2013-2014学年青岛版八年级数学(上册)《第4章 样本与估计》章节检测题(含答案详解)

合集下载

(精练)青岛版八年级上册数学第4章 数据分析含答案

(精练)青岛版八年级上册数学第4章 数据分析含答案

青岛版八年级上册数学第4章数据分析含答案一、单选题(共15题,共计45分)1、某组数据方差的计算公式是中,则该组数据的总和为()A.32B.8C.4D.22、若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x 2+2,…,xn+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为43、某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A.8,8B.8.4,8C.8.4,8.4D.8,8.44、已知x1, x2, x3的平均数=2,方差S2=3,则2x1, 2x2, 2x3的平均数和方差分别为()A.2,3B.4,6C.2,12D.4,125、某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨6、我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.77、在一次歌唱比赛中,10名评委给某一歌手打分如下表:成绩(分)8.9 9.3 9.4 9.5 9.7 9.8评委(名) 1 2 1 4 1 1则这名歌手成绩的中位数和众数分别是( )A.9.3, 2B.9.5 ,4C.9.5,9.5D.9.4 ,9.58、一组数据5、a、4、3、2的平均数是3,则这组数据的方差为()A.0B.C.2D.109、为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下:78,86,60,108,112,116,90,120,54,116这组数据的平均数和中位数分别为()A.95,99B.94,99C.94,90D.95,10810、如下图是根据某班40名学生一周的体育锻炼情况绘制的条形统计图。

八年级上册数学单元测试题inq 第4章 样本与数据分析初步

八年级上册数学单元测试题inq 第4章 样本与数据分析初步

八年级上册数学单元测试题第4章样本与数据分析初步一、选择题1.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是()A.甲B.乙和丙C.甲和乙D.甲和丙答案:C2.为了了解全世界每天婴儿出生的情况,应选择的调查方式是()A.普查B.抽样调查C.普查,抽样调查都可以D.普查,抽样调查都不可以答案:B3.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的()A.一个样本B.样本容量C.总体D.个体答案:B4.下列调查中,不适合采用普查而适合采用抽样调查的是()A.审核书稿中的错别字B.对五名同学的身高情况进行调查C.对中学生目前的睡眠情况进行调查D.对某社区的卫生死角进行调查答案:C5.数据5,3,2,1,4的平均数是()A.2 B.3 C.4 D.5答案:B6.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.41答案:C7.已知数据:-1,O,4,x,6,15,且这组数据的中位数为5,则这组数据的众数为()A.4 B.5 C.5.5 D.6答案:D8.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a答案:A9.已知某样本的方差是4,则这个样本的标准差是()A.2 B.4 C.8 D.16答案:A10.下列统计量中不能反映一组数据集中程度的是()A.平均数B.中位数C.众数D.方差答案:D11.有甲、乙两种小麦,测得每种小麦各10株的高度后,计算出样本方差分别为211 S=甲,2 3.4S=乙,由此可以估计()A.甲比乙长势整齐B.乙比甲长势整齐C.甲、乙整齐程度相同D.甲、乙两种整齐程度不能比答案:B12.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,他最关注的是数据的()A.平均数B.众数C.中位数D.方差答案:B13.北京奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见统计图,那么第一周售出的门票票价..的众数是( ) A .1500元B .11张C .5张D .200元答案:A14.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定答案:C15.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生 产零件的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为 .解析:b>a>c16.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .38答案:C17.下列调查中,适合用全面调查方式的是( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命 C .了解一批炮弹的杀伤半径D .了解一批袋装食品是否含有防腐剂答案:A18.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本答案:C19.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( ) A .众数B .方差C .平均数D .中位数答案:B20.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( ) A . 30吨B . 31 吨C . 32吨D . 33吨答案:C21.一组数据2-,1-,0,1,2的方差是( ) A.1B.2C.3D.4答案:B22.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A .2.95元,3元 B .3元,3元 C .3元,4元 D .2.95元,4元答案:A23.为了了解八年级400名学生的视力情况,从中抽取40名学生进行测试,这40名学生的 视力是( ) A .个体B .总体C .总体的一个样本D .样本容量答案:C24.在方差的计算公式222222123451[(10)(10)(10)(10)(10)]5S x x x x x =-+-+-+-+-中,数字5和10分别表示的意义是( )A .数据的个数和方差B .平均数和数据的个数C .数据组的方差和平均数D .数据的个数和平均数答案:D25.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为( ) A . 1万件B .9万件C .15万件D . 20万件答案:B26.小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数的众数是( ) A. 28 B .31 C .32 D .33答案:C27.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为( )A.1.5万元 B .5万元 C .10万元 D .3.47万元答案:A28.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了 评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有( )A . 0个B .l 个C .2个D .3个答案:C 二、填空题29.如果已知甲、乙两种植物株高的方差分别为222.3S =甲cm 2,215.67S =乙cm 2,那么可以估计 种植物比 种植物长得整齐. 解析:乙,甲30.在一次“保护地球、珍惜每一滴水”的环保活动中,王亮同学在所住的小区5月份随机抽查了本小区6天的用水量(单位:吨),结果分别是30,34,32,37,28,31,那么,请你帮他估计该小区6月份(30天)的总用水量约是 吨. 解析:x=96031.某校八年级有4个班,期中数学测验成绩为:(1)班50人,平均分为68分,(2)班48人,平均分为70分,(3)班50人,平均分为72分,(4)班52人,平均分为70分,那么该年级期中数学测验的平均分为 分. 解析:7032.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这个抽样调查的总体是,个体是,样本是.解析:该小区居民的月用水情况,每户家庭的月用水情况,该小区l0户家庭的月用水情况33.某校男子足球队22名队员的年龄如下表所示,则这些队员的平均年龄为岁(精确到1岁).解析:1734.为了了解某一路口的汽车流量,调查了10天每天同一时段里通过该路口的汽车车辆数,结果如下:167、183、209、195、178、204、215、191、208、197,试用计算器求出平均每天车辆数为(精确到1辆) 辆.解析:19535.在“信利杯”初中数学竞赛中,5名学生的成绩分别为:85,88,90,81,98,则这5名学生成绩的中位数是.解析:8836.某市为一个景区改造的多种方案公开向市民征求意见,在考虑选择哪一种方案时,有关部门统计了各方案投案结果的平均数,中位数和众数,主要参考的应是.解析:众数37.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.解析:3038.随机抽取某城市一年(以365天计)中的30天的日平均气温状况,统计如下:请根据上述数据填空:(1)该组数据的中位数是℃;(2)该城市一年中日平均气温为26℃的约有天;(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有天.解析:(1)22;(2)73;(3)14639.李师傅随机抽查了某单位2009年4月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6.根据这些数据.估计4月份该单位的用水总量为 .解析:21040.某市体委从甲、乙两名射击运动员中选择一人参加全运会,每人各打靶5次,打中环数如下:甲:7,8,9,8,8;乙:5,10,6,9,10.那么仅考虑发挥稳定性这一因素,应选运动员参加全运会.解析:甲41.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本容量是.解析:2042.小明去超市买了三种糖果,其单价分别是5元/斤,6.5元斤和8元/斤,他分别买了3斤、2斤和l斤,将其混合,则混合后糖果单价是元/斤.解析:643.汽车以每小时60 km的速度行驶5h,中途停驶2h,后又以每小时80 km行驶3 h,则汽车平均每小时行驶 km.解析:5444.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合.于是妈妈取了一点品尝,这应该属于 (填“普查”或“抽样调查”).解析:抽样调查45.一组数据为l,2,3,4,5,6,则这组数据的中位数是 .解析:3.546.已知三个不相的正整数的平均数、中位数都是3,则这三个数分别为 .解析:1,3,5或2,3,447.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是.解析:5 t三、解答题48.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2:表2(1)抽取样本的容量是 ;(2)样本的中位数所在时间段的范围是 ;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?解析:(1)100; (2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.49.王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.解析:略50.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?解析:解:(1) 被污染处的人数为11人.设被污染处的捐款数为x 元,则 11x +1460=50×38 ,解得 x =40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.51.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.解析:甲使用了众数,乙使用了平均数,丙使用了中位数52.某学生在一学年的6次测试中的数学、语文两科的成绩分别如下(单位:分):数学:80,75,90,64,88,95;语文:84,80,88,76,79,85.试估计该学生是数学成绩较稳定还是语文成绩较稳定.解析:语文成绩稳定53.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6.求旗杆高度的平均数,中位数,众数各是多少?解析:平均数:22.12 m,中位数:20.0 m,众数:20.0 m54.请指出下面问题哪些适合普查,哪些适合抽样调查:(1)某地区发现了一种传染病,为防止传染病的传播扩散,对该地区的调查;(2)某种商品价值5000元,某人购买该商品时递上一叠百元大钞,店主为了防止这叠钞票优秀及格不及格等级中存在假币,对这叠钱的检查;(3)某厂家为了解某种产品的市场销售情况,对销售情况的调查.解析:(1)(2)普查,(3)抽样调查55.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:(1)这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ;(2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?解析:(1)不及格、及格;(2)及格有160人,优秀80人。

青岛版八年级上第 四 章样本与估计预习学案

青岛版八年级上第  四 章样本与估计预习学案

(总第课时)加权平均数一、预习目标:初步了解频数、权数及加权平均数的定义,并尽可能的应用定义解决简单的问题。

二、预习重点:频数、权数及加权平均数的定义。

三、预习任务(一)、预习准备1、知道如何计算平均数。

2、能解决有关平均数的数学问题。

(二)预习新知。

任务一:了解频数、权数的定义。

叫该数据的频数。

叫做数据x1、x2、--------xk的加权平均数。

任务二:了解加权平均数的定义。

叫做这组数据的加权平均数。

任务三:预习例1:(三)、预习总结:四、预习诊断:东疏中学初二数学兴趣小组共有12人,其中12岁的同学有2人,13岁的同学有8人,14岁的同学有2人。

估计本兴趣小组所有同学的平均年龄。

五、预习困惑:数学学科八年级上册第四章第三节第二课时(总第课时)加权平均数一、预习目标:初步了解有关按比例(百分比)划分的加权平均数的简单数学问题的计算方法。

并尽可能解决简单的类似问题。

二、预习重点:按比例(百分比)划分的加权平均数的数学问题的计算方法。

三、预习任务(一)、预习准备1、知道加权平均数的定义。

2、知道如何计算有关加权平均数的简单的数学问题。

(二)预习新知。

任务一:关于比例:一个问题中的某一方面是按5:3:2来划分的,那么,这里的5、3、2指的是什么?任务二:关于百分比:一个问题中的某一方面是按50%、30%、20%来划分的,那么,这里的50%、30%、20%指的是什么?任务三:预习例2和例3:(三)、预习总结:四、预习诊断:某中学对学生的学业成绩进行考评时,期末考试成绩占50%,期中考试成绩占30%,平时作业成绩占20%,小明的期末考试、期中考试、平时作业成绩分别是95分、92分和94分,求他的学业总成绩?五、预习困惑:数学学科八年级上册预习案设计第四章第四节第五课时(总第课时)中位数预习目标: 1、理解中位数的求法,统计意义,了解中位数与平均数的区别和联系。

2、根据具体情况选择用中位数或平均数来表示一组数据的整体水平,能全面的多角度的考虑问题。

八年级上册数学单元测试题lmo 第4章 样本与数据分析初步

八年级上册数学单元测试题lmo 第4章 样本与数据分析初步

八年级上册数学单元测试题第4章样本与数据分析初步一、选择题1.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是()A.个体B.总体 C.样本容量D.总体的一个样本答案:C2.数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是()A. 5,4 B.4,5 C.5,5 D.4.5,4答案:A3.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a答案:A4.已知某样本的方差是4,则这个样本的标准差是()A.2 B.4 C.8 D.16答案:A5.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有()A. 0个B.l个C.2个D.3个答案:C6.一组数据方差的大小,可以反映这组数据的( ) A .分布情况B .平均水平C .波动情况D .集中程度答案:C7.某射击运动员连续射靶10次,其中2次命中10.2环,2次命中10.1环,6次命中10环,则下列说法中,正确的是( ) A .命中环数的平均数是l0.1环 B .命中环数的中位数是l0.1环 C .命中环数的众数是l0.1环 D .命中环数的中位数和众数都是l0环答案:D8.下列调查方式合适的是( )A .为了了解全国中小学生的睡眠状况,采用普查的方式B .为了对“神舟六号”零部件进行检查,采用抽样调查的方式C .为了了解我市居民的环保意识,采用普查的方式D .为了了解炮弹的杀伤力,采用抽样调查的方式答案:D9.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .38答案:C10.某校八年级有六个班.一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同.下列说法中,正确的是( )A. 全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B. 将六个平均成绩之和除以6,就得到全年级学生的平均成绩 C .这六个平均成绩的中位数就是全年级学生的平均成绩 D .这六个平均成绩的众数不可能是全年级学生的平均成绩答案:A11.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a ,中位数为b ,众数为c ,则有( ) A .b >a >c B .c >a >b C .a >b >c D .b >c >a答案:A12.下列调查方式中,不合适的是()A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式答案:C13.某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是().A.500名女生是总体B.500名女生是个体C.500名女生是总体的一个样本D.50是样本容量答案:D14.为了参加市中学生篮球运动会.校篮球队准备购买10双运动鞋,各种尺码的统计如表所示.则这10双运动鞋尺码的众数和中位数分别为()A. 25.5厘米,26厘米 B.26厘米,25.5厘米C.26厘米.26厘米D.25.5厘米.25.5厘米答案:D15.已知一组数据5,7,3,9,则它们的方差是()A. 3 B. 4 C. 5 D. 6答案:C16.小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数的众数是()A. 28 B.31 C.32 D.33答案:C17.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm)如下:甲:2 4 6 8 10 乙:l 3 5 7 9用2S甲和2S乙分别表示这两个样本的方差,那么()A.2S甲>2S乙B.2S甲<2S乙C.2S甲=2S乙D.2S甲与2S乙的关系不能确定答案:C二、填空题18.在10000株樟树苗中,任意测量20株的苗高,这个问题中,样本容量是.解析:2019.请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.解析:(1)抽样调查;(2)抽样调查;(3)普查20.某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?解析:普查21.一射击运动员连续射靶10次,其中2次命中10环,3次命中9环,5次命中8环,则他平均每次命中环.解析:8.722.若数据3,4,5,6,x的平均数为4,则x= .解析:223.在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.解析:该班学生的数学成绩,10名学生的数学成绩,81,8124.为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表:则该县这l0个区域降雨量的众数为 mm,平均降雨量为 mm.解析:14,1425.在“信利杯”初中数学竞赛中,5名学生的成绩分别为:85,88,90,81,98,则这5名学生成绩的中位数是.解析:8826.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是.解析:5 t27.从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S甲= ,2S乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得.解答题解析:0.105,0.055,不整齐28.如果已知甲、乙两种植物株高的方差分别为222.3S=甲cm2,215.67S=乙cm2,那么可以估计种植物比种植物长得整齐.解析:乙,甲29.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这个抽样调查的总体是,个体是,样本是.解析:该小区居民的月用水情况,每户家庭的月用水情况,该小区l0户家庭的月用水情况30.10位学生分别购买如下尺码的鞋子:2O、20、2l、22、22、22、22、23、23、24(单位:cm).这组数据的平均数、中位数、众数三个指标中鞋店老板最不喜欢的是,最喜欢的是.解析:平均数,众数31.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为82 x=甲分,82x=乙分,2245S=甲,2190S=乙.那么成绩较为整齐的是 (填“甲班”或“乙班”).解析:乙班32.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表:如果你是电视台负责人,在现场直播时,将优先考虑转播比赛.解析:乒乓球33.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.解析:8,734.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).解析:众数35.汽车以每小时60 km的速度行驶5h,中途停驶2h,后又以每小时80 km行驶3 h,则汽车平均每小时行驶 km.解析:5436.甲、乙两个城市,2008年4月中旬每天的最高气温统计图如图所示.这9天里,气温比较稳定的城市是.解析:甲37.在一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员将成绩表送组委会时,成绩表不慎被墨水污染掉一部分(如下表所示),但他记得这组运动员的成绩的众数是1.75 m,表中每个成绩都至少有一名运动员.根据这些信息,可以计算这17名运动员的平均跳高成绩是 m(精确到0.01 m).解析:1.6938.一组数据为l,2,3,4,5,6,则这组数据的中位数是 .解析:3.539.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .解析:1140.洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .解析:0.841.为美化校园,某班三个劳动小组在劳动课上栽花的株数分别为:10、x ,8. 已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 . 解析:283株或263株 42.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是 t . 解析:5三、解答题43.从甲、乙两种玉米苗中各抽取l0株,分别测得它们的株高(单位:cm)如下: 甲:25,41,40.37,22,l4.19,39,21,42. 乙:27,l6,44,27,44.16,40,40,16,40. 问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?解析:(1)∵125414210x =⨯+++甲()=30(cm),127164010x =⨯+++乙()=31(cm),∴x x <乙甲,∴乙种玉米苗长得高. (2)由方差公式,得22221[25304130423010S =⨯-+-++-甲()()()]=104.222221[2731313110S =⨯-+-++-乙()(16)(40)]=128.8;∴22S S <乙甲,∴甲种玉米苗长得整齐.44.王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.解析:略45.某校为了了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示)。

初中数学青岛版八年级上册第4章 数据分析4.5方差-章节测试习题(3)

初中数学青岛版八年级上册第4章 数据分析4.5方差-章节测试习题(3)

章节测试题1.【题文】申遗成功后的杭州,在国庆黄金周旅游市场中的知名餐饮受游客追捧,西湖景区附近的A,B两家餐饮店在这一周内的日营业额如下表:(1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量;(2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这两个方差的大小反映了什么?(结果精确到0.1)(3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由.【答案】(1)选择平均数,A店的日营业额的平均值是2.5百万元,B店的日营业额的平均值是2.5百万元;(2)A组新数据的方差约为1.0,B组新数据的方差约为0.6;(3)答案见解析.【分析】(1)在数据差别不是很大的情况下评价平均水平一般采用平均数;(2)分别用每一个数据减去其平均数,得到新数据后计算其方差后比较即可;(3)用今年的数据大体反映明年的数据即可.【解答】解:(1)选择平均数.A店的日营业额的平均值是×(1+1.6+3.5+4+2.7+2.5+2.2)=2.5(百万元),B店的日营业额的平均值是×(1.9+1.9+2.7+3.8+3.2+2.1+1.9)=2.5(百万元).(2)0.6,1.9,0.5,-1.3,-0.2,-0.3;B组数据的新数为0,0.8,1.1,-0.6,-1.1,-0.2,∴A组新数据的平均数x A=×(0.6+1.9+0.5-1.3-0.2-0.3)=0.2(百万元),B组新数据的平均数x B=×(0+0.8+1.1-0.6-1.1-0.2)=0(百万元).∴A组新数据的方差s=×[(0.2-0.6)2+(0.2-1.9)2+(0.2-0.5)2+(0.2+1.3)2+(0.2+0.2)2+(0.2+0.3)2]≈1.0,B组新数据的方差s=×(02+0.82+1.12+0.62+1.12+0.22)≈0.6.这两个方差的大小反映了A,B两家餐饮店相邻两天的日营业额的变化情况,并且B餐饮店相邻两天的日营业额的变化情况比较小.(3)观察今年黄金周的数据发现今年的3号、4号、5号营业额较高,故明年的3号、4号、5号营业额可能较高.方法总结:本题考查了算术平均数和方差的计算,算术平均数的计算公式是:,方差的计算公式为:,根据公式求解即可.2.【题文】某农民在自己家承包的甲、乙两片荒山上各栽了200棵苹果树,成活率均为96%,现已挂果.他随意从甲山采摘了4棵树上的苹果,称得质量(单位:千克)分别为36,40,48,36;从乙山采摘了4棵树上的苹果,称得质量(单位:千克)分别为50,36,40,34,将这两组数据组成一个样本,回答下列问题:(1)样本容量是多少?(2)样本平均数是多少?并估算出甲、乙两山苹果的总产量;(3)甲、乙两山哪个山上的苹果长势较整齐?【答案】(1)样本容量为8;(2)甲、乙两山苹果的总产量约为15 360千克;(3)甲山上的苹果长势较整齐.【分析】(1)根据样本容量的定义即可解决问题;(2)求出样本平均数,用样本估计总体的思想解决问题即可;(3)比较方差的大小,即可判断.【解答】解:(1)样本容量为 .(2) .甲、乙两山苹果的总产量约为400×40×96%=15360(千克).(3)∵ ,∴ .∵ ,∴ .∴, ∴甲山上的苹果长势较整齐.3.【答题】能够刻画一组数据离散程度的统计量是()A. 平均数B. 众数C. 中位数D. 方差【答案】D【分析】本题考查了方差.【解答】由于方差反映数据的波动情况,∴能够刻画一组数据离散程度的统计量是方差,选D.4.【答题】在方差的计算公式s=[(x-20)+(x-20)+…+(x-20)]中,数字10和20分别表示的意义可以是()A. 数据的个数和方差B. 平均数和数据的个数C. 数据的个数和平均数D. 数据组的方差和平均数【答案】C【分析】本题考查了方差.【解答】10位于分数的分母上,根据方差的计算公式可知,10表明样本数据的个数,也就是样本容量为10,数字20为样本数据的平均数,即样本的均值.选C.5.【答题】一组数据8,0,2,,4的方差等于()A. 15B. 16C. 17D. 18【答案】B【分析】本题考查了方差.【解答】数据8、0、2、−4、4的平均数,方差,选B.6.【答题】甲、乙两组数据,它们都是由n个数据组成,甲组数据的方差是0.4,乙组数据的方差是0.2,那么下列关于甲乙两组数据波动说法正确的是().A. 甲的波动小B. 乙的波动小C. 甲、乙的波动相同D. 甲、乙的波动的大小无法比较【答案】B【分析】本题考查了方差.【解答】∵s甲2=0.4,s乙2=0.2,方差小的为乙,∴本题中成绩比较稳定的是乙,乙的波动小,选B.7.【答题】方差反映了一组数据的波动大小.有两组数据,甲组数据:-1,-1,0,1,2;乙组数据:-1,-1,0,1,1,它们的方差分别记为和,则() A. = B. >C. <D. 无法比较【答案】B【分析】本题考查了方差.【解答】,,∵s甲2=[(−1−0.2)2+(−1−0.2)2+(0−0.2)2+(1−0.2)2+(2−0.2)2]=1.224,s乙2=[(−1−0)2+(−1−0)2+(0−0)2+(1−0)2+(1−0)2]=0.8,∴s甲2>s乙2,选B.8.【答题】两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学成绩哪一位更稳定,通常还需要比较他们成绩的()A. 众数B. 中位数C. 方差D. 以上都不对【答案】C【分析】本题考查了方差.【解答】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.选C.9.【答题】如果一组数据x1,x2,…,x n的方差是3,则另一组数据x1+5,x2+5,…,x n+5的方差是()A. 3B. 8C. 9D. 14【答案】A【分析】本题考查了方差.【解答】设数据x1,x2,…,x n的平均数设为a,则数据x1+5,x2+5,…,x n+5的平均数为a+5,根据方差公式:s2[(x1-a)2+(x2-a)2+…+(x n-a)2]=3.则s2{[(x1+5)-(a+5)]2+[(x2+5)-(a+5)]2+…+(x n+5)-(a+5)]}2=[(x1-a)2+(x2-a)2+…+(x n-a)2]=3.选A.10.【答题】已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则______组数据波动较大.【答案】乙【分析】本题考查了方差.【解答】∵s甲2<s乙2,∴乙组数据波动较大.故答案为:乙.11.【答题】两个小组进行定点投篮对抗赛,每组6名组员,每人投10次.两组组员进球数的统计结果如下:组别6名组员的进球数平均数甲组8 5 3 1 1 0 3乙组 5 4 3 3 2 1 3则组员投篮水平较整齐的小组是______组.【答案】乙【分析】本题考查了方差.【解答】甲的方差=[(8-3)2+(5-3)2+(3-3)2+(1-3)2+(1-3)2+(0-3)2]÷6≈7.7,乙的方差=[(5-3)2+(4-3)2+(3-3)2+(3-3)2+(2-3)2+(1-3)2]÷6≈1.7,由于乙的方差较小,∴整齐的是乙组.故答案为:乙.12.【答题】某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差______(填“变小”“不变”或“变大”).【答案】变大【分析】本题考查了方差.【解答】∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.13.【答题】甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______(填>或<).【答案】>【分析】本题考查了方差.【解答】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>,故答案为:>.14.【题文】甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.【答案】见解答.【分析】本题考查了方差.【解答】(1)∵样本甲的平均数是,∴样本甲的方差是:=[(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5.(2)∵=3.5,=3.4,∴>,∴样本甲的波动大.15.【题文】要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差,哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选______参赛更合适.【答案】见解答.【分析】本题考查了平均数、方差.【解答】(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知:甲的波动大于乙的波动,则>,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.。

初中数学青岛版八年级上册第4章 数据分析4.1加权平均数-章节测试习题(1)

初中数学青岛版八年级上册第4章 数据分析4.1加权平均数-章节测试习题(1)

章节测试题1.【答题】一人去爬山且原路返回,已知山路长400米,上山时他每分钟走50米,下山时每分钟80米,下列说法正确的是( )A. 他的总行程是400米B. 他的平均速度是每分钟65米C. 他一共花了13分钟D. 他上、下山花的时间一样多【答案】C【分析】分别求出上山和下山所用的时间,再由全部路程除以全部时间计算.【解答】由题意得:往返路程为800米,上山需要的时间,下山需要的时间,往返共花13分钟.选C.2.【答题】数据4203,4204,4200,4194,4204,4201,4195,4199的平均数( )A. 0B. 4100C. 4200D. 4206【答案】C【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】以4200为标准,则这组数据表示为:3,4,0,-6,4,1,-5,-1,则这8个有理数的平均数为,则这组数据的平均数为4200.选C.3.【答题】某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)( )A. 83.1分B. 83.2分C. 83.4分D. 83.5分【答案】B【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:该组数据的平均数==83.2(分).选B.方法总结:此题是考查加权平均数的求法.本题易出现的错误是求83,89,82,79.5这四个数的平均数,对平均数的理解不正确.4.【答题】如果一组数据x1,x2,x3,x4的平均数是x,那么另一组数据x1,x2+1,x3+2,x4+3的平均数是( )A. xB. x+1C. x+1.5D. x+6【答案】C【分析】活学活用平均数计算公式:x=(x1+x2+x3+…xn).将.x代入另一组数x1,x2+1,x3+2,x4+3即可.【解答】解:根据题意x=(x1+x2+x3+x4),故(x1+x2+x3+x4)=4x,那么x1,x2+1,x3+2,x4+3的平均数=(x1+x2+x3+x4+1+2+3)=(x1+x2+x3+x4)+=x+1.5,故该x1,x2+1,x3+2,x4+3的平均数是:x+1.5选C.5.【答题】已知一组数据的平均数是5,则另一组新数组的平均数是( )A. 6B. 8C. 10D. 无法计算【答案】B【分析】活学活用平均数计算公式:x=(x1+x2+x3+…x n).将.x代入另一组数x1+1,x2+2,x3+3,x4+4,x5+5即可.【解答】∵数、、、、的平均数为5,∴数++++=5×5,∴+1、+2、+3、+4、+5的平均数=(+1++2++3++4++5)÷5=(5×5+15)÷5=8,选B.6.【答题】某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:评委 1 2 3 4 5 6 7得分9.8 9.5 9.7 9.8 9.4 9.5 9.4若比赛的计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为( )A. 9.56B. 9.57C. 9.58D. 9.59【答案】C【分析】去掉一个9.8和一个9.4分,然后根据五个数的平均数即可.【解答】根据题意得小明的最后得分==9.58(分).选C.7.【答题】学校组织领导、教师、学生、家长等代表对教师的教学质量进行综合评分,满分为100分.张老师的得分情况如下:领导代表给分80分,教师代表给分76分,学生代表给分90分,家长代表给分84分.如果按照1:2:4:1的权重进行计算,张老师的综合评分为 ( )A. 84.5分B. 83.5分C. 85.5分D. 86.5分【答案】A【分析】先根据加权平均数的公式列出算式,再进行计算即可.【解答】80×+76×+90×+84×=10+19+45+10.5=84.5分8.【答题】某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:听说读写张明90 80 83 82若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为( )A. 82B. 83C. 84D. 85【答案】C【分析】根据加权平均数的计算公式进行计算即可.【解答】根据加权平均数的计算公式进行计算:张明的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;选C.9.【答题】10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是( )A.2B.﹣2C.4D.﹣4【答案】B【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2选B.10.【答题】某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( )A. 甲B. 乙C. 丙D. 丁【答案】B【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.选B.11.【答题】学期结束老师对同学们进行学期综合评定:甲、乙、丙、丁4名同学的平时成绩、期中成绩、期末成绩如下(单位:分):如果将平时、期中、期末的成绩按3:3:4计算总评,那么总评成绩最高的是( )平时期中期末甲 85 90 80乙 80 85 90丙 90 70 92丁 95 90 78A.甲B.乙C.丙D.丁【答案】D【分析】利用加权平均数公式求得各自的成绩即可判断.【解答】解:甲的成绩是=84.5(分),乙的成绩是=85.5(分),丙的成绩是=84.8(分),丁的成绩是=86.7(分).则成绩最高的是丁.故答案是:D.12.【答题】学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:写作能力普通话水平计算机水平小亮90分75分51分小丽60分84分72分将写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,总分变化情况是( )A. 小丽增加多B. 小亮增加多C. 两人成绩不变化D. 变化情况无法确定【答案】B【分析】利用加权平均数公式求得各自的成绩即可判断.【解答】当写作能力、普通话水平、计算机水平这三项的总分按3:5:2计算时,小亮的成绩是,小丽的成绩是,当写作能力、普通话水平、计算机水平这三项的总分按5:3:2计算时,小亮的成绩是,小丽的成绩是,故写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,小亮的成绩变化是77.7﹣74.7=3,小丽的成绩变化是69.6﹣74.4=﹣4.8,故小亮成绩增加的多,选B.13.【答题】在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如表所示:金额元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为( )A.5.5元B.6元C.6.5元D.7元【答案】C【分析】利用加权平均数公式求得各自的成绩即可判断.【解答】根据加权平均数的公式可知这8名同学捐款的平均金额为===6.5故选C.14.【答题】小青在八年级上学期的数学成绩如下表所示.测评类型平时测验期中考试期末考试成绩86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是______分.【答案】84.2【分析】根据总成绩中由三次成绩组成而且所占比例不同,运用加权平均数的计算公式求出即可.【解答】小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.15.【答题】某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为150,那么由此求出的平均数比实际平均数多______.【答案】1.5【分析】利用平均数的定义可得.将其中一个数据105输入为150,也就是数据的和多了45,其平均数就少了45除以30.【解答】求30个数据的平均数时,错将其中一个数据105输入为150,即使总和多了45,那么由此求出的这组数据的平均数与实际平均数的差是45÷30=1.5.故答案为:1.5.【方法总结】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.16.【答题】若数2,3,x,5,6五个数的平均数为4,则x的值为______.【答案】4【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】∵2,3,x,5,6五个数的平均数为4,∴2+3+x+5+6=4×5,解得x=4.故答案是:4.17.【答题】已知这四个数的平均数是5,这四个数的平均数是9,则______.【答案】13【分析】根据平均数定义得出关于x、y的方程组,求出方程组的解,最后代入求出即可.【解答】解:由题意知,(2+4+2x+4y)÷4=5,(5+7+4x+6y)÷4=9;∴2x+4y=14和4x+6y=24;解这两个方程组成的方程组得,x=3,y=2;故答案为:13.18.【答题】为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形统计图,观察改图,可知共抽查了______株黄瓜,并可估计出这个新品种黄瓜平均每株结______根黄瓜.【答案】60,13【分析】根据图中数据,发现:共有15+10+15+20=60株,平均数是(15×10+10×12+15×14+20×15)÷60=13.【解答】解:共抽查:15+10+15+20=60(株),平均数是:(15×10+10×12+15×14+20×15)÷60=13.故答案为:60,13.方法总结:根据平均数的定义进行计算即可.19.【答题】用计算器进行统计计算时,在输入数据的过程中,如果发现刚输入的数据有错误可按键______将它清除,再重新输入正确数据.【答案】DEL【分析】本题要求同学们能熟练应用计算器.【解答】由题意知,可按键DEL将它清除,再重新输入正确数据.20.【答题】数据201、203、198、199、200、205的平均数为______.【答案】201【分析】首先求出数据201、203、198、199、200、205的和是多少;然后用所有数据的和除以6,求出数据201、203、198、199、200、205的平均数为多少即可.【解答】解:(201+203+198+199+200+205)÷6=1206÷6=201∴数据201、203、198、199、200、205的平均数为201。

初中数学青岛版八年级上册第4章 数据分析4.1加权平均数-章节测试习题(2)

初中数学青岛版八年级上册第4章 数据分析4.1加权平均数-章节测试习题(2)

章节测试题1.【答题】某校广播体操比赛,六位评委对九年(2)班的打分如下(单位:分):9.5,9.3,9.1,9.5,9.4,9.3.若规定去掉一个最高分和一个最低分,余下分数的平均值作为班级的最后得分,则九年(2)班的最后得分是______ 分.(结果精确到0.1分)【答案】9.4【分析】在比赛中一般去掉一个最低分去掉一个最高分减小极端值对选手的影响,使选手分数更公平.此题用平均数公式计算即可.【解答】解:该班的最后得分=(9.3+9.5+9.4+9.3)÷4=9.4.故答案为:9.4.2.【答题】某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有______人,投进4个球的有______人.【答案】9 ,3【分析】设投进3个球的有x人,投进4个球的有y人,根据进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,列方程组求解.【解答】设投进3个球的有x人,投进4个球的有y人,则,解得x=9,y=3.故答案为(1). 9;(2). 3.方法总结:本题主要考查了加权平均数的定义,如果x1出现f1次,x2出现f2次,x3出现f3次,……,x n出现f n次,则这组数据的平均数是,根据加权平均数的定义列方程组求解.3.【答题】一个招聘测试,规定笔试成绩占80%,面试成绩占20%计算总成绩,某面试者笔试90分,面试85分,则他的总成绩为______分.【答案】89【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】根据总成绩等于 .故答案为 89.4.【答题】一组数据a,b,c,d,e的平均数是7,则另一组数据a+2,b+2,c+2,d+2,e+2的平均数为______.【答案】9【分析】先根据a,b,c,d,e的平均数为7可得a+b+c+d+e=35,再代入(a+2+b+2+c+2+d+2+e+2)/5可得答案.【解答】一组数据a,b,c,d,e的平均数是7,得a+b+c+d+e=35,则数据a+2,b+2,c+2,d+2,e+2的平均数为 .故答案为 9.5.【答题】已知一组数据1,3,2,5,x,它的平均数是3,则x=______.【答案】4【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】由题意得:,解得:x=4.故答案为 4.6.【答题】某学校把学生的纸笔测试、实践能力两项成绩分别按60%、40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是______分.【答案】96【分析】学期总成绩不低于90分,即学期的总成绩≥90分.设纸笔测试的成绩设x 分,根据这个不等关系就可以得到一个不等式.从而求出纸笔测试成绩.【解答】解:设纸笔测试的成绩是x分,由题意得:≥90,解得:x≥96,故答案为:96.7.【答题】图中标出了某校篮球队中5名队员的身高(单位:cm),则他们的平均身高为______cm.【答案】178【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:他们的平均身高(182+180+172+178+178)=178(cm).8.【答题】已知5筐苹果的质量分别为(单位:kg):52,49,50,53,51,则这5筐苹果的平均质量为______kg.【答案】51【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:5筐苹果的平均质量==51(kg).9.【题文】学校经过初步比较后,决定从八(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班、现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表(以分为单位,每项满分为10分).班级行为规范学习成绩校运动会艺术获奖劳动卫生八(1)班10 10 6 10 7八(4)班10 8 8 9 8八(8)班9 10 9 6 9根据五个项目的重要程度,若按行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1比例,对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.【答案】推荐八(8)班为市级先进班集体的候选班.【分析】利用加权平均数计算公式计算即可.【解答】设k1,k4,k8顺次为3个班的考评分,则:k1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,k4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,k8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9,因为k8>k4>k1,所以推荐八(8)班为市级先进班集体的候选班.10.【题文】某公司欲聘请一位员工,三位应聘者A、B、C的原始评分如下表:应聘者仪表工作经验电脑操作社交能力工作效率A 4 5 5 3 3B 4 3 3 5 4C 3 3 4 4 4(1)如果按五项原始评分的平均分,应聘用谁;(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,谁将被聘用?为什么?【答案】(1)A将被录用;(2)A将被录用.【分析】(1)利用算术平均数计算公式计算即可,(2)利用加权平均数计算公式计算即可.【解答】(1)A的平均分为=4,B的平均分为=3.8,C的平均分为=3.6,因此A将被录用,(2)根据题意,三人的综合评分如下:A的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8,B的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.4,C的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.57.因此A将被录用.11.【题文】某校要组建篮球队参加校际比赛,同学们踊跃报名参与选拔,现还有一个名额没有确定,要从甲、乙两位同学中选出一位进入校篮球队,体育老师从身高、个人技术、合作意识、体能四方面对他俩进行了考核评价,每项满分100分.考核结果如下:(1)如果根据四项考核项目的平均得分确定人选,那么请你通过计算判断谁将入选校篮球队?(2)根据校篮球队需要,如果四项考核项目按1:2:2:1的比例确定得分,那么请你通过计算判断谁将入选校篮球队?【答案】(1)甲将入选校篮球队;(2)乙将入选校篮球队.【分析】(1)利用算术平均数计算公式计算即可,(2)利用加权平均数计算公式计算即可.【解答】(1)甲的平均成绩为:=72.5,乙的平均成绩为:=70,∴甲将入选校篮球队,(2)甲的成绩=≈68.33,乙的成绩==75,∴乙将入选校篮球队.12.【题文】某广告公司拟招聘广告策划人员1名,对A,B,C三名候选人进行三项素质测试,他们的各项测试成绩如下表所示:测试成绩/分测试项目A B C专业知识54 72 81创新能力69 81 57公关能力90 60 81(1)如果按三项测试的平均成绩确定聘用人员,那么谁被聘用?(2)根据实际需要,公司将专业知识、创新能力和公关能力三项测试的得分按3:5:2的比确定个人的测试成绩,此时谁将被聘用?【答案】(1)C被聘用;(2)B被聘用.【分析】(1)利用算术平均数计算公式计算即可,(2)利用加权平均数计算公式计算即可.【解答】(1)A的平均成绩为:,B的平均成绩为:,C的平均成绩为:,所以C被聘用.(2)A:=68.7,B:=74.1,C:=69,所以B被聘用.13.【题文】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表所示:(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?(3)请你将专业知识、语言能力和综合素质三项测试得分重新设定比例来确定各人的测试成绩,使得乙被录用.【答案】(1) 甲将被录用; (2) 应录用丙;(3)按3:6:1的比例确定各人的测试成绩,乙被录用【分析】(1)运用求算术平均数公式求出三人的平均成绩,比较得出结果;(2)按照加权平均数公式求出三人的平均成绩,比较得出结果.(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.【解答】解:(1)甲,,乙,丙∵73>70>68,∴甲将被录用;(2)甲的综合成绩为,甲分;乙的综合成绩为乙分;丙的综合成绩为丙分.∵77.5>76.625>69.625,∴应录用丙;(3)按3:6:1的比例确定各人的测试成绩,乙将被录用.方法总结:本题考查了算术平均数和加权平均数的计算,算术平均数的计算公式是:;加权平均数的计算公式是:;熟练掌握两个计算公式是解答本题的关键.14.【题文】个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工作能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?【答案】工作人员的平均工资是750元;不能反映工作人员这个月的月收入的一般水平;去掉王某的工资后,他们的平均工资是375元;能代表一般工作人员的收入;个别特殊值对平均数具有很大的影响.【分析】(1)根据算术平均数的计算公式进行计算即可;(2)根据(1)得出的数据和实际情况进行分析即可;(3)去掉王某的工资,再根据算术平均数的计算公式进行计算即可得出答案;(4)根据(3)得出的数据再结合实际情况进行分析即可;(5)通过对(2)和(4)得出的数据,再结合实际进行分析即可.【解答】解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.方法总结:此题考查了平均数,熟记平均数的计算公式是解决本题的关键,根据求出的数据再结合实际进行分析.15.【题文】某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体段占,期中考试占,期末考试占,张晨的三项成绩百分制分别是95分、90分、86分,求张晨这学期的体育成绩.【答案】张晨这学期的体育成绩为89分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:分.即张晨这学期的体育成绩为89分.方法总结:此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考.16.【题文】设一组数据的平均数为m,求下列各组数据的平均数:;.【答案】;.【分析】首先根据求平均数的公式,根据的平均数为m,得出=m,再利用此公式通过变形求出(1)(2)的平均数.【解答】解:设一组数据的平均数是m,即,则.,,的平均数是;,,的平均数是.17.【题文】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,三人各项得分如表:笔试面试体能甲84 78 90乙85 80 75丙80 90 73根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按的比例计入总分根据规定,请你说明谁将被录用.【答案】三人的平均分从高到低是:甲、丙、乙;丙将被录用,理由见解析.【分析】(1)根据三人的各项成绩求出它们的平均分,然后按照平均数从高到低进行排序;(2)根据要求出甲不符合规定,然后按照分数的比例求出乙、丙的分数,按照分数的大小录取分数较高的人.【解答】解:甲乙丙三人的平均分分别是.所以三人的平均分从高到低是:甲、丙、乙;因为甲的面试分不合格,所以甲首先被淘汰.乙的加权平均分是:分,丙的加权平均分是:分因为丙的加权平均分最高,因此,丙将被录用.18.【题文】某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲90 92 94 95 88乙89 86 87 94 91表2民主测评票数统计表单位:张“好”票数“较好”票“一般”票数数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.【答案】当时,甲的综合得分是89分;乙应当选为班长,理由见解析.【分析】(1)由题意可知:分别计算出甲的演讲答辩得分以及甲的民主测评得分,再将a=0.6代入公式计算可以求得甲的综合得分;(2)同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,则乙的综合得分=89(1-a)+88a,甲的综合得分=92(1-a)+87a,再分别比较甲乙的综合得分,甲的综合得分高时即当甲的综合得分>乙的综合得分时,可以求得a的取值范围;同理甲的综合得分高时即当甲的综合得分<乙的综合得分时,可以求得a的取值范围.【解答】解:甲的演讲答辩得分分,甲的民主测评得分分,当时,甲的综合得分分;答:当时,甲的综合得分是89分;乙的演讲答辩得分分,乙的民主测评得分分,乙的综合得分为:,甲的综合得分为:,当时,即有,又,时,甲的综合得分高,甲应当选为班长;当时,即有,又,时,乙的综合得分高,乙应当选为班长.方法总结:本题考查的是平均数的求法.同时还考查了解不等式,本题求a的范围时要注意“0.5≤a≤0.8”这个条件.19.【题文】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?【答案】平均数与实际平均数的差是-3.【分析】本题知道30个数据中的一个的相应误差,求平均数的误差,只需看它对平均数产生的“影响”.【解答】解:该数据相差105-15=90,∴平均数与实际平均数相差-=-3.答:求出的平均数与实际平均数的差是-3.【方法总结】熟练掌握平均数的计算.20.【题文】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲66 89 86 68乙66 60 80 68丙66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?【答案】(1)79.8;(2)甲能获一等奖.【分析】(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.【解答】解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8(分);(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.。

八年级上册数学单元测试题epm 第4章 样本与数据分析初步

八年级上册数学单元测试题epm 第4章 样本与数据分析初步

八年级上册数学单元测试题第4章样本与数据分析初步一、选择题1.有七个数由小到大依次排列,其平均数是38,如果这组数中前四个数的平均数是33,后四个数的平均数是42,那么这七个数的中位数是()A. 16 B.20 C.34 D.38答案:C2.要了解某班学生一周干家务活的时间,下面四个调查方法最能说明问题的方法是()A.调查所有男子B.调查所有女生C.调查学号是1~4的学生D.分别调查50%的男生和50%的女生答案:D3.10名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12.若其平均数为a,中位数为 b,众数为c,则有()A.a>b>c B.b>c>a C. c>a>b D.c>b>a答案:D4.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数答案:B5.已知数据:-1,O,4,x,6,15,且这组数据的中位数为5,则这组数据的众数为()A.4 B.5 C.5.5 D.6答案:D6.根据中央电视台2006年5月8日19时30分发布的天气预报,我国内地31个省会城市及直辖市5月9日的最高气温(℃)统计如下表:那么这些城市5月9日的最高气温的中位数和众数分别是()A.27℃,30°C B.28.5°C,29℃C.29℃,28℃D.28℃,28℃答案:D7.已知某样本的方差是4,则这个样本的标准差是( ) A .2B .4C .8D .16答案:A8.数90,91,92,93的标准差是( )A B .54C D 答案:D解析:D .9.有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级(1)班50名学生的身高;③了解一本300页的书稿的错别字个数.其中不适合采用普查而适合采用抽样调查方式的有( ) A .3个B .2个C .1个D .0个答案:C10.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A .平均数B .众数C .中位数D .方差答案:D11.对于数据:80,88,85,85,83,83,84.有下列说法:①这组数据的平均数是84;②这组数据的众数是85;③这组数据的中位数是84;④这组数据的方差是36.其中,错误的有( )A.1个 B .2个 C .3个 D . 4个答案:B12.要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是( ) A .平均数B .中位数C .众数D .方差答案:D13.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体B .总体C .样本容量D .总体的一个样本答案:C14.某校初三·一班6名女生的体重(单位:kg )为:35 36 38 40 42 42 则这组数据的中位数等于( ) A .38B .39C .40D .42答案:B15. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适...的是( ) A .20双B .30双C .50双D .80双答案:B16.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼A .400条B .500条C .800条D .1000条答案:D17.样本3、6、4、4、7、6的方差是( ) A .12B .C .2D答案:C18.为了参加市中学生篮球运动会.校篮球队准备购买10双运动鞋,各种尺码的统计如表所示.则这10双运动鞋尺码的众数和中位数分别为( )A. 25.5厘米,26厘米 B .26厘米,25.5厘米 C .26厘米.26厘米D .25.5厘米.25.5厘米答案:D19.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元 B .3800元C .3850元D .3900元答案:B20.有甲、乙两种小麦,测得每种小麦各10株的高度后,计算出样本方差分别为211S =甲,2 3.4S =乙,由此可以估计( )A .甲比乙长势整齐B .乙比甲长势整齐C .甲、乙整齐程度相同D .甲、乙两种整齐程度不能比答案:B 二、填空题21.如右统计图显示的是绵阳某商场日用品柜台10名售货员4月份完成销售额(•单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.解析:6.722.某校八年级有4个班,期中数学测验成绩为:(1)班50人,平均分为68分,(2)班48人,平均分为70分,(3)班50人,平均分为72分,(4)班52人,平均分为70分,那么该年级期中数学测验的平均分为分.解析:7023.(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是.(2)为了了解一个有1名员工的集团公司所有人的平均工资,到5个分厂各抽查10名干部的工资进行统计,这种抽样办法是否合适?.理由是.解析:(1)抽样调查;(2)不合适,样本不具有代表性24.某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?解析:普查25.一射击运动员连续射靶10次,其中2次命中10环,3次命中9环,5次命中8环,则他平均每次命中环.解析:8.726.在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.解析:该班学生的数学成绩,10名学生的数学成绩,81,8127.甲种糖果每千克l0元,乙种糖果每千克8元,现把甲、乙两种糖果混合制成什锦糖,若要使什锦糖的单价为每千克9元,则100元的甲种糖果应与元的乙种糖果混合.解析:8028.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是岁,众数是岁.解析:15,1429.一组数据1,2,3,x的平均数是4,则这组数据的中位数是.解析:2.530.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.解析:3031.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为分.解析:7132.某市某学校初中八年级有4个绿化小组,在植树节这天种下杨树的棵数如下:l0,10,x,8.若这组数据的众数和平均数相等,那么它们的中位数是棵.解答题解析:1033.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;解析:234.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表:如果你是电视台负责人,在现场直播时,将优先考虑转播比赛.解析:乒乓球35.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.解析:8,736.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).解析:众数37.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本容量是.解析:2038.已知一组数据:-2,-2,3,-2,x,-l,若这组数据的平均数是0.5,则这组数据中位数是.解析:-1.539.小明去超市买了三种糖果,其单价分别是5元/斤,6.5元斤和8元/斤,他分别买了3斤、2斤和l斤,将其混合,则混合后糖果单价是元/斤.解析:640.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .解析:1141.已知三个不相的正整数的平均数、中位数都是3,则这三个数分别为 .解析:1,3,5或2,3,442.在某市2007年的一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员在将成绩表送组委会时,不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75 m,表中每个成绩都至少有一名运动员,根据这些信息,可以计算出l7名运动员的平均跳高成绩是x= m(精确到0.Ol m).解析:1.69三、解答题43.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩如表l:表 1根据表1解答下列问题:(1)完成表2:表2(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(舍80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖.那么你认为应选谁参加比赛比较合适?说明你的理由.解析:(1)表中依次填:80,80,80,40.(2)在这五次考试中,成绩比较稳定的是小李;小王的优秀率为40%,小李的优秀率为80%.(3)有两种方案,即:(方案一)我选小李去参加比赛,∵小李的优秀率高,有4次得80分以上(含80分),成绩比较稳定,获奖机会大.(方案二)我选小王去参加比赛,∵小王的成绩获得一等奖的机率较高,有2次90分以上(含90分):因此有可能获得一等奖.44.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.解析:(1)表中从左到右依次填10,133;(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.45.下表是15位客年龄的人数分配表,因不小心被墨汁盖住了a、b、c三项人数,已知这群游客年龄的中位数是5岁.众数是6岁.(1)试求a 、b 、c 的值;(2)这样游客年龄的平均敦是多少岁?解析:(1)a=4,b=5,c=1; (2)这群游客年龄的平均数是l2岁46.某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据左图填写下表(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好? (3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.解析:(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些. (3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分, ∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些. 47.据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm ;1959~1969年这ll 年间,平均每年倾斜1.26 mm .那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?解析:1.13 mm48.一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示:现已算得乙组所测得数据的平均数为12.00x=乙,,方差20.002S=乙.(1)求甲组所测得数据的平均数;(2)问哪一组学生所测得的旗杆高度比较一致?解析:(1)12.00x=乙;(2)20003S=乙.,20002S=乙.,乙组测得高度比较一致49.某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:(1)在这一天中,这10户居民平均每户产生多少kg垃圾?(结果精确到0.1 kg)(2)在这一天中,这10户居民平均每人产生多少kg垃圾?(结果精确到0.1 kg)解析:(1)4.2 kg;(2)1:4 kg50.甲、乙两工人同时生产一种零件,在10天中,两工人每天生产的次品数分别如下:甲:l;O,0,3,3,0,2,1,0,2;乙:l,2,1,1,1,2,1,1,1,1.(1)分别计算这两个样本的平均数;(2)计算这两个样本的方差;(3)从计算结果看,谁的生产技术比较稳定?解析:(1) 1.2x x==乙甲;(2)2136S=甲.,2016S=乙.;(3)乙稳定51.某学生在一学年的6次测试中的数学、语文两科的成绩分别如下(单位:分):数学:80,75,90,64,88,95;语文:84,80,88,76,79,85.试估计该学生是数学成绩较稳定还是语文成绩较稳定.解析:语文成绩稳定52.为了了解学生的身高情况,抽测了某校50名17岁男生的身高,并将其身高情况绘制成统计图如图所示.回答下面的问题:(1)观察图形,50名17岁男生身高的众数、中位数分别是多少?(2)用计算器计算出这50名学生的平均身高(精确到0.Ol m).解析:(1)众数:1.70m,中位数:1.70 m;(2)1.68m53.某食品店购进2000箱苹果,从中任取10箱,称得重量分别为(单位:千克):16 16.5 14.5 13.5 1516.5 15.5 14 14 14.5若每千克苹果售价为2.8元,则利用样本平均数估计这批苹果的销售额为多少元?优秀及格不及格等级解析:84 000元54.请指出下面问题哪些适合普查,哪些适合抽样调查:(1)某地区发现了一种传染病,为防止传染病的传播扩散,对该地区的调查;(2)某种商品价值5000元,某人购买该商品时递上一叠百元大钞,店主为了防止这叠钞票中存在假币,对这叠钱的检查;(3)某厂家为了解某种产品的市场销售情况,对销售情况的调查.解析:(1)(2)普查,(3)抽样调查55.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:(1)这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ;(2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?解析:(1)不及格、及格;(2)及格有160人,优秀80人。

青岛版数学八年级上册 第四章 数据分析 章节测试

青岛版数学八年级上册  第四章 数据分析 章节测试

青岛版数学八年级第四章数据分析章节测试一、选择题(本大题共12小题,共36分)1.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.22.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁3.若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A. 2B. 3C. 5D. 74.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差6.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A. 甲B. 乙C. 丙D. 丁7.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A. 平均数不变,方差不变B. 平均数不变,方差变大C. 平均数不变,方差变小D. 平均数变小,方差不变8.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是439.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A. 3B. 6C. 12D. 510.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A. 25元B. 28.5元C. 29元D. 34.5元11.已知一组数据a,b,c的平均数为5,方差为4,那么数据a−2,b−2,c−2的平均数和方差分别是()A. 3,2B. 3,4C. 5,2D. 5,412.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A. 平均数变小,方差变小B. 平均数变小,方差变大C. 平均数变大,方差变小D. 平均数变大,方差变大二、填空题(本大题共5小题,共15分)13.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.14.数据x1,x2,x3,x4的平均数是4,方差是3,则数据x1+1,x2+1,x3+1,x4+1的平均数和方差分别是______.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.17.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,−4,9,−5,记这组新数据的方差为s12,则s12______s02(填“>”,“=”或”<”)三、计算题(本大题共1小题,共8分)18.甲、乙两名同学进行射击练习,在相同条件下各射靶5次,命中环数统计如下:甲:8,7,8,8,9乙:7,9,5,10,9(1)根据以上信息完成下表:平均数众数中位数方差甲______ 8______ 0.4乙8______ 9______(2)学校根据这5次成绩,决定选择甲同学参加射击比赛,学校的决定合理吗?为什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差______(填“变大”、“变小”或“不变”)四、解答题(本大题共7小题,共61分)19.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.20.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是______,众数是______;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=______,b=______.(2)该调查统计数据的中位数是______,众数是______.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分) 中位数(分) 众数(分)方差(分 2)初中部a 85 bs 初中2高中部 85 c 100 160(1)根据图示计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s 初中2,并判断哪一个代表队选手成绩较为稳定.23. 8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,______班的成绩波动较大;用优秀率和合格率推断,______班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?24.随机抽取某理发店一周的营业额如下表(单位:元):星期一星期二星期三星期四星期五星期六星期日合计540680760640960220017807560(1)求该店本周的日平均营业额;(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为______(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的______倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.答案和解析1.【答案】C【解析】解:A 、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确; B 、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C 、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D 、这组数据的方差是:15[(1−4)2+(5−4)2+(6−4)2+(3−4)2+(5−4)2]=3.2,故本选项正确; 故选:C .分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可. 本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.2.【答案】A【解析】 【分析】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 首先比较平均数,平均数相同时选择方差较小的运动员参加. 【解答】解:∵x 甲−=x 丙−>x 乙−=x 丁−, ∴从甲和丙中选择一人参加比赛,∵S 甲2=S 乙2<S 丙2<S 丁2,∴选择甲参赛, 故选A .3.【答案】C【解析】解:∵数据2,3,x,5,7的众数为7,∴x=7,则这组数据为2、3、5、7、7,∴中位数为5,故选:C.根据众数的定义可得x的值,再依据中位数的定义即可得答案.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.4.【答案】C【解析】【分析】本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.【解答】解:根据题意得:89×3+93×4+83×4≈88.3,3+4+4故选C.5.【答案】D【解析】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n 个数x 1,x 2,…,x n ,则x =1n (x 1+x 2+⋯+x n )就叫做这n 个数的算术平均数;s 2=1n [(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2]进行计算即可.此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.6.【答案】C【解析】解:丙的平均数=9+8+9+10+9+8+9+10+9+910=9,丙的方差=110(1+1+1+1)=0.4, 丁的平均数=8+9+8+8+7+9+8+10+8+710=8.2,丁的方差为110(0.04×5+0.64×2+1.44×2+3.24)=0.76, ∵丙的方差最小,平均成绩最高, ∴丙的成绩最好, 故选:C .求出丙的平均数、方差,乙的平均数,即可判断.本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式,属于基础题.7.【答案】C【解析】 【分析】本题考查了方差以及算术平均数.根据平均数公式、方差的公式代入数值计算,可得答案. 【解答】 解:x 原=160+165+170+163+1675=165,S 原2=15[(160−165)2+(165−165)2+(170−165)2+(163−165)2+(167−165)2]=585,x 新=160+165+170+163+167+1656=165,S 新2=16[(160−165)2+(165−165)2+(170−165)2+(163−165)2+(167−165)2+(165−165)2]=586,∵586<585,∴平均数不变,方差变小,故选C.8.【答案】C【解析】【分析】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为43.故选C.9.【答案】C【解析】解:∵一组数据x1,x2,x3…,x n的方差为3,∴另一组数据2x1,2x2,2x3…,2x n的方差为22×3=12.故选:C.如果一组数据x1、x2、…、x n的方差是s2,那么数据kx1、kx2、…、kx n的方差是k2s2(k≠0),依此规律即可得出答案.本题考查了方差的定义.当数据都加上一个数时,平均数也加上这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数(不为0),方差变为这个数的平方倍.10.【答案】C【解析】解:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),答:混合后什锦糖的售价应为每千克29元.故选:C.先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的千克数,即可得出混合后什锦糖的售价.此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.11.【答案】B【解析】解:∵数据a,b,c的平均数为5,∴13(a+b+c)=5,∴13(a−2+b−2+c−2)=13(a+b+c)−2=5−2=3,∴数据a−2,b−2,c−2的平均数是3;∵数据a,b,c的方差为4,∴13[(a−5)2+(b−5)2+(c−5)2]=4,∴a−2,b−2,c−2的方差=13[(a−2−3)2+(b−2−3)2+(c--2−3)2]=13[(a−5)2+(b−5)2+(c−5)2]=4.故选:B.根据数据a,b,c的平均数为5可知13(a+b+c)=5,据此可得出13(a−2+b−2+c−2)的值;再由方差为4可得出数据a−2,b−2,c−2的方差.本题考查的是方差,熟记方差的定义是解答此题的关键.12.【答案】A【解析】【分析】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的计算公式.分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为180+184+188+190+192+1946=188,则原数据的方差为16×[(180−188)2+(184−188)2+(188−188)2+(190−188)2+(192−188)2+(194−188)2]=683,新数据的平均数为180+184+188+190+186+1946=187,则新数据的方差为16×[(180−187)2+(184−187)2+(188−187)2+(190−187)2+(186−187)2+(194−187)2]=593,所以平均数变小,方差变小,故选:A.13.【答案】5【解析】【分析】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.【解答】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴16(2+5+x+y+2x+11)=12(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故答案为5.14.【答案】5;3【解析】解:∵数据x1,x2,x3,x4的平均数是4,∴数据x1+1,x2+1,x3+1,x4+1的平均数为5,∵数据x1,x2,x3,x4的方差是3,∴数据x1+1,x2+1,x3+1,x4+1的方差为3.故答案为5;3.由于数据x1+1,x2+1,x3+1,x4+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分)故小明的体育成绩是93.6分.故答案为93.6.16.【答案】15【解析】【分析】本题考查了中位数,计算有限个数的数据的中位数的方法:把所有的同类数据按照大小的顺序排列。

八年级数学上册 样本与估计单元测试 青岛版

八年级数学上册 样本与估计单元测试 青岛版

第四章样本与估计单元测试一、选择题:(每题5分,共30分)1、2,3,4,x,5,这五个数的平均数是4,则x=()A 4B 5C 6D 72、A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度A 41B 42C 45.5D 463、10名初中毕业生的体育考试成绩如下:25,26,26,27,26,30,29,26,28,29。

这成绩的中位数是()A 30B 26.5C 26D 254、上题这组体育成绩的众数是()A 25B 26C 27D 295、某校要了解八年级女生的体重,以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测,就这个问题来说,下面说法中正确的是()A 500名女生是总体B 500名女生是个体C 500名女生是总体的一个样本D 50是样本容量6、一组数据x1,x2,x3,x4,x5的平均数是x,另一组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5的平均数是()A xB 2xC 2x+5 D10x+25二、填空题:(每题5分,共20分)7、某公司员工的月工资如下:580,650,880,900,1200,650,730,810问:(1)公司所有员工的平均工资是;(2)所有员工工资的中位数是;(3)所有员工工资的众数是;(4)用平均数还是中位数或是众数描述该公司员工工资的一般水平比较恰当,答。

8、某食品店购进2000箱苹果,从中抽取10箱,称得重量分别为(单位:千克)16,16.5,14.5,13.5,15,16.5,15.5,14,14,14.5。

若每千克苹果售价为2.8元,则利用样本平均数值估计这批苹果的销售额是元。

9、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。

若小明先骑自行车1小时,然后又步行2小时,那么他的平均速度是。

10、某校举行演讲比赛,六名评委对某位选手打分如下:77,82,78,99,85,68。

青岛版-数学-八年级上册八年级上册青岛版第四章数据分析单元测试

青岛版-数学-八年级上册八年级上册青岛版第四章数据分析单元测试

第四章数据分析单元测试一.单选题(共10题;共30分)1.数据35,38,37,36,37,36,37,35的众数是()A. 35.B. 36C. 37D. 382.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是().A. 中位数是40B. 众数是4C. 平均数是20.5D. 极差是33.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出平均数与实际平均数的差是().A. 3.5B. 3C. 0.5D. -34.随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人.则这10位同学的年龄的中位数和平均数分别是(单位:岁)()A. 16和15B. 16和15.5C. 16和16D. 15.5和15.55.下列说法中,正确的是()A. 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B. 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C. 抛掷一个正方体骰子,点数为奇数的概率是D. “打开电视,正在播放广告”是必然事件6.已知甲、乙、丙三个旅行团的游客人数都相等,且毎一个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是S甲2=17,S乙2=14.6,S丙3=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择()A. 甲团B. 乙团C. 丙团D. 采取抽签方式,随便选一个7.数据﹣1,0,1,1,2,2,3,2,3的众数是()A. 0B. 1C. 2D. 38.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示选手甲乙丙丁方差 0.56 0.60 0.50 0.45则在这四个选手中,成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁9.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. B. (+ ) C. D. (am+bn)10.已知一组数据:4,﹣1,5,9,7,6,7,则这组数据的极差和众数分别是()A. 10和7B. 9和7C. 10和9D. 7和9二.填空题(共8题;共33分)11.在2002年世界杯足球赛第一轮的比赛中,某队上场队员的年龄情况如下表所示:那么这些队员年龄的平均数是________,众数是________.12. 甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是:S甲2=4.8,S乙2=3.6,那么 ________(填“甲”或“乙”)机器灌装的酸奶质量较稳定.13.在学生演讲比赛中,六名选手的成绩(单位:分)分别为:80、85、86、88、90、93,则这组数据的中位数为________ 分.14.一组数据2、4、6、6、8这五个数的中位数是________;众数是________,极差是________.15.已知一组数据:97,98,99,100,101,则这组数据的标准差是________.16.某演出小分队是由20名年龄在25岁到30岁的演员组成,请根据表格中提供的数据,(其中28岁和29岁的人数未知),试写出这20名演员年龄的众数的所有可能值________年龄(岁) 25 26 27 28 29 30人数(名) 2 5 4 317.已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为________.18.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.三.解答题(共6题;共36分)19.某工人在30天中加工一种零件的日产量,有2天是51件,3天是52件,6天是53件,8天是54件,7天是55件,3天是56件,1天是57件,计算这个工人30天中的平均日产量.20.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.应聘者面试笔试甲 87 90乙 91 82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?21.某学生在一学年的6次测验中,语文、数学成绩分别为(单位:分):语文:80,84,88,76,79,85数学:80,75,90,64,88,95试估计该学生是数学成绩稳定还是语文成绩稳定?22.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,求小丽和小明的总平均分.学生作业测验期中考试期末考试小丽 80 75 71 88小明 76 80 68 9023.学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现 24 28 26学习成绩 26 26 24工作能力 28 24 26假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.24.某校九年级进行了模拟考试后,张老师对九(2)班全体同学“满分值为6分得一道解答题的得分”情况进行了统计,绘制成下表(学生得分均为整数分):由于在填表时不慎把墨水滴在表格上,致使表中数据不完整,但已知全班同学此题的平均得分为4分,结合上表回答下列问题:(1)九(2)班学生共有多少人?(2)若本年级学生共有540人,请你用此样本估计整个年级有多少同学此题得满分?。

八年级数学上册 第4章 样本与估计学案 青岛版

八年级数学上册 第4章 样本与估计学案 青岛版

普查与抽样调查学案一、学习目标:1、了解普查与抽样调查的意义,能在具体情境中区分普查与抽样调查。

2、在实际情境中,经历样本的抽取过程,体会不同的抽样可能得到不同的结果。

3、能指出总体、个体、样本和样本容量。

二、尝试练习:1、为了特定目的对全部进行的叫做普查,被的全体叫做总体,组成叫做个体。

2、在许多情况下,人们常常从总体中抽,根据对这一的调查,估计被的整体情况。

这种调查叫做抽样调查,从总体中抽取的组成总体的一个,叫做样本容量。

3、中央电视台对2008年春节联欢晚会收视率的调查应采用。

三、探究活动:探究点:普查与抽样调查的意义及相关概念例1、下列调查方式中适合的是()A、要了解一批节能灯的使用寿命,采用普查方式B、调查你所在班级同学的身高,采用抽样调查方式C、环保部门调查沱江某段水域的水质情况,采用抽样调查方式D、调查全市中学生每天的就寝时间,采用普查方式例2、某食品厂为了对一批罐头的质量进行检查,从中抽查了10个,净重如下(单位:克):342,340,348,346,342,342,341,344,340,345。

问:(1)该问题采用了哪种调查方式?(2)在这个问题中,总体、个体、样本各是什么?样本容量是多少?(3)由此你能估计出这批罐头的平均质量吗?例3、2008年某市有52300名毕业生参加中考,为了考查他们的数学成绩,评卷人员抽取20本试卷,每本30名的考生的数学成绩进行统计。

下面结论正确的是()A、52300名考生是总体B、每名考生的数学成绩是个体C、30名考生是总体的一个样本D、600名是样本容量四、有效训练:1、为了解你们班同学所穿鞋子的尺码,可对全班同学采用哪种调查方法?。

2、为了了解你所在地区老年人的健康状况。

你认为采用哪种调查方式好?。

3、为了了解我国初中生的身体发育情况,你认为宜采用哪种调查方式?。

4、为了了解你们班同学的视力情况,应对全班同学采用哪种调查方法?。

5、为了了解一次初三升学成绩,从5000名学生的成绩中抽取一部分,其中有1人得了100分,2人得了95分,8人得了90分,10人得了80分,15人得了70分,在这个问题中,总体是,个体是,样本是,样本容量是。

青岛版(五四)数学八年级上第4章检测题(word解析版).docx

青岛版(五四)数学八年级上第4章检测题(word解析版).docx

单元评价检测(四)第4章(45分钟 100分)一、选择题(每小题4分,共28分)1.某校初三共有四个班,在一次英语测试中四个班的平均分与各班参加人数如下表:则本校初三参加这次英语测试的所有学生的平均分为(精确到0.1) ( )A.83.1B.83.2C.83.4D.82.5【解析】选B.该组数据的平均数=51×83+49×89+50×82+60×79.551+49+50+60≈83.2.2.十名射箭运动员进行训练,每人射箭一次,成绩如表:则十名运动员射箭成绩的中位数(环)为 ( )A.9B.8C.6D.10或9【解析】选 A.将十名射箭运动员进行训练的成绩按照从小到大的顺序排列为6,6,7,7,9,9,9,10,10,10,所以十名运动员射箭成绩的中位数(环)为(9+9)÷2=9.3.(2013·广州中考)实验学校九年级一班十名同学进行定点投篮测试,每人投篮六次,投中次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数、众数分别为 ( )A.4,5B.5,4C.4,4D.5,5【解析】选A.这10个数据中出现次数最多的数据是5,一共出现了4次,所以众数是5;这10个数据按从小到大的顺序排列,位于第5个的是4,第6个的是4,故中位数是4.4.(2013·天津中考)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知 ( )A.(1)班比(2)班成绩稳定B.(2)班比(1)班成绩稳定C.两班的成绩一样稳定D.无法确定哪个班的成绩更稳定【解析】选B.因为17.5>15,所以(2)班比(1)班成绩稳定.5.(2013·包头中考)一组数据从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为 ( )A.6B.8C.9D.10【解析】选D.因为这组从小到大排列的数的中位数是9,所以有8+x 2=9,所以x=10,所以这组数据是2,4,8,10,10,14,故众数是10.6.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是 ( )A.80,2B.80,4C.78,2D.78,4【解析】选C.设丙的得分为x,则81+79+x+80+825=80,解得x=78.s 2=15[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]=2. 7.某校A,B 两队10名参加篮球比赛的队员的身高(单位:cm)如表所示:设两队队员身高的平均数分别为x ̅A ,x ̅B ,身高的方差分别为s A 2,s B 2,则正确的选项是 ( )A.x ̅A =x ̅B ,s A 2>s B2 B.x ̅A <x ̅B ,s A 2<s B 2 C.x ̅A >x ̅B ,s A 2>s B2 D.x ̅A =x ̅B ,s A 2<s B 2 【解析】选 D.因为x̅A =15×(176+175+174+171+174)=174(cm),x ̅B =15×(170+173+171+174+182)=174(cm). s A2=15×[(176-174)2+(175-174)2+(174-174)2+(171-174)2+(174-174)2]= 2.8(cm 2);s B 2=15×[(170-174)2+(173-174)2+(171-174)2+(174-174)2+(182-174)2]=18(cm 2); 所以x ̅A =x ̅B ,s A 2<s B 2.二、填空题(每小题5分,共25分)8.(2013·泰州中考)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 岁.【解析】把40个人的年龄按大小顺序排序,因为第20个人的年龄和第21个人的年龄都是15岁,所以中位数为15岁.答案:159.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为 分.【解析】84×3+80×3+90×43+3+4=85.2(分). 答案:85.210.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 玉米的产量比较稳定(填“甲”或“乙”).【解析】两种玉米的平均数都是450 kg,而s 甲2=100,s 乙2=200,所以甲种玉米的产量比较稳定.答案:甲11.物理老师布置了10道选择题作为课堂练习,如图是全班解题情况的统计,平均每个学生约做对了 道题;做对题数的中位数为 ;众数为 .【解析】x ̅=7×5+8×15+9×11+10×155+15+11+15≈8.8;第23,24个数都是9,因此中位数是9;众数是8和10.答案:8.8 9 8和10【易错提醒】在本题中,所研究的对象是做对题的数据,而不是做对题的人数.12.(2014·拱墅区质检)如图反映了某校初二(1)、(2)两班各50名学生电脑操作水平等级测试的成绩,其中不合格、合格、中等、良好、优秀五个等级依次转化为50分、60分、70分、80分、90分,试结合图形计算:①(1)班学生成绩的众数是分、中位数是分;②(2)班学生成绩的平均数是分、方差是 .【解析】①因为(1)班学生成绩众数是中等,所以是70分,中位数是:70分,②(2)班学生成绩的平均数是:70分,方差是:120.答案:①70 70 ②70 120三、解答题(共47分)13.(11分)(2013·梧州中考)某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:百分制候选人教学技能考核成绩专业知识考核成绩甲85 92乙91 85丙80 90(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【解析】(1)甲.(2)甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),乙赋权后的平均分数最高,所以乙将被录取.14.(11分)(2013·黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数,众数和中位数.(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12 t的约有多少户?【解析】(1)这100户家庭月平均用水量为11 t的户数为:100-(20+10+20+10) =40(户).条形图补充如下:(2)平均数:x̅= 10×20+11×40+12×10+13×20+14×10100=11.6(t).中位数:11 t.众数:11 t.(3)20+40+10100×500=350(户).答:不超过12 t 的用户约有350户.15.(12分)某校九年级(1)班响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州同学在父母的支持下各捐献了50册图书,班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.【解析】(1)设捐7册书的有x 人,则捐8册书的有(40-6-8-15-x-2)=(9-x)人, 则4×6+5×8+6×15+7x+8(9-x)+50×2=320,解得x=6,则9-x=3,即捐7册书和8册书的人数分别为6人和3人.(2)平均数x ̅=32040=8.众数为6.中位数为6.在捐书的40人中,只有2人捐书超过平均数,大部分人捐书不超过平均数,故平均数不能反映该班同学捐书册数的一般状况.16.(13分)(2014·宜春模拟)某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数 中位数 众数 方差 甲班8.5 8.5 乙班 8.5 10 1.6(2)根据上表数据你认为哪班的成绩较好?并说明你的理由.(3)乙班小明说:“我的成绩是中等水平”,你知道他是几号选手吗?为什么?【解析】(1)甲班的众数是8.5;方差是:15[(8.5-8.5)2+(7.5-8.5)2+(8-8.5)2+(8.5-8.5)2+(10-8.5)2]=0.7; 把乙班的成绩从小到大排列,最中间的数是8,则中位数是8.(2)从平均数看,因两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲的中位数高,所以甲班的成绩较好;从众数看,乙班的分数高,所以乙班成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.(3)乙班5号选手.因为乙班的成绩的中位数是8,所以小明的成绩是8分,则小明是乙班5号选手.初中数学试卷桑水出品。

八年级上册数学单元测试题ima 第4章 样本与数据分析初步

八年级上册数学单元测试题ima 第4章 样本与数据分析初步

八年级上册数学单元测试题第4章样本与数据分析初步一、选择题1.在下列抽样调查中,样本缺乏代表性的个数有()①在沿海地区的农村调查我国农民的年收入情况;.②在某一城市的一所小学抽查100名学生,调查我国小学生的营养情况;③在公园时监测城市的空气质量情况;④任选l0所本省中学调查本省中学生的视力情况.A.1个B.2个C.3个D.4个答案:C2.下列调查方式合适的是()A.为了了解全国中小学生的睡眠状况,采用普查的方式B.为了对“神舟六号”零部件进行检查,采用抽样调查的方式C.为了了解我市居民的环保意识,采用普查的方式D.为了了解炮弹的杀伤力,采用抽样调查的方式答案:D3.要了解一批种子的发芽天数,抽取了l00粒种子,考查其发芽天数,其中的100是()A.总体B.个体C.总体的一个样本D.样本容量答案:D4.数据5,3,2,1,4的平均数是()A.2 B.3 C.4 D.5答案:B5.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数答案:B6.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a答案:A7.某青年排球队12名队员的年龄如下表:则这l2名队员年龄的( ) A .众数是20岁,中位数是l9岁 B .众数是l9岁,中位数是l9岁 C .众数是l9岁,中位数是20.5岁 D .众数是l9岁,中位数是20岁答案:D8.已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则( ) A .甲组数据比乙组数据的波动大 B .乙组数据比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲、乙两组数据的波动性大小不能比较答案:B9.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了 评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有( )A . 0个B .l 个C .2个D .3个答案:C10.某市2008年4月1日至7日每天的降水概率如下表:则这七天降水概率的众数和中位数分别为()A.30%,30%B.30%,l0%C.10%,30%D.10%,40%答案:C11.甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们的平均分相等,所以学习水平一样B.成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C.表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D.平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低答案:C12.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的()A.一个样本B.样本容量C.总体D.个体答案:B13.在某城市,80%的家庭年收入不小于2.5万元,下面一定不小于2.5万元的是()A.年收入的平均数B.年收入的众数C.年收入的中位数D.年收入的平均数和众数答案:C14.某校八年级有六个班.一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同.下列说法中,正确的是()A. 全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B. 将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩答案:A15.甲、乙、丙、丁四位数选手各l0次射击成绩的平均数都是8环,众数和方差如下表,则这四个人中水平发挥最稳定的是()A .甲B .乙C .丙D .丁答案:B16.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .38答案:C17.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( ) A . 30吨B . 31 吨C . 32吨D . 33吨答案:C18.样本3、6、4、4、7、6的方差是( )A .12B .C .2D答案:C19.老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中 出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是( ) A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25答案:D20.某青年排球队12名队员的年龄情况如下表:下列结论正确的是( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是20岁 C .众数是20岁,中位数是19.5岁D .众数是19岁,中位数是19岁答案:B21.有两组数据,第一组有4个数据,它们的平均数为x ,第二组有6个数据,他们的平均数为y ,则这两组数据的平均数为( ) A .2x y+ B .46x y + C .235x y+ D .10x y+ 答案:C22.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为( ) A . 1万件B .9万件C .15万件D . 20万件答案:B23.某居民区月底统计用电情况,其中用电45度的有3户,用电50度的有5户,用电42度的有6户,则平( )答案:C24.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为( )A.1.5万元 B .5万元 C .10万元 D .3.47万元答案:A25.数据0,-1,6,1,x 的众数为-l ,则这组数据的方差是( )A.2 B .345 C .265答案:B26.下列调查方式合适的是( )A .为了了解炮弹的杀伤力,采用普查的方式B .为了了解全国中学生的睡眠状况,采用普查的方式C 为了了解人们保护水资源的意识,采用抽样调查方式D .对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式答案:C 二、填空题27.为了估计某市空气质量情况,某同学在30天里做了如下记录:其中w <50时空气质量为优, 50≤w ≤100时空气质量为良,100<w ≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为 天. 解析:29228.某校男子足球队22名队员的年龄如下表所示,则这些队员的平均年龄为 岁(精确到1岁).解析:1729.在“信利杯”初中数学竞赛中,5名学生的成绩分别为:85,88,90,81,98,则这5名学生成绩的中位数是.解析:8830.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是;(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.解析:(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数31.为了了解2008年某超市每天上午的顾客人数,抽查了其中30天的每天上午的顾客人数,在这个问题中,样本是.解析:从中抽查的30天每天上午的顾客人数32.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是岁,众数是岁.解析:15,1433.一组数据1,2,3,x的平均数是4,则这组数据的中位数是.解析:2.534.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是.解析:5 t35.请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.解析:(1)抽样调查;(2)抽样调查;(3)普查36.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是 t.解析:537.某市某学校初中八年级有4个绿化小组,在植树节这天种下杨树的棵数如下:l0,10,x,8.若这组数据的众数和平均数相等,那么它们的中位数是棵.解答题解析:1038.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;解析:239.汽车以每小时60 km的速度行驶5h,中途停驶2h,后又以每小时80 km行驶3 h,则汽车平均每小时行驶 km.解析:5440.在一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员将成绩表送组委会时,成绩表不慎被墨水污染掉一部分(如下表所示),但他记得这组运动员的成绩的众数是1.75 m,表中每个成绩都至少有一名运动员.根据这些信息,可以计算这17名运动员的平均跳高成绩是 m(精确到0.01 m).解析:1.6941.为美化校园,某班三个劳动小组在劳动课上栽花的株数分别为:10、x,8. 已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 .解析:283株或263株42.已知,n个数据的和为l28,它的平均数为l6,则n= .解析:843.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为82 x=甲分,82x=乙分,2245S=甲,2190S=乙.那么成绩较为整齐的是 (填“甲班”或“乙班”).解析:乙班44.小明骑自行车的速度是15千米/时,步行的速度是5千米,时.若小明先骑自行车1小时,然后又步行2小时.那么他的平均速度是 .解析:253千米/小时45.某市体委从甲、乙两名射击运动员中选择一人参加全运会,每人各打靶5次,打中环数如下:甲:7,8,9,8,8;乙:5,10,6,9,10.那么仅考虑发挥稳定性这一因素,应选运动员参加全运会.解析:甲三、解答题46.第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?解析:(1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为8 47.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?解析:解:(1)被污染处的人数为11人.设被污染处的捐款数为x元,则 11x+1460=50×38 ,解得x=40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.48.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩比甲班的平均成绩高7分,求乙班的平均成绩(精确到1分).解析:85分49.为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表:请你估计这个家庭六月份的总用电量是多少千瓦时?解析:120度50.据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm;1959~1969年这ll年间,平均每年倾斜1.26 mm.那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?解析:1.13 mm51.为了普及法律知识,增强法律意识,某中学组织了法律知识竞赛活动,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析.①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些);(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级实力更强一些?并说明理由.解析:(1)平均数85.5,众数80、78,中位数86;(2)①八年级好一些②七年级好一些;(3)九年级的实力更强一些52.甲、乙两工人同时生产一种零件,在10天中,两工人每天生产的次品数分别如下:甲:l;O,0,3,3,0,2,1,0,2;乙:l,2,1,1,1,2,1,1,1,1.(1)分别计算这两个样本的平均数;(2)计算这两个样本的方差;(3)从计算结果看,谁的生产技术比较稳定?解析:(1) 1.2x x==乙甲;(2)2136S=甲.,2016S=乙.;(3)乙稳定53.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6.求旗杆高度的平均数,中位数,众数各是多少?解析:平均数:22.12 m,中位数:20.0 m,众数:20.0 m54.请指出下面问题哪些适合普查,哪些适合抽样调查:(1)某地区发现了一种传染病,为防止传染病的传播扩散,对该地区的调查;(2)某种商品价值5000元,某人购买该商品时递上一叠百元大钞,店主为了防止这叠钞票中存在假币,对这叠钱的检查;(3)某厂家为了解某种产品的市场销售情况,对销售情况的调查.解析:(1)(2)普查,(3)抽样调查55.某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,优秀及格不及格等级用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:(1)这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ;(2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?解析:(1)不及格、及格;(2)及格有160人,优秀80人。

2014秋青岛版数学八上第4章《数据的分析》单元测试题1

2014秋青岛版数学八上第4章《数据的分析》单元测试题1

八年级数学第四章数据分析测试题一、选择题(每题3分,共30分)1、将一组数据中的每一个数减去40后,所得新的一组数据的平均数就是2,•则原来那组数据的平均数就是( )A、40B、42C、38D、22、一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样)、•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请您帮采购小组出谋划策,应选购( )A、甲苗圃的树苗B、乙苗圃的树苗;C、丙苗圃的树苗D、丁苗圃的树苗3、衡量样本与总体的波动大小的特征数就是( )A、平均数B、方差C、众数D、中位数4、一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环、则射中环数的中位数与众数分别为( )A、8,9B、8,8C、8、5,8D、8、5,95、对于数据3,3,2,3,6,3,10,3,6,3,2、①这组数据的众数就是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( ) A、1个B、2个C、3个D、4个6、甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)甲班成绩的波动情况比乙班成绩的波动小(3)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)上述结论中正确的就是( ) A、(1)(2)(3) B、(1)(2) C、(1)(3) D、(2)(3) 7、某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀、甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的就是( )A、甲B、乙丙C、甲乙D、甲丙8、人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分与方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级就是( ) A 、甲班 B 、乙班 C 、两班成绩一样稳定 D 、无法确定 9、期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M,如果把M•当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:•N 为( )A 、56B 、1C 、65D 、2 10、下列说法错误的就是( )A 、一组数据的平均数、众数、中位数可能就是同一个数;B 、一组数据中中位数可能不唯一确定C 、一组数据中平均数、众数、中位数就是从不同角度描述了一组数据的集中趋势D 、一组数据中众数可能有多个二、填空题(每空2分,共24分)11、下图就是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份就是_____年、12、一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数就是 ,众数就是13、 有一组数据如下:2,3,a ,5,6,它们的平均数就是4,则这组数据的方差就是14、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________、15、如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本平均数为 、样本容量为 、16、已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 、17、在数据-1,0,4,5,8中插入一数据x ,使得该数据组的中位数为3,则x =____ 、18、 已知数据,,a b c 的平均数为8,那么数据1,2,3a b c +++的平均数就是______ _、19、10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm )、这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的就是____三、解答题(共46分)20、(12分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数 540 450 300 240 210 120人 数 1 1 2 6 3 2(1)2012年6月上旬 (2)2013年6月上旬(1)写出这15人该月加工零件数的平均数、中位数与众数、(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•您认为这个定额就是否合理,为什么?21(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图就是其中的甲、乙两段台阶的示意图、请您用所学过的有关统计的知识(平均数、中位数、方差与极差)回答下列问题:(1)两段台阶路有哪些相同点与不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路、对于这两段台阶路,在台阶数不变的情况下,您提出合理的整修建议、(图中的数字表示每一级台阶的高度(•单位:cm)、并且数据15,16,16,14,14,15的方差S甲2=2 3 ,数据11,15,18,17,10,19的方差S乙2=353)、22、(22分)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下折线图(图1) 、(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数就是5次的男生有人、女生有人;②男、女生发言次数的中位数分别就是次与次、(2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示、求第二天发言次数增加3次的学生人数与全班增加的发言总次数、参考答案一、选择题:1C 2D 3B 4B 5A 6A 7C 8B 9B 10B二、填空题:11、2013年、12、、7,8、13、2,14、65、75分、15、2,4 、16、20,17、 12、218、1019、平均数,众数三、解答题:20、(1)平均数:260(件) 中位数:240(件) 众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共就是4人,还有11人不能达到此定额,•尽管260就是平均数,但不利于调动多数员工的积极性,因为240既就是中位数,又就是众数,就是大多数人能达到的定额,故定额为240较为合理、21、(1)相同点:两段台阶路台阶高度的平均数相同、不同点:•两段台阶路台阶高度的中位数、方差与极差均不相同、(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小、(3)每个台阶高度均为15cm(原平均数)使得方差为0、22、解:(1)①40;2;5 ②4;5、(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.全班增加的发言总次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章样本与估计检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.学校以年级为单位开展广播操比赛,全年级有个班级,每个班级有名学生,规定每班抽名学生参加比赛,这时样本容量是()A.13B.50C.650D.3252.某市有名学生参加考试,为了了解考试情况,从中抽取名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①名考生是总体的一个样本;②名考生是总体;③样本容量是其中正确的说法有()A.0种B.1种C.2种D.3种3.①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③4.在一次射击练习中,某运动员命中的环数是其中是()A.平均数B.中位数C.众数D.既是平均数又是中位数、众数5.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:中相应环数的次数从射击成绩的平均数评价甲、乙两人的射击水平,则()A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定6.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电()A.41度B.42度C.45.5度D.46度7.甲,乙,丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.6.7元B.6.8元C.7.5元D.8.6元8.某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为()A. B.C. D.9.在樱桃采摘园,五位游客每人各采摘了一袋樱桃,质量分别为(单位:千克):5,2,3,5,5,则这组数据的平均数和中位数分别为()A.4,3B.3,5C.4,5D.5,510.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数,中位数,众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数,众数,中位数.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点品尝,这应该属于________.(填“普查”或“抽样调查”)12.某班共有学生人,平均身高为,其中名男生平均身高为,•则名女生的平均身高为________.13.某校八年级(1)班一次数学考试的成绩为:分的3人,分的人,分的17人,分的人,分的人,分的人,全班数学考试的平均成绩为_______分. 14.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.15.某工程队正在修建道路,有4天每天修5米,有2天每天修7米,有3天每天修10米,有1天修11米,则这10天中这个工程队平均每天修米道路.16.一组数据它们的中位数是,则______.17.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.18.数据的众数是______,中位数是_______.三、解答题(共46分)19.(5分)下列调查中,哪些用的是普查方式,哪些用的是抽样调查方式?(1)了解一批空调的使用寿命;(2)出版社审查书稿的错别字的个数;(3)调查全省全民健身情况.20.(5分)请指出下列哪些调查的样本缺乏代表性:(1)在大学生中调查我国青年业余时间娱乐的主要方式;(2)在公园里调查老年人的健康状况;(3)调查一个班级里学号为3的倍数的学生,以了解学生们对班主任老师某一新举措的意见和建议.21.(8分)请指出下列抽样调查的总体、个体、样本、样本容量分别是什么?(1)为了了解某种家用空调工作1小时的用电量,调查10台该种空调每台工作1小时的用电量;(2)为了了解某校八年级名学生的视力情况,从中抽取名学生进行视力检查.22.(5分)某食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值这批样品的平均质量比标准质量多还是少,多或少几克?若标准质量为克,则抽样检测的总质量是多少?23.(6分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?24.(6分)为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?25.(11分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:分数请根据表中提供的信息回答下列问题:(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班.(2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班.(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的班是哪个班.第4章 样本与估计检测题参考答案1.D 解析:因为每班抽名学生参加比赛且有个班级,所以样本容量为.2.B 解析:抽取的名学生的成绩是一个样本,故①错误;名考生的考试成绩是总体,故②错误;因为从中抽取名学生的成绩,所以样本容量是,故③正确.3.A 解析:②不是对全体初中生进行的调查,④不是对全班同学作业完成情况的调查,故②④不是采用的普查方式. ①③采用的是普查方式,所以选A.4.D 解析:数据按从小到大顺序排列为所以中位数是;数据和都出现了两次,出现次数最多,所以众数是;平均数为.所以此题中既是平均数又是中位数、众数.5.B 解析:由题意知,甲的平均数为(),环81221102827=++⨯+⨯+⨯ 乙的平均数为(),环8131193817=++⨯+⨯+⨯所以从平均数看两人的射击水平一样,故选B . 6.C 解析:.5.45653642550345(度)=++⨯+⨯+⨯ 7.B 解析:.8.631083810786)千克元(≈++⨯+⨯+⨯ 8.C 解析:元出现了次,出现的次数最多,所以这组数据的众数为元;将这组数据按从大到小的顺序排列,中间的(第5个)数是元,故其中位数为元; 平均数:,故选C .9.C 解析:这组数据5,2,3,5,5的平均数为;将这组数据按从小到大的顺序排列为2,3,5,5,5,中间的一个数即为这组数据的中位数,故这组数据的中位数是5.故选C .10.B 解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有多个,所以①②对,③错;由于一组数据的平均数与中位数一般是将原数据按大小排列后,进行计算得来的,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数,中位数也可能发生改变,也可能不发生改变,所以⑤错.11.抽样调查 解析:根据普查和抽样调查的定义,知此题属于抽样调查. 12. 解析:设名女生的平均身高为由题意得解得即名女生的平均身高为. 13.78.8 解析:.8.783212171333502601270178013903100(分)=+++++⨯+⨯+⨯+⨯+⨯+⨯ 14.71 解析:15. 解析:.5.71324113102745)天米(=++++⨯+⨯+⨯16. 解析:这组数据共6个,最中间两个数的平均数是这组数据的中位数.将除外的五个数从小到大重新排列后为 中间的数是,由于中位数是,所以.17. 解析:设中间的一个数即中位数为,则,所以中位数为. 18. 解析:将这组数据从小到大重新排列后为:观察数据可知,最中间的两个数都是9,所以中位数为9;9出现次数最多,故众数也是9.19.解:(1)了解一批空调的使用寿命,调查过程带有破坏性,只能采取抽样调查方式;(2)出版社审查书稿的错别字的个数,要求精确、难度相对不大、实验无破坏性,应选择普查方式.(3)调查全省全民健身情况,因工作量较大,只能采取抽样调查的方式.所以(1)(3)适合用抽样调查方式;(2)适合用普查方式.20.解:(1)(2)缺乏代表性;(3)有代表性.21.解:(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10.(2)总体:该校八年级270名学生的视力情况;个体:该校八年级的每一名学生的视力情况;样本:抽取的该校八年级50名学生的视力情况;样本容量:50.22.解:与标准质量的差值的和为, 其平均数为,即这批样品的平均质量比标准质量多,多克. 则抽样检测的总质量是. 23.解:(1)平均数:(件);260152120321062402300450540=⨯+⨯+⨯+⨯++中位数:240件,众数:240件.(2)不合理,因为表中数据显示,每月能完成件的一共有4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性,因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.24.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60, 65,75,,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是,所以这8名学生完成家庭作业的平均时间为, 因为,所以估计该班学生每天完成家庭作业的平均时间符合学校的要求.25.解:(1)甲班中分出现的次数最多,故甲班的众数是分; 乙班中分出现的次数最多,故乙班的众数是分;从众数看,甲班成绩好.(2)两个班都是人,甲班中的第人的分数是分,故甲班的中位数是分; 乙班中的第人的分数是分,故乙班的中位数是分;甲班成绩在中位数以上(包括中位数)的学生所占的百分比为;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为;从中位数看成绩较好的是甲班.(3)甲班的平均成绩为;乙班的平均成绩为;从平均成绩看成绩较好的班是乙班.。

相关文档
最新文档