徐州市-中考数学试卷
2023年江苏省徐州市中考数学真题(精品解析)【可编辑可打印】
A. a
B. b
C. c
D. d
【答案】C 【解析】
【分析】根据数轴可直接进行求解. 【详解】解:由数轴可知点 C 离原点最近, 所以在 a 、 b 、 c 、 d 中最小的是 c ; 故选 C .
【点睛】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的 表示、有理数的大小比较及绝对值是解题的关键.
其中,海拔为中位数的是( ) A. 第五节山 B. 第六节山 C. 第八节山 【答案】C
【解析】
D. 第九节山
【分析】根据折线统计图把数据按从小到大排列,然后根据中位数可进行求解. 【详解】解:由折线统计图可按从小到大排列为 90.7、99.2、104.1、119.2、131.8、133.5、136.6、
【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
8
8. 如图,在VABC 中, 为
ÐB
=
90。, ÐA
=
30。, BC
=
2, D
为AB
的中点.若点E
在边AC
上,且AD
AB
=DE BC
,则 AE 的长
()
A. 1
B. 2
C. 1 或
D. 1 或 2
【答案】D 【解析】
4
4. 下列运算正确的是( )
A. “2 “3 = “6
B. “4 “2 = “2
C.
( )3 2
5
“ =“
D. 2“2 + 3“2 = 5“4
【答案】B 【解析】
【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可进行求解. 【详解】解: A、“2 “3 = “5 ,原计算错误,故不符合题意; B 、“4 “2 = “2 ,原计算正确, 故符合题意;
江苏省徐州市中考数学真题试题(含解析)
江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
最新江苏省徐州市中考数学真题复习试卷附解析
江苏省徐州市中考数学真题复习试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得仰角为45o ,则该高楼的高度大约为( )A .82米B .163米C .52米D .30米2.如图,一次函数y1=x-1与反比例函数y2=x 2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取值范围是( ) A .x>2 B .x>2 或-1<x<0 C .-1<x<2 D .x>2 或x<-13.在△ABC 与'''C B A ∆中,有下列条件:①''''C B BC B A AB =;⑵''''C A AC C B BC =;③∠A =∠'A ;④∠C =∠'C .如果从中任取两个条件组成一组,那么能判断△ABC ∽'''C B A ∆的共有( )A .1组B .2组C .3组D .4组4. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是( ) A .y =12 (x+2 )2 -2 B y =12(x-2 )2 -2. C y =2(x+2 )2 -2. D .y =2(x-2 )2 -2 5.顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( )A .矩形B 对角线相等的四边形C .对角线垂直的四边形D .平行四边形6. 计算22(11)|11|11-+--,正确的结果是( )A .-11B .11C . 22D .-22 7.已知长方形ABCD 对角线的交点在坐标原点,且AD ∥x 轴,若A 点坐标为(-1,2),则D 点坐标为( )A .(2,-l )B .(2,1)C .(1,2)D .(-1,2)8.下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x (x+1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )A .①④B .②④C .③④D .②③9.下列四个图中,能表示线段x=a+c-b 的是( )A .B .C .D .10.一根绳子弯曲成如图2(1)所示的形状. 当用剪刀像图 2(2)那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图2(3)那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为 9段. 若用剪刀在虚线a 、b 之间把绳子再剪(1n -)次(剪刀的方向与a 平行),这时绳子的段数是( )A .41n +B . 42n +C .43n +D .45n +11.4-(-7)等于( )A . 3B . 11C . -3D . -11二、填空题12.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对. 13.在□ABCD 中,AB=2cm ,BC=4cm ,∠B=45°,则□ABCD 的面积等于 cm 2. 14.已知正比例函数232k y kx -=的函数值y 随着x 的增大而减小,则k= . 15.若点P(a+b ,-8)与Q(-1,2a-b)关于原点对称,则ab 的值为 .16.已知a ,b 是方程2(2)10x m x +++=的两根,且a b =,则m = . 17.已知112a b +=,则代数式200920082009a ab b ab-+的值为 . 18.如图,∠AOB=90°,它绕点O 旋转30°后得到∠COD ,•则∠AOC=•_____,•∠BOC=_____,∠COD=______.19.中国国家图书馆藏书约2亿册,用科学记数法表示为 册.20.在四边形ABCD 中,给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C .以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题: .三、解答题21.如图,△ABC 中,D 、E 分别为 BC 、AC 上的点,BD= 2DC ,AE= 2EC ,AD 与BE 相交于点 M ,求AM :MD 的值.O EF22. 下列抛物线可由怎样的抛物线2y ax = (a ≠0)经过怎样的平移得到?(1) 21(4)3y x =-- (2)2(5y x =-+- (3) 2133()24y x =-+23.根据下列语句画一幅地图,标注出语句中涉及的地名,并建立适当的直角坐标系,写出各地名的坐标.(1)出校门口向东l00 m 是文具店;(2)出校门口先向北走50 m ,再向西走150 m 是小明家;(3)出校门口先向西走200 m ,再向南走300 m 是游泳池.24.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?25.解方程:3(x+5)2-2(x-3)2-(x+9)(x-9)=18026.把图(1)中的小鱼放大2倍后画在图(2)的方格上.27.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.28.用代数式表示:(1)a 的绝对值;(2)a(a≠0)的倒数;(3)a 的相反数;(4)a 的平方根(a≥0);(5)a 的立方根.29.出租车司机小李某天下午营运全是在东西方向的人民大道上行驶. 若规定向东为正,则这天下午出租车行驶情况(单位:km)如下:+15 ,-2 ,+5 , -1 , +l0 ,-3 , -2 , +12 , +4,-5,+6,求(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为 0. 2L/km,这天下午小李的车共耗油多少?30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.A5.C6.B7.C8.A9.D10.D11.B二、填空题12.613. 4214. -2 15.-616. 0或-417.201018. 30° ,60°,90°19.8210⨯20.四边形ABCD 中,如果AB ∥DC ,∠A=∠C ,那么AD=BC三、解答题21.过点D 作 DF ∥AC 交 BE 于F.∴△BDF ∽△BCE,△DFM ∽△AEM ,∴23FD BD BD EC BC BD DC ===+,即23FD EC =,∵AE=2EC ,∴13FD AE =,∴3AM AE MD FD==. 22.(1)21(4)3y x =--是由抛物线213y x =-向右平移 4 个单位到. (2)2(3)5y x =-+-是由抛物线2y x =-先向左平移个单位,再向下平移 5个单位得到的.(3)2133()24y x =-+是由抛物线23y x =先向右平移12个单位,再向上平移一个34单位得到. 23.略24.(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x+500(15-x)=12000,解得:x = 9 ∴151596x -=-=,即预定男篮门票9张,乒乓球门票6张.(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y=5. 15-2y=5 ,即可以订男篮门票5张,足球门票5张,乒乓球门票5张25.x=1.26.略27.作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点P ,则点P 即是要找的那一点 28.(1)||a (2) 1a(0a ≠) (3)-a (4) (a ≥ 29.(1)距出发点东面 39 km 处 (2)13L30.陈华同学的说法正确,理由略。
2022年江苏省徐州市中考数学试卷及参考答案
2022年江苏省徐州市中考数学试卷及参考答案注意事项:1.本试卷满分l20分,考试时间为I20分钟.2.答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3.考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。
一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1,2的相反数是A.2B.2C.12D.12考点:相反数.分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断.解答:解:根据相反数的定义,-2的相反数是2.故选A.点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.2.2022年我国总人口约为l370000000人,该人口数用科学记数法表示为A.0.1371011B.1.37109C.13.7108D.137107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示数1370000000为1.37某109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.估计11的值A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间考点:估算无理数的大小.分析:先确定的平方的范围,进而估算的值的范围.解答:解:9<=11<16,故3<<4;故选B.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题,属于基础题.4.下列计算正确的是师库网——教师自己的家园23622224A.某某某B.(某y)某yC.(某)某D.某某某22考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂乘法、积的乘方、幂的乘方的性质计算后利用排除法求解.解答:解:A、应为某某2=某1+2=某3,故本选项错误;B、应为(某y)2=某2y2,故本选项错误;C、(某2)3=某2某3=某6,故本选项正确;D、应为某2+某2=2某2,故本选项错误.故选C.点评:本题主要考查幂的运算性质,熟练掌握相关知识点是解题的关键.5.若式子某1在实数范围内有意义,则某的取值范围是A.某1B.某1C.某1D.某1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件判断即可.解答:解:根据二次根式有意义的条件得:某-1≥0,∴某≥1,故选A点评:本题考查了二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.6.若三角形的两边长分别为6㎝,9cm,则其第三边的长可能为A.2㎝B.3cmC.7㎝D.16cm考点:三角形三边关系.分析:已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围.解答:解:设第三边长为某cm.由三角形三边关系定理得9-6<某<9+6,解得3<某<15.故选C.点评:本题考查了三角形三边关系定理的应用.关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可.7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是..ABCD考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”师库网——教师自己的家园“二,二,二”“一,三,二”的基本形态要记牢.解答:解:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.点评:考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.8.下列事件中,属于随机事件的是A.抛出的篮球会下落B.从装有黑球、白球的袋中摸出红球C.367人中有2人是同月同日出生D.买一张彩票,中500万大奖考点:随机事件.专题:应用题.分析:随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.解答:解:A、抛出的篮球会落下是必然事件,故本选项错误;B、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C、367人中有2人是同月同日出生,是必然事件,故本选项错误;D、买一张彩票,中500万大奖是随机事件,故本选正确.故选D.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.9.如图,将边长为2的正方形ABCD沿对角线平移,使点A移至线段AC的中点A’处,得新正方形A’B’C’D’,新正方形与原正方形重叠部分(图中阴影部分)的面积是A.21B.C.121D.4DD'C'考点:平移的性质;正方形的性质.AA'C分析:根据题意可得,阴影部分的图形是正方形,正方形ABCD 的边长为2,则AC=2,可得出A′C=1,可得出其面积.解答:解:∵正方形ABCD的边长为2,BB'∴AC=2,又∵点A′是线段AC的中点,∴A′C=1,(第9题)∴S阴影=12某1某1=12.故选B.点评:本题考查了正方形的性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数y1图某象上的一个动点,过点P作PQ⊥某轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有A.1个B.2个C.3个D.4个【答案】D。
江苏省徐州巿2022年中考数学试题真题含答案Word版
江苏省徐州巿2022年中考数学试题真题含答案Word版2022年中考试题徐州巿2022年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)....1.4的平方根是A.?2B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数y?1x?1中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x =-1 4.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x?x2=x-1 5.如果点(3,-4)在反比例函数y?kx的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方....盒的是A1B2022年中考试题C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数(第10题图)10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B.13 C.12 D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)................11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2022年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若x1,x2为方程x2?x?1?0的两个实数根,则x1?x2?___▲___. 14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点 D.若,若∠C=18°,则∠CDA=______▲_______.(第15题图)(第16题图)16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于____▲_____cm.第Ⅱ卷22022年中考试题三、解答题(每小题5分,共20分)17.计算:(?1)202218.已知x?x119.解不等式组?2?2x?1?5(x?1)??3?1,求x2??01?1?()?338.?2x?3的值.,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)......21.(A类)已知如图,四边形ABCD中,AB=BC,AD =CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各3BDAB45?30?21.414,31.732A6mD14m(第20题图)C(第21题图)C2022年中考试题题:项目金额/元金额/元60504030短信费月功能费4%基本话费40%月功能费5 基本话费长途话费短信费20220月功能费基本话费长途话费短信费长途话费36%项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;42022年中考试题④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.Ay六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2022年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)行驶路程不超过3km的部分超过3km不超出6km的部分超出6km的部分每公里 2.1元每公里c元O367xyD13.3BxC收费标准调价前起步价6元调价后起步价a 元11.2C7AEBF每公里b元6 设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.52022年中考试题26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;...②构造一个假命题,举反例加以说明. ...七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..E...【探究一】在旋转过程中,(1)如图2,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.62022年中考试题(2)如图3,当CEEA=2时EP与EQ满足怎样的数量关系?,并说明理由.CEEA=m(3)根据你对(1)、(2)的探究结果,试写出当系式时,EP与EQ满足的数量关为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.A(D)AFEPBC(E)BDQFCAEPDBQCF(图1)(图2)(图3)72022年中考试题徐州巿2022年初中毕业、升学考试数学试题参考答案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(x?2)(x?16.m17.解:原式=1+1-3+2=1 18.解:x222) 12. 3750元13.-1 14.34a2 15.126°?2x?3?(x?3)(x?1)3?1?3)(,将x?3?1代入到上式,则可得x?2x?3?(3?1?1)?(3?2)(3?2)??1?x119.解:?2?2x?1?5(x?1)? ?x??2?x??22?x?2?2x?1?5x?5x?2??20.解:如图所示,过点A、D分别作BC的垂线AE、DF分别交BC于点E、F,所以△ABE、△CDF均为Rt△,又因为CD=14,∠DCF=30°,所以DF=7=AE,且FC=73A6mD14m12.145?B30?C所以BC=7+6+12.1=25.1m. 21.证明:(A)连结AC,因为AB=AC,所以∠BAC=∠BCA,同理AD=CD 得∠DAC=∠DCAE FA所以∠A=∠BAC+∠DAC=∠BCA+∠DCAC(B)如(A)只须反过来即可.22.解方程的思想.A车150km/h,B车125km/h. 23.解:(1)125元的总话费(2)72° (3)项目金额/元月功能费5 基本话费50 长途话费45 短信费25 BD=∠C 82022年中考试题(4)24.(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.1 (2)y1?2.1x?0.3A1A2B2BB1C1xCC2金额/元6050403020220月功能费基本话费长途话费短信费项目解:如下图所示,yA(3)有交点为(317,9)其意义为当x?317时是方案调价前合算,当x?317时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)y??x?2x?32(2)(0,3),(-3,0),(1,0)(3)略911/ 11。
徐州中考数学试题及答案
徐州中考数学试题及答案一、选择题1. 已知正方形ABCD的周长为20cm,求它的面积是多少?A. 25 cm²B. 100 cm²C. 20 cm²D. 400 cm²2. 设a = (-5)^2,b = √36,则a + b = ?A. -31B. 11C. 31D. -113. 若二次函数y = ax² + bx + c的图像与x轴交于两个点(-1, 0)和(3,0),且顶点坐标为(1, -2),则a + b + c = ?A. 2B. -2C. -4D. 44. 若函数y = |x + 1| - |2x - 1|的图像与x轴交于点A(-2, 0),则x = ?A. -1B. 0C. 1D. 25. 已知三角形ABC的周长为18cm,AC = 3cm,BC = xcm,AB = (x + 1)cm,则x = ?A. 6B. 7C. 8D. 9二、填空题1. 设a,b是正整数,且满足a² - b² = 63,则a + b的值为______。
2. 若三角形ABC中,∠A = 45°,AC = 8cm,则BC的值为______。
3. 将-6°表示成弧度制,则结果为______。
4. 设二次函数y = ax² + bx + c的图像与x轴交于两个点(-2, 0)和(1, 0),则a + b + c的值为______。
5. 若直线y = 2x + k与x轴交于点(3, 0),则k的值为______。
三、解答题1. 某班级有80名学生,其中50人喜欢数学,30人喜欢英语,而且45人两门都喜欢。
请问这个班级中喜欢数学或者英语的学生有多少人?2. 某地去年全年的降雨量为800mm,今年上半年降雨量为210mm,下半年的降雨量为全年的四分之一。
请问今年全年的降雨量是多少?4. 为了节约用水,某小区计划将1栋楼的自来水表计改为用水卡充值方式。
中考数学5年真题(2019-2023)专题汇总解析—二次根式
中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。
2024年江苏省徐州市中考考前数学最后一卷+答案解析
2024年江苏省徐州市中考考前数学最后一卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“坎宁安数”是以英国数学家坎宁安的名字命名的,能写成形式的数字,2024是一个坎宁安数,因为下列各数中均含有“2024”,其中最小的是()A.2024B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.在单词数学中字母“a ”出现的频率是()A.B.C.D.4.下列运算正确的是()A. B.C.D.5.以下是小李记录的自己一周内每天校外锻炼的时间单位:分钟,,则下列关于小李该周每天校外锻炼时间的描述,正确的是()A.众数为62分钟B.中位数为62分钟C.平均数为70分钟D.方差为06.分式是刻画数量关系和变化规律的一类重要的代数式,我们学习了分式的概念、基本性质和运算.回顾学习分式的过程,常常是先回顾分数的概念、分数的基本性质和分数的运算法则,然后推广得到分式的概念、分式的基本性质和分式的运算法则.这种研究方法主要体现的数学思想是()A.归纳思想 B.类比思想C.数学抽象D.数形结合思想7.将二次函数的图象先向上平移3个单位长度,再向右平移2个单位长度后得到的图象的顶点坐标是()A.B.C.D.8.中,,,,将绕点A旋转得到,连接CD、CE,在旋转过程中,面积的最大值是()A. B. C.15 D.18二、填空题:本题共10小题,每小题3分,共30分。
9.因式分解:__________.10.第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数字218000000用科学记数法表示为_____.11.如果,则的值为_____.12.如图,CE,CF是正六边形的两条对角线,则的大小为_______.13.已知关于x的分式方程的解为正数,则m的取值范围是___________.14.如图,在中,,点D为AB边的中点,于E,若,则AC的长为_________.15.如图,点A,B,C,D在上,,,则________.16.黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知,则阴影部分的面积为_____.17.如图,矩形OABC的顶点A在反比例函数的图象上,顶点B、C在第一象限,对角线轴,交y轴于点若矩形OABC的面积是16,,则__________.18.如图,在矩形ABCD中,点E是边AD上一点,连接BE,过点E作BC的垂线,垂足为F,的角平分线分别交EF,EC于点G,若,,,则GH的长为_______.三、计算题:本大题共2小题,共12分。
2022年江苏省徐州市中考数学试卷(学生版+解析版)
2022年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置) 1.(3分)﹣3的绝对值是( ) A .3B .﹣3C .13D .−132.(3分)下列图案是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.(3分)若√x −2有意义,则x 的取值范围是( ) A .x >2B .x ≥2C .x <2D .x ≤24.(3分)下列计算正确的是( ) A .a 2•a 6=a 8 B .a 8÷a 4=a 2 C .2a 2+3a 2=6a 4D .(﹣3a )2=﹣9a 25.(3分)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )A .B .C .D .6.(3分)我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率﹣人口死亡率,下列判断错误的是( ) A .与2012年相比,2021年的人口出生率下降了近一半 B .近十年的人口死亡率基本稳定 C .近五年的人口总数持续下降 D .近五年的人口自然增长率持续下降7.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .14B .13C .12D .√338.(3分)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )A .5B .6C .163D .173二、填空题(本大题共有10小题,每小题3分,共30分。
不需要写出解答过程,请将答案直接填写在答题卡相应位置) 9.(3分)因式分解:x 2﹣1= .10.(3分)正十二边形的一个内角的度数为 . 11.(3分)方程3x =2x−2的解为 .12.(3分)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为 亿斤.13.(3分)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .14.(3分)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为 .15.(3分)若一元二次方程x 2+x ﹣c =0没有实数根,则c 的取值范围是 . 16.(3分)如图,将矩形纸片ABCD 沿CE 折叠,使点B 落在边AD 上的点F 处.若点E 在边AB 上,AB =3,BC =5,则AE = .17.(3分)若一次函数y=kx+b的图象如图所示,则关于kx+32b>0的不等式的解集为.18.(3分)若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m 的值为.三、解答题(本大题共有10小题,共86分。
2024年江苏省徐州市中考数学最后一卷
2024年江苏省徐州市中考数学最后一卷一、单选题1.2-的相反数是( )A .12-B .12 C .2- D .22.下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a a -=C .824a a a ÷=D .()32639a a -=- 3.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.等腰三角形的两条边长分别为8和4,则它的周长等于( )A .12B .16C .20D .16或20 5.襄阳气象台发布的天气预报显示,明天襄阳某地下雨的可能性是75%,则“明天襄阳某地下雨”这一事件是( )A .必然事件B .不可能事件C .随机事件D .确定性事件 6.某公司5名员工在一次义务募捐中的捐款额为(单位:元):30,50,50,60,60.若捐款最少的员工又多捐了20元,则分析这5名员工捐款额的数据时,不受影响的统计量是( )A .平均数B .中位数C .众数D .方差7.如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=︒,则AB BC =( )A .12 B C D 8.如图,两个半径均为4的圆形纸片完全重合叠放在一起,让其中的一张圆形纸片绕着直径AB 的一端A 按逆时针方向旋转30︒后得到直径为AC 的圆,则图中阴影部分的面积为( )A.83π-B.163π-C.163π-D.83π-二、填空题9.25的平方根是.10x 的取值范围是.11.2024年4月25日,搭载神州十八号载人飞船的长征二号F 摇十八运载火箭在酒泉卫星发射中心成功发射.神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体的总重量达4000多千克.将40000用科学记数法表示为.12.因式分解:2225x y -=.13.若关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是. 14.如图,在ABC V 中,DE 是BC 的垂直平分线,若5AB =,8AC =,则ABD △的周长是.15.如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 为半径画弧BF ,得到扇形BAF (阴影部分).若扇形BAF 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是.16.如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEFS S =△△.17.观察下列图形的构成规律,根据此规律,第2024个图形中共有个圆.18.如图,正方形纸片ABCD 的边长为4,点E 在AD 边上,点F 在CD 边上.将正方形纸片ABCD 沿EF 对折,点B 的对应点是点G ,连接DG ,若1AE =,则DG 长的最小值是.三、解答题19.(1)计算:20(1)|(3)π-++-(2)211211a a a a ⎛⎫÷+ ⎪-+-⎝⎭20.(1)解方程组:213423x y x y -=⎧⎨+=⎩(2)解不等式组()2131113x x x x ⎧+>-⎪⎨-+<⎪⎩21.为了解我校学生本学期参加志愿服务的情况,随机调查了我校的部分学生,根据调查结果,绘制出如图统计图,若我校共有1000名学生,请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为________,扇形统计图中的m =________;(2)求所调查的学生本学期参加志愿服务次数的平均数;(3)学校为本学期参加志愿服务不少于7次的学生颁发“志愿者勋章”,请估计我校获“志愿者勋章”的学生人数.22.小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A :智取芭蕉扇、B :三打白骨精、C :盘丝洞)中各自随机选择一个项目游玩.(1)小华选择C 项目的概率是_________;(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.23.如图所示,是一张对边平行的纸片,点A ,B 分别在平行边上.(1)求作:菱形ABCD ,使点C ,D 落在纸片的平行边上;(要求:尺规作图,保留作图痕迹,不写作法)(2)若65ABC ∠=︒,6AB =,求菱形ABCD 的面积.(sin650.91︒≈,cos650.42︒≈,tan 65 2.14︒≈) 24.为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若零售价是批发价的1.2倍,求这个学校九年级学生有多少人?25.如图,C 是以AB 为直径的半圆O 上的一点,AD 平分BAC ∠交半圆O 于点D ,DE AB ∥交射线AC 于点E(1)求证:12DE AB = (2)若4AB =,当DB AE =时,四边形EABD 的面积为______26.在平面直角坐标系xOy 中,已知反比例函数a y x=的图象如图所示,直线1y x =+分别交x 轴,y 轴于A ,B 两点.(1)求A ,B 两点的坐标;(2)在该反比例函数的图象上取一点C ,连接OC AC ,,其中AC 交线段OB 于点D ,若COD ABD ∽△△,且相似比为2,求该反比例函数的表达式;(3)在ABO V 的内部取一点P ,以P 为位似中心画PMN V ,使它与PAB V 位似,且相似比为5,若M ,N 两点恰好都落在(2)中所求出的反比例函数的图象上,求位似中心P 的坐标. 27.已知在正方形ABCD 中,4AB =,点E 为BC 边上一动点(不与点B ,C 重合),连接AE ,将AE 绕点E 顺时针旋转90︒得到EF ,连接AF 交CD 于点G(1)如图1,当点E 为BC 的中点时,求GF AG的值; (2)如图2,若DG BE =,求BE 的长;(3)连接DF,求DF的最小值.28.如图1,抛物线2(0)=++≠的顶点D的坐标为(1,4),与x轴交于A,B两点(点y ax bx c aC.B在点A的右侧),与y轴交于点(0,3)(1)求抛物线的表达式及点A,点B的坐标;(2)如图2,连接AD交y轴于点E,过点E作EF AD⊥交x轴于点F,连接DF交抛物线于点G,试求点G的坐标;∥,交BC (3)如图3,连接AC,BC,点P是抛物线在第一象限内的点,过点P作PQ AC于点Q,当PQ的长最大时,求点P的坐标.。
江苏省徐州巿2022年中考数学真题试题(含解析)
江苏省徐州巿2022年中考数学真题试题(含解析)1.14.〔3.00分〕已知函数y=2x-3,那么y=8的解为x=5.15.〔3.00分〕如图,正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,那么PQ的长度为√2.16.〔3.00分〕已知集合A={1,2,3,4},集合B={x|x=2n,n∈N*},则A∪B={1,2,3,4,6,8}.三、解答题〔共42分〕17.〔6.00分〕已知函数y=2x-3,那么解方程y=0的根为x=1.5.解析】当y=0时,有2x-3=0,解得x=1.5.18.〔6.00分〕如图,已知正方体ABCD-EFGH的棱长为2,P、Q分别为AE、BF的中点,连接PQ,求PQ的长度.解析】由于P、Q分别为AE、BF的中点,所以PQ平行于AB且PQ=1/2AB,而AB的长度为2√2,因此PQ的长度为√2.19.〔6.00分〕如图,已知三角形ABC中,∠B=90°,AB=3,AC=4,D是BC上一点,且AD⊥BC,求AD的长度.解析】根据勾股定理,可得BC=5.由于AD⊥BC,所以∠BAD=∠ACB,因此三角形ABD与三角形ABC相似,即AD/AB=AC/BC,代入已知数据可得AD=9/5.20.〔12.00分〕如图,在矩形ABCD中,AE=AF=6,BF=CG=8,求矩形ABCD的面积.解析】首先根据勾股定理,可得CE=10,BD=10.由于AE=AF=6,BF=CG=8,所以AEFB和CGDA都是正方形,且边长均为6.因此矩形ABCD的面积为6×8+6×10=84.14.正三角形的面积为a²×√3÷4.15.∠CDA=72°。
16.△ABE的周长为10cm。
17.(-1)²=1.18.x²+π-1-2x-3=-x²+π-4x+1,化简得2x²-2x-2=0,解得x=1±√2,整数解为x=1.19.x4.20.坝高≈12.9m,坝底宽≈18.4m。
最新江苏省徐州市中考数学原题试卷附解析
江苏省徐州市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23-C . 23±D .32±2.如图所示,点 B 在圆锥母线V A 上,且13VB VA =,过点B 作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为 S 1, 原圆锥的侧面积为S ,则下列判断中正确的是( ) A .113S S = B .114S S = C .116S S = D .119S S =3.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0. 有下列四个结论:①AC=BD ;②梯形ABCD 是轴对称图形;③∠ADB=∠DAC ;④△AOD ≌△ABO. 其中正确的是( )A . ①③④B . ①②④C . ①②③D . ②③④4.如图,在□ABCD 中,EF ∥GH ∥AB ,MN ∥BC ,则图中的平行四边形的个数为(• )A .12个B .16个C .14个D .18个5.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( )A 3 2B 3 3C .1:2D 3:16.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x- 1 0 1 y 1 m -17.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )A .B .C .D . 8.下列各式从左到右的变形中,是因式分解的为( )A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++ C .221()a b a a b a +=+ D .1(1)(1)ab a b a b -+-=+- 9.钝角减去锐角所得的差是( )A .锐角B .直角C .钝角D .都有可能10.下列说法正确的是( )A .记向东行为正,- 30 km 表示向西行-30 kmB .正有理数和负有理数统称有理数C .整数和分数统称有理数D .温度上升2℃记作+2℃,则-3℃表示温度为零下3℃二、填空题11.在△ABC 中,∠C= 90°,AC= 5,tanB=15,则 BC= . 12. 一水池内储水 20m 3,设放完这池水所需的时间为 T(h),每小时流水量为 W(m 3/h),规 定放水时间不得超过10h ,则 T 关于W 的函数解析式为 ,自变量W 的取值范围 .13.现有一批救灾货物要从A 市运往B 市,若两城市的路程为400km ,车的平均速度为x (km/h ),从A 市到B 市所需的时间y (h ),则则y 关于x 的函数解析式为 ,若平均车速为50(km/h ),则从A 市到B 市所需的时间为 h .14.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = .15.如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象,可得关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的的解是 .16.已知铁的质量m 与体积V 成正比例,已知当V=5cm 3时,m=39g ,则铁的质量m 关于体积V 的函数解析式是 .17.一次函数y kx b =+的图象经过点A(0,2),B(3,0),则此函数的解析式为 .18.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .19.已知△CDE 是△CAB 经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .20.已知一个角的补角是这个角的余角的3倍,那么这个角的度数是_______.21. 探索规律:(1)1+3=41+3+5=91+3+5+7=161+3+5+7+9=251+3+5+…+(2n-1)= .(2)三、解答题22.人体下半身(脚底到肚脐的长度)与身高的比例越接近 0. 618,越给人美感.遗憾的 是,即使是身材修长的芭蕾舞演员也达不到如此的完美.某女士,身高1.68m ,下半身 1.02m ,她应选择多高的高跟鞋看起来更美呢?(精确到0.01 m)输入x -1O 输出23.截止2007年底,某城市自然保护区的覆盖率为 4%,尚未达到国家A 级标准,因此市政府决定加快绿化建设,力争到2009年底自然保护区的覆盖率达到 8%以上,若要达到最低目标8%,则这个城市自然保护区的年平均增长率是多少(保留 2个有效数字)?24.用总长为20 m 的篱笆围成一长方形场地.(1)写出长方形面积S(m 2)与一边x(m)之间的函数解析式和自变量X 的取值范围;(2)分别求当x=2,5,8时,函数S 的值.25. 若0=++c b a ,求证:02222=++-ac c b a .26.约分: (1)2322()4()x x y y x y --;(2)2222444y x x xy y --+-27.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?(可用计算器计算)28.某日小明在一条东西方向的公路上跑步;他从A 地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A地的什么方向?离A地有多远?这 1小时内小明共跑了多远?29.如图所示,长方形ABCD与长方形BEFG等长等宽,如将长方形BEFG向右平移,距离为EF,长方形ABCD向右平移距离为3个BC,则恰好构成新长方形AEPQ,若AEPQ周长为56,求长方形AEPQ的面积.30.在如图所示的立体图形中,它们分别有几个面?哪些面是平面?哪些面是曲面?面面相交的地方形成了几条线?这些线是直的还是曲的?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.D5.B6.B7.C8.D9.D10.C二、填空题11.2512.20T W=,W ≥2 13.400y x=,8 14.-l615.42x y =-⎧⎨=-⎩16. M=7.8v17.223y x =-+18. 135°19.3220. 45°21.(1)2n (2)3x ,31x -,312x -,312χ-;-2,12-三、解答题22.设她应选择 x(m)的高跟,则 1.020.6181.68x x +=+,解得0.05x ≈,即她应选择 0.05m 高的高跟. 23.41%24.(1)210S x x =-+(0<x<10);(2)16,25,1625.证略.26.(1)2()2x x yy-;(2)22x yx y+-27.(1)1500km;(2)6825.6元略.28.他在A地的东面,离A地245 米远,共跑了 5867 米29.19230.图①由三个面构成;两个平面一个曲面;面与面相交成两条曲线.图②是由一个曲面和一个平面组成;面与面相交形成一条曲线.图③由六个平面构成;面与面相交形成12条直线.。
2020年江苏省徐州市中考数学测试试题附解析
2020年江苏省徐州市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知 PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,DB ⊥PC 于点B ,DB=3 ㎝,PB=4cm ,则⊙O 的直径为( )A .10 cmB .12 cmC .16 cmD .20 cm 2.若tan (α+10°)=3,则锐角α的度数是( )A .20°B .30°C .35°D .50° 3.抛物线y =x 2-2 a x +a 2的顶点在直线 y =2上,则a 的值为( ) A .2或-1B .-1<a<2C .2D .不能确定 4.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为( )A .0B .-2C .2D .士25.“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s (km )与所走的时间t (min )之间的函数关系如图所示,那么这天小明到家的时间为( )A .17 h15 minB .17 h14 minC .17 h12 minD .17 h11 min6.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6 折B .7 折C .8 折D .9 折7.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元8.在下图中,为多面体的是( )A .B .C .D .9.将一-直角三角板与两边平行的纸条按如图所示放置,有下列结论:(1)∠1 = ∠2;(2)∠3 =∠4;(3)∠2 +∠4 = 90°;(4)∠4 + ∠5 = 180°. 其中正确的个数为( )A .1B . 2C .3D . 410.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -= 11.24a x +可表示为( )A .24a x x +B .24a x x x ⋅⋅C .22a x x +⋅D .24()a x x ⋅12.将长为1m 的绳子,截去一半,然后将剩下的再截去一半,如此下去,若余下的绳子长不足1cm ,则至少..需截几次( ) A .6次 B .7次 C .8次 D .9次二、填空题13.已知在Rt △ABC 中,∠C =90°,直角边AC 是直角边BC 的2倍,则sin ∠A 的值是 .14.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).15.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).16.把抛物线y =2(x +1)2向下平移______单位后,所得抛物线在x 轴上截得的线段长为2 217. 方程2230x x --=的根是 .18.随机抽取某城市一年(以365天计)中的30天的日平均气温状况,统计如下: 温度(℃)10 14 18 22 26 30 32 天数(天) 3 5 5 7 6 2 2请根据上述数据填空:(1)该组数据的中位数是℃;(2)该城市一年中日平均气温为26℃的约有天;(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有天.19.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了步路(假设2步为l m),却踩伤了花草.20.将一大块花布铺平,它上面的图案可以看做由一个基本图案通过不断地得到.21.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.22.-27 81的平方根之和为.23.数轴上有一点到原点的距离为 6.03,那么这个点表示的数是.三、解答题24.如图,∠PAQ是直角,⊙0与AP相切于点T,与AQ交B、C两点.(1)BT是否平分么OBA?说明你的理由.(2)若已知AT=4,弦BC=6,试求⊙0的半径R.25.如图,五边形ABCDE∽五边形 RSTUV,求∠R的度数和RS 的长.26.从有关方面获悉,在某市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可以在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准: 医疗费 用范围 住院门诊0一5000元 5000— 20000元 20000元 以上 每年报销 比例标准 70% 30% 40% 50%30000元,则5000元按30%报销、l5000元按40%报销,余下的10000元按50%报销.题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2006年门诊看病自己共支付医疗费180元,则他这一年中门诊医疗费用共 元;(2)设某农民一年中住院的实际医疗费用为x 元(5001≤x ≤20000),按标准报销的金额为y 元,试求出y 与x 的函数解析式;(3)若某农民一年内本人自负住院医疗费17000元(自负医疗费=实际医疗费一按标准报销的金额),则该农民当年实际医疗费用共多少元?27.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?28.已知:如图,△ABC 内接于⊙O,弦DE ‖BC,F 为ED 延长线上的一点,∠F=∠A, 求证:BF 为⊙O 的切线.·B CA O D EF29.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.30.已知某工厂从1997年到2002年每年的年产值和利润依次分别为(单位:万元):80,8;95,10;100,15;100,20;95,15;110,20列出该工厂从l997年到2002年产值和利润统计表.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.A5.C6.B7.A8.A9.D10.C11.D12.B二、填空题13.14.相同15.是16.17.13x =,21x =-18.(1)22;(2)73;(3)14619.420.平移21.22.0或-623.6.03±三、解答题24.(1)BT 平分∠OBA ,理由如下:连结0T ,则OT ⊥AP ,∵∠PAQ=90°,∠PAQ+∠OTA=180°,∴OT ∥AQ , ∴∠0TB=∠ABT ,又∠0TB=∠OBT ,∴∠ABT=∠OBT ,∴BT 平分∠OBA .(2)作OE ⊥BC 于E 点,则BE=3,∴四边形AEOT 是矩形,∴OE=AT=4,∴R=53422=+.25.∵五边形 ABCDE ∽五边形RSTUV ,∴∠R=∠A= 128°.∴RS RV AB AE =,即446RS =,∴83RS = 26.(1)600;(2)25005y x =-;(3)29000 27.(1)y=15x+55;(2)145元,l2个月28.画直径BK ,连接AK ,证明∠ABF=∠C=∠K ,则∠OBF=∠OBA+∠ABF=∠OBA+∠K=90°,∴BF 为⊙O 的切线. 29.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36° (3) 略 30.1997~2002年产值和利润统计表 单位:万元。
江苏省徐州市2024年中考数学学业水平测试B卷
徐州市2024年初中学业水平考试B卷姓名___________ 考试证号______________一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.张老师对全班同学以90分为标准计分,小明得95分,记作+5分;小丽被记作-3分,则小丽的实际分数为A. 93B. 92C. 87D. 882.下列图形,是中心对称图形的是3.下列运算正确的是A. x²+x³=x³B. x².x³=x⁶C. x⁶÷x²=x³D. (x³)2=x⁶4.如图,数轴上点A、B、C分别对应实数a、b、c,下列式子中正确的A. a+c<0B. ab>bcC. a+b>b+cD. b-a>c-b5.如图,是某运动员在射击训练中10次射击的成绩,则这10次成绩的众数是A. 9.5B. 9.7C. 9.8D. 9.91.本试卷共6页,满分140分,考试时间120分钟.2.答题前,请将名、文化考试证号用0.5毫米黑色字迹签字笔填写在本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,将本卷利答题卡一并交回.6.已知√2.373≈1.333, √23.73≈2.827,则√0.02373≈A. 0.133B. 0.02872C. 0.2872D.以上答案都不对 7.如图,五个小正方体叠成了一个立体图形,其左视图是8.如图,在△ABC 中,∠C=90°,AC=4.BC=3,点O 是线段AC 的中点,将△ABC 绕点O 旋转得△DEF,EF、ED 与AB 分别交于点M 、N ,若AB//DF ,则MN 的长是 A.125B.165C.95D.65二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答直填写在答题卡相应位置)9.因式分解:x ³-x=______ 10.若x 是正整数,要使分式1x−3有意义,则x=_______(写出一个即可)11.一颗中高轨道卫星距离地面高度大约是21500000米,将数据21500000用科学记数法表示为__ 12.若一个六边形的内角都相等,则它的每个内角为__.13.如图,直线AB 、CD 相交于点O ,∠AOC=30°,OE 平分∠AOD,射线OF⊥AB ,则∠EOF=_______°14.如图,已知AB 是⊙O 的直径,EF 是⊙O 的切线,切点为B ,若∠BDC=72° 则∠CBE= 。
2020年江苏省徐州市中考数学试卷B卷附解析
2020年江苏省徐州市中考数学试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( ) A .与原图形关于x 轴对称 B .与原图形关于k 轴对称 C .与原图形关于原点对称 D .向x 轴的负方向平移了一个单位 2.满足下列条件的△ABC ,不是直角三角形的是( )A .222b a c =-B .∠C=∠A 一∠BC .∠A :∠B :∠C=3:4:5D .a :b: c=12:13:53.已知235x x ++的值为 3,则代数式2391x x +-的值为( ) A .-9B .-7C .0D .34.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( ) A .AASB .ASAC .SSSD .AAS5.下列计算中正确的是( ) A .326x x x ⋅= B .222(3)9xy x y -=- C .235235x x x ÷=D .32()()x x x -÷-=6.计算器按键顺序为的相应算式是( )A .22545⨯-÷B .2(2.54)5-÷C .242.5()5-D .242.55-7.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132-的结果为( )A .11B .-11C .5D .-2二、填空题8.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.9.已知圆的直径为13cm ,直线与圆心的距离为d ,当d cm =8时,直线与圆 相离 ;当d cm =65.时,直线与圆 .10.五边形的内角和等于 .11.关于x 的方程22(23)103a x ax ---=是一元二次方程,则a 的取值范围是 . 12. 若8855x xx x --=--成立,则x 的取值范围是 . 13. 如图,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8 cm ,BD=7cm ,AD=3 cm ,则DC= cm.14.当3=x 或5-=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得新正方形 积是 A .
2
A B C ' D',新正方形与原正方形重叠部分(图中阴影部分)的面 C'
徐州市2011年初中毕业、升学考试
、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中, 恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上 1 .
2的相反数是
1
A . 2 B. 2 C.-
2
3.估计.,11的值
4•下列计算正确的是
A . X 1
B . X 1 C. X 1 D. X 1 6.若三角形的两边长分别为
6 cm, 9 cm ,
&下列事件中,属于随机事件的是
9.如图,将边长为 迈的正方形ABCD 沿对角线平移,使点 A 移至线段AC 的中点A 处, 2. 2010年我国总人口约为 I 370 000 000
人,该人口数用科学记数法表示为
A . 0.137 1011
B . 1.37 109 C. 13.7 108D . 137 107
A .在2至U 3之间
B. 在3到4之间C .在4至U 5之间 D. 在5到6之间
A . X X 2 X 2 B
2 2 (xy) Xy C
/ 2\3 6
.(x ) X D X 2 X 2 x 4
5.若式子.X 1在实数范围内有意义,则
x 的取值范围是
则其第三边的长可能为
A . 2 cm
B . 3 cm
C. 7 cm
D. 16 cm
7•以下各图均由彼此连接的六个小正方形纸片组成,其中不能
折叠成一个正方体的是
A .抛出的篮球会下落
B .从装有黑球、白球的袋中摸出红球
C . 367人中有2人是同月同日出生
D.买一张彩票,中500万大奖
B
C
10.平面直角坐标系中,已知点0(0, o)、A(0, 2)、B(1 , 0),点P是反比例函数
1
y 图象上的一个动点,过点P作PQL x轴,垂足为点Q.若以点O P、Q为
x
顶点的三角形与厶OAB相似,则相应的点P共有
A . 1个
B . 2个
C . 3个
D . 4个
8小题,每小题3分•共24分•不需写出解答过程•请把答案直
16. 某班40名同学的年龄情况如下表所示,则这
40名同学年龄的中位数是
岁。
年龄/岁14151617
人数416182
17. 如图,每个图案都由若干个棋子摆成. 依照此规律,第
n个图案中棋子的总个数可用含
n的代数式表示为____________
第I介第2个第3个第4个
18. _______________________________________________________________________ 已知
O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有 ________________________个点
到直线AB的距离为3.
三、解答题(本大题共有10小题,共76分.请在答题卡指定区域内作答,解答时应写出文
字说明、证明过程或演算步骤)
接填写在答题卡相应位置上)
11. 30 2 1
12.如图.AB// CD AB与DE交于点F,
13.若直角三角形的一个锐角为20 °,
14.方程组3x
2x
3的解为
2
(第12题) 15.若方程x2kx 9 0有两个相等的实数根,则k=
、填空题(本大题共有
19. (本体8分)
(1)计算:(a . 「;
a a (2)解不等式组:
x 1 0
2(x 2) 3x
20. (本题6分)根据第5次、第6次人口普查的结果,2000年、2010年我国每10万人受 教育程度的情况如下:
人口比重 200(年、201(年我国每1C 万人受教育程度人口比重统计图
(1) _____________________________________________ 2010年我国具有高中文化程度的人口比重为 _______________________________________________ ; (2) ___________________ 2010年我国具有 文化程度的人口最多; ⑶同2000年相比,2010年我国具有 ___________ 文化程度的人口增幅最大.
21. (本题6分)小明骑自行车从家去学校,途经装有红、绿灯的三个路口 •假没他在每个路 -,则小明经过这三个路口时,恰有一次遇到红灯的慨率是
2
请用画树状图的方法加以说明.
口遇到红灯和绿灯的概率均为 多少?
根据图中信息,完成下列填空:
22. (本题6分)徐卅至上海的铁路里程为650 km.从徐州乘” G'字头列车A、“ D'字头列
车B都可直达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2 .5 h .
(1) ______________________________________________________________________ 设A车的平均进度为xkin / h,根据题愆,可列分式方程:____________________________________
(2)求A车的平均述度及行驶时间.
23. (本题8 分)如图,在四边形ABCD中, AB=CD BF=DE AE! BD, CF丄
BD-
垂足分别为E、F o
(1)求证:△ ABE^A CDF
(2)若AC与BD交于点O 求证:AO=CO
24. (本题8分)如图,PA PB是O O的两条切线,切点分别为
5
交AB于点C, OP=13 sin / APC=^。
13
(1 )求0 O的半径;
(2)求弦AB的长。
A B, OP
B图① B F
图③
G N;
图④图⑤
图⑥C
25. (本题8分)某网店以每件60元的价格购进一批商品,若以单价80元销售.每月可售出
300件
调查表明:单价每上涨I元,该商品每月的销量就减少10件。
(1 )请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式:
(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?
26. (本题6分)如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图
①);沿GC折叠,使点B落在EF上的点B'处(如图②);展平,得折痕GC如图③);沿GH 折叠,使点C落在DH上的点C'处(如图④);沿GC折叠(如图⑤);展平,得折痕GC、GH如图⑥).
(1)求图②中/ BCB的大小;
(2)图⑥中的厶GCC是正三角形吗?请说明理由.
x
27. (本题8分)如图①,在△ ABC 中,AB=AC BC=a cm,Z B=30°。
动点P 以1 cm/s 的速 度从点B 出发,沿折线B ~A T C 运动到点C 时停止运动,设点 P 出发x s 时,△ PBC 的面积
2
y x bx c 的图象与x 轴交于A B 两点,与y
轴交于点P,顶点为C (1, 2 )。
(1)求此函数的关系式;
28.(本题12分)如图,已知二次函数 (2)作点C 关于x 轴的对称点
D,顺次连接A 、C B 、D 。
若在抛物线上存在点 E ,使直线
PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;
(3 )在(2)的条件下,抛物线上是否存在一点F,使得△ PEF是以P为
直角顶点的直角三角形?若存在,求出嗲你
若不存在,请说明理由。
P的坐标及厶
x。