2018届九年级数学上学期期末教学质量检测试题新人教版
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
2018届九年级数学上学期期末教学质量监测试题新人教版
安徽省××市2018届九年级数学上学期期末教学质量监测试题考试时间:120分钟满分:150分一、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题意的,请将正确答案的字母代号填在答题卷相应位置)1.tan45°等于A .1B .12C2.下列函数属于二次函数的是A .y =2x -1B .y =x 2+2x -3C .y =x21+3D .y =x 53.抛物线y =3x 2-3向右平移3个单位长度,得到新抛物线的表达式为A .y =3(x -3)2-3B .y =3x 2C .y =3(x +3)2-2D .y =3x 2-6 4.在Rt △ABC 中,∠C =90°,BC =,AC=,则∠A =A .90°B .60°C .45°D .30°5.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-x1图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 16.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE 与S △CDE 的比是A .1:3B .1:2C .1:4D .1:97.下表是一组二次函数y =x 2+3x -5的自变量x 与函数值y 的对应值:8.二次函数y =ax 2+bx +c (a ≠0)图象如图,下列结论中正确的是A .abc >0B .2a -b =0C .2a +b =0D .a -b +c >09.如图,在x 轴的正半轴上依次截取OA 1=A 1A 2=A 2A 3=…=A 2017A 2018,过点A 1、A 2、A 3、…、A 2017、A 2018分别作x 轴的垂线与反比例函数y =-x2(x ≠0)的图象相交于点P 1、P 2、P 3、…、P 2017、P 2018,得直角三角形OP 1A 1、A 1P 2A 2、A 2P 3A 3、…、A 2017P 2018A 2018,并设其面积分别为S 1、S 2、S 3,…、S 2017、S 2018,则S 2018的值为A .12018B .12017C .11009D .2201710.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s的速度沿着边BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动,设P 点运动时间为x (s),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是A .B .C .D .4案直接填在答题卷中的横线上)11.C 是靠近点B 的黄金分割点,若AB =10cm ,则AC =________ cm 。
2018-2019人教版九年级数学上册期末测试题及答案
2018-2019年人教版九年级数学上册期末考试试卷一、选择题(每小题3分,共30分) 1.点M (1,-2)关于原点对应的点的坐标是()A .(-1,2)B .(1,2)C .(-1,-2)D .(-2,1) 2.下列图形中,是中心对称图形的是( )A .B .C .D .3.将函数231y x =-+的图象向右平移2个单位得到的新图象的函数解析式为( ) A.()2321y x =--+ B.()2321y x =-++C.232y x =-+D.232y x =--4.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( ) A.80° B.70° C.60° D.50°5.下列事件中,必然发生的事件是( )A .明天会下雨B .小明数学考试得99分C .今天是星期一,明天就是星期二D .明年有370天6.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为()A .-1B . 0C . 1D .-2 7.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )8.如果关于x 的方程(m ﹣3)7-m 2x ﹣x+3=0是关于x 的一元二次方程,那么m的值为( ) A .±3B .3C .﹣3D .都不对9.如果一个扇形的半径为1,弧长是3π,那么此扇形的圆心角的大小为() A . 300B . 450C . 600D . 90010.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是() A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 二、填空题(每小题3分,共24分)11.方程 x 2 = x 的解是______________________12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 13.若实数a 、b 满足11122+-+-=a a ab ,则a+b 的值为________.图7图614.圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)15.若关于x 方程kx 2–6x+1=0有两个实数根,则k 的取值范围是 .16.如图6,在Rt △ABC 中,∠C=90°,CA=CB=2。
〖汇总3套试卷〗武汉市2018年九年级上学期数学期末学业质量监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .22740x x --=化为2781416x ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为()2+4=25x D .23-420x x -=化为221039x ⎛⎫-= ⎪⎝⎭ 【答案】C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案. 【详解】A 、由原方程,得22990x x --=,等式的两边同时加上一次项系数2的一半的平方1,得()21100x -=; 故本选项正确;B 、由原方程,得22740x x --=,等式的两边同时加上一次项系数−7的一半的平方,得,2781416x ⎛⎫-= ⎪⎝⎭,故本选项正确;C 、由原方程,得2890x x ++=,等式的两边同时加上一次项系数8的一半的平方16,得(x +4)2=7; 故本选项错误;D 、由原方程,得3x 2−4x =2, 化二次项系数为1,得x 2−43x =23等式的两边同时加上一次项系数−43的一半的平方169,得221039x ⎛⎫-= ⎪⎝⎭;故本选项正确. 故选:C . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.在ABC ∆中,90C ∠=︒,若cos B =,则sin A 的值为( )A .3 B.3 C .32D .12【答案】C【分析】根据特殊角的三角函数值求出∠B ,再求∠A ,即可求解. 【详解】在ABC ∆中,90C ∠=︒,若3cos B =,则∠B=30° 故∠A=60°,所以sinA=3 故选:C 【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.3.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .32【答案】A【解析】∵四边形ABCD 是平行四边形, ∴AB//CD ,AB=CD ,AD//BC , ∴△BEF ∽△CDF ,△BEF ∽△AED ,∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, , ∵BE :AB=2:3,AE=AB+BE , ∴BE :CD=2:3,BE :AE=2:5,∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, , ∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21, ∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30, 故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键. 4.把分式2aa b-中的a 、b 都扩大3倍,则分式的值( ) A .扩大3倍 B .扩大6倍C .不变D .缩小3倍【答案】C【分析】依据分式的基本性质进行计算即可. 【详解】解:∵a 、b 都扩大3倍,∴()3262333a a aa b a b a b⨯==---∴分式的值不变. 故选:C . 【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.5.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3,…,A n 分别是正方形的中心,则这n 个正方形重叠的面积之和是( )A .nB .n-1C .4nD .4(n-1)【答案】B【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n-1)个阴影部分的和. 【详解】解:如图示,由分别过点A 1、A 2、A 3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的14,即阴影部分的面积是1414⨯=,n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-. 故选:B . 【点睛】此题考查了正方形的性质,解决本题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B【解析】解:第一个图是轴对称图形,又是中心对称图形; 第二个图是轴对称图形,不是中心对称图形; 第三个图是轴对称图形,又是中心对称图形; 第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B . 7.如图所示几何体的左视图正确的是( )A .B .C .D .【答案】A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可. 【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线. 故选A . 【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图8.如图,在正方形网格中,线段A′B′是线段AB 绕某点逆时针旋转角α得到的,点A′与A 对应,则角α的大小为( )A.30°B.60°C.90°D.120°【答案】C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.9.如图坐标系中,O(0,0),A(3,33),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=65,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:8【答案】B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=3OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣65=245,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A 作AF ⊥OB 于F ,如图所示:∵A (1,3),B (6,0), ∴AF =3OF =1,OB =6, ∴BF =1, ∴OF =BF , ∴AO =AB , ∵tan ∠AOB =3AFOF= ∴∠AOB =60°,∴△AOB 是等边三角形, ∴∠AOB =∠ABO =60°,∵将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处, ∴∠CED =∠OAB =60°,∵∠OCE +∠COE =∠OCE +60°=∠CED +∠DEB=60°+∠DEB , ∴∠OCE =∠DEB , ∴△CEO ∽△EDB , ∴OE BD =CE ED =COBE, ∵OE =65, ∴BE =OB ﹣OE =6﹣65=245, 设CE =a ,则CA =a ,CO =6﹣a ,ED =b ,则AD =b ,DB =6﹣b ,则656a b b =-,6245a ab -=, ∴6b =10a ﹣5ab ①,24a =10b ﹣5ab ②, ②﹣①得:24a ﹣6b =10b ﹣10a , ∴23a b =, 即AC :AD =2:1.故选:B . 【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB 是等边三角形是解题的关键.10.如图所示的几何体的左视图为( )A .B .C .D .【答案】D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D 选项符合题意, 故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B 、C.11.如图,已知AE 是O 的直径,40B ∠=︒,则CAE ∠的度数为( )A .40︒B .50︒C .60︒D .70︒【答案】B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论. 【详解】∵在⊙O 中,∠E 与∠B 所对的弧是AC , ∴ ∠E=∠B=40°, ∵AE 是⊙O 的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.12.对于二次函数y=-12x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少B.当x=2时,y有最大值-1 C.图像的顶点坐标为(2,-5)D.图像与x轴有两个交点【答案】B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-12x2+2x-3的图象开口向下,且以2x=为对称轴的抛物线,A. 当x>2,y随x的增大而减少,该选项错误;B. 当x=2时,y有最大值-1,该选项正确;C. 图像的顶点坐标为(2,-1),该选项错误;D. 图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.二、填空题(本题包括8个小题)13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.【答案】4π【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=2901360π⨯=4π.故答案为4π.14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)【答案】3π【解析】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n rSπ=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360Sππ==.考点:扇形面积的计算15.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.【答案】3<r≤1或r=125.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=125,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=125.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.16.连掷两次骰子,它们的点数都是4的概率是__________.【答案】1 36【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得: 1 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况, ∴它们的点数都是4的概率是:136, 故答案为:136. 【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,在平面直角坐标系中,111222333,,,n n n ABC A B C A B C A B C A B C ∆∆∆∆∆都是等腰直角三角形,点123,,,n B B B B B 都在x 轴上,点1B 与原点重合,点123,,,A C C C n C 都在直线14:33l y x =+上,点C 在y 轴上,1122//////////n n AB A B A B A B y 轴, 1122n ////////C //n AC AC A C A x 轴,若点A 的横坐标为﹣1,则点n C 的纵坐标是_____.【答案】1232n n --【解析】由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =,求出1C 的坐标,再设2(,2)C n n =-,则14233n n -=+,解得5n =,故求出2C 的坐标,同理可求出3C 、4C 的坐标,根据规律 即可得到n C 的纵坐标.【详解】解:由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =, ∴1(2,2)C , 设2(,2)C n n =-,则14233n n -=+,解得5n =, ∴2(5,3)C ,设3(,5)C a a -,则14533a a -=+,解得192a =, ∴3199(,)22C ,同法可得46527(,)44C ,…,n C 的纵坐标为1232n n --, 故答案为1232n n --. 【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出1C 、2C 、3C ,再发现规律即可求解. 18.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC=3m ,则坡面AB 的长度是 .【答案】6米.【解析】试题分析:在Rt △ABC 中,已知坡面AB 的坡比以及铅直高度BC 的值,通过解直角三角形即可求出斜面AB 的长.试题解析:在Rt △ABC 中,BC=3米,tanA=13∴3米,∴22333()6+=米.考点:解直角三角形的应用.三、解答题(本题包括8个小题)19.如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.(3)结合图象直接写出:当1y >2y >0时,x 的取值范围.【答案】(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1. 【解析】(1)根据△AOB 的面积可求AB ,得A 点坐标.从而易求两个函数的解析式;(2)求出C 点坐标,在△ABC 中运用三角函数可求∠ACO 的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x 的值即为取值范围.【详解】(1)∵△AOB 的面积为1,并且点A 在第一象限,∴k=2,∴y 1=2x; ∵点A 的横坐标为1,∴A(1,2).把A(1,2)代入y 2=ax+1得,a=1.∴y 2=x+1.(2)令y 2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y 1>y 2>0时,0<x<1.在第三象限,当y 1>y 2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.20.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.【答案】(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m +9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.21.如图①,在ABC ∆与ADE ∆中,AB AC =,AD AE =.(1)BD 与CE 的数量关系是:BD ______CE .(2)把图①中的ABC ∆绕点A 旋转一定的角度,得到如图②所示的图形.①求证:BD CE =.②若延长DB 交EC 于点F ,则DFE ∠与DAE ∠的数量关系是什么?并说明理由.(3)若8AD =,5AB =,把图①中的ABC ∆绕点A 顺时针旋转()0360αα︒<︒,直接写出BD 长度的取值范围.【答案】(1)=;(2)①详见解析;②DFE DAE ∠=∠,理由详见解析;(3)313BD .【分析】(1)根据线段的和差定义即可解决问题;(2)①②只要证明DAB EAC ∆∆≌,即可解决问题;(3)由三角形的三边关系即可解决问题【详解】解:(1)=(2)①证明:由旋转的性质,得DAE BAC ∠=∠.∴DAE BAE BAC BAE ∠+∠=∠+∠,即DAB EAC ∠=∠.∵AB AC =,AD AE =,∴DAB EAC ∆∆≌.∴BD CE =.②DFE DAE ∠=∠.理由:∵DAB EAC ∆∆≌,∴ADB AEC ∠=∠.∵AOD EOF ∠=∠,∴180180ADB AOD AEC EOF ︒-∠-∠=︒-∠-∠,∴DFE DAE ∠=∠.(3)313BD .【点睛】本题考查了三角形全等的证明和三角形三边之间的关系,注意三角形证全等的几种方法要熟练掌握 22.如图,AB 为半圆O 的直径,点C 在半圆上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且∠D =∠BAC(1)求证:AD 是半圆O 的切线;(2)求证:△ABC ∽△DOA ;(3)若BC =2,CE 2,求AD 的长.【答案】(1)见解析;(2)见解析;(3)6AD =【分析】(1)要证AD 是半圆O 的切线只要证明∠DAO=90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC 、AB 、AO 的长,由第(2)问的结论△ABC ∽△DOA ,根据相似三角形的性质:对应边成比例可得到AD 的长.【详解】(1)证明:∵AB 为直径,∴∠ACB=90°,又∵OD ∥BC ,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC ,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD ⊥OA ,∴AD 是半圆O 的切线;(2)证明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC ,∴△ABC ∽△DOA ;(3)解:∵O 为AB 中点,OD ∥BC ,∴OE 是△ABC 的中位线,则E 为AC 中点,∴AC=2CE ,∵BC=2,,∴AC=∴==∴OA=12 由(2)得:△ABC ∽△DOA , ∴=AC BC AD OA,∴AD =∴AD =【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.同时考查了相似三角形的判定与性质,难度适中.23.如图,抛物线y =x 2+bx +c 过点A(3,0),B(1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能,请直接写出所有符合条件的点P 坐标;若不能,请说明理由.【答案】(1)y =x 2-4x +1;(2)点P 在运动的过程中,线段PD 长度的最大值为94;(1)能,点P 的坐标为:(1,0)或(2,-1).【分析】(1)把点A 、B 的坐标代入抛物线解析式,解方程组得到b 、c 的值,即可得解;(2)求出点C 的坐标,再利用待定系数法求出直线AC 的解析式,再根据抛物线解析式设出点P 的坐标,然后表示出PD 的长度,再根据二次函数的最值问题解答;(1)分情况讨论①∠APD 是直角时,点P 与点B 重合,②求出抛物线顶点坐标,然后判断出点P 为在抛物线顶点时,∠PAD 是直角,分别写出点P 的坐标即可;【详解】(1)把点A(1,0)和点B(1,0)代入抛物线y =x 2+bx +c ,得:93010b c b c ++=⎧⎨++=⎩ 解得43b c =-⎧⎨=⎩∴y =x 2-4x +1.(2)把x =0代入y =x 2-4x +1,得y =1.∴C(0,1).又∵A(1,0),设直线AC 的解析式为:y =kx +m ,把点A ,C 的坐标代入得:31m k =⎧⎨=-⎩ ∴直线AC 的解析式为:y =-x +1. PD =-x +1- (x 2-4x +1)=-x 2+1x =23-2x -()+94. ∵0<x<1,∴x =32时,PD 最大为94.即点P在运动的过程中,线段PD长度的最大值为94.(1)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+1=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(1,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;【点睛】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,直角三角形存在性问题时需要分类讨论.24.某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
人教版2018届九年级数学上学期期末试题(1)
安徽省六安市2018届九年级数学上学期期末试题满分:150分时间:120分钟一、选择题(每题4分,共40分)1.如图所示的几何体,其俯视图是()A.B. C. D.2.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.﹣3 B.3 C.﹣1 D.13.对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象的开口向下 B.当x=﹣1时,取得最小值为y=﹣8C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣14 . 如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35°C.34° D.44°第4题图第6题图5.口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是()A.从口袋中拿一个球恰为红球 B.从口袋中拿出2个球都是白球C.拿出6个球中至少有一个球是红球 D.从口袋中拿出的球恰为3红2白6. 如上图,在△ABC中,D在AB上,E在AC上,F在BC上,DE∥BC,EF∥AB,则下列结论一定正确的是()A. B. C. D.7.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形8.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图象可能是( )A .B . C.D .9.如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是上一点,BD 交AC 于点E ,若BC=4,AD=,则AE 的长是( ) A .1 B .1.2 C .2 D .3第9题图 第11题图 第12题图 10.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( )A.B.C.D. 6 第10题图 第14题图 二、填空题(每题5分,共20分) 11. 如图,点A 在反比例函数的图象上,AB 垂直于x 轴,若S △AOB =4,则K= 。
2018届九年级数学上学期期末考试试题(含解析)新人教版
说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置1.一元二次方程x 2+4x=0的一根为x=0,另一根为A.x=2B.x=-2C.x=4D.x=-4【答案】D【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12D.-12 【答案】B 【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A 13B 16C 19D 23【答案】A【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A 23B 49C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是x 的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于x 轴对称 B.与原四边形关于原点位似,相似比为1:2C.与原四边形关于原点中心对称D.与原四边形关于原点位似,相似比为2:1【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x 满足的方程是A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=1【答案】A【解析】(1+10%)(1-x)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的。
【最新】2018-2019学年(人教版)九年级数学上册期末测试卷(含答案)
的度数为(
)
A . 20°
B. 25°
C . 30°
D. 40°
10.二次函数 y=a( x+m)2+n 的图象如图所示,则一次函数 y=mx+n 的图象经过(
)
A .第一、二、三象限 C .第二、三、四象限
B .第一、二、四象限 D .第一、三、四象限
第 9 题图
第 10 题图
二、填空题(共 6 个小题,每小题 4 分,满分 24 分)
A.1
B.2
C.3
D.4
9.如图,过⊙ O 上一点 C 作⊙ O 的切线,交直径 AB 的延长线于点 D,若∠ D=40 °,则∠ A
的度数为(
)
A . 20°
B. 25°
C . 30°
D. 40°
10.二次函数 y=a( x+m)2+n 的图象如图所示,则一次函数 y=mx+n 的图象经过(
)
A .第一、二、三象限 C .第二、三、四象限
k
的图象上,观察图象可知,当
x
x< 1 时, y
2
15.如图,二次函数 y=ax +bx+c 的图象经过点( — 1,0)、( 3,0)和( 0, 2),当 x=2 时,
y 的值为
.
A.1
B.2
C.3
D.4
9.如图,过⊙ O 上一点 C 作⊙ O 的切线,交直径 AB 的延长线于点 D,若∠ D=40 °,则∠ A
k
的图象上,观察图象可知,当
x
x< 1 时, y
2
15.如图,二次函数 y=ax +bx+c 的图象经过点( — 1,0)、( 3,0)和( 0, 2),当 x=2 时,
(最新整理)2018年1月新人教版上学期九年级数学期末试卷(含答案)
。
P
O
11。 在半径为 6 的圆中,60°的圆心角所对的弧长等于
B
。
12. 在一个不透明的盒子中装有 2 个白球,n 个黄球,它们除颜色不同外,其余均相同.若从
九年级数学(上)期末测试 4—2
2018 年 1 月新人教版上学期九年级数学期末试卷(含答案)
中随机摸出一个球,它是白球的概率为 2 ,则 n=___________。
九年级数学(上)期末测试 4—1
一、选择题
2018 年 1 月新人教版上学期九年级数学期末试卷(含答案)
九年级数学期末试题
1.
若方程
x2
3x
1
0 的两根为
x1 、
x2
,则
x1 x2 x1 x2
的值为(
)
A.3 B.-3
C. 1
3
D. 1
3
2.二次函数 y (x 1)2 2 的最小值是 (
)
19、(6 分)如图是一个半圆形桥洞截面示意图,圆心为 O,直径 AB 是河底线,弦 CD 是水位线,
CD∥AB,且 AB = 26m,OE⊥CD 于点 E.水位正常时测得 OE∶CD=5∶24
(1)求 CD 的长;
(2)现汛期来临,水面要以每小时 4 m 的速度上
升,则经过
多长时间桥洞会刚刚被灌满?
A、2
B、—2
C、-1
D、1
3。 关于 x 的一元二次方程(m-1)x2-2mx+m=0 有两个实数根,那么 m 的取值范围是
()
A。 m〉0
B. m≥0
C。 m>0 且 m≠1
D. m≥0,且 m≠1
4. 下图中不是中心对称图形的是( )
2018届九年级数学上学期期末试题新人教版
山东省滨州市惠民县2018届九年级数学上学期期末试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0的一个根是0,则m 的值是 A .1 B .2 C .1或2 D .无解 2.若把方程0462=--x x 的左边配成完全平方的形式,则正确的变形是A .2(3)5x -= B .2(3)13x -= C .2(3)9x -= D .2(3)5x +=3.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是A .21B .32 C .61D .314.二次函数2)3(22+-=x y 图象向左平移6个单位,再向下平移2个单位后,所得图象的函数表达式是A . x x y 1222-= B . 12622++-=x x y C . 181222++=x x y D .18622+--=x x y 5.三通管的立体图如图所示,则这个几何体的主视图是A. B.C. D.6.下列命题中,假命题的是A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.所有的等边三角形都相似D.位似图形一定有位似中心 7.如图,边长为2的菱形ABCD 绕点A 旋转,当B 、C 两点恰好 落在扇形AEF 的弧EF 上时,弧BC 的长度等于 A.2π B. 3π C.43π D.32π 8.如图,若果∠1=∠2,那么添加下列任何一个条件:(1)AB AD =AC AE ,(2)AB AD =BC DE,(3)∠B =∠D ,(4)∠C =∠AED , 其中能判定△ABC ∽△ADE 的个数为A.1B.2C.3D.4 9.如图,点D 是△ABC 的边BC 上一点,AB=8,AD=4, ∠DAC=∠B .如果△ABD 的面积为30,那么△ACD 的面积为A .5B .7.5C .10D .1510.若反比例函数y=xk 与一次函数y =x-3的图象没有交点, 则k 的值可以是 A .1B .-1C .-2D .-311.若点),(11y x A 、),(22y x B 都在抛物线1622+--=x x y 上,且x 1<x 2<0, 则y 1与y 2的大小关系为(第8题图)(第9题图) (第7题图)A.y 1<y 2B.y 1>y 2C.y 1≠y 2D.不能判定 12.若反比例函数xy 6=与一次函数b x y +=的图象交于点),(n m A ,利用图象的对称性可知它们的另一个交点是A.),(m nB.),(m n --C.),(n m --D.),(n m -第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.半径等于8的圆中,垂直平分半径的弦长为 . 14.二次函数322--=x x y 的图象如图所示,当y <0时,自变量x 的取值范围是 . 15.如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得DC ∥AB , 则∠CAB 的大小为 .16. 计算:tan60°cos30°-sin30°tan45°= . 17.点)(11y x ,,)(22y x ,,)(33y x ,都在2y x=的图象上,若3210x x x <<<,则1y ,2y ,3y 的大小关系(用“<”连接)是 .18. 如图,MN 是⊙O 的直径,OM=2,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点, P 是直径MN 上一动点,则PA+PB 的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(每小题5分,本大题满分10分) (1)用配方法解方程:091232=+-x x .(第14题图)(第15题图)(2)用公式法解方程:04932=+-x x . 20.(本大题满分8分)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过,在一条笔直公路BD 的上方A 处有一探测仪,如平面几何图,,第一次探测到一辆轿车从B 点匀速向D 点行驶,测得秒后到达C 点,测得,结果精确到(1)求B,C 的距离.(2)通过计算,判断此轿车是否超速. 21.(本大题满分12分)已知二次函数4822-+-=x x y ,完成下列各题:(1)将函数关系式用配方法化为 y=a(x+h)2+k 形式,并写出它的顶点坐标、 对称轴.(2)若它的图象与x 轴交于A 、B 两点,顶点为C,求△ABC 的面积. 22.(本大题满分10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点 的直线互相垂直,垂足为D , 且AC 平分∠DAB .(1)求证:DC 为⊙O 的切线; (2)若⊙O 的半径为3,AD=4,求CD 的长.23.(本大题满分10分)如图,已知直线m x y +=1与x 轴、y 轴分别交于点A 、B ,与双曲线xky =2(x<0)分别交于点C (-1,2)、D (a ,1).(1)分别求出直线及双曲线的解析式;(2)利用图象直接写出,当x 在什么范围内取值时,21y y >. (3)请把直线m x y +=1上21y y <时的部分用黑色笔描粗一些.24. (本大题满分10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?(第23题图)xyD C BAO mx y +=1xk y =22017—2018学年第一学期期末学业水平测试九年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,满分36分)二、填空题(本大题共6个小题,每小题4分,满分24分)13. 14.-1<x <3; 15.70°;16.1; 17.213y y y <<; 18.三、解答题(本大题6个小题,共60分) 19.(每小题5分,满分10分)解:(1)两边同除以3,得0342=+-x x . ……………………………1分移项,得342-=-x x .配方,得2222324+-=+-x x , …………………………2分 1)2(2=-x . …………………………… 3分∵ 12±=-x , …………………………4分∴原方程的解为x 1=3,x 2=1. ………………………………5分 (2)∵ a=3,b=-9,c=4. ………………………………1分∴⊿= b ²-4a c =(-9)²-4×3×4=33>0, ……………………2分 ∴方程有两个不相等的实数根……………………………4分=63323± ,即633231+=x ,633232-=x .…………………5分 20. (本大题满分8分) 解:在中,,,即,在中,,,即, ,则的距离为20m ; …………………………………6分 根据题意得:,则此轿车没有超速. …………………………………8分 21.(本大题满分12分) 解:(1)y=-2x 2+8x-4=-2(x 2-4x)-4 ……………………………1分 =-2(x 2-4x+4-4)-4 ……………………………3分 =-2(x-2)2+4. ……………………………4分 所以,抛物线的顶点坐标为(2,4),对称轴为直线x=2. ………………6分 (2)令y=0得-2(x-2)2+4=0,(x-2)2=2, ………………………7分 所以x-2=2±,所以x 1=22+,x 2=22-. …………………………9分所以与x 轴的交点坐标为A (22+,0),B(22-,0). ……10分 ∴S △ABC =21×[(22+)-(22-)] ×4=24. …………………12分 22. (本大题满分10分)(1)证明:连接OC∵OA=OC,∴∠OAC=∠OCA, ∵AC 平分∠DAB,∴∠DAC=∠OAC, ∴∠DAC=∠OCA,∴OC ∥AD, ∵AD ⊥,CD , ∴OC ⊥CD,∴直线CD 与⊙O 相切于点C ; …………………5分 (2)解:连接BC ,则∠ACB=90°. ∵∠DAC=∠OAC ,∠ADC=∠ACB=90°, ∴△ADC ∽△ACB ,AC 2=AD •AB ,∵⊙O 的半径为3,AD=4,∴AB=6, ∴AC=62,∴CD=22 ……………………………………10分 23.(本大题满分10分)解:(1)把点C (-1,2)坐标代入m x y +=1,得m=3,所以3+=x y .……2分把点C (-1,2)坐标代入xk y =2,得k= —2,所以x y 2-=.……………3分(2)把点D (a ,1)坐标代入xy 2-=,所以a=—2.………………………4分利用图象可知,当12-<<-x 时,21y y >. …………………………7分 (3)略. ……………………10分 24.(本大题满分10分)解:设第二个月的降价应是x 元,根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )] -50×800=9000………………5分整理,得x 2-20x+100=0,解这个方程得x 1=x 2=10, ………………8分 当x=10时,80-x=70>50,符合题意.答:第二个月的单价应是70元. ………………10分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2018-2019人教版新课标初中数学九年级上册期末检测卷含答案
人教版数学九年级上册期末检测卷 时间:100分钟 满分:120分一、选择题(每小题3分,共30分) 1. 下列说法正确的是( )A. 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球B. 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C. 某地发行一种福利彩票,中奖概率是千分之一,那么买这种彩票1 000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 2. 用配方法解方程x 2+1=8x ,变形后的结果正确的是( ) A. (x +4)2=15 B. (x +4)2=17 C. (x -4)2=15 D. (x -4)2=173. 关于x 的一元二次方程ax 2-x +1=0有实数根,则a 的取值范围是( ) A. a ≤14且a ≠0 B. a ≤14C. a ≥-14且a ≠0D. a ≥-144. 把抛物线y =-12x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )A. y =-12(x +1)2+1B. y =-12(x +1)2-1C. y =-12(x -1)2+1D. y =-12(x -1)2-15. 下列图形:从中任取一个是中心对称图形的概率是( )A.14B.12C.34 D. 1 6. 若正六边形的半径长为4,则它的边长等于( ) A. 4 B. 2 C. 23 D. 437. 如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA ′B ′,那么点A ′ 的坐标为( )A. (2,23) B. (-2,4) C. (-2,22) D. (-2,23)第7题 第8题8. 如图,从一块直径为24 cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上. 将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A. 12 cmB. 6 cmC. 32 cm D. 23 cm9. 如图,PA ,PB ,CD 分别切⊙O 于点A ,B ,E ,CD 分别交PA ,PB 于点C ,D .下列关系:①PA =PB ;②∠ACO =∠DCO ;③∠BOE 和∠BDE 互补;④△PCD 的周长是线段PB 长度的2倍. 则其中说法正确的有( )A. 1个B. 2个C. 3个D. 4个第9题第10题10. 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b2<0;②2a-b=0;③a+b+c<0;④点(x1,y1),(x2,y2)在抛物线上,若x1<x2,则y1<y2.正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(每小题3分,共24分)11. 已知抛物线y=x2-3x+m与x轴只有一个公共点,则m= .12. 在国家政策的宏观调控下,某市的商品房成交价由去年10月份的7 000元/m2下降到12月份的5 670元/m2,则11、12两月平均每月降价的百分率是 .13. 常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB的长度为mm.14. 有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为 .15. 抛物线y=x2先向右平移2个单位长度,再向上平移3个单位长度,此时抛物线的解析式是 .16. 已知一元二次方程2x 2-5x +1=0的两根为m ,n ,则m 2+n 2= . 17. 如图,在△ABC 中,∠C =90°,AC =BC =2,将△ABC 绕点A 顺时针方向旋转60°到△A ′B ′C ′ 的位置,连接C ′B ,则C ′B = .第17题 第18题18. 如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q .连接AC .关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题(共66分) 19. (8分)解方程:(1)3x 2+2x -5=0; (2)(1-2x )2=x 2-6x +9.20. (8分)一幅长20 cm ,宽12 cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2,设竖彩条的宽度为x cm ,图案中三条彩条所占面积为y cm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.21. (8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 ; (2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.22. (10分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,5),B (-2,1),C (-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标; (2)若△ABC 和△A 2B 2C 2关于原点O 成中心对称图形,写出△A 2B 2C 2各顶点的坐标; (3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,写出△A 3B 3C 3的各顶点的坐标.23. (10分)如图,CD是⊙O的弦,AB是直径,且CD∥AB.连接AC,AD,OD,其中AC=CD.过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π≈3.1,2≈1.4,3≈1.7).24. (10分)给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE. 已知∠DCB =30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.25.(12分)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y =-x 2+4x 刻画,斜坡可以用一次函数y =12x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O ,A 得△POA ,求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.参考答案1. D2. C3. A4. B5. C6. A7. D8. C9. D 10. C 11. 94 12. 10% 13. 8 14.716 15.y =(x -2)2+3 16.21417.3-118.②③ 【解析】连接OD ,∵DG 是⊙O 的切线,∴∠GDO =90°.∴∠GDP +∠ADO =90°.在Rt △APE 中,∠OAD +∠APE =90°.∵AO =DO ,∴∠OAD =∠ADO .∴∠APE =∠GPD =∠GDP .∴GP =GD .∴结论②正确. ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAQ +∠AQC =90°.∵点C 是AD ︵的中点,∴∠CAQ =∠ABC . 又∵∠ABC +∠BCE =90°,∴∠AQC =∠BCE . ∴PC =PQ . ∵∠ACP +∠BCE =90°,∠AQC+∠CAP =90°,∴∠CAP =∠ACP . ∴AP =CP . ∴AP =CP =PQ . ∴点P 是△ACQ 的外心. ∴结论③正确. 由于不能确定BD ︵与CD ︵的大小关系,因而不能确定∠BAD 与∠ABC 的关系. ∴结论①不一定正确. 故②③正确.19.解:(1)x 1=1,x 2=-53.(2)x 1=43,x 2=-2.20. 解:(1)根据题意可知:横彩条的宽度为32x cm. ∴y =20×32x +2×12·x -2×32x ·x .整理,得y =-3x 2+54x .(2)根据题意可知:y =25×20×12=96. ∴96=-3x 2+54x . 整理,得x 2-18x +32=0.解得x 1=2,x 2=16(舍去). ∴32x =3. 答:横彩条的宽度为3 cm ,竖彩条的宽度为2 cm.21. 解:(1)12(2)用树状图表示所有可能的情形如下:一共有12种情形,两名教师来自同一学校的情形有4种,于是2名教师来自同一学校的概率是412=13. 22.解:(1)如图所示,△A 1B 1C 1为所作三角形,A 1(2,2),B 1(3,-2).(2)A 2(3,-5),B 2(2,-1),C 2(1,-3).(3)如图所示,△A 3B 3C 3为所作三角形,A 3(5,3),B 3(1,2),C 3(3,1).23. 解:(1)证明:∵CD ∥AB ,∴∠CDA =∠BAD . 又∵AO =OD ,∴∠ADO =∠BAD . ∴∠ADO =∠CDA ,即DA 平分∠CDO .(2)连接BD ,∵AB 是直径,∴∠ADB =90°. ∵AC =CD ,∴∠CAD =∠CDA . 又∵CD ∥AB ,∴∠CDA =∠BAD . ∴∠CDA =∠BAD =∠CAD . ∴AC ︵=DC ︵=BD ︵. 又∵∠AOB =180°,∴∠DOB =60°. ∵OD =OB ,∴△DOB 是等边三角形. ∴BD =OB =12AB =6. ∵AC ︵=BD ︵,∴AC =BD =6. ∵BE 切⊙O 于B ,∴BE ⊥AB .∴∠DBE =∠ABE -∠ABD =30°. ∵CD ∥AB ,∴BE ⊥CE . ∴DE =12BD =3,BE =BD 2-DE 2=62-32=3 3. ∴l BD ︵=60π×6180=2π. ∴图中阴影部分的周长之和为2π+6+2π+3+33=4π+9+33≈4×3.1+9+3×1.7=26.5.24. 解:(1)正方形、矩形、直角梯形(任写两个).(2)①证明:∵△ABC ≌△DBE ,∴BC =BE . ∵∠CBE =60°,∴△BCE 是等边三角形. ②证明:∵△ABC ≌△DBE ,∴AC =DE . ∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°. ∵∠DCB =30°,∴∠DCE=90°. ∴在Rt △DCE 中,DC 2+CE 2=DE 2. ∴DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形. 25. 解:(1)由题意,得y =-x 2+4x =-(x -2)2+4,故二次函数图象的最高点P 的坐标为(2,4).(2)解方程-x 2+4x =12x ,得x 1=0,x 2=72. 当x =72时,y =12×72=74. ∴点A 的坐标为(72,74). (3)作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B . S △POA =S △POQ +S 梯形PQBA -S △BOA =12×2×4+12×(74+4)×(72-2)-12×72×74=4+6916-4916=214.教习网-免费精品课件试卷任意下载教习网-课件试卷试题含解析免费下载。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
2018人教版九年级数学上册期末检测试卷(有答案)
期末检测卷时间:120分钟满分:120分班级: ___________ 姓名: ______________ 得分:______________一、选择题(每小题3分,共30分)1 .下列一元二次方程中有两个不相等的实数根的方程是()2 2A . (x—1)= 0 B. x + 2x—19 = Q*.:]C. x2+ 4= 0 D . x2+ x+ 1 = 0将△ ABC绕点C 顺时针方向旋转40 °得厶A'B'C•若AC丄A'B',则/ A等于(B. 60°C. 70°D. 80°9 .如图,在?ABCD中,AE丄BC于E , AE= EB = EC = a,且a是一元二次方程x2+ 2x—3= 0的根,则?ABCD的周长为()A . 4+ 2 .2B . 12+ 6.2C . 2+ 2 .2D . 2+ 2或12+ 6 ,210. 二次函数y= ax2+ bx+ c(a^0的部分图象如图所示,图象过点(一1, 0),对称轴为直线x= 2,下列F列四张扑克牌图案中,属于中心对称的是([来源:]♦4 *♦♦ *5A3 .在同一平面直角坐标系内,将函数得到图象的顶点坐标是()B Cy = 2x?+ 4x—3的图象向右平移D2个单位,再向下平移1个单位A . (—3, —6)B . (1, —4)C. (1 , —6)D. (—3,—4)4 .如图,A . 50 °5 .如图,A . 65 °6 .有三张正面分别写有数字随机抽取一张,以其正面数字作为PA, PB分别与O O相切于A, B两点.若/ C = 65 °,则/ P的度数为(B. 130 °C. 50 °D. 1001 , 1,a的值,的值,则点(a, b)在第二象限的概率为(1112A.6 BP C.2 D.§2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后然后再从剩余的两张卡片中随机抽一张,以其正面的数字作为)&如图,为()AB是O O的直径, CD 交AB 于点E,且AE = CD = 8,1/ BAC =寸/ BOD,则O O的半径第10题图弦mx2+ 2x+ 2(m是常数,且m^ 0的图象可能是(第8题图D.结论:(1)4a + b= 0; (2)9a+ c> 3b; (3)8a+ 7b + 2c>0;⑷若点A( —3, %)、点 B —2, y?、点 C 7,壮在该函数图象上,则y i<y3< y2;(5)若方程a(x+ 1)(x—5) = —3的两根为x i和X2,且x i< X2,则x i<— 1 v 5v X2•其中正确的结论有( )A . 2个B . 3个C. 4个D. 5个二、填空题(每小题3分,共24分)11. 从1, 2, 3, 4, 5, 6, 7, 8, 9这九个自然数中,任取一个数是奇数的概率是14 .设m, n分别为一元二次方程x2+ 2x—2018 = 0的两个实数根,则m2+ 3m+ n =15.如果点A(—1, 4), B(m, 4)在抛物线y= a(x—1)2+ h上,那么m的值为____________ .17. ________________________________________________________________________ 如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD 于点E,延长BA与O A相交于点F.若弧EF的长为才,则图中阴影部分的面积为________________________________________________ .18. 如图,在平面直角坐标系中,已知点A(1, 0), B(1 —a, 0), C(1 + a, 0)(a>0),点P在以D(4, 4)为圆心,1为半径的圆上运动,且始终满足/ BPC= 90°贝U a的最大值是______ .三、解答题洪66分)19. (8分)用适当的方法解下列方程:(1) 3x(x+ 3) = 2(x+ 3);2(2) 2x —4x—3= 0.20. (8分)已知抛物线y=—x2+ bx+ c与直线y= —4x+ m相交于第一象限内不同的两点A(5, n), B(3, 9),求此抛物线的解析式.21. (8分)如图,△ ABC三个顶点的坐标分别为A(1, 1), B(4, 2), C(3, 4).(1) 请画出△ ABC向左平移5个单位长度后得到的△ A1B1C1;⑵请画出△ ABC关于原点对称的△ A2B2C2;12 .方程2x2—6x—1= 0的负数根为_______13 .抛物线y= 4x2—3x与y轴的交点坐标是16 .如图,在等腰直角△ ABC中,AC = BC, / ACB= 90 °点0分斜边AB为BO : OA = 1 : •将△ BOC 绕C点顺时针方⑶在x轴上求作一点卩,使厶RAB的周长最小,请画出△ FAB,并直接写出P的坐标.22. (10分)在O O 中,AB 为直径,C 为O O 上一点.⑴如图①,过点 C 作O O 的切线,与AB 的延长线相交于点 P ,若/ CAB = 27°求/ P 的大小; 且0D 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点23. (10分)某中学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食 品.(1)按约定, 小李同学在该天早餐得到两个油饼 ”是 ______ 事件(填 可能”必然”或 不可能”; ⑵请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.(2)如图②,D 为AC 上一点, 若/ CAB = 10°求/ P 的大小.24. (10分)如图,在四边形ABCD中,AD // BC, AD = 2, AB = 2 2,以点A为圆心,AD为半径的圆与BC 相切于点E,交AB于点F.(1)求/ ABE的大小及DEF的长度;25. (12分)如图,在平面直角坐标系中,抛物线y= ax2+ bx+ c的顶点坐标为(2, 9),与y轴交于点A(0, 5),与x轴交于点E,B.(1) 求二次函数y= ax2+ bx+ c的表达式;(2) 过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3) 若点M在抛物线上,点N在其对称轴上,使得以A, E, N , M为顶点的四边形是平行四边形,且AE为其一边,求点M , N的坐标.4. A5.C6.B7.D8.B9.A一 ~ = 2 ,.•. 4a + b= 0.故(1)正确;T x= — 3时,y v 0, • 9a —3b+ c v 0 ,• 9a+ c 2 a二y1 V y2,「. y1< y2< y,故(4)错误;T a v 0,「.( x+ 1) (x —5) = —>0,即(x+ 1) ( x—5)> 0,故a期末检测卷答案1.B2.B3.C10.B解析:•a — b+ 0,v 3b,故(2)错误;由图象可知抛物线经过 (—1, 0)和(5, 0 ),•••[解得125a + 5b+ c= 0,b = —4a,\ • 8ac=—5a,+ 7b + 2c= 8a —28a —10a= —30a. a v 0, • 8a + 7b+ 2c> 0,故(3)正确;°•.点A (—3, y r)、点B' — ~,y2 ]、点C 2,7—2= 3 2 —2 2 2,……2 ,『2)、—2 = 5,• |v ;,•••点 C 离对称轴的距离近,• y3>y2. •/ a v0,—3v —|v 2,⑵在BE的延长线上取一点G,使得DE上的一个动点P到点G的最短距离为2 2 —2,求BG的长.11.5 i2.x = 3~2 11 13. ( 0, 0)n14.2016 15.3 16. 105 ° 17.2-㊁y J>ra 0 AC J18.6 解析:T A (1, 0), B (1 — a , 0), C (1 + a , 0) (a >0), A AB = 1 -(1- a )= a , CA = a +1 —1= a ,A AB = AC. I/ BPC = 90°, A PA = AB = AC = a.如图,延长 AD 交O D 于 P ;此时 AP 最大.T A (1, 0) , D (4, 4), A AD = 5 , A AP = 5 + 1 = 6,A a 的最大值为 6.219. 解:(1) X 1= 3, X 2=- 3; (4 分)(2) X 1 = 1+专,X 2= 1-*. (8 分)20. 解:•••直线y =-4x + m 过点B (3 , 9), A 9 =-4X 3 + m ,解得m = 21, A 直线的解析式为 y = — 4x + 21. (2分)•••点 A (5 , n )在直线 y =-4x + 21 上,A n = - 4 X 5+ 21 = 1 , •••点 A (5 , 1) . (4 分)将2 1 = — 25 + 5b + c , b = 4 ,点A (5 , 1), B (3 , 9)代入y =- x 2+ bx + c 中,得* 解得/ A 此抛物线的解析式9 = — 9 + 3b + c , c = 6 ,为 y =— x 2 + 4x + 6. (8 分)21. 解:(1 )△ A 1B 1C 1如图所示;(2分) (2) △ A 2B 2C 2如图所示;(4分)(3 )△ PAB 如图所示,P (2 , 0) . ( 8 分)22. 解:(1)连接 OC , TO O 与 PC 相切于点 C , A OC 丄 PC ,即/ OCP = 90(2 分):OA = OC , A / OCA =/ CAB = 27° ° A / COB = 2/CAB = 54°.在 Rt A COP 中,/ P +/ COP = 90° ° A / P = 90° — / COP = 36° (5分)(2) T E 为 AC 的中点,A OD 丄 AC ,即/ AEO = 90°. (6 分)在 Rt △ AOE 中,由/ EAO = 10°,得/ AOE1=90° — / EAO = 80° A / ACD = ^/AOD = 40°. ( 8 分)T / ACD 是厶 ACP 的一个外角,A / P =/ ACD - / A = 40° - 10° 30°. (10 分)23. 解:(1)不可能(4分) (2)B E (J C如图,T 以AD 为半径的圆与BC 相切于点E , 在Rt △ AEB 中,AE = 2 , AB = 2 2 , A BE = 2,即厶ABE 是等腰直角三角形,135 n°23 nA / DAB + / ABE = 180°, A / DAB = 135° A DEF 的长度为 彳“ =W ; (5分)180 2(2)如图,根据两点之间线段最短,可得当 A , P , G 三点共线时PG 最短,(7分)此时AG = AP + PG = 2 + 2 2 - 2 = 2 2 , A AG = AB. ( 9 分)T AE 丄 BG , A BE = EG. A BG = 2BE = 4. ( 10 分)(8 分) 画树状图如下: 共有 为务6.12种等可能的结(10 分)W由X■包"讯酋农 * F 慣 H de ft iH rt 牧 iL 果,冈収子得到猪肉包和油饼的有 靶期 m H n» HI g 4加加2种情况,A 小张同学得到猪肉包和油饼的概率 A AE 丄 BC , AE = AD = 2. (1 分)A / ABE = 45°.(3 分)T AD // BC ,24.解:(1)连接 AE , 3 4 5 -'A25. 解:(1)设抛物线解析式为 y = a (x — 2) 2+ 9, (1分):•抛物线与 y 轴交于点A (0 , 5), • 4a + 9 =5 , •- a =— 1, •- y =—( x — 2) 2+ 9 =— x 2 + 4x + 5; (3 分)(2 )当 y = 0 时,一x 2 + 4x + 5= 0, • X 1=— 1 , x ?= 5, • E (— 1, 0) , B (5 , 0) . (4 分)设直线 AB 的解析式为 y = mx + n , ■/ A ( 0 , 5), B (5 , 0),二 m =— 1 , n = 5,•直线 AB 的解析式为 y =— x + 5.设 P (x , — x 2 + 4x + 5) , • D (x , — x + 5) , • PD = — x 2 + 4x + 5 + x — 5 =— x 2 + 5x. (5 分)■/ AC // x 轴,•••点 A , C 关于对称轴对称,AC = 4.v AC 丄 PD , • S 四边形 APCD = AC X PD = 2 (— x 2+ 5x )=— 2x 2+ 10x , ―2X (1— 2) =5时,即点P 的坐标为2 , 35(3) 如图,过 M 作MH 垂直于对称轴,垂足为 =1,「. M 点的横坐标为3或1.当横坐标1时, 点的坐标为M i ( 1,8)或M 2( 3,8).(9分)5. v MN // AE ,• MN 的解析式为 y = 5x + b.v 点 + OE 2= 26= MN 2,: MN2 =( 2 — 1) 2+ [8 —( 10+ b ) ]2= 1 +( b + 2) 2.v M 点的坐标为 M i (1 , 8)或 M 2 (3, 8), •点M 1, M 2关于抛物线对称轴 x = 2对称•点N 在抛物线对称轴上,• 皿岱=M z N ;. 1 +( b + 2) 2= 26,: b = 3 或 b = — 7,「.10+ b = 13或 10+ b = 3.:当 M 点的坐标为(1, 8)时,N 点坐标为(2, 13),当M 点的坐标为(3, 8)时,N 点坐标为(2, 3) . (12分)•••当 x =M 点纵坐标为8,当横坐标为3时,M 点纵坐标为••• A ( 0, 5), E (— 1 , 0),•直线AE 的解析式为 N 在抛物线对称轴 x = 2上,• N (2 , 10+ b ) .I AE 2= OA HM = OE 8,「. M y = 5x +2 2。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018届九年级数学上学期期末考试试题新人教版
湖北省襄阳××市2018 届九年级数学上学期期末考试一试题(本试卷共 4 页,满分120 分)★祝考试顺利★注意事项:1,答卷前,考生务势必自己的学校,班级,姓名,考试号填写在试题卷和答题卡上.2,选择题每题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,答在试题卷上无效.3,非选择题(主观题)用0.5 毫米的黑色墨水署名笔或黑色墨水钢笔挺接答在答题卡上每题对应的答题地区内,答在试题卷上无效.4,考试结束后,请将本试题卷和答题卡一并上交.一.选择题(本大题共10 个小题,每题 3 分,共30 分,在每题给出的四个选项中只有一项为哪一项符合题目要求的,请将其序号填涂在答题卡上相应地点.)1.一元二次方程x2-6x-5=0 配方后可变形为(▲)A.( x-3) 2=14 B.( x-3) 2=4 C.( x+3) 2=14 D .( x+3) 2=42.若二次函数y=x2-mx+1 的图象的极点在x 轴上,则m的值是(▲)A.2 B.-2 C.0 D.±23.在以下四个图案中,不是中心对称图形的是(▲)4.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为(▲)A.3cm B .6cm C .cm D .9cm5.从气象台获悉“本市明日降水概率是80%”,对此信息,下边几种说法正确的选项是(▲)A.本市明日将有80%的地域降水 B .本市明日将有80%的时间降水C.明日一定下雨D.明日降水的可能性大6.如图,以下条件中不可以判断△ACD∽△ABC的是(▲)CA D B第6 题图A .AB BCA C CDB .∠ADC =∠ACBC .∠ACD =∠B D .AC2=AD ·AB7.已知函数y1 x,当 x ≥-1 时, y 的取值范围是(▲)A .y <-1B .y ≤-1C . y ≤-1 或 y >0D . y<-1 或 y ≥08.如图,在 Rt △ABC 中,C D 是斜边 AB 上的高,∠ A ≠45°,则C以下比值中不等于 sin A 的是(▲)A .C D ACB .B D CBC .C B ABD .C D CBA D第 8 题图B9.在平面直角坐标系中,△ ABC 极点 A 的坐标为( 2,3).若以原 点 O 为位似中心,画△ ABC 的位似图形△ A ′B ′C ′,使△ABC 与△A ′B ′C ′的相像比为 2 3,则点 A ′的坐标为(▲) A .(3, 9 2) B .(3, 9 2 )或(- 3, 9 2)C .(4 3,-2)D .( 4 3,2)或(4 3,-2)10.如图,矩形 OABC 的面积为 24,它的对角线 O B 与双曲线D ,且 D 为 OB 的中点,则 k 的值为(▲)ky相 交 于 点x第 10 题图A .3B .6C .9D .12二. 填空题:(本大题共 6 个小题, 每题 3 分,共 l8 分.把答案填在答题卡的对应地点的横线上. )11.已知 tan A = 3 3 ,则锐角 A 的度数是▲.12.正午 12 点,身高为 165cm 的小冰直即刻影长 55cm ,同学小雪此时在同一地址直即刻影长为57cm ,那么小雪的身高为▲ cm .13.二次函数 y =(x -2m )2+1,当 m <x <m +1 时,y 随 x 的增大而减小,则 m 的取值范围是▲.14.如图,在 4×4 的正方形方格图形中, 小正方形的极点称为格点,△ABC 的顶点都在格点上,则图中∠ ABC 的正弦值是▲.第 14 题图15.如图,在矩形 ABCD 中,AB =4,BC =2.点 E 在边 AB 上,点F 在边 CD上,点 G ,H 在对角线 A C 上.若四边形 EGFH 是菱形,则 AE 的长是▲.D F CHGA E B16.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,BC=2 3 ,将△ABC第15 题图绕点A逆时针旋转60°后获得△ADE,则线段BC在上述旋转过程中所扫过部分( 暗影部分) 的面积是▲( 结果保存π) .三.解答题(本大题共9 个小题,共72 分.解答应写出文字说明,证明过程或演算步骤,而且写在答题卡上每题对应的答题地区内.)第16 题图A17.(此题 6 分)在△ABC中,∠C=90°,AB=13,BC=5,求∠A 的正弦E D值、余弦值和正切值.18.(此题 6 分)如图,在△ABC中,正方形EDCF的三个极点E,D,F都在B F C第18 题图三角形的边上,另一个极点C与三角形的极点重合,且AC=4,BC=6,求E D的长.19.(此题 6 分)在一个不透明的布袋里装有三个标号分别为1,2,3 的小球,它们的材质、形状、大小完整同样,小凯从布袋里随机拿出一个小球,记下数字为x,而后将小球放回布袋,小敏再从布袋中随机拿出一个小球,记下数字为y,这样确立了点 A 的坐标为(x,y).请用列表或画树形图的方法,求点A在函数y 6x图象上的概率.20.(此题7 分))如图,在某建筑物AB的顶部点A处观察,测得河对岸 C 处的俯角为30°,河的这一岸D处的俯角为60°,已知建筑物的高AB等于18 米,求河宽 C D. (结果保存根号)21.(此题7 分)如图,直线y1=2x-3 与双曲线第20 题图ky2 在第一象限交于点xA,与x 轴交于点B,过点A作AC⊥x 轴,垂足为C,已知∠BAC =∠AOC.(1)求A,B两点的坐标及k 的值;(2)请直接写出当y2>y1>0 时x 的取值范围.第21 题图B22.(此题8 分)如图,AB是⊙O的直径,AD是⊙O的弦,点 F 是DA延伸线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,C E⊥D F.C O(1) 求证:AC均分∠FAB;(2) 若AE=1,C E=2,求⊙O的半径.F E A第22 题图D23.(此题 10 分)一名男生推铅球,铅球前进的高度 y (单位:m )与水平距离 x (单位:m )之间的关系是122 5 yx x . 123 3(1)铅球前进的最大高度是多少?(2)该男生把铅球推出的水平距离是多少?(3)铅球在着落的过程中,前进高度由35 12m 变成11 12m 时,铅球前进的水平距离是多少?24.(此题 10 分)如图,在四边形 ABCD 中,∠ ABC =∠BCD =90°,D点 E 为B C 的中点, AE ⊥D E .(1)求证:△ ABE ∽△ECD ;A(2)求证: AE2=AB ·AD ;(3)若 AB =1,C D =4,求线段 AD ,DE 的长. B E 第 24 题图C25.(此题 12 分)如图, □ABCD 的两个极点 B ,D 都在抛物线 y = 1 8 2x +bx +c 上,且 OB =OC ,AB =5,tan∠ACB =3 4.y P DA(1)求抛物线的分析式; Q(2)在抛物线上能否存在点E ,使以 A ,C ,D ,E 为极点的BOCx第 25 题图四边形是菱形?若存在,恳求出点 E 的坐标; 若不存在,请说明原因.(3)动点 P 从点 A 出发向点 D 运动,同时动点 Q 从点 C 出发向点 A 运动,运动速度都是每秒1个单位长度,当一个点抵达终点时另一个点也停止运动,运动时间为 t (秒).当 t 为什么值时,△ APQ 是直角三角形?2017 年秋天期末测试九年级数学参照答案及评分标准一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 ADBADACDBB二.填空题2 5 11.30°;12.171;13.m>1;14. ;15.55 2;16.2 π. 三.解答题17. 解:∵∠C=90°,AB=13,BC=5,2 BC2 2 2∴AC AB 13 5 12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴sinBC 5A ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分AB 13cosAC 12A ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分AB 13tan BC 5A . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分AC 1218. 解:∵四边形EDCF是正方形,∴ED=D C,∠EDA=∠EDC=∠C =90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分又∵∠A=∠A,∴△AED∽△ABC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴E DBC A DAC,即ED·AC=BC·AD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∵AC=4,BC=6,AC=AD+C D,∴4ED=6(4- ED),解得12ED . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分519. 解:x y 1 2 31 (1,1) (1,2) (1,3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分2 (2,1) (2,2) (2,3)由表格可知,共有9 种等可能出现的结果,此中点 A3 (3,1) (3,2) (3,3)函数在y 6x图象上( 记为事件A) 的结果有两种,即(2,3),(3,2),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因此,2P( A) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分920. 解:由题意可知∠ACB=3 0°, ∠ADB=6 0°,∠ABC=90°,AB=18. ⋯⋯⋯⋯⋯⋯ 1 分∴∠CAD=∠ADB-∠ACB= 3 0°, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴∠ACB=∠CAD, ∴C D=AD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在Rt △ABD 中,ABsin ADB ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分ADAB 18∴CD AD 12 3 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分sin ADB sin 60答:河宽CD为12 3 米.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分21. 解:由y1=2x-3=0,解得3x ,因此B(232,0) ,OB=32. ⋯⋯⋯⋯⋯⋯⋯⋯ 1 分设点A的横坐标为m( m>0) ,则纵坐标为2m-3, BC=3m ,AC=2m-3 ,⋯⋯⋯ 2 分2∵AC⊥x 轴,∴tan3mBC 12BAC . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分AC 2m 3 2∵∠BAC=∠AOC,∴tanAC 2m 3 1AOC ,解得m=2 ,OC m 2∴2m-3 =1,即A(2 ,1) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分把A(2 ,1) 代入ky2 ,得x1k2,解得k=2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(2)32<x<2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分22.(1) 证明:连结OC.∵CE是⊙O的切线,∴∠OCE=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵C E⊥D F,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OC=A90°,∴∠CAE=∠OCA. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵OC=OA,∴∠OCA=∠OAC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴∠CAE=∠OAC,即 A C均分∠FAB. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 连结BC.∵AB是⊙O的直径,∴∠ACB=∠AEC=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分又∵∠CAE=∠OAC,∴△ACB∽△AEC, ∴A BACA CAE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2 CE2 2 2∵AE=1,C E=2,∠AEC=90°,∴AC AE 1 2 5 ⋯⋯⋯7 分2 2AC ( 5)∴ 5AB ,∴⊙O的半径为AE 1 52.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分23. 解:(1)1 2 2 5 1 2y x x = (x 4) 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分12 3 3 121∵012,y 的最大值为3,即铅球前进的最大高度是3m.⋯⋯⋯⋯⋯⋯⋯⋯ 3 分1 2 2 5(2) 由y=0 得,x x 0. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分12 3 3解这个方程得,x1=10,x2=-2 (负值舍去). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∴该男生把铅球推出的水平距离是10 m. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分1 2(3) 由函数y (x 4) 3的性质及上问可知,铅球着落过程中4≤x<10.12由1 2 2 5 35y x x ,解得x1=3(舍去),x2=5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分12 3 3 12由1 2 2 5 11y x x ,解得x1=-1 (舍去),x2=9. ⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分12 3 3 129-5=4 ,∴铅球前进的水平距离是4m.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24.(1) 证明:∵AE⊥D E,∴∠AED=90°,∴∠AEB+∠CED=180°-90 °=90°,∵∠ABC=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠CED. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分又∵∠ABC=∠BCD,∴△ABE∽△ECD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) ∵△ABE∽△ECD,∴A BECA EED.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∵点E为BC的中点,∴BE=EC.∴A BAE B EED.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分又∵∠ABC=∠AED=90°,∴△ABE∽△AED,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∴A BAE A EAD2=AB·AD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分,∴AE(3) ∵△ABE∽△ECD,∴A BECBECD.∵AB=1,C D=4,BE=EC,∴BE2 =AB·C D=4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分由勾股定理,得AE2=AB2+BE2=5.2AE 5∵AE AD .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分2=AB·AD,∴ 5AB 12 AE2 2由勾股定理,得DE AD 5 5 2 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分25. 解:(1) ∵OB=OC,OA⊥BC,AB=5,∴AB= AC=5.∴tan ∠ACB= O AOC=343,∴OA OC4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分3由勾股定理,得OA2 +OC2=AC2, ∴( OC2 +OC2=AC2,∴( OC4 )2+OC2=52,解得OC=±4( 负值舍去) .3∴OA OC 3,OB=OC=4,AD=BC=8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分4∴A(0 ,3) ,B(-4 ,0) ,C(4 ,0) ,D(8 ,3) .18 ∴18(2824)8bc3.4b c 0, b34,解之得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分c 5.∴抛物线的分析式为y= 182+x34x+5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 存在. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∵四边形ABCD为平行四边形,∴AC=AB= C D.又∵AD≠C D,∴当以A,C,D,E为极点的四边形是菱形时,AC=C D=D E=AE. ⋯⋯⋯⋯⋯ 6 分由对称性可得,此时点E的坐标为(4,6). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分当x=4 时,y= 182+x34x+5=6,因此点(4,6)在抛物线y=182+x34x+5 上.∴存在点E的坐标为(4,6). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(3) ∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ACB<90°. ∴当△APQ是直角三角形时,∠APQ=90°或∠AQP=90°.∵cosOC 4ACB ,∴AC 54cos PAQ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分5由题意可知AP=t ,AQ=5- t ,0≤t ≤5.当∠APQ=90°时,APcos PAQ ,∴AQt5 t45,解得20t . ⋯⋯⋯⋯⋯10 分9AQcos PAQ ,∴当∠AQP=90°时,AP20 25∵0 5,0 59 9 5tt45,解得25t . ⋯⋯⋯⋯⋯11 分9∴20t 或925t . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省秦皇岛抚宁区台营学区2018届九年级数学上学期期末教学质量检测
试题
一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选
项中只有一项是正确的)
1、下列四种图形既是中心对称图形又是轴对称图形的是( ) A 、等腰三角形B 、等边三角形C 、平行四边形D 、矩形
2、时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是() A 、30° B 、60°C 、90°D 、9°
3、下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()
.
4、由二次函数y=﹣(x+2)²+1可知( )
A 、其图象的开口向上
B 、其图象的顶点坐标为(﹣2,1)
C 、其最大值为﹣1
D 、其图象的对称轴为x=2
5、已知x=1是方程x ²+bx ﹣2=0的一个根,则方程的另一个根是( )
A 、1
B 、2
C 、-2
D 、-1
6、如图,在⊙O 中,弦AB ∥CD ,若∠ABC=40°,则∠BOD=( ) A .20°B .40°C .50°D .80°第6题图
7、下列事件是必然事件的是( )
A.通常加热到100℃,水沸腾;
B.抛一枚硬币,正面朝上;
C.明天会下雨;
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯.
8、用长8米的铝材制成一个矩形窗框,使它的面积为5平方米。
若设它的一边长为x米,根据题
意列出关于x的方程为()
A、x(8-x)=5
B、x(4+x)=5
C、x(4-x)=5
D、x(8-2x)=5
9、已知圆锥底面圆的半径为6厘米,高为8厘米.则圆锥的侧面积为()
A.48 B.48πC.120πD.60π
10、如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )
A、弧AC=弧BC
B、△ABC是等边三角形
C、AC = BC
D、∠BAC=30°
第10题图第11题图
11、如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()
A、9
B、27
C、6
D、3
12、⊙O的半径是13,弦AB∥CD, AB=24, CD=10,则AB与CD的距离是()
A、 7
B、 17
C、7或17
D、34
13、如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm²的是()。