自动控制原理实验5

合集下载

自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及MATLAB实验第5章习题解答

自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及MATLAB实验第5章习题解答

第5章频率特性法频域分析法是一种图解分析法,可以根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径,已经发展成为一种实用的工程方法,其主要内容是:1)频率特性是线性定常系统在正弦函数作用下,稳态输出与输入的复数之比对频率的函数关系。

频率特性是传递函数的一种特殊形式,也是频域中的数学模型。

频率特性既可以根据系统的工作原理,应用机理分析法建立起来,也可以由系统的其它数学模型(传递函数、微分方程等)转换得到,或用实验法来确定。

2)在工程分析和设计中,通常把频率特性画成一些曲线。

频率特性图形因其采用的坐标不同而分为幅相特性(Nyquist图)、对数频率特性(Bode图)和对数幅相特性(Nichols图)等形式。

各种形式之间是互通的,每种形式有其特定的适用场合。

开环幅相特性在分析闭环系统的稳定性时比较直观,理论分析时经常采用;波德图可用渐近线近似地绘制,计算简单,绘图容易,在分析典型环节参数变化对系统性能的影响时最方便;由开环频率特性获取闭环频率指标时,则用对数幅相特性最直接。

3)开环对数频率特性曲线(波德图)是控制系统分析和设计的主要工具。

开环对数幅频特性L(ω)低频段的斜率表征了系统的型别(v),其高度则表征了开环传递系数的大小,因而低频段表征系统稳态性能;L(ω)中频段的斜率、宽度以及幅值穿越频率,表征着系统的动态性能;高频段则表征了系统抗高频干扰的能力。

对于最小相位系统,幅频特性和相频特性之间存在着唯一的对应关系,根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。

4)奈奎斯特稳定性判据是利用系统的开环幅相频率特性G(jω)H(jω)曲线,又称奈氏曲线,是否包围GH平面中的(-l,j0)点来判断闭环系统的稳定性。

利用奈奎斯特稳定判据,可根据系统的开环频率特性来判断闭环系统的稳定性,并可定量地反映系统的相对稳定性,即稳定裕度。

稳定裕度通常用相角裕量和幅值裕量来表示。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。

实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。

实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。

实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。

实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。

在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。

结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。

我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。

总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。

通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。

这对我们今后的学习和工作都具有重要的意义。

自动控制原理第5章频域分析法

自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。

自控原理实验报告

自控原理实验报告

自动控制原理实验报告目录2.2典型环节模拟电路及其数学模型1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.1典型二阶系统模拟电路及其动态性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据纪录3.4三阶控制系统的稳定性分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.5基于Matlab告诫控制系统的时域响应动态性能分析1. 实验目的2. 实验内容3. 实验数据纪录4.1基于Matlab控制系统的根轨迹及其性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录5.4 基于MATLAB控制系统的博德图及其频域分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录2.2典型环节模拟电路及其数学模型1.实验目的1)掌握典型环节模拟电路的构成,学习运用模拟电子组件构造控制系统。

2)观察和安装个典型环节的单位节阶跃响应曲线,掌握它们各自特性。

3)掌握各典型环节的特性参数的测量方法,并根据阶跃响应曲线建立传递函数。

2.实验原理本实验通过实验测试法建立控制系统的实验模型。

实验测试法是人为地给系统施加某种测试信号,记录基本输出响应,并用适当的数学模型区逼近。

常用的实验测试法有三种:时域测试法,频域测试法和统计相关测试法。

通过控制系统的时域测试,可以测量系统的静态特性和动态特性指标。

静态特性是指系统稳态是的输入与输出的关系,用静态特性参数来表征,如增益和稳态误差。

动态性能指标是表征系统输入一定控制信号,输出量随时间变化的响应,常用的动态性能指标有超调量、调节时间、上升时间、峰值时间和振荡次数等。

静态特性可以采用逐点测量法,及给新一个输入量,新颖测量被控对象的一个稳态输出量,利用一组数据绘出静态特性曲线求出其斜率,就可以确定被测对象的增益。

动态特性可以采用阶跃响应或脉冲响应测试法,给定被测对象施加阶跃输入信号或脉冲信号,利用示波器或记录仪测量被测对象的输出响应,如为使测量尽可能的得到理想的数学模型,应注意以下几点:1)被测对象应处于实际经常使用的负荷情况,并且在较为稳定的状态下进行测试。

自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析

自动控制原理的MATLAB仿真与实践第5章  线性系统的频域分析
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
margin(G);[Gm,Pm,Wcg,Wcp]= margin(G): 直接求出系统G的幅值裕度和相角裕度。 其中:Gm幅值裕度;Pm相位裕度;Wcg幅值裕度 处对应的频率ωc;Wcp相位裕度处对应的频率ωg。
nichols(G);nichols(G,w):绘制单位反馈系统开环传 递尼科尔斯曲线。
20
>>clear; num=[2, 3];den=[1, 2, 5, 7]; %G(s)的分子分母 多项式系数向量
p=roots(den) 求根结果:
%求系统的极点
p=
-0.1981 + 2.0797i
-0.1981 - 2.0797i
-1.6038 可见全为负根,则s右半平面极点数P=0。 绘制Nyquist曲线: >> nyquist(num,den) %绘制Nyquist曲线
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

自动控制原理实验报告--控制系统的稳定性和稳态误差

自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。

二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。

即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。

当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。

conv( )函数的调用是允许多级嵌套的。

例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。

2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。

判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。

对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。

MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。

《自动控制原理》实验报告 典型环节的阶跃响应

《自动控制原理》实验报告 典型环节的阶跃响应

成绩:____大连工业大学《自动控制原理》实验报告实验1 典型环节的阶跃响应专业名称:自动化班级学号:自动化10I-JK学生姓名:ABCD指导老师:EFGH实验日期:年月日一、实验目的1、熟悉各种典型环节的阶跃响应曲线;2、了解参数变化对典型环节动态特性的影响。

二、实验原理实验任务1、比例环节(K)从图0-2的图形库浏览器中拖曳Step(阶跃输入)、Gain(增益模块)、Scope(示波器)模块到图0-3仿真操作画面,连接成仿真框图。

改变增益模块的参数,从而改变比例环节的放大倍数K,观察它们的单位阶跃响应曲线变化情况。

可以同时显示三条响应曲线,仿真框图如图1-1所示。

2、积分环节(1Ts)将图1-1仿真框图中的Gain(增益模块)换成Transfer Fcn (传递函数)模块,设置Transfer Fcn(传递函数)模块的参数,使其传递函数变成1Ts型。

改变Transfer Fcn(传递函数)模块的参数,从而改变积分环节的T,观察它们的单位阶跃响应曲线变化情况。

仿真框图如图1-2所示。

3、一阶惯性环节(11 Ts+)将图1-2中Transfer Fcn(传递函数)模块的参数重新设置,使其传递函数变成11Ts+型,改变惯性环节的时间常数T,观察它们的单位阶跃响应曲线变化情况。

仿真框图如图1-3所示。

4、实际微分环节(1KsTs +) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成1KsTs +型,(参数设置时应注意1T )。

令K 不变,改变Transfer Fcn (传递函数)模块的参数,从而改变T ,观察它们的单位阶跃响应曲线变化情况。

仿真框图如图1-4所示。

5、二阶振荡环节(2222nn ns s ωξωω++) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成2222nn ns s ωξωω++型(参数设置时应注意01ξ<<),仿真框图如图1-5所示。

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

自动控制原理实验要点

自动控制原理实验要点

实验一 控制系统典型环节的模拟一、实验目的(1)熟悉超低频扫描示波器的使用方法。

(2)掌握用运放组成控制系统典型环节的模拟电路。

(3)测量典型环节的阶跃响应曲线。

(4)通过实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验所需挂件及附件DJK01 、DJK15、双踪慢扫描示波器、万用表三、实验线路及原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图8-1所示。

图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图8-1得:由上式可求得,由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

(1)比例环节比例环节的模拟电路如图8-2所示:图8-1 运放的反馈连接图8-2 比例环节(2)惯性环节 (1) )(12Z Z u u S G i o =-=2=410820==12K K Z Z )S (G 111/1/)(21212212+=+⋅=+==TS K CS R R R R CS R CS R Z Z S G取参考值R 1=100K ,R 2=100K ,C=1uF图8-3 惯性环节(3)积分环节式中积分时间常数T=RC,取参考值R=200K ,C=1uF图8-4 积分环节(4)比例微分环节(PD ),其接线图如图及阶跃响应如图8-5所示。

参考值R 1=200K ,R 2=410K ,C=0.1uF)(3 1 1 /1)(12TS RCS R CS Z Z S G ====C R =T , =K (4) 1+= 1+•= 1+==1D 1211211212R R )S T (K )CS R (R R CS /R CS /R R Z Z )S (G D其中图8-5 比例微分环节(5)比例积分环节,其接线图单位阶跃响应如图8-6所示。

参考值R 1=100K R 2=200K C=0.1uF图8-6 比例积分环节(6)振荡环节,其原理框图、接线图及单位阶跃响应波形分别如图8-7、8-8所示。

自动控制原理 实验五 典型非线性环节及

自动控制原理 实验五 典型非线性环节及

TDS 1001B型示波器:
• 1、将U盘插入示波器下端的USB插口; • 2、按下“save/recall”菜单按钮; • 3、按“操作”显示屏按钮,选择“储存
图像”; • 4、按“储存”显示屏按钮,示波器自动
创建一个新文件并将其存储到文件夹中。
END
谢 谢!
• 如果取x和x’作为平面的坐标,则系统的每一个状态均相应于该 平面上的一点。当t变化时,这一点在x-x’平面上描绘出的曲线, 表征了系统状态的演变过程。这种曲线就叫做相轨迹曲线。
实验五 典型非线性环节及具有典型继电 特性的非线性系统研究
几种典型非线性环节的模拟方法
(1)继电特性
实验五 典型非线性环节及具有典型继 电特性的非线性系统研究
1、打开“Wavestar”软件,点击“New Datasheet”,选择“NotesSheet”,然后按 “OK”。
2、双击“Local”下的“Data”,在“Display”下 有“ Screen Copy(Mono)”,用鼠标将它拖动 到“NotesSheet”中,再在“Edit”菜单中选 用“copy”复制,将图黏贴到WORD文档或 其它地方。
(3)死区特性
(4)间隙特性
实验五 典型非线性环节及具有典型继电特性的 非线性系统研究
二、典型继电特性的模拟
图5-5 典型继电特性非线性部件模拟电路图
m=-1~1, k=0~1
图5-6 非线性部件的输入输出 关系曲线
几种特殊情况下的输入输出特性:
m=1
m=0
m=-1
实验步骤:
• 1、示波器的调节:在“DISPLAY”键下,将格式设为“XY”,持续 时间设为“5秒”或“无限”,CH1、CH2通道的量程用1V或2V; 在CH1、CH2通道还未接测量信号前,先将坐标点调到原点。

自动控制原理线性系统串联校正实验报告五..

自动控制原理线性系统串联校正实验报告五..

武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。

2.掌握控制系统频域范围内的分析校正方法。

3.掌握用频率特性法进行串联校正设计的思路和步骤。

二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。

解:取20=K ,求原系统的相角裕度。

num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。

考虑采用串联超前校正装置,以增加系统的相角裕度。

1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010-100-5050幅值(d b )--Go,-Gc,GoGc1010101010-200-150-100-50050相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图 num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。

王划一-自动控制原理-5-3稳定裕度

王划一-自动控制原理-5-3稳定裕度

17
例5-19 一单位反馈控制系统,其开环传递函数
G(s)
7
s(0.087s1)
试用相角裕度估算过渡过程指标p% 与ts。
解:系统开环伯德图如图示
h
A( g ) 或
20lgh = 20lg A(g) (2)相角裕度 :令幅频特性过零分贝时的频率为c (幅值穿越频率),则定义相角裕度 为
= 180 + (c)
2
Im
A(g)
-1
0
c
h 具有如下含义:如果
系统是稳定的,那么系统的
Re
开环增益增大到原来的h 倍 时,则系统就处于临界稳定
了。
具有如下含义:如果
n2
1
c c2 (2 n)2
cn
14422
15
则相角裕度 为
()
= 180 + (c)
p%
100
=180 90 arctan(c/2n ) 80
arctan 2
60
22 144
40
20
在时域分析中,知
0
70
60
50
40
p
30 20
10
p e 12 100%
0
0 0.2 0.4 0.6 0.8 1.0
60dB/dec
解:系统的开环传递函数为
k(s1) G(s)s2(0.1s1)2
c = 3.16
A(c)kc21c2 1
k=c = 3.16 5
3.16(s1) G(s)s2(0.1s1)2
() = arctan 180 2arctan0.1
= 180+ (c)
= arctan3.16 2arctan0.316

自动控制原理5第二节对数频率特性

自动控制原理5第二节对数频率特性

19
② 一阶微分: A(w) 1 T 2w2,(w) tg1Tw
一阶微分环节的波德图
L(w) 20lg 1 T 2w2 对数幅频特性(用渐近线近似):
低频段渐近线:当Tw 1时,A(w) 1, 20 log A(w) 0 高频段渐近线:当Tw 1时,A(w) Tw,L(w) 20 log Tw
第二节 对数频率特性
1
一、对数频率特性曲线(波德图,Bode图)
Bode图由对数幅频特性和对数相频特性两条曲线组成。 ⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标(称为频率轴)分度:它是以频率w 的对数值 logw 进行 线性分度的。但为了便于观察仍标以w 的值,因此对w 而言是 非线性刻度。w 每变化十倍,横坐标变化一个单位长度,称为 十倍频程(或十倍频),用dec表示。类似地,频率w 的数值变化
来计算只能求出±90°之间的值(tg-1函数的主值范围),也就是
说当 w ( 1 , ) 时,用计算器计算的结果要经过转换才能得到 。 即当 w (T1 , ) 时,用计算器计算的结果要减180°才能得到 。
T
或用下式计算
(w) tg1 Tw 1 2 tg1 Tw 1 2
17
微分环节的频率特性
(w) K
0 180
K 0 K 0
180
7
K 0
⒉ 积分环节的频率特性:G(s) K
s
频率特性:
G( jw )
K
j
K
K
e2
jw w w
积分环节的Bode图
L(w) / dB
40 20w ) tg1( K 0)
w
2
L(w) 20log A(w) 20log K

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。

2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。

3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。

二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。

三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。

LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。

2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。

针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。

四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。

搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。

2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。

其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。

下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。

05_自动控制原理—第五章(4)讲解

05_自动控制原理—第五章(4)讲解
当系统开环频率特性曲线及其镜像通过(-1,j0)点时,表明在s平面 虚轴上有闭环极点,系统处于临界稳定状态,属于不稳定。
例5-3 一个闭环系统如图所示。其开环 传递函数为
G(s)=K/(Ts-1),K>1 这是一个不稳定的惯性环节,开环特征 方程式在右半s平面有一个根,P=1。闭 环传递函数为
(s)=K/(Ts+K-1) 由于K>1,闭环特征方程式的根在左半s 平面,所以利用代数方法可以判断闭环 是稳定的。
特别是,如果知道了开环特性,要研究闭环系统的稳定性, 还需要求出闭环特征方程,无法直接利用开环特性判断闭环系统 的稳定性。而对于一个自动控制系统,其开环数学模型易于获取, 同时它包含了闭环系统所有环节的动态结构和参数。
除劳斯判据外,分析系统稳定性的另一种常用判据为 奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,它是频率法的重要内容,简称奈氏 判据。奈氏判据的主要特点有
1. 只绘制由0变到+ 时的开环幅相频率特性G(j)
因为(0,+∞)与(-∞,0)的曲线完全关于实轴对称,则0变到
+ 时的开环幅相频率特性G(j)顺时针包围(-1,j0)点的圈数N’满

N’= N/2 N是当从-∞变化到+∞时,系统开环频率特性曲线及其镜像G(j)
顺时针包围(-1,j0)点的圈数。 因此,简化奈奎斯特稳定判据可改为
Z = N + P=2 Nˊ+P
2.采用穿越的概念简化复杂曲线包围次数的 计算
由0变到+ 时开环频率特性曲线要形成对 (-1,j0)点的一次包围,势必穿越(-∞,-1)区 间一次。
开环频率特性曲线逆时针穿越(-∞,-1)区 间时,随ω增加,频率特性的相角值增大,称为 一次正穿越N+。

自动控制原理5奈魁斯特稳定判据

自动控制原理5奈魁斯特稳定判据

Friday, May 22, 2020
7
这里需要解决两个问题:
1、如何构造一个能够包围整个s右半平面的封闭曲线,并且它是 满足柯西幅角条件的?
2、如何确定相应的映射F(s)对原点的包围次数N,并将它和开环 频率特性GH( j)相联系?
第1个问题:先假设F(s)在虚轴上没有零、极点。按顺时针方向
做一条曲线s包围整个s右半平面,这条封闭曲线称为奈魁斯特 路径。如下图:
我们这里是应用开环频率特性研究闭环系统的稳定性,因此 开环频率特性是已知的。设想:
如果有一个s平面的封闭曲线能包围整个s右半平面,则根据 柯西幅角定理知:该封闭曲线在F(s)平面上的映射包围原点的次 数应为:N F (s) |右半零点数 F (s) |右半极点数
闭环系统右半极点数 开环系统右半极点数 当已知开环右半极点数时,便可由N判断闭环右极点数。
Friday, May 22, 2020
9
①中由,分Gk母( j阶)可数求比得分F子( j阶)数,高而,Gk所( j以)是当开s 环 频 率e特j 性时。,G一k (般s) 在G0k
d f (0, j1)
Friday, May 22, 2020
4
同样我们还可以发现以下事实:s平面上As BsCs Ds Es FsGs H s曲线 s 映射到F(s)平面的曲线为 s ,如下图:
s平面 As Bs
Hs
2 1
Gs Fs
Cs
F (s)平面
Ds
s顺时针
Es
示意图 f 逆时针
曲线 s是顺时针运动的,且包围了F(s)的一个极点(0), 不包围其零点(-2);曲线f 包围原点,且逆时针运动。
N1 ( s)
N2 (s)

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

自动控制原理第五章

自动控制原理第五章

均 匀 的
(lg ω)
0.1 0.2 0.3 … 1 2 3 … 10 20 30 … 100 200 …
ω
倍频程是均匀 均匀的 一倍频程是不均匀的, 十倍频程是均匀的! 倍频程是不均匀的 不均匀
§5.3 典型环节的频率特性
系统的传递函数可以看成是由若干个典型环节组成的. 系统的传递函数可以看成是由若干个典型环节组成的. 一,比例环节的频率特性 Y (s) = K 传递函数为 Φ ( s ) = R (s)
Im
ω =∞
(ω )
A(ω )
Re
ω =0
Φ( jω)
奈奎斯特 (N.Nyquist)在1932 年基于极坐标图 阐述了反馈系统 稳定性 奈奎斯特曲线, 简称奈氏图
2. 幅,相频率特性 它是将 A(ω) 和 (ω) 分别表示在以 为横坐标,以 A(ω) 分别表示在以ω 坐标, 坐标的平面上. 或 (ω) 为纵坐标的平面上.
A(ω)
ω单位为弧度/秒 单位为弧度 秒 单位为弧度
ω
(ω)
A(ω) 无量纲
ω
(ω) 单位为度 单位为度
3. 对数幅,相频率特性 对数幅,相频率特性——Bode图 图 纵坐标
幅频: L(ω ) = 20 lg A(ω ) 单位:分贝(dB) 单位:度 相频: (ω )
横坐标 以 lg ω 来分度,标注 ω ,单位:弧度 秒(rad/s) 分度, 单位:弧度/秒
本章需要掌握的主要内容:
典型环节 环节的频率特性 (1)典型环节的频率特性 系统开环频率特性的绘制 (2)系统开环频率特性的绘制 (3)利用频率特性分析系统的稳定性 利用频率特性分析系统的稳定性 (4)系统的稳态性能与动态性能分析 系统的稳态性能与动态性能分析 实验法求取元件或系统的 求取元件或系统的数学模型 (5)实验法求取元件或系统的数学模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验
半实物仿真方式
实验五
采样系统研究
实验目的
1、了解信号的采样与恢复的原理及其过程,并验证香
农定理。

2、证实Z变换法研究采样系统的局限性。

3、了解采样系统的工作原理,掌握数字控制器的设计。

实验内容
采样:把连续信号转换成离散信号的过程叫采样。

香农定理如果选择的采样角频率,使其对连续信号所包含的最高频率分量来说,能做到在一个周期内采样两次以上,那么经采样所获得的脉冲序列中就包含了连续信号的全部信息,如果采样次数太少,就做不到无失真地再现原连续信号。

max 2ωω≥
s

信号的复现:将采样信号转换成连续信号的元件。


零阶保持器的功能是把每个采样瞬间的采样值保持到下一个采样瞬间,从而使连续信号变成阶梯信号。

▪其传递函数:S
e Ts
--1
证实Z变换法研究采样系统的局限性
在用Z变换法求系统的时域解时,必须有一定的限制,否则会得到错误的结论,即系统传递函数的分母比分子高二阶以上(也就是极点数应该要比零点数多两个以上),Z变换才能给出符合实际的分析结果,系统的连续信号在采样点也不会产生跳变。

采样系统的闭环极点分布对瞬态响应的影响
Z平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的,共分为5种情况:
实验电路图和系统结构图
改变采样频率,T=0.01S, 0.2S, 0.5S时,观察在阶跃信号作用下的过渡过程。

最少拍无差系统
通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍无差系统。

最少拍无差系统结构图
▪需要设计数字校正装置的脉冲传递函数D(z),使闭环系统为最小拍无差系统。

▪闭环脉冲传递函数为:▪当输入为时间的幂函数时,若能选择合适的D(z),使▪则该闭环采样系统便为最小拍无差系统,数字校正装置的脉冲传递函数()()
()1()()
G z D z z G z D z Φ=+(0)q At t >11
()1(1)q z z -+Φ=--1()
()()1()z D z G z z Φ=-Φ
当采样周期T=1s 时,传递函数为,设计D(z),
使该系统在单位阶跃信号作用下为最小拍无差系统,观察并记录理论与实际系统的输出波形。

当采样周期T=1s 时,传递函数为,设计D(z),
使该系统在单位斜坡信号作用下为最小拍无差系统,观察并记录理论与实际系统的输出波形。

1()(1)G s s s =+)1(10)(+=s s s G
要求得到的实验结果
1、用Matlab 实现:加入零阶保持器,观察恢复后的信号,并验证香农定理。

2、用Matlab 实现:观察一阶采样系统在阶跃输入下Z 变换的局限性。

在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

3、用实验软件改变采样频率,T=0.01S, 0.2S, 0.5S 时,观察在阶跃信号作用下的过渡过程。

4、软件实现与Matlab 仿真相比较,分析不同结果的原因。

5、观测系统更改采样频率阶跃信号作用下的过渡过程。

6、设计以上系统的最少拍无差系统。

写下数字控制器D (z )的设计过程。

)1(1)(+=s s s G。

相关文档
最新文档