2009年甘肃省定西市中考数学试题(含答案)

合集下载

中考真题数学试卷定西

中考真题数学试卷定西

中考真题数学试卷定西定西中考真题数学试卷(正文)一、选择题(共15小题,每小题4分,共60分)1. 已知直线l过点A(2,-1),斜率为k,则直线l的方程是____。

(答案略)2. 若a+b=3,a-b=xy,则xy=____。

(答案略)3. 下列等式中,正确的是____。

A. 6πm³ = 9πm²B. 5cm + 2m = 2.5m + 5cmC. 0.2km/h = 720m/minD. 25dm² = 0.3m²(答案略)4. 已知一边长等于a的正方形面积为S,如果将该边长扩大到原来的3倍,则扩大后的正方形的面积是原先的____倍。

(答案略)5. 在△ABC中,∠ABC=90°,∠ACB=30°,那么∠BAC的大小是____。

(答案略)6. 将运算“Δ:a→b=|a|×|b|×sinθ”所表示的几何含义描述正确的是____。

(答案略)----------二、填空题(共8小题,每小题4分,共32分)1. 因式分解:4x²+8xy+4y²=____。

(答案略)2. 把5040 ÷ 3 再继续除以3,最后得到____。

(答案略)3. 甲和乙两个水杯共重56g,乙和丙两个水杯共重32g,甲和丙两个水杯共重40g。

求甲、乙、丙各自的重量。

(答案略)4. 五角形ABCDE,如图所示,其中∠A=90°,BC=AB,DE=DC,则∠E的大小是____。

(答案略)----------三、解答题(共5小题,每小题12分,共60分)1. 《小王的植树计划》(根据提示完成故事)(答案略)2. 如图,△ABC中,∠A=50°,AD为△ABC的高,垂足为D,求AD与BC的比值。

(答案略)3. 从皮夹里取出3张红牌和4张白牌,按一定顺序排好,使得最后一张牌是红牌的可能性是多少?(答案略)4. 某瓶药液中原有2L溶液,游离细菌数为2×10^7 个。

甘肃省定西市数学中考试题及答案

甘肃省定西市数学中考试题及答案

2009年甘肃省定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.2.弧长公式:π180n Rl =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A .4B .4-C .14D .14-2.图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D . 3.计算:a b a b b a a -⎛⎫-÷= ⎪⎝⎭( )A .a bb +B .a bb- C .a ba- D .a ba+ 4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .C 米D 米 8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m B .10mC .8mD .7m图2 图3 图410.如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 12.方程组25211x y x y -=-⎧⎨+=⎩,的解是 .13.如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = . 14.反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限. 15.不等式组103x x +>⎧⎨>-⎩,的解集是 .16.如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .图6 图7 图817.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .18.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm ) 16 19 21 24 鞋码(号)22283238(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上? (2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?图9 图10(1) 图10(2)四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2).(1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元? 26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧AmB 相切于点A 、B ,线段AB =180m ,∠ABD =150°. (1)画出圆弧AmB 的圆心O ; (2)求A 到B 这段弧形公路的长.图11(1) 图11(2)图1227.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28.[12分+附加4分]如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.图13图14(1) 图14(2) 图14(3)武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D B CAAC二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. 34x y =⎧⎨=⎩,13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··························· 3分 b 2200820082009=⨯, ··············································································· 4分222200812008-<, ··········································································· 5分∴ a <b . ································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ·········· 3分 ∴ 22724x -=. ∴ 225x =. ······························································· 4分∴ 5x =±. ··························································································· 6分 21. 本小题满分8分解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ··························································· 4分 ∴ 能让灯泡发光的概率为23. ··································································· 8分 22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ········ 3分 从而 a =4×tan60° ······································· 6分.9(cm). ····························· 8分即室内露出的墙的厚度约为6.9cm . 23. 本小题满分10分 解:(1)一次函数. ······················································································· 2分 (2)设y kx b =+. ·················································································· 3分由题意,得22162819k b k b =+⎧⎨=+⎩,.········································································· 5分解得210k b =⎧⎨=-⎩,. ······················································································· 7分∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、 (26)26.5、27等) ······················································································· 8分 说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =. 答:此人的鞋长为27cm . ········································································ 10分 说明:只要求对x =27cm ,不答不扣分. 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图:···················· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ··········· 6分 ∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ··············· 8分 25. 本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ········································ 1分由题意列方程x4800=506000+x .······························································· 5分 解得 x =200. ·························································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解. ··········································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ······································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, ··············································································· 1分由题意列方程6000x -4800x=50 . ························································· 5分 解得 x =24. ···························································································· 7分以下略.26. 本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ··················································· 3分说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵ AO 、BO 都是圆弧AmB 的半径,O 是其圆心, ∴ ∠OBA =∠OAB =150°-90°=60°. ······························· 5分 ∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·············· 7分 ∴ π6018060π180AB ⨯⨯== (m).O∴ A 到B 这段弧形公路的长为60πm . ························································· 10分 27. 本小题满分10分证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠. ········································ 2分∵ EC DC AC BC ==,, ∴ △ACE ≌△BCD . ··········································· 4分 (2)∵ ACB ∆是等腰直角三角形,∴ ︒=∠=∠45BAC B . ······································ 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ······· 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ····································· 7分 ∴ 222DE AE AD =+. ······································································ 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ····································································· 10分 28.本小题满分16分(含附加4分) 解:(1)3k =-, ························································· 1分A (-1,0), ····················································· 2分B (3,0). ······················································ 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ····························································· 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6,·············································· 5分 ∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ··································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ···················································· 8分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m .········································································ 9分∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ························· 10分 (4)有两种情况:图14(1)图14(2)图14(3) 图14(4)A DB CE如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·························································· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5). ··································································· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·························································· 14分由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ····································································· 15分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ··············································································· 16分 说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29. 本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ·········································· 4分 若m 、n 是任意正实数,且m >n ,则11n n m m +<+. ·········································· 5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n rm m r+<+. ······················································································· 6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n rm m r+<+. ·············································································· 7分。

定西市中考数学试卷

定西市中考数学试卷

定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的倒数是()A . 3B . -3C .D .2. (2分) (2016七下·蒙阴期中) 下列实数中,是无理数的为()A . ﹣3.567B . 0.101001C .D .3. (2分)如图,AB//CD ,EF⊥AB于E , EF交CD于F ,已知∠1=63°,则∠2=()A . 63°B . 53°C . 37°D . 27°4. (2分)下列运算正确的是()A .B .C .D .5. (2分) (2017八下·青龙期末) 下列调查中,最适合采用普查方式的是()A . 对我县青龙河流城水质情况的调查B . 对乘坐飞机的旅客是否携带违禁物品的调查C . 对一批节能灯管使用寿命的调查D . 对全县八年级学生视力情况的调查6. (2分) (2016七上·连州期末) 如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A .B .C .D .7. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()A .B .C .D .8. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A . y=2(x+5)2﹣1B . y=2(x+5)2+1C . y=2(x﹣1)2+3D . y=2(x+1)2﹣39. (2分) (2019八上·梅里斯达斡尔族月考) 如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6, AB=15则△ABD的面积为()A . 45B . 30C . 15D . 6010. (2分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A . 76B . 72C . 68D . 52二、填空题 (共6题;共6分)11. (1分) (2018七上·翁牛特旗期末) 光年是天文学中的距离单位,1光年大约是95000亿 km,这个数据用科学记数法表示是________km12. (1分) (2019七上·潮安期末) 方程的解是________.13. (1分)若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.14. (1分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是________ .15. (1分) (2020九下·哈尔滨月考) 如图,在菱形ABCD中,BD为对角线,点N为BC边上一点,连接AN,交BD于点L,点R为CD边上一点,连接AR、LR,若tan∠BLN=2,∠ARL=45°,AR=10 ,CR=10,则AL=________ 。

定西中考数学试题及答案

定西中考数学试题及答案

定西中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列哪个数是无理数?A. -3B. 0.3C. πD. √4答案:C2. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B3. 已知函数f(x) = 2x - 3,当x > 1时,f(x)的值域是什么?A. (-∞, -1)B. (-1, +∞)C. (1, +∞)D. [1, +∞)答案:B4. 一个长方体的长、宽、高分别是a、b、c,其体积V可以表示为:A. V = a + b + cB. V = ab + bc + acC. V = abcD. V = √(a^2 + b^2 + c^2)答案:C5. 已知圆的半径为r,圆的面积S可以表示为:A. S = πrB. S = πr^2C. S = 2πrD. S = r^2答案:B6. 一个数的相反数是它本身,这个数是什么?A. 1B. 0C. -1D. 2答案:B7. 若a、b互为倒数,则ab的值为:A. 0B. 1C. -1D. 2答案:B8. 一个数的绝对值是它本身,这个数是什么?A. 正数B. 负数C. 非负数D. 非正数答案:C9. 一个二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 + b^2D. a^2 - b^2答案:A10. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 2答案:C二、填空题(本大题共5小题,每小题4分,共20分。

请将答案填写在答题卡上。

)11. 如果一个数的平方等于9,那么这个数是_________。

答案:±312. 一个等腰三角形的底边长为6厘米,两腰相等,若腰长为5厘米,则其周长为_________厘米。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

甘肃省定西市中考数学试卷及答案

甘肃省定西市中考数学试卷及答案

甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年定西市中考数学试卷2

2009年定西市中考数学试卷2

27.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28. [12分+附加4分]如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准图14(1) 图14(2) 图14(3) 图13二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. 34x y =⎧⎨=⎩,13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··························· 3分 b 2200820082009=⨯, ··············································································· 4分222200812008-<, ··········································································· 5分∴ a <b . ································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ·········· 3分 ∴ 22724x -=. ∴ 225x =. ······························································· 4分∴ 5x =±. ··························································································· 6分 21. 本小题满分8分解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ··························································· 4分 ∴ 能让灯泡发光的概率为23. ··································································· 8分 22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ········ 3分 从而 a =4×tan60° ······································· 6分.9(cm). ····························· 8分即室内露出的墙的厚度约为6.9cm . 23. 本小题满分10分 解:(1)一次函数.························································································ 2分 (2)设y kx b =+. ·················································································· 3分由题意,得22162819k b k b =+⎧⎨=+⎩,. ········································································· 5分解得210k b =⎧⎨=-⎩,. ······················································································· 7分∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、 (26)26.5、27等)························································································ 8分 说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =. 答:此人的鞋长为27cm . ········································································ 10分说明:只要求对x =27cm ,不答不扣分. 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图:···················· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ··········· 6分 ∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ··············· 8分 25. 本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ········································ 1分由题意列方程x4800=506000+x . ······························································· 5分 解得 x =200. ·························································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解. ··········································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ······································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, ··············································································· 1分由题意列方程6000x -4800x=50 . ························································· 5分 解得 x =24. ····························································································7分以下略.26. 本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ··················································· 3分说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵ AO 、BO 都是圆弧AmB 的半径,O 是其圆心, ∴ ∠OBA =∠OAB =150°-90°=60°. ······························· 5分 ∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·············· 7分 ∴ π6018060π180AB ⨯⨯== (m).∴ A 到B 这段弧形公路的长为60πm . ························································· 10分27. 本小题满分10分证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠. 即 ACE BCD ∠=∠. ········································ 2分 ∵ EC DC AC BC ==,, ∴ △ACE ≌△BCD . ··········································· 4分 (2)∵ ACB ∆是等腰直角三角形,OADBE∴ ︒=∠=∠45BAC B . ······································ 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ······· 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ····································· 7分 ∴ 222DE AE AD =+. ······································································ 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ····································································· 10分 28.本小题满分16分(含附加4分) 解:(1)3k =-, ························································· 1分A (-1,0), ····················································· 2分B (3,0). ······················································ 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ····························································· 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6, ·············································· 5分∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ··································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ···················································· 8分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m . ········································································ 9分∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ························· 10分 (4)有两种情况:如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C .∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·························································· 12分图14(1)图14(2)图14(3) 图14(4)由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5).···································································· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·························································· 14分 由2323y x y x x =--⎧⎨=--⎩,解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ····································································· 15分综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ··············································································· 16分 说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29. 本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ·········································· 4分 若m 、n 是任意正实数,且m >n ,则11n n m m +<+. ·········································· 5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+. ······················································································· 6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n r m m r+<+. ················································································· 7分。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2009 数学试题参考答案及评分标准

2009 数学试题参考答案及评分标准

2009数学试题参考答案及评分标准一.选择题(本题共10小题,每小题4分,满分40分)二.填空题(本大题共4小题,每小题5分,满分20分)11.72° 12.(1)(1)a b a b ++-- 13. 14.2y x x =+,21133y x =-+三.(本大题共2小题,每小题8分,满分16分)15.解:原式=2131+-+………………………………………………………6分=1…………………………………………………………………8分16.证:∵AB 是⊙O 的直径,∴∠ACB =90°∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB∴∠MOP =∠B …………………………………………………………6分 故MO ∥BC .……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.(1)猜想:11⨯=-++n nn n n n ……………………………………………3分 (2)证:右边=12+-+n n n n =12+n n =左边,即11⨯=-++n nn n n n ……8分 18.解:(1) ……………………4分(2)设坐标纸中方格边长为单位1,则P (x ,y )2O 以为位似中心放大为原来的倍(2x ,2y )y 经轴翻折(-2x ,2y )4向右平移个单位(24x -+,2y )5向上平移个单位(24x -+,25y +)…………8分说明:如果以其它点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应赋分.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)菱形图案水平方向对角线长为230cos 310o ⨯⨯=30cm按题意,6010)1231(2630=-⨯+=L cm ……………………………5分 (2)当=d 20cm 时,设需x 个菱形图案,则有:6010)1(2030=-⨯+x …………………………………………………8分解得300=x即需300个这样的菱形图案.…………………………………………10分20.解:(1) …………………………5分说明:其它正确拼法可相应赋分.(2)解法一:由拼图前后的面积相等得:2)(])[(y x y y y x +=++………………8分因为y ≠0,整理得:01)(2=-+yxy x解得:215-=y x (负值不合题意,舍去)……………………………………10分 解法二:由拼成的矩形可知:yxy y x y x =+++)(…………………………………8分以下同解法一.……………………………………………………………………10分③④① ②六、(本题满分12分) 21.解:(1)第①组频率为:196%0.04-=∴第②组频率为:0.120.040.08-=这次跳绳测试共抽取学生人数为:120.08150÷=人∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.………6分 (2)第⑤、⑥两组的频率之和为0.160.080.24=+=由于样本是随机抽取的,估计全年级有9000.24216⨯=人达到跳绳优秀………9分 (3)10061101212051130451402415012150x ⨯+⨯+⨯+⨯+⨯+⨯=≈127次………12分七、(本题满分12分) 22.(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可)……2分以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B∴△AMF ∽△BGM .………………………………………………………………6分(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=7分又∵AMF ∽△BGM ,∴AF BMAM BG=∴2833AM BM BG AF===………………………………………………9分 又4AC BC ===,∴84433CG =-=,431CF =-=∴53FG =…………………………………………12分八、(本题满分14分) 23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分)。

09年全国各地中考试题分类汇编——反比例函数

09年全国各地中考试题分类汇编——反比例函数

09年各地中考数学试题汇编——反比例函数1、(09福建漳州)矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )2、(09甘肃兰州)如图,在直角坐标系中,点A 是x轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小3、(09湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是: ( )4、(09广东深圳)如图,反比例函数4y x =-的图象与直线13y x=-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) C .4 D .25、(09广西南宁)在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .26、(09广西贵港)如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y =2x(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大B .逐渐减小C .不变D .先增大后减小7、(09广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数x k y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y8、(09浙江丽水)如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x x yB .)0(5>=x xyC . )0(6>-=x x yD .)0(6>=x xy9、(09山东青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω10、(09山东泰安)如图,双曲线)0(>k xky =经过矩形QABC的边BC 的中点E ,交AB 于点D 。

定西中考数学试卷真题

定西中考数学试卷真题

定西中考数学试卷真题一、选择题1. 找出下列数中的最小值:( )A. $1.5\overline{51}$B. $1.55\overline{1}$C. $1.555$D.$1.555\overline{1}$2. 若$a$,$b$满足$a \neq b$,则$a^3 - b^3$等于( )A. $(a+b)^3 - 3ab(a+b)$B. $(a-b)^3 + 3ab(a-b)$C. $(a+b)(a^2 - ab + b^2)$D. $(a-b)(a^2 + ab + b^2)$3. 下列哪个数是无理数?( )A. $0.5\overline{51}$B. $\sqrt{2} + 2\sqrt{3}$C. $\frac{5}{4}$D. $\pi$4. 在平面直角坐标系$xOy$中,已知一点$A(3,-4)$,点$B(-3,5)$,则$\overrightarrow{AB}$的坐标是( )A. $(6,-9)$B. $(-6,9)$C. $(9,-6)$D. $(-9,6)$5. 如图,在直角三角形$ABC$中,$AD \perp BC$,则( )A. $\tan\angle A = \frac{BC}{AC}$B. $\sin\angle B =\frac{BC}{AC}$C. $\cos\angle C = \frac{BC}{AC}$D. $\sin\angle D =\frac{AB}{AC}$二、填空题6. 半径为5cm的圆上一段长为\_\_\_cm的弧所对的圆心角为$60^\circ$。

7. $\log_2 16 = $\_\_\_8. $2\sqrt{75} - \sqrt{48} =$\_\_\_9. $(-3)^4 \times (-3)^3 =$\_\_\_10. 若$f(x) = 3x^2 + 2x - 1$,则$f(2) = $\_\_\_三、解答题11. 把下面的代数式完全平方:$x^2 - 8x$。

甘肃省定西市中考数学试题及答案D

甘肃省定西市中考数学试题及答案D

甘肃省定西市中考数学试题及答案D考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效. 一.选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在答题卡上.1.下列图形中,是中心对称图形的是【 】2.在1,-2,0,35这四个数中,最大的数是【 】 A.2 B.0 C.35D.13.在数轴上表示不等式01<-x 的解集,正确的是【 】4.下列根式中是最简二次根式的是【 】12.9.3.32.D C B A5.已知点),0(m P 在y 轴的负半轴上,则点M )1,(+--m m 在【 】 A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,AB ∥CD,DE ⊥CE,∠1=34°,则∠DCE 的度数为【 】 A .34° B.54° C.66° D.56°7.如果两个相似三角形的面积比是1∶4,那么它们的周长比是【 】 A.1∶16 B.1∶4 C.1∶6 D.1∶28.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器.根据题意,下面所列方程正确的是【 】.50600800.;50600800.;60050800.;60050800.A -=+==-=+x x D x x C x x x x B9.若,0442=-+x x 则)1)(1(6)2(32-+--x x x 的值为【 】第6题图A.-6B.6C.18D.3010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是【 】二、填空题:本大题共8小题,每小题3分,共24分. 11.因式分解:.___________822=-x 12.计算:=-⋅-)8()5(24ab a ___________.13.如图,点A(3,t )在第一象限,射线OA 与x 轴所夹的锐角为α,,23tan =α则t 的值是________.14.如果单项式2222+-+m n n m y x与75y x 是同类项,那么m n 的值是________.15.三角形的两边长分别是3和4,第三边长是方程040132=+-x x 的根,则该三角形的周长为____.16.如图,在⊙O 中,弦AC=32,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R=_______. 17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_______cm.18.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为,1x第二个三角形数记为,2x …,第n 个三角形数记为n x ,则1++n n x x =_________.三.解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤:第13题图第16题图 第17题图19.(4分)计算:.)3-(-160sin 231--210-2+︒++⎪⎭⎫⎝⎛20.(4分)如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形的网格的格点上. (1)画出△ABC 关于x 轴的对称图形;△111C B A (2)将111C B A △沿x 轴方向向左平移3个单位后得到222C B A △,写出顶点222C B A ,,的坐标.21.(6分)已知关于x 的方程022=-++m mx x . (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(6分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景.图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度(结果保留π)23.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,0.现从甲袋中任意摸出第20题图第22题图第25题图第27题图一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数xy 2-=的图象上的概率. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)2016年《政府工作报告》中提出了十大新词汇.为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m =_______,n =_____.(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(7分)如图,函数41+-=x y 的图象与函数)0(2>=x xky 的图象交于),1(),1,(n B m A 两点. (1)求k ,m ,n 的值;(2)利用图象写出当1≥x 时,21y y 与的大小关系. 26.(8分)如图,已知EC ∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD 为平行四边形; (2)求证:.OF OE OA 2⋅=第24题图第26题图27.(8分)如图,在△ABC 中,AB=AC,点D 在BC 上,BD=DC,过点D 作DE ⊥AC,垂足为E,⊙O 经过A,B,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(10分)如图,已知抛物线c bx x y ++-=2经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以2个单位/秒的速度向终点B 匀速运动,当E,F 中任意一点到达终点时另一点也随之停止运动.连接EF,设运动时间为t 秒.当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B 处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.第28题图数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(2)(2)x x +-;12.5240a b ;13.92;14.13;15.12 ;16.6;17. 6 ;18.2(1)n +或n2+2n+1.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解:原式=22-(3-1)+2×3+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A1B1C1为所作; 2分 (2)A2(-3,-1),B2(0,-2),C2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 1m m ++ 解得 m =12. 2分 (2)证明:△=24(2)m m -- 3分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 4分 ∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF=AC -BD=0.4(米), 2分 ∴B=AF ÷sin20°≈1.17(米); 3分 (2)∵∠MON=90°+20°=110°, 4分 ∴ 1100.82218045MN ⨯π==π(米). 6分23.(6分)解:(1)画树状图:方法一: 方法二:2分 所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分(2)∵只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴点M (x ,y )在函数2y x =-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人). 故答案为:60,90;(每空2分) 5分 (3)60300×360°=72°.答:B 所在扇形的圆心角是72°. 7分 (0, 0) (0, -1)(0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋甲袋结果(2, 0)25.(7分)解:(1)把点A (m,1)代入14y x =-+,得m=3, 2分 则 A (3,1),∴k =3×1=3; 3分 把点B (1,n )代入2ky x=,得出n=3; 4分 (2)如图,由图象可知:①当1<x <3时,1y >2y ; 5分②当x =1或x =3时,1y =2y ; 6分(注:x 的两个值各占0.5分) ③当x >3时,1y <2y . 7分 26.(8分)(1)证明:∵EC ∥AB, ∴∠C=∠ABF . 1分 又∵∠EDA=∠ABF,∴∠C=∠EDA . 2分 ∴AD ∥BC, 3分 ∴四边形ABCD 是平行四边形. 4分 (2)证明:∵EC ∥AB, ∴OA OB OEOD=. 5分又∵AD ∥BC, ∴OF OB OA OD =, 6分 ∴OA OF OEOA=, 7分∴2OA OE OF =⋅. 8分 27.(8分)(1)证明:如图①,连接AD, ∵在△ABC 中, AB=AC,BD=DC, ∴AD ⊥BC 1分∴∠ADB=90°,AB 是⊙O 的直径; 2分 (2)DE 与⊙O 的相切. 3分 证明:如图②,连接OD, ∵AO=BO,BD=DC, ∴OD 是△BAC 的中位线,图②ABCD E O图①AB CD E O∴OD ∥AC, 4分 又∵DE ⊥AC ∴DE ⊥OD,∴DE 为⊙O 的切线; 5分 (3)解:如图③,∵AO=3,∴AB=6, 又∵AB=AC,∠BAC=60°, ∴△ABC 是等边三角形, ∴AD=33, 6分 ∵AC ∙DE=CD ∙AD,∴6∙DE=3×33, 7分 解得 DE =332. 8分 28.(10分)解:(1)设直线AB 的解析式为y kx m =+, 1分 把A(3,0),B(0,3)代入,得 330m k m =⎧⎨+=⎩, 解得13k m =-⎧⎨=⎩ ∴直线AB 的解析式为3y x =-+ 2分 把A(3,0),B(0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩∴抛物线的解析式为 223y x x =-++. 3分 (2)∵OA=OB=3,∠BOA=90°,∴∠EAF=45°. 设运动时间为t 秒,则AF=2t,AE=3-t . 4分 (i )当∠EFA=90°时,如图①所示: 在Rt △EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA=90°时,如图②所示:在Rt △AEF 中,cos45°22AE AF ==, AB CDEO图③图①OyAxBEF图②yOA BE F即222t=. 解得t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴PN=2223(3)3x x x x x -++--+=-+. 7分 ∴ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分当32x =时,△ABP 的面积最大,最大面积为278. 此时点P(32,154). 10分yx O xA x xB AP图③NC MD M。

2009年甘肃省兰州市中考真题——数学(A)

2009年甘肃省兰州市中考真题——数学(A)
拱的半径为13米,则拱高为
A.5米B.8米C.7米D.5 米
9.在同一直角坐标系中,函数 和函数 ( 是常数,且 )的图象可能是
10.如图4,丁轩同学在晚上由路灯 走向路灯 ,当他走到点 时,发现身后他影子的
顶部刚好接触到路灯 的底部,当他向前再步行20m到达 点时,发现身前他影子的顶部刚好接触到路灯 的底部,已知丁轩同学的身高是m,两个路灯的高度都是9m,则两路灯之间的距离是
(2) 是直线 与 轴的交点
当 时,

4分
5分
(3) 6分
(4) 7分
26.(本题满分7分)
证明:如图,连结AC、BD.
∵PQ为△ABC的中位线,
∴PQ AC.1分
同理MN AC.
∴MNPQ,2分
∴四边形PQMN为平行四边形.3分在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
A.24mB.25m
C.28mD.30m
11.把抛物线 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为
A. B.
C. D.
12.如图5,在平地上种植树木时,要求株距(相邻两树间
的水平距离)为4m.如果在坡度为0.75的山坡上种树,
也要求株距为4m,那么相邻两树间的坡面距离为
A.5mB.6mC.7mD.8m
某某市2009年初中毕业生学业考试试卷
数 学(A)
注意事项:
1.全卷共150分,考试时间120分钟。
2.考生必须将报考学校、某某、某某号、考场、座位号等个人信息填(涂)写在答题卡的
相应位置上。
务必将答案直接填写(涂)在答题卡的相应位置上。
一、选择题(本题15小题,每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)

2009年 全国 117个地区中考试卷及答案

2009年 全国 117个地区中考试卷及答案

2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。

定西中考数学试题及答案-中考 (2).doc

定西中考数学试题及答案-中考 (2).doc

:2016年定西中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2009年定西市中考试题

2009年定西市中考试题
20 0 9年定 西 市 巾 考试 题


选 择 题 ( 小 题 3分 , 3 每 共 O分 ) ) .
且 O 最 小 值 为 4 则 oo 的 半 径 为 ( M ,
A.5 B.4 C. 3 D.2
1 4的 相 反 数 是 ( .
A B 4 c÷ D { . 4 . . . 一 一
的 图 像 位 于 第
象 限.
5 5
Y 册
中‘ 汇编 考

不 式 {)3 解 是 等组 > 6 集 I~ ’ , 的 ,

+ 1 0, >
2( )图泡 。, 的 概 率 . Sss 的 1 分 让 灯 示随 闭 开 2 中 两 . 求 能 所 发 机 合 ,, 个 如 8 关 光
2 如 图 所 示 的物 体 的 左 视 图 ( 左 面 看 得 到 的 视 图 ) . 从 是
( ) .
凸 口 圆 日
A B C D
8m卜 — 2 m — — 一2 —
( 8题 图 ) 第 ( 9题 图 ) 第
3 算( 一 ) 一 ) . : ÷÷ ( . 计 詈
数 后 , 判 断 自 己能 否 进 入 决 赛 , 只需 知 道 这 1 要 他 9
位同学成绩 的( ) .
, 一 2v一 一 5.
1. 2方程组{ + 2v一 11 的解是— 1. z 一
B .中位 数 D .方 差
BCE一 3 。 则 A一 O, .

那么梯子 的长至少为(
A . m 8
) .
B.8 m
二 二D C
( 1 第 3题 图 ) ( 1 题 图) 第 6
C.

中考数学直角三角形与勾股定理复习

中考数学直角三角形与勾股定理复习

第四单元 第23课时 直角三角形与勾股定理知识点回顾知识点一:直角三角形的概念与性质1.有一个角是 的三角形叫做直角三角形; 2.直角三角形的两个锐角 ;3.直角三角形斜边上的中线等于 的一半.例1.(2009湖北省荆门市)如图1,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB = ( )A 、40° B、30° C、20° D、10° 解:∵Rt △ABC 中,∠ACB =90°,∠A =50°, ∴∠B =90°-50°=40° 由折叠得∠DA ′C =∠A =50°, ∵∠DA ′C =∠B +∠A ′DB∴∠A ′DB =50°-40°=10°,选D.例2.若直角三角形斜边上的高和中线分别为10cm 、12cm ,则它的面积是 cm 2. 解:∵直角三角形斜边上的中线等于斜边的一半,∴直角三角形斜边的长为2×12=24cm. ∴直角三角形的面积是21×24×10=120cm 2.同步检测一:1.(2009年湖南省郴州市)如图2,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1与∠2的和总是保持不变,那么∠1与∠2的和是_______度.2.如图3,Rt △ABC 中,∠B =90°,BD ⊥AC 于D ,点E 为AC 的中点,若BC =7,AB =24,则BE = ,BD = .A 'B DAC(图1)ABE D C(图3)21(图2)知识点二:勾股定理直角三角形 的平方和等于 的平方.例3.(2009年四川省宜宾市)已知:如图4,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积和为 . 解:过点E 作ED ⊥AB 于点D ,可证得ED =21AB , ∴ED AB S ABE ⨯⨯=∆21=41AB 2, 同理AHC S ∆=41AC 2,BFC S ∆=41BC 2, 从而图中阴影部分的面积和为41(AB 2+ AC 2+ BC 2) =41(AB 2+ AB 2)=29. 例4.(2009年湖南省衡阳市)如图5,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 ( )A 、1B 、34 C 、23D 、2解:Rt △DAB 中,BD =54322=+, 设AG =x ,则BG=4-x由折叠得A ′D =AD =3,A ′G =AG =x ,∠DA ′G =∠A =90°, ∴A ′B =BD -A ′D =5-3=2,∠GA ′B =90°, 从而Rt △GA ′B 中,x 2+22=(4-x )2. 解得x =23,选C. 同步检测二:3.如果直角三角形的两条边长分别是3和4,那么该直角三角形斜边上的中线等于 . 4.(2009年四川省达州市)如图6是一株美丽的勾股树, 其中所有的四边形都是正方形,所有的三角形都是直角 三角形.若正方形A 、B 、C 、D 的边长分别是3、5、 2、3,则最大正方形E 的面积是 ( ) A 、13 B 、26 C 、47 D 、94★5.(2009年黑龙江省哈尔滨市)若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM交正方形的一边于点F ,且BF =AE ,求BM 的长.(图5)AB CDA′G(图6)知识点三:直角三角形的判定方法1.根据定义:有一个角是 的三角形叫做直角三角形;2.勾股定理的逆定理:如果三角形的三边长a 、 b 、 c 有关系: ,那么这个三角形是直角三角形,且∠C =90°.例5.(2009年湖南省衡阳市)如图7,A 、B 、C 分别表示三个 村庄,AB =1000米,BC =600米,AC =800米,在社会主义 新农村建设中,为了丰富群众生活,拟建一个文化活动中心, 要求这三个村庄到活动中心的距离相等,则活动中心P 的位 置应在 ( ) A 、AB 中点 B 、BC 中点C 、AC 中点D 、∠C 的平分线与AB 的交点解:显然到A 、B 、C 三个村庄距离相等的点P 应该是AB 、BC 、AC 三边垂直平分线的交点. 又∵BC 2+AC 2=6002+8002=1000000;AB 2=10002=1000000 ∴BC 2+AC 2=AB 2, ∴∠ACB =90°,由于直角三角形三边垂直平分线的交点在斜边的中点处,从而活动中心P 的位置应在AB 的中点处,选A.例6.如图8,点P 是等边△ABC 内的一点,分别连接PA 、PB 、PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若PA ∶PB ∶PC =3∶4∶5,连接PQ ,试判断△PQC 的形状,并说明理由. (1)答:AP =CQ证:∵△ABC 为等边三角形 ∴AB =BC ,∠ABC =60° ∵∠PBQ =60° ∴∠ABC =∠PBQ ∴∠ABP =∠CBQ在△ABP 与△CBQ 中,⎪⎩⎪⎨⎧=∠=∠=BQ BP CBQ ABP CBAB∴△ABP ≌△CBQ (SAS ) ∴AP =CQ(2)答:△PQC 为直角三角形.理由是:设PA =3k ,则PB =4k ,PC =5k (k >0),CQ =AP =3kBAC(图7)(图8)∵BQ =BP ,∠PBQ =60°∴△PBQ 为等边三角形(有一个角为60°的等腰三角形是等边三角形) ∴PQ =PB =4k又CQ 2=9k 2,PQ 2=16k 2,PC 2=25k 2, ∴CQ 2+PQ 2=PC 2∴△PQC 为直角三角形,且∠PQC =90°. 同步检测三:6、(2009年黑龙江省牡丹江市)如图9, △ABC 中,CD ⊥AB 于D ,下列条件中:①∠1=∠A ;②CDDBAD CD;③∠B +∠2=90°;④BC ∶AC ∶AB =3∶4∶5;⑤AC ×BD =AC ×CD ,一定能确定△ABC 为直角三角形的条件的个数是 ( ) A 、1B 、2C 、3D 、47、(2009年甘肃省定西市)如图10,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)△ACE ≌△BCD ;(2)AD 2+DB 2=DE 2.随堂检测:1.(2009年湖南省长沙市)如图11,等腰△ABC 中,AB =AC ,AD 是底边上的高,若AB =5cm ,BC =6cm ,则AD = cm .2.(2009年上海市)如图12,在Rt △ABC 中,∠BAC =90°,AB =3, M 为边BC 上的点,联结AM .如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .3.(2009年贵州省安顺市)如图13,图甲是我国古代著名的“赵爽弦图”的示意图,它是AB CM(图12)(图10)EDBAC21DBAC(图9)(图11)AB(图13)(图14)由四个全等的直角三角形围成的. 在Rt △ABC 中,若直角边AC =6,BC =6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______.4.(2009年浙江省湖州市)如图14,已知在Rt △ABC 中,∠ACB =Rt ∠,AB =4,分别以AC 、BC 为直径作半圆,面积分别记为S 1、S 2,则S 1+S 2的值等于 .5.(2009年湖北省恩施自治州)如图15,长方体的长为15,宽为10,高为20,点B 离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 ( )A 、521B 、25C 、105+5D 、356.(2009年浙江省丽江市)如图16,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 ( ) A 、172 B 、52 C 、24 D 、77.(2009年新疆维吾尔自治区)如图17是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a b ,,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图. (2)证明勾股定理.8.(2009年湖北省恩施自治州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.如图18,著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km ,A 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=PA +PB ,图(2)是方l 1l 2l 3ACB(图16)cba cba cba cbacc(图17)案二的示意图(点A 关于直线X 的对称点是A ′,连接BA ′交直线X 于点P ),P 到A 、B 的距离之和S 2=PA +PB .(1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=PA +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.9.(2009年黑龙江省牡丹江市)有一块直角三角形的绿地,量得两直角边长分别为6m ,8m. 现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 10.(2009年湖北省咸宁市)问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图19中的图①所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积. (1)请你将△ABC 的面积直接填写在横线上:__________________ 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法....若△ABC 三边的长分别为5a 、a 22、a 17(a >0),请利用图19中的图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积. 探索创新:(3)若△ABC 三边的长分别为2216n m +、2249n m +、222n m +(m >0,n >0,且m ≠n ),试运用构图法...求出这三角形的面积.(图18)P X图(1)图(3)图(2) (图①)(图②)ACB(图19)答案:知识点回顾的答案知识点一:直角;互为余角;斜边; 知识点二:两直角边;斜边; 知识点三:直角;a 2+b 2=c 2. 同步测试的答案 1.90°; 2.BE =225,BD =25168; 3.2或25; 4.A ; 5.(1)当点F 在DC 上时,如图1,先证△ABE ≌△BCF ,可得AE =BF =5,BE =CF =3,AE ⊥BF ,再由面积公式BE AB BM AE ⋅=⋅得BM =512.(2)当点F 在AD 上时,如图2,先证△ABE ≌△BAF ,可得BE =AF =3,∴AE =BF =5,连结EF ,证□ABEF ,∴BM =21BF =25. 6.C (提示:能确定△ABC 为直角三角形的有①②④,共3个) 7.证明:(1) ∵ ∠ACB =∠ECD =90°,∴∠ACB -∠ACD =∠ECD -∠ACD , 即 ∠BCD =∠ACE ∵BC =AC ,DC =EC , ∴△ACE ≌△BCD .(2)∵△ACB 是等腰直角三角形, ∴∠B =∠BAC =45°. ∵△ACE ≌△BCD , ∴∠CAE =∠B =45°.∴∠DAE =∠CAE +∠BAC =45°+45°=90°. ∴Rt △DAE 中,AD 2+AE 2=DE 2. ∵△ACE ≌△BCD ∴ AE =DB , ∴AD 2+DB 2=DE 2.A B F EDC M(图1)ABEC D M F(图2) (第5题答案图)随堂检测的答案:1.4cm ; 2.2; 3.76; 4.2π; 5.B ; 6.A 7.解:(1)如图,(2)证明:大正方形的面积表示为()2b a +,大正方形的面积也可表示为ab c 2142⨯+,∴()2b a +=ab c 2142⨯+,即ab c ab b a 22222+=++,∴222c b a =+,即直角三角形两直角边的平方和等于斜边的平方.8.解:(1)图18(1)中过B 作BC ⊥AP ,交PA 的延长线于点C ,则PC =40,又AP =10,∴AC =30.在Rt △ABC 中,AB =50 ,AC =30,∴BC =40 ,∴ BP =24022=+BC CP , ∴S 1=10240+;图18(2)中,过B 作BC ⊥AA ′,交A ′A 的延长线于点C ,则A ′C =50,又BC =40, ∴BA ′=4110504022=+,由轴对称知:PA =PA ′,∴S 2=BA ′=4110, ∴S 1>S 2.(2)如 图18(2),在公路上任找一点M ,连接MA ,MB ,MA ',由轴对称知MA =MA ′,∴MB +MA =MB +MA ′>A ′B ,∴S 2=BA ′为最小.(3)如图,过A 作关于X 轴的对称点A ′,过B 作关于Y 轴的对称点B ′,连接A ′B ′,交X 轴于点P ,交Y 轴于点Q ,则P ,Q 即为所求.过A ′、 B ′分别作X 轴、Y 轴的平行线交于点G ,A ′B ′=5505010022=+, ∴所求四边形的周长为55050+.a bc a bcab cc b a(第7(1)题答案图)(第8题答案图)9.解:设在Rt △ABC 中,∠ABC =90°,AB =8,BC =6. 由勾股定理有:AC =10. 扩充部分为Rt △ABD ,扩充成等腰△ACD ,应分以下三种情况: ①如图1,当AC =AD =10时,可求BD =CB =6,得△ACD 的周长为32m ;②如图2,当AC =CD =10时,可求BD =4,由勾股定理得:AD =45,得△ACD 的周长为(20+45)m ;③如图3,当AC 为底时,设AD =CD =x ,则BD =x -6,由勾股定理得:x =325,得△ACD 的周长为380m.10.(1)3.5;(2)如图②,构造△ABC ,使AB =5a ,BC =a 22,AC =a 17,∴△ABC 的面积为21×(2a +4a )×2a -21×a ×2a -21×a ×4a =3a 2;(3)如图③,先构造长和宽分别为4n 、3m 的长方形网格,再构造△ABC ,使AC =2216n m +,BC =2249n m +,AB =222n m +,∴△ABC 的面积为3m ×4n -21×m ×4n -21×2n ×3m -21×2n ×2m =5mn .DB AB AD BAD(图1)(图2)(图3)(第9题答案图)(第10题答案图)4n3mACB (图②)(图③)。

09定西市中考数学卷

09定西市中考数学卷

2009年定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.2.弧长公式:π180n Rl =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A .4B .4-C .14D .14-2.图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D . 3.计算:a b a b b a a -⎛⎫-÷= ⎪⎝⎭( )A .a bb +B .a bb- C .a ba- D .a ba+ 4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .C D 8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m B .10mC .8mD .7m图2 图3 图410.如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 12.方程组25211x y x y -=-⎧⎨+=⎩,的解是 .13.如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = . 14.反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限. 15.不等式组103x x +>⎧⎨>-⎩,的解集是 .16.如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .图6 图7 图817.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .18.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)若20072008a =,20082009b =,试不用将分数化小数的方法比较a 、b 的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm ) 16 19 21 24 鞋码(号)22283238(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上? (2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?图9 图10(1) 图10(2)四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2).(1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元? 26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧AmB 相切于点A 、B ,线段AB =180m ,∠ABD =150°. (1)画出圆弧AmB 的圆心O ; (2)求A 到B 这段弧形公路的长.图11(1) 图11(2)图1227.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28.[12分+附加4分]如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.图13图14(1) 图14(2) 图14(3)武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D B CAAC二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. 34x y =⎧⎨=⎩,13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··························· 3分 b 2200820082009=⨯, ··············································································· 4分222200812008-<, ··········································································· 5分∴ a <b . ································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ·········· 3分 ∴ 22724x -=. ∴ 225x =. ······························································· 4分∴ 5x =±. ··························································································· 6分 21. 本小题满分8分解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ··························································· 4分 ∴ 能让灯泡发光的概率为23. ··································································· 8分 22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ········ 3分 从而 a =4×tan60° ······································· 6分.9(cm). ····························· 8分即室内露出的墙的厚度约为6.9cm . 23. 本小题满分10分 解:(1)一次函数. ······················································································· 2分 (2)设y kx b =+. ·················································································· 3分由题意,得22162819k b k b =+⎧⎨=+⎩,.········································································· 5分解得210k b =⎧⎨=-⎩,. ······················································································· 7分∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、 (26)26.5、27等) ······················································································· 8分 说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =. 答:此人的鞋长为27cm . ········································································ 10分 说明:只要求对x =27cm ,不答不扣分. 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图:···················· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ··········· 6分 ∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ··············· 8分 25. 本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ········································ 1分由题意列方程x4800=506000+x . ······························································· 5分 解得 x =200. ·························································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解. ··········································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ······································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, ··············································································· 1分由题意列方程6000x -4800x=50 . ························································· 5分 解得 x =24. ···························································································· 7分以下略.26. 本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ··················································· 3分说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵ AO 、BO 都是圆弧AmB 的半径,O 是其圆心, ∴ ∠OBA =∠OAB =150°-90°=60°. ······························· 5分 ∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·············· 7分 ∴ π6018060π180AB ⨯⨯== (m).O∴ A 到B 这段弧形公路的长为60πm . ························································· 10分 27. 本小题满分10分证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠. ········································ 2分∵ EC DC AC BC ==,, ∴ △ACE ≌△BCD . ··········································· 4分 (2)∵ ACB ∆是等腰直角三角形,∴ ︒=∠=∠45BAC B . ······································ 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ······· 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ····································· 7分 ∴ 222DE AE AD =+. ······································································ 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ····································································· 10分 28.本小题满分16分(含附加4分) 解:(1)3k =-, ························································· 1分A (-1,0), ····················································· 2分B (3,0). ······················································ 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ····························································· 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6,·············································· 5分∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ··································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ···················································· 8分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m .········································································ 9分∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ························· 10分 (4)有两种情况:图14(1)图14(2)图14(3) 图14(4)A DB CE如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·························································· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5). ··································································· 13分 如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·························································· 14分由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ····································································· 15分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ··············································································· 16分 说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29. 本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ·········································· 4分 若m 、n 是任意正实数,且m >n ,则11n n m m +<+. ·········································· 5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+. ······················································································· 6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n r m m r+<+. ·············································································· 7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.2.弧长公式:π180n R l =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径.本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A .4B .4-C .14D .14-2.图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D . 3.计算:a b a bba a-⎛⎫-÷=⎪⎝⎭( ) A .a b b+ B .a b b- C .a b a- D .a b a+4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个 5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B .83米C .833米 D .433米8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m B .10m C .8m D .7m图2图3图410.如图4,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2 B.3 C .22D .23二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上.11.当31x y==、时,代数式2()()x y x y y+-+的值是.12.方程组25211x yx y-=-⎧⎨+=⎩,的解是.13.如图5,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,则∠A=.14.反比例函数的图象经过点P(2-,1),则这个函数的图象位于第象限.15.不等式组103xx+>⎧⎨>-⎩,的解集是.16.如图6,四边形ABCD是平行四边形,使它为矩形的条件可以是.图6图7 图817.如图7,在△ABC中,5cmAB AC==,cos B35=.如果⊙O 的半径为10cm,且经过点B、C,那么线段AO=cm.18.抛物线2y x bx c=-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:,.(对称轴方程,图象与x正半轴、y轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)若20072008a=,20082009b=,试不用..将分数化小数的方法比较a、b的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm ,3 1.73≈)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm ) 16192124鞋码(号)22 28 32 38(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上? (2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?图9 图10(1) 图10(2)四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2). (1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧 A m B 相切于点A 、B ,线段AB =180m ,∠ABD =150°. (1)画出圆弧 A m B 的圆心O ; (2)求A 到B 这段弧形公路的长.图11(1) 图11(2)图1227.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD D B D E +=.图1328.[12分+附加4分]如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.图14(1) 图14(2) 图14(3)附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29.(7分)本试卷第19题为:若20072008a=,20082009b=,试不用..将分数化小数的方法比较a、b的大小.观察本题中数a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号 1 2 3 4 5 6 7 8 9 10 答案 B D A B D B C A A C二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. 34x y =⎧⎨=⎩, 13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分 解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ·································· 3分b 2200820082009=⨯, ···································································································· 4分222200812008-<, ······························································································· 5分∴ a <b . ··························································································································· 6分说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分. 20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ············· 3分∴ 22724x -=. ∴ 225x =. ················································································ 4分∴ 5x =±. ··················································································································· 6分 21. 本小题满分8分 解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ·············································································································· 4分 ∴ 能让灯泡发光的概率为23. ····················································································· 8分22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ·········· 3分 从而 a =4×tan60° ················································· 6分=4×3≈6.9(cm). ····································· 8分即室内露出的墙的厚度约为6.9cm .23. 本小题满分10分 解:(1)一次函数. ············································································································· 2分 (2)设y kx b =+. ········································································································ 3分由题意,得22162819k b k b =+⎧⎨=+⎩,. ····························································································· 5分解得210k b =⎧⎨=-⎩,.·············································································································· 7分∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、…、26、26.5、27等)······································································································································ 8分说明:只要求对k 、b 的值,不写最后一步不扣分. (3)44y =时,27x =.答:此人的鞋长为27cm . ···························································································· 10分 说明:只要求对x =27cm ,不答不扣分.四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图:························· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ·············· 6分∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ···················· 8分25. 本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ··················································· 1分由题意列方程x4800=506000+x . ··············································································· 5分解得 x =200.·················································································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解.······························································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元).答:两天共参加捐款的有450人,人均捐款24元. ·················································· 10分说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, ···································································································· 1分由题意列方程6000x-4800x=50 . ········································································ 5分解得 x =24. ···················································································································· 7分以下略.26. 本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ································································ 3分 说明:若不写作法,必须保留作图痕迹.其它作法略.(2)∵ AO 、BO 都是圆弧 A m B 的半径,O 是其圆心, ∴ ∠OBA =∠OAB =150°-90°=60°. ········································ 5分 ∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·················· 7分O∴ π6018060π180A B ⨯⨯== (m).∴ A 到B 这段弧形公路的长为60πm . ········································································· 10分 27. 本小题满分10分证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠. ·················································· 2分 ∵ EC DC AC BC ==,,∴ △ACE ≌△BCD . ······················································ 4分(2)∵ ACB ∆是等腰直角三角形, ∴ ︒=∠=∠45BAC B . ··············································· 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ········ 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ················································ 7分 ∴ 222DE AE AD =+. ························································································· 9分 由(1)知AE =DB ,∴ 222A D DB D E +=. ························································································ 10分 28.本小题满分16分(含附加4分) 解:(1)3k =-, ······································································ 1分A (-1,0), ································································ 2分B (3,0). ·································································· 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ············································································ 4分则 △AOC 的面积=23,△MOC 的面积=23,△MOB 的面积=6, ························································· 5分 ∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ············································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和. (3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23,△DOB 的面积=-23(322--m m ), ·································································· 8分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m=875)23(232+--m . ··························································································· 9分∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ································ 10分 (4)有两种情况:图14(1)图14(2)A DBC E- 11 -如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C .∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3.∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·········································································· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5). ···················································································· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2.∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3.∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·········································································· 14分由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ······················································································ 15分综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ························································································································ 16分说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29. 本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ······················································ 4分 若m 、n 是任意正实数,且m >n ,则11nn m m +<+. ······················································ 5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则nn rm m r +<+.6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n r m m r +<+.7分。

相关文档
最新文档