2017年春季学期新版新人教版九年级数学下学期第26章、反比例函数单元复习学案8
☆_新人教版九年级下册数学第26章反比例函数(复习)(1).docx
新人教版九年级下册数学第26章反比例函数(复习)复习冃标:1、通过知识点与相应题目相结合,进一步巩固木章知识点;2、选取近儿年关于本章知识相应小考题,讣学生在学习时有的放矢。
3、本章内容对学生来说有点难度,复习时把握难易度,通过师生对话,降少学生的恐惧感。
复习重点:(1)反比例函数的概念;(2)反比例函数的图象和性质;(3)利用反比例函数图象的性质解决实际应用问题。
复习难点:利用反比例函数图象的性质解决实际应用问题。
教学过程:一、知识回顾1、什么是反比例函数?一般地,形如y = -(k是常数,k丰0)的函数叫做反比例函数。
注意:(1)常数k称为比例系数,kH 0;(2)自变罐x次数是-1;(3)解析式有二种常见的表达形式。
y = -f y = kx'[, xy二k(kHO)X1 _ 1 _ 1 r例1、(1)下列函数,①x(y + 2) = l②.y = ------- ③y =—④•『= ----- = -—x + 1对2x2®y =—;其中是y关于x的反比例函数的有: ______________________ 。
3x(2)反比例函数y = - (k ^0)的图象经过(一2, 5)和(血,71),求(1)〃的值;(2)判断点B (4血,-V2 )是否在这个函数图象上,并说明理由。
(3)已知函数y = y x-y2^其中开与兀成正比例,旳与兀成反比例,且当兀=1时, y =1;x =3 时,y =5.求:(1)求y关于兀的函数解析式;(2)当x=2时,y的值.2、你能回顾与总结反比例函数的图象性质与特征吗?(师提问,学生个别作答)k>()k<()图像双曲线象限第一、三象限第二、四彖限增减性y随x的增人而减小y随x的增人而增人变化趋势双曲线无限接近于x、y轴,但永远不会与坐标轴相交3)函数y=-(k^Q )的图彖经过(2, -2),则此函数的图彖在平而直角坐标系中的() x (2005.深圳) A 、第一、三彖限对称性 双曲线既是轴对称图形又是中心对称图形. 而积不变性任意一组变量的乘积是一个定值,即xy=k y长方形面积丨mn 丨=| K |A x例2、(1)若反比例函数y = (2加一 1)兀"一的图象在第二、四象限,则加的值是(B 、小于丄的任意实数;C 、-1;2A 、 —1 或 1;D 、不能确定k(2)已知£〉0,函数y = kx + k^函数y =—在同一坐标系内的图象大致是(VV / \* 0VY(3)正比例函数y =—和反比例函数y =二的图彖冇• 2 • x个交点.b(4)正比例函数y = -5x 的图象与反比例断数歹=一伙工0)的图象相交于点A (1, a ), x则 a = _________ .3、练一练:图像与性质2I )反比例函数歹=—图像上的点〃1(兀]J )、都在第一象限且X] < x 2, X"■则 X ____ )‘2。
人教版九年级下数学第26章反比例函数__复习课课件(期末_期中复习)人教版
y
面积性质(二)
B
P(m,n) A
o
x
(3)设P(m,n)关于原点的对称点是P (m,n),过P作x轴的垂线 与过P作y轴的垂线交于A点,则
1 1 、 S 、 = |AP AP |= |2m||2n|= 2|k|(如图所示). ΔPAP 2 2
-2
1、写出一个图象分布在第二、四象限内的反 比例函数解析式是 .
a2 2、已知反比例函数 y x 的图象在第一、三象限, 则a的取值范围是( )D (A)a≤2 (B) a≥2 (C) a<2 (D) a>2
3、已知反比例函数的图象经过点A(-5,6)
(1)这个函数的图象分布在哪些象限? y随x的增大如何变化? (2)点B(-30,1)、C(-2 ,15)和 D(-2,-15)是否在这个函数的图象上?
8.如图所示,已知直线y1=x+m与x轴、y• 轴分别 k 交于点A、B,与双曲线y2= (k<0)分别交于 x 点C、D,且C点坐标为(-1,2). (1)分别求直线AB与双曲线的解析式;
(2)求出点D的坐标;
(3)利用图象直接写出当x在什 么范围内取何值时,y1>y2.
实际问题与 反比例函数
x
7、 直线y=kx与反比例函数y=-
6 x
的图象相交
于点A、B,过点A作AC垂直于y轴于点C,求S△ABC.
八年级 数学
期末总复习
k 4、正比例函数y=x的图象与反比例函数y= x 的图象有一个交点的纵坐标是2,
求(1)x=-3时反比例函数y的值; (2)当-3<x<-1时,反比例函数y的取值范围.
解:(1)设函数关系式为y=k/(x-0.4),又当x=0.65元时,y=0.8,则有 0.8=k/(0.65-0.4),解得k=0.2. 1 ∴y与x之间的函数关系式为y=0.2/(x-0.4),即 y 。
人教版初三数学9年级下册 第26章(反比例函数)章末复习 课件(共40张PPT)
反比例函数的性质比较,在不同象限内,不能按其性质比较,
函数值的大小只能根据特征确定.
新课进行时
【考点精炼二】
1. (2019·海南)如果反比例函数
(a是常数)的图象在第一
、三象限,那么a的取值范围是( A )
A.a<0 B.a>0 C.a<2 D.a>2
2.(中考·河南改编)点A(1,m),B(2,n)在反比例函数
本节课我们将对本章所学的知识进行整 合与提升.
第二部分 学习目标
学习目标
1.复习反比例函数的概念、图象和性质及其应用. 2.运用反比例函数的知识解决实际问题.
复习重点:反比例函数的图象及其性质的理解和运 用. 复习难点:反比例函数图象中的面积不变性质.
第三部分 新课进行时
新课进行时 核心知识点一 知识框架图
解:当 0 ≤ x ≤2 时,y 与 x 成正比 例函数关系. 设 y =kx,由于点 (2,4) 在 线段上,
y/毫克 4
所以 4=2k,k=2,即 y=2x. O
2 x/小时
新课进行时
(2) 求当 x > 2 时,y 与 x 的函数解析式;
解:当 x > 2时,y 与 x 成反比例函数关系,
设
例4.如图,两个反比例函数 y 4 和 y 2 在第一象限内的图象 x
x
分别是 C1 和 C2,设点 P 在 C1 上,PA ⊥ x 轴于点A,交C2于
点B,则△POB的面积为 1 .
例5 .如图,在平面直角坐标系中,点
M 为 x 轴正半轴 上一点,过点 M 的直
线 l∥ y 轴,且直线 l 分别与反比例函
(7)y√=2x-1 (8)
√2x(a a为常数,且a ≠ 0) (10) y
九年级数学下册第26章反比例函数复习导学案新人教版(new)
反比例函数一.反比例函数考纲要求(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
(2)能画出反比例函数的图像,根据反比例函数的图像和解析表达式 y =xk (k ≠0)探索 并理解k >0或k <0时,图像的变化情况。
二.考点梳理【考点1】:反比例函数概念: 形如____________________的函数叫做反比例函数。
另外两种形式:________________________________________________ 注意:自变量x 的指数是_________且x_________;函数y_________ 【考点2】:确定反比例函数的表达式:待定系数法 ◆课堂巩固1【1】当m=_______时,函数y =(m -2)23m x -是反比例函数.【2】若反比例函数ky x=的图象经过点( 1,–1 ),则k 的值是 . 【3】某反比例函数图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A 。
(-3,2) B 。
(3,2) C. (2,3) D .(6,1) 【4】(2012·广东改编)如图,直线y =2x -6与反比例函数y =错误!(x >0) 的图象交于点A 的横坐标为4,则k 的值为______. 【5】已知反比例函数的图象经过点A(2,3). (1)求这个函数的解析式(2)判断点B (—1,6)、C(3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x<—1时,求y 的取值范围。
表达式图象k>0 k<0性质两个分支分别在______象限 两个分支分别在__________象限每个象限内,函数y 值随x 的增大而__________ 每个象限内,函数y 值随x 的增大而__________注意:由图象可知比例系数k 的几何意义:即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为|k|。
新人教版九年级数学下册第26章:反比例函数复习课件(共19张PPT)
9.如图,正比例函数 y1=k1x 的图象与反比例函数 y2=kx2的图象相交于 A,B
两点,其中点 A 的横坐标为 2,当 y1<y2 时,x 的取值范围是( B )
A.x<-2 或 x>2 B.x<-2 或 0<x<2 C.-2<x<0 或 0<x<2 D.-2<x<0 或 x>2
方法2 求反比例函数解析式的方法
y2=1
000(x≥25). x
.
•
(2)当 x1=5 时,y1=2×5+20=30, 当 x2=30 时,y2=1 30000=1300, ∴y1<y2,∴第 30 分钟时学生注意力更集中. (3)令 y1=36,∴36=2x1+20,∴x1=8. 令 y2=36,∴36=1 x0200,∴x2=1 30600≈27.8. ∵27.8-8=19.8>19, ∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题
(2)联立方程组
y=2x-2,
y=4, x
解得
xy11==22,,或
x2=-1, y2=-4.
.
•
∴C(-1,-4), 由图象,得 y1<y2 时 x 的取值范围是 x<-1 或 0<x<2. (3)连接 OC,设直线 y1=2x-2 与 y 轴交于点 E,则点 E 的坐标为 (0,-2).由(2)得点 C(-1,-4),点 A(2,2), ∴S△AOC=S△OCE+S△AOE=12×1×2+21×2×2=3.
D.当 x>1 时,y>3
6.已知点(-1,y1),(-2,y2),(3,y3)在反比例函数 y=-kx2-1的图象上,
下列正确的是( B )
A.y1>y3>y2
C.y3>y1>y2
B.y1>y2>y3 D.y3>y2>y1
人教版九年级下册数学 第26章 反比例函数 全章复习与巩固(基础)分类知识讲解
反比例函数全章复习与巩固(基础)【典型例题】类型一、确定反比例函数的解析式1、已知函数()32k y k x-=+是反比例函数,则k 的值为 .【答案】2k = 【解析】根据反比例函数概念,3k -=1-且20k +≠,可确定k 的值.【总结升华】反比例函数要满足以下两点:一个是自变量的次数是-1,另一个是自变量的系数不等于0.举一反三: 【变式】反比例函数5n y x+=图象经过点(2,3),则n 的值是( ). A. 2-B. 1-C. 0D. 1 【答案】D ; 反比例函数5n y x +=过点(2,3).53,12n n +==∴∴. 类型二、反比例函数的图象及性质2、已知,反比例函数42m y x-=的图象在每个分支中y 随x 的增大而减小,试求21m -的取值范围. 【思路点拨】由反比例函数性质知,当k >0时,在每个象限内y 随x 的增大而减小,由此可求出m 的取值范围,进一步可求出21m -的取值范围.【答案与解析】解:由题意得:420m ->,解得2m <,所以24m <,则21m -<3.【总结升华】熟记并能灵活运用反比例函数的性质是解答本题的关键.举一反三:【变式】已知反比例函数2k y x-=,其图象位于第一、第三象限内,则k 的值可为________(写出满足条件的一个k 的值即可).【答案】3(满足k >2即可).3、在函数||k y x-=(0k ≠,k 为常数)的图象上有三点(-3,1y )、(-2,2y )、(4,3y ),则函数值的大小关系是( )A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D ;【解析】∵ |k |>0,∴ -|k |<0,∴反比例函数的图象在第二、四象限,且在每一个象限里,y 随x 增大而增大,(-3,1y )、(-2,2y )在第二象限,(4,3y )在第四象限,∴ 它们的大小关系是:312y y y <<.【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(-3,1y )、(-2,2y )在双曲线的第二象限的分支上,因为-3<-2,所以12y y <,点(4,3y )在第四象限,其函数值小于其他两个函数值.举一反三:【变式1】(2019春•海口期中)在同一坐标系中,函数y=xk 和y=kx+3(k≠0)的图象大致是( ). A. B.C.D.【答案】C ;提示:分两种情况讨论:①当k >0时,y=kx+3与y 轴的交点在正半轴,过一、二、三象限,y=x k 的图象在第一、三象限; ②当k <0时,y=kx+3与y 轴的交点在正半轴,过一、二、四象限,y=x k 的图象在第二、四象限.故选C .【高清课堂406878 反比例函数全章复习 例7】【变式2】已知>b a ,且,0,0,0≠+≠≠b a b a 则函数b ax y +=与x b a y +=在同一坐标系中的图象不可能是( ) .【答案】B ;提示:因为从B 的图像上分析,对于直线来说是<0,0a b <,则0a b +<,对于反比例函数来说,0a b +>,所以相互之间是矛盾的,不可能存在这样的图形.4、如图所示,P 是反比例函数k y x =图象上一点,若图中阴影部分的面积是2,求此反比例函数的关系式.【思路点拨】要求函数关系式,必须先求出k 的值,P 点既在函数的图象上又是矩形的顶点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(x ,y ),由图可知,P 点在第二象限,∴ x <0,y >0.∴ 图中阴影部分矩形的长、宽分别为-x 、y .∵ 矩形的面积为2,∴ -xy =2,∴ xy =-2.∵ xy =k ,∴ k =-2.∴ 此反比例函数的关系式是2y x=-. 【总结升华】此类题目,要充分利用过双曲线上任意一点作x 轴、y 轴的垂线所得矩形面积为|k |这一条件,进行坐标、线段、面积间的转换.举一反三: 【变式】如图,过反比例函数)(0x x2y >=的图象上任意两点A 、B ,分别作x 轴的垂线,垂足为''B A 、,连接OA ,OB ,'AA 与OB 的交点为P ,记△AOP 与梯形B B PA ''的面积分别为21S S 、,试比较21S S 与的大小.【答案】解:∵AOP AOA A OP S S S ''∆∆∆=-,OB A OP A PBB S B S S ''''∆∆=-梯形且AOA 112122A A S x y '∆==⨯=,OB 112122B B B S x y '∆==⨯= 类型三、反比例函数与一次函数综合5、已知反比例函数k y x=和一次函数y mx n =+的图象的一个交点坐标是(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定反比例函数和一次函数的表达式.【思路点拨】因为点(-3,4)是反比例函数k y x =与一次函数y mx n =+的图象的一个交点,所以把(-3,4)代入k y x=中即可求出反比例函数的表达式.欲求一次函数y mx n =+的表达式,有两个待定未知数m n ,,已知一个点(-3,4),只需再求一个一次函数图象上的点即可.由已知一次函数图象与x 轴的交点到原点的距离是5,则这个交点坐标为(-5,0)或(5,0),分类讨论即可求得一次函数的解析式.【答案与解析】 解:因为函数k y x =的图象经过点(-3,4), 所以43k =-,所以k =-12. 所以反比例函数的表达式是12y x=-. 由题意可知,一次函数y mx n =+的图象与x 轴的交点坐标为(5,0)或(-5,0),则分两种情况讨论:当直线y mx n =+经过点(-3,4)和(5,0)时,有43,05,m n m n =-+⎧⎨=+⎩ 解得1,25.2m n ⎧=-⎪⎪⎨⎪=⎪⎩ 所以1522y x =-+. 当直线y mx n =+经过点(-3,4)和(-5,0)时, 有43,05,m n m n =-+⎧⎨=-+⎩ 解得2,10.m n =⎧⎨=⎩所以210y x =+.所以所求反比例函数的表达式为12y x =-,一次函数的表达式为1522y x =-+或210y x =+. 【总结升华】本题考查待定系数法求函数解析式,解答本题时要注意分两种情况讨论,不能漏解. 举一反三:【变式】如图所示,A 、B 两点在函数(0)m y x x=>的图象上. (1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.【答案】解:(1)由图象可知,函数(0)m y x x=>的图象经过点A(1,6),可得m =6. 设直线AB 的解析式为y kx b =+.∵ A(1,6),B(6,1)两点在函数y kx b =+的图象上,∴ 6,61,k b k b +=⎧⎨+=⎩ 解得1,7.k b =-⎧⎨=⎩∴ 直线AB 的解析式为7y x =-+.(2)题图中阴影部分(不包括边界)所含格点的个数是3.类型四、反比例函数应用6、(2019•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v ≤120.(1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B 加油站的距离.【答案与解析】解:(1)设函数关系式为v=tk , ∵t=5,v=120,∴k=120×5=600,∴v 与t 的函数关系式为v=t600(5≤t ≤10); (2)①依题意,得3(v+v ﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v ﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A 加油站在甲地和B 加油站之间时,110t ﹣(600﹣90t )=200,解得t=4,此时110t=110×4=440;当B 加油站在甲地和A 加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B 加油站的距离为220或440千米.【总结升华】解决反比例函数与实际问题相结合的问题,要理解问题的实际意义及与之相关的数学知识.反比例函数是解决现实世界反比例关系的有力工具.。
(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)
新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.第一部分:基础知识考点1:反比例函数概念(A )y =xk(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0)例题1、判断下列各式哪些是反比例函数? ① 1y x = ;② 12y x =- ;③2x y =- ;④113y x=- ;⑤3x y =例题2、已知函数()271126m m y m x-+=-,当m 取何值时,它是反比例函数,当堂巩固1、反比例函数()0ky k x=≠的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ) (A )10.(B )5.(C )2.(D )0.1.2、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x =B : 2x y =C :12y x =+D :1y x=-3、某工厂先有原料100吨,这些原材料能用的天数y 与每天平均用的吨数x 之间的函数关系为 。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
学习目标:
通过事例抽象出反比例函数的概念,并理解反比例函数的概念;
能根据条件写出函数解析式。
重点难点:
重点:理解会判断反比例函数。
难点:根据已知条件写出函数解析式。
学习过程:
一、复习引入:
什么叫函数?已学过哪些函数?
(1)一个面积为100m2 矩形,长y(m)与宽x(m)是什么关系?表示为:__________
(2)走完路程是2000km,所用时间t(h)与速度v(km/h)关系是:______________
(3)实数m与n的积为-50,m与n的关系表示为:___________________
二、探究新知:
1.自学教材P2-3思考问题:
(1)这些函数关系式与我们学过的一次函数、正比例函数关系式有什么不同?它有什么特征?
(2)你能归纳出反比例函数的概念吗?
(3)反比例函数的关系式可以是哪些形式?
(4)你觉得反比例函数的自变量x的取值范围是什么?为什么?
2.议一议:下列关系式中的y是x的反比例函数吗?如果是比例系数k是多少?
(1) ; (2) (3) ;
(4) ; (5) ; (6) ;
3.已知函数y=(m+1)x m2-2是反比例函数,则m的值多少?
三、课堂检测:P3练习《课时掌控》
四、课堂小结
反思
1.2反比例函数的图像和性质
学习目标:
1.会用描点的方法画反比例函数的图像;
2.探究理解反比例函数的性质。
重点难点:
重点:反比例函数的图像和性质。
难点:由反比例函数的图像探究出性质。
学习过程:
复习引入:
什么是反比例函数?
一次函数、正比例函数的图像是什么形状?我们通过几步画出来的?
反比例函数的图像是什么样的?函数有什么性质?--------板书课题
探究新知:
1.试一试:画出反比例函数与的图像。
观察讨论:(1)它们的图像有什么相同点和不同点?(形状、位置、与坐标轴相交否、对称性、变化趋势)
(2)比例系数k符号相同的反比例函数图像都有类似的地方吗?为什么?
归纳反比例函数的图像和性质:
(1)形状:双曲线
(2)位置:当k>0时,两支曲线分别位于________象限;k>0时,两支曲线分别位于________
象限。
(3)变化趋势:当k>0时,在每个象限内(为什么?)y 随x 的增大而_______,k>0时,在每个象限内,y 随x 的增大而_______。
(4)与坐标轴的关系:当x 的绝对值无限增大或接近0时,反比例函数图像的两个分支都无限接近_________,但与坐标轴_________。
(5)对称性:反比例函数图像自身既是________对称图形,又是________对称图形,对称轴有____条,对称中心是_______。
三、例题练习
P10-11例题学习 及 书上“练习”
当堂达标:
1.当m=_____时,反比例函数x
m
y 21-= 的图像在一、三象限。
2.已知函数x
m y 1
+=
是反比例函数且图像在二、四象限内,则m=_______。
3.在反比例函数x
m y 1
+= 的每一条曲线上,y 都随x 的增大而减小,则m______。
4.已知函数5
2
)1(-+=m
x m y 是反比例函数且图像在二、四象限,则m________。
5.已知点A(x 1,y 1), B(x 2, y 1), C(x 3,y 3) 在反比例函数x
y 5
-= 的图像上,且x 1<x 2<0< x 3, 则y 1,y 2 ,y 3的大小关系是__________。
6.如果点A 是反比例函数x
y 3
=
图像上的一点,AB ⊥x 轴于点B ,则△OAB 的面积为_________。
课堂小结
通过本节课,你学到了哪些知识和思想方法?有什么需要注意的地方? 你能归纳反比例函数德性质吗? 作业
反思
1.3反比例函数的应用 学习目标:
1.能灵活列出反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
重点难点:
重点:从实际问题中建构反比例函数模型的方法。
难点:由条件出发找出变量间的关系,建立函数模型。
学习过程:
创设情景,引入新课
某校科技小组在一次野外考察途中遇到一片十几米宽的烂泥湿地,为了安全、迅速地通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利通过了这片湿地。
请你解释他们这样做的道理。
当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?
如果人和木板对湿地的压力合计600N,那么
①用含S的代数式表示p,p是S的反比例函数吗?为什么?
②当木板面积为0.2m2时,压强是多少?
③如果要求压强不超过6000Pa,木板面积至少要多大?
④在直角坐标系中,作出相应的函数图像。
自学合作完成书上15-16页“例题”及“练习”。
补充练习: 某公园内有一个蓄水池12m2,隔段时间就将水全部放掉清理水池,如果放水时每小时排出x(m3)的水,那么经过y(h)可以把水放完。
写出y与x的函数关系式;
小结。