— a +1), N = log a(a2—a+ 1).求证:M > N.2214.在等比数列{a n }和等差数列{b n }中,a i = b i >0, a 3= b 3>0, a i ^a 3,试比较a 5和b 5的大小.测试十 I 均值不等式 学习目标 1. 了解基本不等式的证明过程 . 2. 会用基本不等式解决简单的最大 (小)值问题. 基础训练题 i . 、选择题 已知正数a , (A)有最小值 b 满足 a + b = 1,贝U ab( 1 1(B)有最小值— 421 (C)有最大值- (D)有最大值2. 若 a >0, b >0,且b ,则( )(A)兮 ab ,0^ a 2 b 223. 4. (C) .ab a 2 b 2 a b 2~T~(D) a 2 b 2 ab若矩形的面积为 a 2(a > 0),则其周长的最小值为( (A) a (B)2 a (C)3 a 设a , b € R ,且2a + b - 2= 0,贝U 4a + 2b 的最小值是 (D)4a(A) 2、2 (B)4 (C) 4 : 2 (D)8如果正数a , b , (A) ab < c + d , (B) ab > c + d , (C) ab w c + d , (D) ab > c +d , 一、填空题 5. c , d 满足 a + b = cd = 4,那么( 且等号成立时 且等号成立时 且等号成立时 且等号成立时a , a , a , a ,b , b , b , b ,c , c , c , c , )d 的取值唯一 d 的取值唯一 d 的取值不唯一 d 的取值不唯一 6. 9若x > 0,则变量x -的最小值是 x;取到最小值时, x =7. 函数 4xy=— x-(x > 0)的最大值是 1 ;取到最大值时, 8. 已知 16 -- 的最大值是a 3 f(x) = 2log 2(x + 2) - log 2x 的最小值是av 0,贝U a 9. 10. 已知a , b , c € R , a + b + c = 3,且a , b , c 成等比数列,则 b 的取值范围是 三、解答题 函数 11.四个互不相等的正数 a , b , c , d 成等比数列,判断 和bc 的大小关系并加以证明 2t 11 1的大小.1 12 .已知 a > 0,1, t > 0,试比较一 log a t 与 log a拓展训练题13.若正数x , y 满足x + y = 1,且不等式 x . ya 恒成立,求a 的取值范围.a14. (1)用函数单调性的定义讨论函数f(x) = x +(a >0)在(0,+s )上的单调性;xa(2)设函数f(x)= x +(a > 0)在(0, 2]上的最小值为g(a),求g(a)的解析式.x测试十一 一元二次不等式及其解法I 学习目标1. 通过函数图象理解2.会解简单的一元二次不等式 .一、 选择题 1.不等式5x + 4>-x 2的解集是()(A){ x|x >- 1,或 x v — 4}(C){ x|x >4,或 x v 1}2 .不等式一x 2 + x — 2 > 0的解集是()(A){ x|x > 1,或 x v — 2} (C)R3. 不等式x 2 > a 2(a v 0)的解集为()(A){ x|x >± a}(C){ x|x >— a ,或 x v a }14. 已知不等式ax 2 + bx + c > 0的解集为{x| -3 1(A){ x| — 3 v x v }2 1、(C){x — 2v x v — }35. 若函数y = px 2— px — 1(p € R)的图象永远在(A)( —R, 0) (B)( — 4, 0]二、 填空题6. ___________________________________ 不等式x 2 + x — 12v 0的解集是 .7 .不等式竺丄0的解集是 _______________ .2x 5元二次不等式与相应的二次函数、一元二次方程的联系n 基础训练题 (B){ x|— 4v x v — 1} (D){ x|1 v x v 4}(B){ x|— 2 v x v 1}(D)(B){ x|— a v x v a } (D){ x|x >a , 或 x v — a}x 2},则不等式cx 2 + bx + a v 0的解集是()1(B){ x|x v — 3,或 x >}2 1 (D){ x|x v — 2, 或 x >} 3x 轴的下方,则p 的取值范围是( )(C)( —^,— 4)(D)[ — 4, 0)12. k 在什么范围内取值时,方程组2x3xy 2x 0有两组不同的实数解?4y k 08不等式|x2—1|v 1的解集是____________ .9. ___________________________________ 不等式0v x2—3x v 4的解集是.1 110. 已知关于x的不等式x2—(a+—)x+ 1v 0的解集为非空集合{x|a v x v—},则实数a的取值范围是a a三、解答题11 .求不等式x2—2ax—3a2v 0(a € R)的解集.川拓展训练题13. 已知全集U = R,集合A={x|x2—x—6v0} , B={X|X2+2X— 8>0}, C = {x|x2—4ax+ 3a2v0}.(1) 求实数a的取值范围,使C (A n B);(2) 求实数a的取值范围,使C (.u A) n QuB).14. 设a € R,解关于x的不等式ax2—2x+ 1 v 0.测试十二不等式的实际应用I 学习目标会使用不等式的相关知识解决简单的实际应用问题n 基础训练题一、选择题11•函数、——的定义域是()V4 x(A){ x| —2 v x v 2} (B){ x|—2 < x< 2}(C){ x|x>2,或x v —2} (D){ x|x>2,或x<—2}2. 某村办服装厂生产某种风衣,月销售量x(件)与售价p(元/件)的关系为p= 300 —2X,生产x件的成本r = 500 +30x(元),为使月获利不少于8600元,则月产量x满足()(A)55 < x w 60 (B)60 < x< 65(C)65 w x< 70 (D)70 w x w 753. 国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r元,则每年产销量减少10r万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r的取值范围为()(A)2 w r w 10 (B)8 w r w 10(C)2 w r w 8 (D)0 w r w 84. 若关于x的不等式(1 + k2)x w k4+ 4的解集是M,则对任意实常数k,总有()(A)2 € M, 0€M (B)2 M, 0 M(C)2 € M, 0 M (D)2 M, 0 €M二、填空题5•已知矩形的周长为36cm,则其面积的最大值为 ________ .6. _____________________________________________________________ 不等式2x2+ ax + 2> 0的解集是R,则实数a 的取值范围是________________________________________________________ .7. _____________________________________________________ 已知函数f(x) = x|x —2|,则不等式f(x) v 3的解集为. &若不等式|x+ 1|> kx对任意x€ R均成立,则k的取值范围是_____________ .三、解答题9•若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状10. 汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s甲=0. 1x+ 0. 01x2, s乙=0. 05x+ 0. 005x2.问交通事故的主要责任方是谁?川拓展训练题11. 当x€ [ —1, 3]时,不等式一x2+ 2x + a>0恒成立,求实数a的取值范围12.某大学印一份招生广告,所用纸张 (矩形)的左右两边留有宽为 4cm 的空白,上下留有都为 6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三二元一次不等式(组)与简单的线性规划问题I 学习目标1•了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组2•会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决 n 基础训练题 一、选择题1.已知点 A(2, 0), B( — 1, 3)及直线1:x — 2y = 0,那么()(A ) A , B 都在l 上方(B)A , B 都在 1 下方(C )A 在1上方,B 在1下方(D )A 在1下方,B 在1上方 x 0,2.在平面直角坐标系中,不等式组y 0,所表示的平面区域的面积为(x y 2(A)1 (B)2(C)3(D)43.三条直线y = x , y = — x , y = 2围成一个三角形区域,表示该区域的不等式组是()y x, y x,yx,y x, (A) y x,(B) y x,(C) yx, (D) y xy 2.y 2.y2.y 2.x y 50,4.若 x , y 满足约束条件 x y 0,则 z = 2x + 4y 的最小值是()x 3,(A) —6(B) — 10(C)5(D)10 5.某电脑用户计划使用不超过500元的资金购买单价分别为 60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有 ( )(A )5 种 (B )6 种 (C )7 种(D )8 种二、填空题7.若不等式|2x + y + m|v 3表示的平面区域包含原点和点 (一1,1),则m 的取值范围是x 1,&已知点P (x , y )的坐标满足条件y 3, 那么z = x — y 的取值范围是 ________ .3x y 3 0,x 6.在平面直角坐标系中,不等式组y0所表示的平面区域内的点位于第 ——象限.x 1,9.已知点P(x, y)的坐标满足条件y 2, 那么丄的取值范围是__________x2x y 2 0,10•方程|x|+ |y|w 1所确定的曲线围成封闭图形的面积是____________ .三、解答题11. 画出下列不等式(组)表示的平面区域:x 1,(1)3x+ 2y+ 6> 0 (2) y 2,x y 1 0.是每袋24kg,价格为120元.在满足需要的前提下,最少需要花费多少元?川拓展训练题13•商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0. 5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0. 9元. 问每一种应装多少袋,使所获利润最大?最大利润是多少?14. 甲、乙两个粮库要向A, B两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A镇需大米70吨,B镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A、B两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四不等式全章综合练习I基础训练题、选择题1.设a, b, c€ R, a>b,则下列不等式中一定正确的是()(A) ac2> bc21(B) — a 1(C)a —c> b —c (D)|a|> |b| bx y 4 0,2.在平面直角坐标系中,不等式组2x y 4 0,表示的平面区域的面积是(12.某实验室需购某种化工原料106kg,现在市场上该原料有两种包装,一种是每袋35kg,价格为140元;另一种x 2— ,若对x > 0恒有xf(x) + a > 0成立,则实数a 的取值范围是( )x(A)a v 1 - 2 2 (B)a v 2 2 — 1 (C)a > 2 2 — 1 (D)a > 1 — 2 25. 设 a , b € R ,且 b(a + b +1)v 0, b(a + b — 1)v 0,则()(A)a > 1 (B)a v — 1(C) — 1 v a v 1(D)|a|> 1二、 填空题a6. ______________________________________________________ 已知1v a v 3, 2v b v 4,那么2a — b 的取值范围是______________________________________________________________ ,—的取值范围是 __________ .b 7•若不等式 x 2— ax — b v 0 的解集为{x|2v x v 3},贝V a + b = _______ .&已知x , y € R ,且x + 4y = 1,贝V xy 的最大值为 ____________ .l' 29•若函数f(x)= I 2x 2ax a 1的定义域为R ,则a 的取值范围为 __________________ .10•三个同学对问题“关于 x 的不等式x 2+ 25+ x 3 — 5x 2|> ax 在[1 , 12]上恒成立,求实数 a 的取值范围”提出各自的解题思路•甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量 x 的函数,右边仅含常数,求函数的最值 .”丙说:“把不等式两边看成关于 x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即 a 的取值范围是 _________ .三、 解答题x 811.已知全集 U = R ,集合 A = {x| |x — 1|v 6} , B = {x|> 0}.2x 1(1)求 A n B ; ⑵求C U A) U B.12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过 2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?n 拓展训练题a j ,,13. 已知数集 A = { a 1, a 2,…,a n }(1 <a 1 va 2<・・・va n , n 》2)具有性质 P :对任意的i , j(1< i < n),a i a j 与 -两3. (A) 32某房地产公司要在一块圆形的土地上,设计一个矩形的停车场 ( )(A)50m 2(B)3(C)4(D)6.若圆的半径为10m ,则这个矩形的面积最大值是(B)100m 2 (C)200m 2(D)250m 24. 2X 设函数f(x) =a i数中至少有一个属于 A.(1)分别判断数集{1 , 3, 4}与{1 , 2, 3, 6}是否具有性质P,并说明理由;(2)证明:a i= 1,且91i a2i a i n a n.aj a?1a n11 1(A) (2,3)(C)( 2, 3)2 34. 设等比数列{a n}的前n项和为S n,则下列不等式中一定成立的是()(A) a i + a3> 0 (B)a1a3> 0 (C) S1 + S3 v 0 (D) S1S3V 05. 在△ ABC中,三个内角A, B, C的对边分别为a, b, c,若A : B : C= 1 : 2 : 3,贝U a : b : c等于()(A)1 : . 3 : 2 (B)1 : 2 : 3 (C)2 : 3 : 1 (D)3 : 2 : 16. 已知等差数列{a n}的前20项和S20= 340,则a6+ a9 + an+ a16等于()(A)31 (B)34 (C)68 (D)707. 已知正数x、y满足x+ y= 4,贝U log2x+ log2y的最大值是()(A) - 4 (B)4 (C) - 2 (D)2&如图,在限速为90km/h的公路AB旁有一测速站P,已知点P距测速区起点A的距离为0. 08 km ,距测速区终点B的距离为0. 05 km,且/ APB = 60° .现测得某辆汽车从A点行驶到B点所用的时间为3s,则此车的速度介(A)60 〜70km/h (B)70 〜80km/h(C)80 〜90km/h (D)90 〜100km/h二、填空题9._________________________________ 不等式x(x- 1)v 2的解集为.10 .在△ ABC中,三个内角A, B, C成等差数列,则cos(A+ C)的值为_____________ .、选择题测试十五必修5模块自我检测题1函数y x24的定义域是()(A)( - 2, 2) (B)((C)[ - 2, 2] (D)( -R,2.设a>b>0,则下列不等式中一定成立的是()2) U (2,+^ )2] U [2 ,+^ )a(A) a-b v 0 (B)0 v v 1b(C) 一ab va b2x 1,3.设不等式组y 0,所表示的平面区域是x y 0(D) ab> a + bW,则下列各点中,在区域W内的点是(311.______________________________________________________________________ 已知{a n}是公差为一2的等差数列,其前5项的和S5= 0,那么a1等于_____________________________________________2 …12. 在△ ABC 中,BC= 1,角C= 120 °, cosA = ,贝V AB= .320.⑵求证:5x 0,y 0值是 _________ .14. 如图,n 2(n 》4)个正数排成n 行n 列方阵,符号 a j (1 < i < n , 1 < j < n , i , j € N)表示位于第i 行第j 列的正数.11 已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于 q.若an = - , a 24= 1, a 32=-,24贝 y q = ______; a ij = ________ .久如…商“a21…门打II V « « V 9fl.i o ■工 % …a…三、解答题15. 已知函数 f(x)= x 2 + ax + 6.(1) 当a = 5时,解不等式f(x) v 0;(2) 若不等式f(x)> 0的解集为R ,求实数a 的取值范围. 16. 已知{a n }是等差数列,a 2= 5, a 5= 14.(1) 求{a n }的通项公式;(2) 设{a n }的前n 项和S n = 155,求n 的值.(1) 证明角C = 90°; (2) 求厶ABC 的面积.18•某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,使得该厂日产值最大?119.在△ ABC 中,a , b , c 分别是角 A , B , C 的对边,且 cosA =-•3(1)求 sin 2"B C cos2A 的值;2 ⑵若a =3,求bc 的最大值.数列{a n }的前n 项和是S n , (1)求数列{a n }的通项公式;1 1 113.在平面直角坐标系中,不等式组2x y 4 0,所表示的平面区域的面积是________ ;变量z = x + 3y 的最大17.在△ ABC 中,a , b , c 分别是角 A , B , C 的对边,A , B 是锐角,c = 10,且cos A cos Ba 1 = 5,且 a n = S n - 1(n = 2, 3, 4,…).20.⑵求证:5a1a2a3a n2122参考答案第一章解三角形测试一正弦定理和余弦定理一、选择题1. B2. C3. B4. D5. B提示:4. 由正弦定理,得sinC= f,所以C= 60°或C = 120°,当C= 60。
高三数学必修五测试题含答案
高三数学必修五测试题含答案一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{an}中,a12,an1an1(n N*)则a101的值为(),2 A.49 B.50 C.51 D.52 211,两数的等比中项是() A.1 B.-1 C.±1 D.1 2 3.在三角形ABC中,如果a b c b c a3bc,那么A等于()A.30 B.60 C.120 D.150 4.在�SABC中,0000ccosC,则此三角形为() bcosB A.直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{an}是等差数列,且a2+ a3+ a10+ a11=48,则a6+ a7= ( ) A.12 B.16 C.20 D.24 6.在各项均为正数的等比数列bn中,若b7b83,则log3b1log3b2log3b14等于()(A) 5 (B) 6 (C) 7 (D)8 7.已知a,b满足:a=3,b=2,a b=4,则a b=( ) ABC.3 D 8.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为() A、63 B、108 C、75 D、83 9.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为( ). A.4 B.8 C.15 D.31 10.已知△ABC中,∠A=60°,a=,b=4,那么满足条件的△ABC的形状大小 ( ). A.有一种情形 B.有两种情形C.不可求出 D.有三种以上情形 11.已知D、C、B三点在地面同一直线上,DC=a,从C、D两点测得A的点仰角分别为α、β(α>β)则A点离地面的高AB等于 A.() asin sin asin sin B.sin()cos()acos cos acos cos D. sin()cos() C. 12.若{an}是等差数列,首项a1>0,a4+a5>0,a4・a5<0,则使前n项和Sn>0成立的自然数n的值为( ). A.4 B.5 C.7 D.8 二、填空题(本题共4小题,每小题5分,共20分) 13.在数列{an}中,其前n项和Sn=3・2n+k,若数列{an}是等比数列,则常数k的值为 14.△ABC中,如果 abc ==,那么△ABC是 tanAtanBtanC 1 ,则an= ; n2 S7n 2 16.两等差数列{an}和{bn},前n项和分别为Sn,Tn,且n, Tnn 3 15.数列{an}满足a12,an an1则 a2a20 等于 _ b7b15 三.解答题 (本大题共6个小题,共70分;解答应写出文字说明、证明过程或演算步骤) 17.(10)分已知a,b,c是同一平面内的三个向量,其中a1,2. (1)若c2,且c//a,求c的坐标;第2 / 6页 5 ,且a2b 与2a b垂直,求a与b的夹角. (2) 若|b|=2 18.(12分)△ABC中,BC=7,AB=3,且 (1)求AC; (2)求∠A. 3sinC =.sinB5 5 19.(12分) 已知等比数列an中,a1a310,a4a6,求其第 4 4项及前5项和. 20.(12分)在ABC中,m co且m和n的夹角为C2 C,nn,2 C co s2 C,,sin2. 3 7,三角形的面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴设X=a+b,=a-b,
则即
∴点N(a+b,a-b)即点N(X,)所在的平面区域为如图所示阴影部分.易求得其面积
8解:直线z=ax+(a>0)是斜率为-a,轴上的截距为z的直线,从上图可以看出,当-a大于直线A的斜率时,目标函数z=ax+(a>0)取得最大值的最优解是(1,4);
高三数学必修5复习单元检测试题31(含答案)
后训练1.已知点P1(0,0),P2(1,1),P3,则在3x+2-1≥0表示的平面区域内的点是().
A.P1,P2 B.P1,P3.P2,P3 D.P2
2.如下图,阴影部分表示的区域可用二元一次不等式组表示的是().A.B.
.D.
3.设x,满足约束条若目标函数z=ax+b(a>0,b>0)的最大值为12,则的最小值为().
答案:[-1,3]
解析:在坐标系中画出三角形区域,知当直线=-x通过B(-1,2)时,取最大值,最大值为3;当直线通过(1,0)时,取最小值,最小值为-1
6答案:1
解析:设需要A,B铁矿石分别为x万吨,万吨,
则
目标函数z=3x+6,作出可行域,如下图,平行移动,当其过(1,2)时z最小,最小值为1(百万元).
预算用2 000元购买单价为0元的桌子和20元的椅子,并希望桌椅的总数尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1倍.问:桌子和椅子各买多少才合适?
参考答案
1答案:
解析:把各点的坐标逐个代入检验则有P2,P3能使3x+2-1≥0成立.
2答案:A
解析:题图中两直线方程分别为x+-1=0和x-2+2=0阴影部分在x+-1=0的右上方,x-2+2=0的右下方,所以x+-1≥0,x-2+2≥0
3答案:A
解析:点(x,)所满足的可行域如图中阴影部分所示,根据目标函数所表示的直线的斜率是负值,可知目标函数只有在点A处取得最大值,故实数a,b满足4a+6b=12,即2a+3b=6,
故,
当且仅当a=b时取等号.4答案:
解析:作出不等式组表示的可行域,从图中不难观察当直线z=2x+3过直线x=1与x-3=-2的交点(1,1)时取得最小值,所以最小值为
当-a小于直线A的斜率时,目标函数z=ax+(a>0)取得最大值的最优解是(,2);
只有当-a等于直线A的斜率时,目标函数z=ax+(a>0)取得最大值的最优解有无穷多个,线段A上的所有点都是最优解.
直线A的斜率为,
所以时,z的最大值为
9解:设桌,椅分别买x,张,把所给的条表示成x,的不等式组,再在直角坐标系内把满足不等式组的P(x,)所在区域即可行域表示出,设x+=a,可借助图象求a的最大值.
ab(万吨)(百万元)
A0%,若要求2的排放量不超过2(万吨),则购买铁矿石的最少费用为__________(百万元).
7.已知点(a,b)在由不等式组确定的平面区域内,求点N(a+b,a-b)所在平面区域的面积.
8.给出的平面区域是△AB内部及边界(如下图所示),若目标函数z=ax+(a>0)取得最大值的最优解有无穷多个,求a的值及z的最大值.
A.B..D.4
4.(大纲全国高考,4)若变量x,满足约束条则z=2x+3的最小值为().
A.17 B.14.D.3
.在△AB中,三顶点分别为A(2,4),B(-1,2),(1,0),点P(x,)在△AB的内部及其边界上运动,则=-x的取值范围为________.
6.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的2的排放量b及每万吨铁矿石的价格如下表:
由题意,得由
解得
∴点A的坐标为
由解得
∴点B的坐标为
以上不等式所表示的区域如图所示,即以A,B,(0,0)为顶点的△AB边界及其内部.对△AB内的点P(x,),设x+=a,即=-x+a是斜率为-1,轴上截距为a的平行直线系.
只有点P与B重合,即取x=2,时,a取最大值.
∵∈N,
∴=37
答:买桌子2张,椅子37张时,是最优选择.