专题2 方程与不等式
中考专题二 方程组与不等式组(共53张PPT)
(2013· 烟台 )烟台享有“苹果之乡”的美誉. 甲、 乙两超市分别用 3 000 元以相同的进价购进质量相 同的苹果.甲超市销售方案是将苹果按大小分类包装 销售,其中大苹果 400 千克,以进价的 2 倍价格销售, 剩下的小苹果以高于进价的 10% 销售.乙超市的销售 方案是不将苹果按大小分类,直接包装销售,价格按 甲超市大、小两种苹果售价的平均数定价.若两超市 将苹果全部售完,其中甲超市获利 2 100 元(其他成本 不计 ).
【解题方法】解决方程(组)与不等式(组)问题常用 的数学思想就是转化思想; 常用的数学方法有换元法, 分类讨论法,整体代入法,设参数法等.
(2014· 新疆 )“六一”儿童节前夕,某超市用 3 360 元购进 A,B 两种童装共 120 套,其中 A 型童装 每套 24 元, B 型童装每套 36 元.若设购买 A 型童装 x 套, B 型童装 y 套, 依题意列方程组正确的是( )
现有 19 张硬纸板, 裁剪时 x 张用 A 方法, 其余用 B 方法. (1)用 x 的代数式分别表示裁剪出的侧面和底面的 个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做 多少个盒子? 【思路点拨】本题考查列代数式、一元一次方程 在实际生活中的应用.
【自主解答】 解:(1)裁剪出的侧面个数为 6x+4(19-x)=(2x+ 76)个, 裁剪出的底面个数为 5(19-x)=(-5x+95)个. 2x+76 -5x+95 (2)由题意,得 = ,∴x=7. 3 2 2x+76 当 x=7 时, =30, 3 ∴最多可以做的盒子个数为 30 个.
x+a≥0, 若不等式组 1-2x>x-2
有解,则 a 的取
值范围是
.
【思路点拨】先解出不等式组的解,根据已知不
新高考数学一轮二轮复习专题-专题二 二次函数、方程与不等式(原卷版)-4月5月真题汇编
专题二 二次函数、方程与不等式一、单选题1.(2020·江苏省通州高级中学高一月考)不等式210ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围是( ) A .()0,4 B .[]0,4C .[)0,4D .(](),04,-∞⋃+∞2.(2021·山西高三一模(理))已知,,+∈a b c R ,且4,4a ab ac >+=,则2232a b c a b c+++++的最小值是( ) A .8B .6C .4D .23.(2021·安徽省泗县第一中学高二月考(文))已知0x >,0y >,211x y+=,若222x y m m +>-恒成立,则实数m 的取值范围是( )A .4m ≥或2m ≤-B .2m ≥或4m ≤-C .24m -<<D .42m -<<4.(2020·河北石家庄市·石家庄一中高一月考)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为( )A .37a ≥B .13a ≥C .12a ≥D .13a ≤5.(2020·河北石家庄市·石家庄一中高一月考)已知0,0,236x y x y >>+=,则xy 的值可能为( ) A .0B .1C .2D .36.(2021·浙江高三专题练习)已知[]1,1a ∈-时,不等式()24420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞)D .(1,3)7.(2021·全国高二单元测试)设x y z >>,n N ∈,且11nx y y z x z+≥---恒成立,则n 的最大值为( )A .2B .3C .4D .58.(2021·安徽高三月考(理))不定方程的整数解问题是数论中一个古老的分支,其内容极为丰富,西方最早研究不定方程的人是希腊数学家丢番图.请研究下面一道不定方程整数解的问题:已知()202022,x y y x Z y Z +=∈∈,则该方程的整数解有( )组. A .1B .2C .3D .49.(2020·河南高二月考(文))函数2y = )A .2B .4C .6D .810.(2021·全国高三专题练习(理))已知正数,a b 是关于x 的方程()2240x m x m -++=的两根,则11a b+的最小值为( ) A .2 B.C .4D.二、多选题11.(2020·江苏省包场高级中学高二月考)下列说法正确的是( ) A .1x x+的最小值为2 B .21x +的最小值为1 C .()32x x -的最大值为2D .2272x x ++最小值为2 12.(2020·河北石家庄市·石家庄一中高一月考)已知a ,b ,c ,d ∈R ,则下列命题为假命题的是( )A .若,a b c d >>,则ac bd >B .若a b >,则22ac bc ≥C .若0a b >>,则()0a b c ->D .若a b >,则a c b c ->-13.(2021·河北张家口市·高三一模)已知0,0a b >>,且281a b +=,则( ) A.433a b ->B1b C .22log log 6a b +-D .221168a b +<14.(2021·江苏南通市·海门市第一中学高二期末)若0a b >>,则( ) A .11a b b a+>+ B .11a b b b a a+<<+ C .114a b a b +≥+ D .144b a a ab ++的最小值为2 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题15.(2021·全国高三专题练习)已知1a >,b R ∈,当0x >时,[]24(1)1()02x a x b x---⋅-≥恒成立,则3b a +的最小值是_____. 16.(2021·天津高三一模)设0a >,0b >,且251ab b +=,则+a b 的最小值为___________.17.(2020·江苏常州市·常州高级中学高一期中)已知函数()21,1,23,1,x x f x x x ⎧+≤=⎨-+>⎩,若()2f a =,则实数a 所有可能的取值组成的集合为______.18.(2021·射阳县第二中学高二开学考试)若命题x R ∃∈,2410mx mx ++≤为假命题,则实数m 的取值范围是__________.19.(2021·江苏苏州市·苏州中学高二月考)已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.20.(2021·浙江宁波市·高三月考)若正数,a b 满足2a b ab ++=,则3711a b +--的最小值是________.21.(2020·河北石家庄市·石家庄一中高一月考)已知1,0x y ,且1211x y+=-,则2x y +的最小值为________.22.(2021·江苏高三专题练习)设,a b 为正实数,且11410a b a b+++=,则4a b +的最大值与最小值之差为_______.23.(2020·上海高一专题练习)对于11a -≤≤,不等式()2210x a x a +-+->恒成立的x 的取值范围是_____________ 24.(2020·上海高一专题练习)若1,(0,0,,a bx y a b x y+=>>为正常数且a b ,则实数x y +的取值范围_________.25.(2021·吴县中学高一月考)已知110,0,121a b a b b >>+=++,则+a b 的最小值为________.26.(2021·苏州市第五中学校高一月考)正实数x ,y 满足:21x y +=,则当21x y+取最小值时,x =___________.27.(2021·浙江衢州市·高一月考)已知0a >,0b >且25a b +=,则21ab a b++的最小值为___________.28.(2021·浙江高三月考)设实数a ,b 满足0a >,1a b +=,则22212a b a b ++-的最大值是________.29.(2021·安徽滁州市·高一期末)已知0,0,4a b a b >>+=,则411a b ++的最小值为__________.四、解答题30.(2021·安徽高三二模(文))已知a ,b ,c 为正数,且满足3a b c ++=. (1)证明:1113ab bc ac++≥. (23≥.31.(2021·吉林吉林市·高二三模(文))已知函数()41,f x x x x R =-+-∈ (1)解不等式:()5f x ≤(2)记()f x 的最小值为M ,若正实数,a b 满足a b M +=,试求:1121a b +++的最小值32.(2020·江苏常州市·常州高级中学高一期中)已知0x >,0y >,4xy x y a =++. (1)当12a =时,求xy 的最小值; (2)当0a =时,求41x y x y+++的最小值. 33.(2020·泰州市第二中学高一期中)设函数2(),,,f x ax bx c a b c R =++∈.(1)若1a =,且关于x 的不等式()0f x <的解集是()1,2,解不等式210bx cx ++>; (2)若0,1,1a b a c <=-=-,解关于x 的不等式()0f x >;(3)若0,()a f x >在区间[1,0]-上的最大值是c ,且(1)(3)f f ≤-,求22453||ab a u a-=-的取值范围. 34.(2020·泰州市第二中学高一期中)(1)已知正数a b 、满足121a b+=,求ab 的最小值;(2)已知1x <,求函数1()1f x x x =+-的最大值. 35.(2020·江苏省通州高级中学高一月考)已知(),0a b ∈+∞,,1a b +=,求12y a b=+的最小值. 解法如下:()1212233b ay a b a b a b a b⎛⎫=+=++=++≥+ ⎪⎝⎭, 当且仅当2b a a b =,即1a =,2b =- 则12y a b=+的最小值为3+.应用上述解法,求解下列问题:(1)已知(),,0,a b c ∈+∞,1a b c ++=,求111y a b c=++的最小值; (2)已知10,2⎛⎫∈ ⎪⎝⎭x ,求1812y x x=+-的最小值; (3)已知正数123,,,,n a a a a ,满足1231n a a a a ++++=.求证:2222312122334112n n a a a a a a a a a a a a ++++≥++++. 36.(2020·上海高一专题练习)已知关于x 的一元二次方程x 2-(2k -1)x +k 2+k -1=0有实数根.(1)求k 的取值范围;(2)若此方程的两个实数根x 1,x 2满足2212x x +=11,求k 的值.37.(2020·泰州市第二中学高二月考)关于x 的不等式ax 2-(a +1)x +1<0 (1)若a=-2解关于x 的不等式ax 2-(a +1)x +1<0(2)若a >0解关于x 的不等式ax 2-(a +1)x +1<038.(2021·浙江高二期末)设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.39.(2021·全国高三专题练习)已知函数f (x )=x 2-2ax +5(a >1).若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.40.(2021·安徽芜湖市·高一期末)在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正数x 、y 满足21x y +=,求12x y+的最小值.甲给出的解法是:由21x y +=≥,则128x y +≥=≥,所以12x y +的最小值为8.而乙却说这是错的.请你指出其中的问题,并给出正确解法;(2)结合上述问题(1)的结构形式,试求函数()1310122f x x x x ⎛⎫=+<< ⎪-⎝⎭的最小值.41.(2020·上海高一专题练习)求下列函数的最小值(1)21(0)x x y x x++=>;(2)2)y x R =∈;(3)226(1)1x x y x x ++=>-.42.(2020·上海高一专题练习)已知a >0,b >0,且a +b =1(1)求证:11(1)(1)9ab ++≥;(2)求证:4418a b +≥;(3)求证 (a +1a )(b +1b )≥254. 43.(2021·山东日照市·高一期末)已知函数2()21f x kx kx =+-.(1)若不等式()0f x <的解集为3,12⎛⎫- ⎪⎝⎭,求实数k 的值;(2)若方程()0f x =在[]12,有解,求实数k 的取值范围. 44.(2020·河南高二月考(文))已知关于x 的不等式222ax x ax -+<. (1)当1a =时,解不等式222ax x ax -+<; (2)当0a ≠时,解等式222ax x ax -+≥. 五、双空题45.(2021·渝中区·重庆巴蜀中学高一期末)已知a ,b R +∈,且2284a b +=,则2+a b的最大值为______;4122a b ++的最小值为______.。
九年级数学中考复习专题——方程与不等式(附答案)
知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。
(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。
(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。
知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。
期末高一复习专题02 一元二次函数、不等式(教师版)
专题02 一元二次函数、方程和不等式考点一:不等式性质及应用1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B 答案 B解析 ∵A -B =a 2+3ab -(4ab -b 2)=⎝⎛⎭⎫a -b 22+34b 2≥0, ∴A ≥B . 2.若110a b<<,则下列不等式成立的是( ) A .a b ab -> B .a b ab -<C .b a ab ->D .b a ab -<【解答】解:由110a b<<, 对于A 、B ,因为110a b <<,则0a <,0b <,a b >,从而0ab >,0a b ->,即0a b ab ->,则可取1a bab-=,即a b ab -=,故A 、B 错误,对于C 、D ,因为110a b <<,则0a <,0b <,从而0ab >.又110b a->,即0a bab->,则0a b ->,所以0b a ab -<<,故D 正确,C 错误. 故选:D .3.对于任意实数a ,b ,c ,则下列四个命题:①若a b >,0c ≠,则ac bc >;②若a b >,则22ac bc >; ③若22ac bc >,则a b >;④若a b >,则11a b<. 其中正确命题的个数为( ) A .3 B .2C .1D .0【答案】C【解析】a b >时,若0c <,则ac bc <,①错误;若0c,则22ac bc =,②错误;若22ac bc >,则20c >,∴a b >,③正确;a b >,若0a b >>,仍然有11a b>,④错误. 正确的只有1个.故选:C .4.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( ) A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .5.证明不等式22222a b a b ++⎛⎫≤⎪⎝⎭(,a b ∈R ). 【答案】证明见解析.【解析】证明:因为222a b ab +≥,所以22222()2a b a b ab +≥++, 所以()()2222a ba b +≥+两边同除以4,即得22222a b a b ++⎛⎫≤⎪⎝⎭,当且仅当a b =时,取等号. 考点二:利用基本不等式求最值 6.函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫ ⎪⎝=>-⎭+的最小值为5. 故选:D .7.设0a >,0b >,41a b +=,则11a b+的最小值为( )A .7B .9C D 3【解答】解:0a >,0b >,41a b +=,111144()(4)()552549b a b a b a b a b a b a ∴+=++=++++=, 当且仅当4b a a b =,即126a b ==时取等号,∴11a b +的最小值为9.故选:B .8.已知a ,b R +∈,且23a b ab +=,则2a b +的最小值为( ) A .3B .4C .6D .9【解答】解:a ,b R +∈,且23a b ab +=,∴213a b+=,12152522(2)()()333333a b a b a b a b b a ∴+=++=+++⨯(当且仅当a b =时取“= “),即2a b +的最小值为3.故选:A .9.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.10.已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立故选:C11.已知0x >,0y >且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是_________.【答案】(9,1)- 【详解】0,0x y >> ,且141x y+=,()144149y xx y x y x y x y ⎛⎫∴+=++=+++≥ ⎪⎝⎭,当且仅当4y x x y =,即36x y ==,时取等号.()min 9x y ∴+=,由28x y m m +>+ 恒成立,即()2min 89m m x y +<+=,解得:91m -<<, 故答案为:(9,1)-12.已知正数a ,b 满足21a b +=,则( ) A .ab 有最大值18 B .12a b +有最小值8 C .1b b a +有最小值4 D .22a b +有最小值15【解答】解:根据题意,依次分析选项: 对于A ,22112()248a b a b ab+⋅=⇒,当且仅当12a =,14b =时取等号,则A 正确; 对于B ,121222(2)()5459b aa b a b a b a b +=++=+++=,当且仅当13a b ==时取等号,B 错误;对于C ,12224b a bb a b a+=+++=,当且仅当13a b ==时取等号,则C 正确;对于D ,222222211(12)5415()(0)552a b b b b b b b +=-+=-+=-+<<,故最小值为15,则D 正确;故选:ACD .13.已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a ab b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:314.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F=76 000v v 2+18v +20l . (1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 答案 (1)1 900 (2)100解析 (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=1 900(辆/时).当且仅当v =121v ,即v =11时,等号成立.(2)当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=2 000(辆/时).当且仅当v =100v ,即v =10时,等号成立.∴最大车流量为2 000(辆/时). 2 000-1 900=100(辆/时).∴最大车流量比(1)中的最大车流量增加100(辆/时). 考点三:含参数与不含参数的不等式解法15.已知集合{}2230A x x x =-+≥,302x B x x ⎧⎫-=∈≤⎨⎬+⎩⎭Z,则A B =( ) A .{}23x x -<≤ B .{}1,0,1,2,3-C .{}2,1,1,2,3--D .R【答案】B解不等式2230x x -+≥ ,()2223120,x x x x R -+=-+>∈ ,解不等式302x x -≤+ 得23x -<≤,}{1,0,1,2,3B =- ,}{1,0,1,2,3A B ∴⋂=- ; 故选:B.16.不等式()()()21350x x x ++->的解集为___________. 【答案】1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃【详解】不等式()()()()()()2135021350x x x x x x ++->⇔++-<,由数轴标根法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.17.已知二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >,则关于x 的不等式220cx bx -->的解集为( )A .{|23}x x <<B .{|23}x x -<<C .{|32}x x -<<D .{|32}x x -<<-【解答】解:二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >, 所以二次方程220x bx c -++=的解是13和12,由根与系数的关系知,1132211322bc ⎧+=⎪⎪⎨⎪⨯=-⎪⎩,解得53b =,13c =-;所以不等式220cx bx -->化为2152033x x --->, 即2560x x ++<,解得32x -<<-;所以所求不等式的解集为{|32}x x -<<-. 故选:D .18.25.已知关于x 的不等式20ax bx c ++>解集为{}23x x -<<,则下列说法错误的是( ) A .0a < B .不等式0ax c +>的解集为{}6x x <C .0a b c ++>D .不等式20cx bx a -+<的解集为1132x x ⎧⎫<<⎨⎬⎩⎭【答案】D 【详解】由已知可得-2,3是方程20ax bx c ++=的两根,则由根与系数的关系可得23,23,b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩且0a <,解得,6b a c a =-=-,所以A 正确;对于B ,0ax c +>化简为60x -<,解得6x <,B 正确;对于C ,660a b c a a a a ++=--=->,C 正确; 对于D ,20cx bx a -+<化简为:2610x x --<,解得1132x -<<,D 错误.故选:D.19.已知关于x 的不等式:()23130ax a x -++<.(1)当2a =-时,解此不等式; (2)当0a >时,解此不等式.【答案】(1)1{|2x x <-或}3x >(2)当13a =时,解集为∅;当103a <<时,解集为1{|3}x x a <<;当13a >时,解集为1{|3}x x a <<(1)当a =-2时,不等式-2x 2+5x +3<0整理得(2x +1)(x -3)>0,解得x <-12或x >3, 当a =-2时,原不等式解集为{x |x <-12或x >3}.(2)当a >0时,不等式ax 2-(3a +1)x +3<0整理得:(x -3)(x -1a )<0, 当a =13时,1a =3,此时不等式无解;当0<a <13时,1a >3,解得3<x <1a ;当a >13时,1a <3,解得1a <x <3;综上:当a =13时,解集为∅;当0<a <13时,解集为{x |3<x <1a };当a >13时,解集为{x |1a <x <3}.20.已知22()(3)3f x ax a x a =+--.(1)若关于x 的不等式()0f x <的解集为{|1x x >或3}x <-,求实数a 的值; (2)若关于x 的不等式()0f x x a ++<的解集中恰有2个整数,求正整数a 的值. 【解答】解:22()(3)3(3)()f x ax a x a ax x a =+--=-+,(1)若不等式()0f x <的解集为(-∞,3)(1-⋃,)+∞,则0a <,且1a -=,33a=-,解得1a =-; (2)不等式()0f x x a ++<,即22(2)20ax a x a +--<有两整数解, 所以(2)()0ax x a -+<;又a 为正整数,所以2a x a-<<, 由解集中必含0,两整数解为1-,0或0,1;当2a >时,整数解为2-,1-,0,不符合; 所以1a =或2a =.考点四:恒成立、有解与根分布问题21.函数()()20.8log 23f x x ax =-+在()1,-+∞有意义,则a 的取值范围( )A .(-B .5,⎡-⎣C .[]5,4--D .(],4-∞-【答案】B 【详解】由题意可知2230x ax -+>对任意的1x >-恒成立,令223u x ax =-+, 二次函数223u x ax =-+的图象开口向上,对称轴为直线4ax =. ①当14a≤-时,即当4a ≤-时,此时函数223u x ax =-+在()1,-+∞上单调递增, 所以,230a ++≥,解得5a ≥-,此时54a -≤≤-;②当14a>-时,即当4a >-时,则有2240a ∆=-<,解得a -<4a -<<综上所述,实数a 的取值范围是5,⎡-⎣. 故选:B.22.已知函数y =x 2+ax +3.(1)当x ∈R 时,y ≥a 恒成立,求a 的取值范围; (2)当a ∈[4,6]时,y ≥0恒成立,求x 的取值范围.解 (1)当x ∈R 时,x 2+ax +3-a ≥0恒成立,则Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,故a 的取值范围为{a |-6≤a ≤2}.(2)将y =xa +x 2+3看作关于a 的一次函数,当a ∈[4,6]时,y ≥0恒成立,只需在a =4和a =6时y ≥0即可,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0, 解得x ≤-3-6或x ≥-3+6,故x 的取值范围是{x |x ≤-3-6或x ≥-3+6}. 23.已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B当0a =时,221=10ax ax +--<,对x R ∀∈恒成立;当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有20(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤,故选:B24.若命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立,则实数m 的取值集合是( ) A .(3,1)-- B .(,1)(3,)-∞+∞C .(,0]-∞D .(3,1)(1,3)--【答案】B命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立, 当0m =时,不等式为30x -<,显然有解,成立;当0m <时,开口向下,必然R x ∃∈,使得不等式22(3)0mx m x m +-+<成立,; 当0m >,0∆>即222(3)40m m -->,解得29m >或21m <,所以01m <<或3m >. 综上可得1m <或3m >. 故选:B .25.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( ) A .4m ≤- B .3m ≥- C .30m -≤< D .40m -≤<【答案】A因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,所以2min (4)m x x ≤-, 令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-, 所以4m ≤- 故选:A26.若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________. 【答案】(52,+∞)【详解】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.27.2022年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 【答案】(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【详解】解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯,整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元,技术指导后,养羊的利润为()()0.1510.2510x x +-万元,则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x +≥,当且仅当4x =时等号成立,∴0 6.5a <≤,即a 的最大值为6.5. 答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.对点练习一、单选题1.不等式21560x x +->的解集为( )A .{1x x 或1}6x <- B .116x x ⎧⎫-<<⎨⎬⎩⎭ C .{1x x 或3}x <- D .{}32x x -<<【答案】B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案, 【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D .故选:B .2.已知正数x y ,满足 4x y +=,则xy 的最大值( )A . 2B .4C . 6D .8【答案】B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B3.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【分析】由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 【详解】由二次函数图象知:20ax bx c ++>有2<<1x -. 故选:A4.已知02x <<,则y =的最大值为( ) A .2B .4C .5D .6【答案】A【分析】由基本不等式求解即可【详解】因为02x <<,所以可得240x ->,则()22422x x y +-==,当且仅当224xx =-,即x =y =的最大值为2.故选:A .5.关于x 的不等式()210x a x a -++< 的解集中恰有1个整数,则实数a 的取值范围是( )A .(][)1,02,3-B .[)(]2,13,4--C .[)(]2130,-⋃,D .()()2134--⋃,, 【答案】C【分析】分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解.【详解】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解.若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤.若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]2130,-⋃, 故选:C .6.已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( )A .0a >B .不等式20ax cx b ++>的解集为{|22x x <<C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【分析】根据解集形式确定选项A 错误;化不等式为2430,x x --<即可判断选项B 正确;设2()f x ax bx c =++,则(1)0f >,判断选项C 错误;解不等式可判断选项D 错误.【详解】解:因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以a<0,所以选项A 错误; 由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<所以选项B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B二、多选题7.(多选)给出下列命题,其中正确的命题是( )A .a >b ⇒ac 2>bc 2B .a >|b |⇒a 2>b 2C .a >b ⇒a 3>b 3D .|a |>b ⇒a 2>b 2答案 BC解析 A 当c 2=0时不成立;B 一定成立;C 当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; D 当b <0时,不一定成立.如|2|>-3,但22<(-3)2.a b >,则222a b b >=,D 正确.故选:BD .8.对任意两个实数,a b ,定义{},,min ,,a ab a b b a b ≤⎧=⎨>⎩,若()22f x x =-,()2g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是( )A .函数()F x 是偶函数B .方程()0F x =有三个解C .函数()F x 在区间[1,1]-上单调递增D .函数()F x 有4个单调区间【答案】ABD【分析】结合题意作出函数()()(){}min ,F x f x g x =的图象,进而数形结合求解即可.【详解】解:根据函数()22f x x =-与()2g x x =,,画出函数()()(){}min ,F x f x g x =的图象,如图.由图象可知,函数()()(){}min ,F x f x g x =关于y 轴对称,所以A 项正确;函数()F x 的图象与x 轴有三个交点,所以方程()0F x =有三个解,所以B 项正确;函数()F x 在(,1]-∞-上单调递增,在[1,0]-上单调递减,在[0,1]上单调递增,在[1,)+∞上单调递减,所以C 项错误,D 项正确.故选:ABD三、填空题9.函数()1311y x x x =+>-的最小值是_____【答案】3+【分析】利用基本不等式可求得原函数的最小值.【详解】因为1x >,则10x ->,所以()1313331y x x =-++≥=-,当且仅当()1311x x -=-,因为1x >,即当x =.所以函数()1311y x x x =+>-的最小值是3.故答案为:3+10.已知[]0,2a ∀∈时,不等式()231102ax a x a +++-<恒成立,则x 的取值范围为__________. 【答案】()2,1--【分析】由题意构造函数关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则可得(0)0(2)0f f <⎧⎨<⎩,从而可求出x 的取值范围.【详解】由题意,因为当[]0,2a ∈,不等式()231102ax a x a +++-<恒成立, 可转化为关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则()0f a <对任意[]0,2a ∈恒成立, 则满足2(0)10(2)22310f x f x x x =+<⎧⎨=+-++<⎩,解得2<<1x --, 即x 的取值范围为()2,1--.故答案为:()2,1--四、解答题11.(1)已知一元二次不等式20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭,求不等式210qx px ++>的解集; (2)若不等式2(7)0x mx m -++>在实数集R 上恒成立,求m 的范围.【答案】(1){|23}x x -<<;(2)22m -<+【分析】(1)先将不等式问题转化为方程问题求出,p q 的值,然后就可以解不等式了;(2)一元二次不等式恒成立,即考虑其判别式.【详解】(1)因为20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭, 所以112x =-与213x =是方程20x px q ++=的两个实数根, 由根与系数的关系得11,3211,32p q ⎧-=-⎪⎪⎨⎛⎫⎪⨯-= ⎪⎪⎝⎭⎩解得1,61.6p q ⎧=⎪⎪⎨⎪=-⎪⎩不等式210qx px ++>, 即2111066x x -++>,整理得260x x --<,解得23x -<<.即不等式210qx px ++>的解集为{|23}x x -<<. (2)由题意可得,∆<0,即241(7)0-⨯⨯+<m m ,整理得24280m m --<,解得22m -<+12.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米.【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可;(2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x =. 因为矩形草坪的长比宽至少大9米,所以4009x x +,所以294000x x +-,解得2516x -. 又0x >,所以016x <.所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.。
山东春考数学二轮复习专题2 方程与不等式
感谢聆听!
不负韶华·只争朝夕
扬帆起航
逐梦前行
数学二轮复习
专题二
方程与不等式
乘风破浪·砥砺前行
01 一 元 二 次 方 程
例1 把3 2 + 6 − 1写成a( + )2 + 的形式,并
求方程3 2 + 6 − 1=0的解。
3 2 + 6 − 1 = 3 2 + 2 − 1
=3 2 + 2 + 1 − 1 − 1
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 }
x
Φ
}
O
没有实根
R
Φ
x 考 真 题
05 近 年 高 考 真 题
05 近 年 高 考 真 题
05 近 年 高 考 真 题
05 近 年 高 考 真 题
05 近 年 高 考 真 题
05 近 年 高 考 真 题
无解
1
=−
2
3
1 = − , 2 = 1
2
01 一 元 二 次 方 程
例2
已知关于x的一元二次方程: 2 + 2 + a + 2 = 0
有两个不相等的负根,求实数的取值范围。
根的情况
两个正根
满足条件
∆= 2 − 4≥0
1 2 =
两个负根
∆= 2
>0
− 4≥0
1 2 = >0
例3 若关于x的不等式 2 − 1 2 - − 1 − 1 < 0的解
集为R,求实数m的取值范围。
专题2:方程和不等式(组)常见题型和解题方法(终稿)
2017—2018学年度第二学期初三数学中考复习专题2:方程和不等式(组)常见题型和解题方法一、热点再练:1. 方程36x =的解为 .2. 关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为1,则a +b +c = . 3.方程0532=++px x 的一个根为5,另一个根为______、p =_______.4.如果关于x 的方程(m –2)x 2–2x +1=0有解,则m 的取值范围是_______.5.已知关于x 的方程a (1–x 2)+2bx +c (1+x 2)=0有两个相等的实数根且a 、b 、c 均为正数,以a 、b 、c 为边围成一个三角形,则该三角形是________三角形.6.方程)2()2(2-=-x x 的根是________.方程组⎩⎨⎧=+=-1435y x y x 的解为________. 7.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩有解,则a 的取值范围是________. 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是【 】A .203210x y x y +-=⎧⎨--=⎩, B .2103210x y x y --=⎧⎨--=⎩, C .2103250x y x y --=⎧⎨+-=⎩, D .20210x y x y +-=⎧⎨--=⎩, 9.下列方程中,两实数根之和是2的是【 】A .x 2–2x +5=0B .x 2+2x –5=0C .x 2+2x +5=0D .x 2–2x –5=010.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩11.已知直线y =2x -b 经过点(-2,0),则关于x 的不等式2x -b ≥0的解集为__________.12.设一元二次方程(x -1)(x -2)=m (m >0)的两根分别为α、β,且a <β,则a ,β满足 【 】A .1<a <β<2B .1<a <2<βC .a <1<β<2D .a <1且β>2(第9题)13.关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解是正整数,则整数p 的值为__________. 14.解分式方程225103x x x x-=+-.二、规律剖析例1. 解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.例2.已知关于x 的分式方程111x k k x x +-=+-的解为负数,求k 的取值范围.例3. 已知关于x 的一元二次方程mx 2-(3m +1)x +2m +2=0的两实根为x 1,x 2.(1)请用含m 的代数式表示x 1,x 2;(2)且n =x 2-x 1-1,求在直角坐标系xOy 中动点P (m ,n )所形成的曲线解析式.三、变式训练1. 若关于x 的不等式组10,233544(1)3x x x a x a+⎧+>⎪⎨⎪++>++⎩恰有三个整数解,求实数a 的取值范围.2. 若关于x 的分式方程121m x -=-的解为正数,则m 的取值范围是 .3.已知关于x 的一元二次方程2(41)330mx m x m -+++=的两个实数根分别为1x ,2x ,212n x x =--,设点A (1,a ),B (b ,2)两点在动点P (m ,n )所形成的曲线上,求直线AB 的解析式.四、分层作业1.一元二次方程(2x -1)2=(3-x )2的解是 .2. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是【 】A .m ≥2B .m ≤2C .m >2D .m <23. 甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.4. 设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β= . 5. 下列关于x 的方程有实数根的是【 】A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=06.若关于x 的一元二次方程x 2+x +m =0有两个相等的实数根,则m = .7.下列一元二次方程两实数根和为-4的是【 】A .x 2+2x -4=0B .x 2-4x +4=0C .x 2+4x +10=0D .x 2+4x -5=08.已知关于x 的一元二次方程x 2+x +m =0的一个实数根为1,那么它的另一个实数根是【 】A .-2B .0C .1D .29.若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是( ) A .a ≥1 B .a >1C .a ≤-1D .a <-1 10.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .―3<b <―2B .―3<b ≤―2C .―3≤b ≤―2D .―3≤b <―211.求不等式组364,213(1)x x x x --⎧⎨+>-⎩≥的解集,并写出它的整数解.12.已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.13. 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?14. 关于x的一元二次方程ax2-3x+1=0的两个不相等的实数根都在0和1之间(不包括0和1),求a的取值范围.★15.已知a-b=2,ab+2b-c2+2c=0,当b≥0,-2≤c<1时,求整数a的值.★16.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.。
专题(二) 方程、不等式的解法
(2)当 k=1 时,原方程为 x2+3x+1=0. ∵x1,x2 是该方程的两个实数根, ∴由根与系数的关系可知 x1+x2=-3,x1x2=1. ∴x21+x22=(x1+x2)2-2x1x2=(-3)2-2×1=7.
3.解不等式:2x-1>3x2-1,并把它的解集在数轴上表示出来.
解:去分母,得 4x-2>3x-1. 解得 x>1. 这个不等式的解集在数轴上表示如下:
4.解不等式组:25xx-≥-1>9-3(x,x+1),并把它的解集在数轴上表示出来. 解:解不等式 2x≥-9-x,得 x≥-3. 解不等式 5x-1>3(x+1),得 x>2. 则不等式组的解集为 x>2. 将解集表示在数轴上如下:
8.已知关于 x 的方程(x-3)(x-2)-p2=0. (1)求证:无论 p 取何值时,方程总有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2,且满足 x21+x22=3x1x2,求实数 p 的值.解:(1)证明:∵(x-3)(x-2)-p2=0,
∴x2-5x+6-p2=0. ∴Δ=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2. ∵无论 p 取何值时,总有 4p2≥0, ∴1+4p2>0. ∴无论 p 取何值时,方程总有两个不相等的实数根.
2x+y=4,① (3)x-y=-1;② 解:①+②,得 2x+y+x-y=4-1.解得 x=1. 把 x=1 代入①,得 2+y=4.解得 y=2. ∴原方程组的解是xy= =12,.
2021届高三新题数学10月新高考复习专题二二次函数、方程与不等式(原卷版)
【答案】(1) ;(2)分类讨论,答案见解析.
16.(2018·兰州市第四中学高二期中)某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低 ( )个百分点,预测收购量可增加 个百分点.
其中是真命题的是__________.(填上所有真命题的序号)
【答案】①②
23.(2020·全国课时练习)若 , ,则 的最小值为___________.
25.正数a,b满足 + =1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是______.
专题二二次函数、方程与不等式
一、单选题
1.(2020·全国高一学业考试)关于x的不等式 的解集为 ,且: ,则a=( )
A. B. C. D.
2.(2020·全国课时练习)函数 ,记 的解集为 ,若 ,则 的取值范围( )
A. B. C. D.
3.(2020·全国课时练习)不等式 的解集为 则函数 的图像大致为()
(1)要使矩形学生公寓ABCD的面积不小于144平方米,AB的长度应在什么范围?
(2)长度AB和宽度AD分别为多少米时矩形学生公寓ABCD的面积最大?最大值是多少平方米?
19.(2016·河南许昌·高二月考(理))某个体户计划经销A,B两种商品,据调查统计,当投资额为 万元时,经销A,B商品中所获得的收益分别为 万元与 万元,其中 如果该个体户准备投入5万元经营这两种商品,请你帮他制订一个资金投入方案,使他能获得最大收益,并求出其最大收益.
A.如果 ,那么 B.如果 ,那么
C.对任意正实数 和 ,有 ,当且仅当 时等号成立D.对任意正实数 和 ,有 ,当且仅当 时等号成立
专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)
专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.﹣.所以m最小值=故本题答案为:﹣.变式1.3已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1C.,a﹣1D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式4.3按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y a x x++=--的解为正数,且使关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案】B.【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a ,∵关于x 的分式方程+=4的解为正数,∴6-4a >0,∴a<6.y 123)02(2①y ②y a ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.学*科网考点:1.分式方程的解;2.解一元一次不等式组.2.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值A.98m >B.89m >C.98m =D.89m =【答案】98m =考点:根的判别式.3.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为()A.1-或2B.1或2- C.2-D.1【答案】D.【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m﹣1=0的两个根,∴x 1+x 2=2m,x 1•x 2=m 2﹣m﹣1.∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m﹣1),即m 2+m﹣2=(m+2)(m﹣1)=0,解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m 2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B.2个 C.3个D.4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A.5m ≥B.5m > C.5m ≤D.5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是【答案】k≤5且k≠1.考点:根的判别式.7.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是.【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.10.(2017四川泸州第15题)关于x的分式方程2322x m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2.【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m--,因方程的解为正实数,且x-2≠0,所以62m-->0且m≠2,即m<6且m≠2.11.(2017江苏宿迁第14题)若关于x的分式方程1322m xx x-=---有增根,则实数m的值是.【答案】1.【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于的一元二次方程的一个根式,则的值是_______.【答案】0.【解析】试题分析:把x=0代入,得,解得k=1(舍去),或k=0;。
知识点梳理 专题02 一元二次函数
专题02 一元二次函数、方程与不等式知识1 等式性质与不等式性质 1、作差法比较大小0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=. 2、不等式的基本性质 (1)(对称性)a b b a >⇔> (2)(传递性),a b b c a c >>⇒> (3)(可加性)a b a c b c >⇔+>+(4)(可乘性),0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< (5)(同向可加性),a b c d a c b d >>⇒+>+ (6)(正数同向可乘性)0,0a b c d ac bd >>>>⇒> (7)(正数乘方法则)0(,1)n n a b a b n N n >>⇒>∈>且 知识点2 基本不等式1、重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式: ()2222()()a b a b a b R +≥+∈, 2、基本不等式:2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式:a b +≥; 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”. 知识点3 二次函数与一元二次方程.不等式1、二次函数与一元二次方程的根、一元二次不等式的解集的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.有两个相等的实2、解一元二次不等式的步骤第一步:先看二次项系数是否为正,若为负,则将二次项系数化为正数; 第二步:写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根abx x 221-==; ③0∆<时,方程无解 第三步:根据不等式,写出解集. 3、含参数的一元二次不等式讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集。
2023年上海市16区数学中考二模专题汇编2 方程与不等式(39题)含详解
专题02方程与不等式(39题)一.选择题(共4小题)1.(2023•浦东新区二模)一元二次方程的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.(2023•静安区二模)某种型号油电混合动力汽车计划从甲地开往乙地,如果纯用电行驶,则电费为25元,如果纯燃油行驶,则燃油费为75元.已知每行驶1千米,纯燃油费用比纯用电费用多0.6元.如果设每行驶1千米纯用电的费用为x元,那么下列方程正确的是()A.B.C.D..3.(2023•嘉定区二模)下列关于x的方程一定有实数解的是()A.x2+1=0B.x2﹣x+1=0C.x2﹣bx+1=0(b为常数)D.x2﹣bx﹣1=0(b为常数)4.(2023•松江区二模)下列方程中,有实数根的是()A.x2+2x+1=0B.x2+x+1=0C.+1=0D.二.填空题(共22小题)5.(2023•徐汇区二模)已知关于x的方程x2﹣2x﹣m=0有两个不相等的实数根,那么m的取值范围是.6.(2023•静安区二模)如果关于x的一元二次方程x2﹣3x+c=0有两个不相等的实数根,那么c的取值范围为.7.(2023•金山区二模)已知关于x的方程x2+3x+m=0有两个相等的实数根,那么m的值等于.8.(2023•崇明区二模)不等式组的解集是.9.(2023•金山区二模)不等式组的解集是.10.(2023•闵行区二模)已知关于x的方程x2+4x+m=0有两个相等的实数根,那么m的值为.11.(2023•嘉定区二模)如果方程,那么x=.12.(2023•松江区二模)不等式组的解集是.13.(2023•黄浦区二模)已知关于x的方程x2﹣3x+k=0无实数根,那么k的取值范围是.14.(2023•金山区二模)方程的解是.15.(2023•闵行区二模)方程=x的根是.16.(2023•杨浦区二模)方程的解是.17.(2023•静安区二模)方程=x的解是.18.(2023•浦东新区二模)方程的根是x=.19.(2023•崇明区二模)如果关于x的一元二次方程x2﹣2x﹣m=0有实数根,那么m的取值范围是.20.(2023•徐汇区二模)方程组的解是.21.(2023•宝山区二模)如果关于x的方程x2+2x﹣k=0有两个相等的实数根,那么k=.22.(2023•浦东新区二模)不等式组的解集是.23.(2023•虹口区二模)如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是.24.(2023•静安区二模)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有人.25.(2023•虹口区二模)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为.26.(2023•闵行区二模)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为.三.解答题(共13小题)27.(2023•嘉定区二模)解方程组:.28.(2023•闵行区二模)解不等式组,并把解集在数轴上表示出来.29.(2023•松江区二模)解方程组:.30.(2023•浦东新区二模)解方程:﹣=131.(2023•金山区二模)解方程组:.32.(2023•徐汇区二模)求不等式组的整数解.33.(2023•宝山区二模)解方程组:.34.(2023•黄浦区二模)解方程组:.35.(2023•杨浦区二模)解不等式组并求出它的正整数解.36.(2023•崇明区二模)解方程组:.37.(2023•虹口区二模)某商店以20元/千克的单价进货了一批商品,经调查发现,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图中线段AB所示.(1)求y与x的函数表达式;(2)要使每天的销售利润达到800元,销售单价应定为每千克多少元?38.(2023•黄浦区二模)小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?39.(2023•嘉定区二模)A、B两城间的铁路路程为1800千米.为了缩短从A城到B城的行驶时间,列车实施提速,提速后速度比提速前速度每小时增加20千米.(1)如果列车提速前速度是每小时80千米,提速后从A城到B城的行驶时间减少t小时,求t的值;(2)如果提速后从A城到B城的行驶时间减少3小时,又这条铁路规定:列车安全行驶速度不超过每小时140千米.问列车提速后速度是否符合规定?请说明理由.专题02方程与不等式(39题)一.选择题(共4小题)1.(2023•浦东新区二模)一元二次方程的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】先计算Δ=b2﹣4ac=(2)2﹣4×1×(﹣1),得到Δ>0,然后根据△的意义进行判断即可.【解答】解:∵Δ=b2﹣4ac=(2)2﹣4×1×(﹣1)=12>0,∴原方程有两个不相等的实数根.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.2.(2023•静安区二模)某种型号油电混合动力汽车计划从甲地开往乙地,如果纯用电行驶,则电费为25元,如果纯燃油行驶,则燃油费为75元.已知每行驶1千米,纯燃油费用比纯用电费用多0.6元.如果设每行驶1千米纯用电的费用为x元,那么下列方程正确的是()A.B.C.D..【分析】根据每行驶1千米纯燃油费用与纯用电费用间的关系,可得出每行驶1千米纯燃油的费用为(x+0.6)元,利用行驶路程=总费用÷每行驶1千米所需费用,即可得出关于x的分式方程,此题得解.【解答】解:∵每行驶1千米,纯燃油费用比纯用电费用多0.6元,且每行驶1千米纯用电的费用为x元,∴每行驶1千米纯燃油的费用为(x+0.6)元.根据题意得:=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.3.(2023•嘉定区二模)下列关于x的方程一定有实数解的是()A.x2+1=0B.x2﹣x+1=0C.x2﹣bx+1=0(b为常数)D.x2﹣bx﹣1=0(b为常数)【分析】先计算4个方程的根的判别式的值,然后利用根的判别式的意义判断方程根的情况,从而可对各选项进行判断.【解答】解:A.Δ=02﹣4×1=﹣4<0,则方程没有实数解,所以A选项不符合题意;B.Δ=(﹣1)2﹣4×1=﹣3<0,则方程没有实数解,所以B选项不符合题意;C.Δ=b2﹣4×1=b2﹣4,当b=0时,Δ=﹣4<0,则方程没有实数解,所以C选项不符合题意;D.Δ=b2﹣4×(﹣1)=b2+4>0时,则方程有两个不相等的实数解,所以CD项符合题意.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.4.(2023•松江区二模)下列方程中,有实数根的是()A.x2+2x+1=0B.x2+x+1=0C.+1=0D.【分析】利用根的判别式判断A、B,利用二次根式的性质判断C,利用解分式方程判断D.【解答】解:方程x2+2x+1=0的根的判别式Δ=3>0,故选项A中方程有实数根;方程x2+x+1=0的根的判别式Δ=﹣3<0,故选项B中方程无实数根;∵≥0,∴选项C中方程无实数根;方程=无解,故选项D中方程无实数根;故选:A.【点评】本题主要考查了无理方程、分式方程、一元二次方程,掌握一元二次方程根的判别式、无理方程及分式方程的解法是解决本题的关键.二.填空题(共22小题)5.(2023•徐汇区二模)已知关于x的方程x2﹣2x﹣m=0有两个不相等的实数根,那么m的取值范围是m>﹣1.【分析】根据“关于x的方程x2﹣2x﹣m=0有两个不相等的实数根”,结合判别式公式,得到关于m的一元一次不等式,解之即可.【解答】解:根据题意得:Δ=4+4m>0,解得:m>﹣1,故答案为:m>﹣1.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.6.(2023•静安区二模)如果关于x的一元二次方程x2﹣3x+c=0有两个不相等的实数根,那么c的取值范围为c <.【分析】根据根的判别式的意义得到Δ=(﹣3)2﹣4c>0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣3)2﹣4c>0,解得c<,即c的取值范围为c<.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.7.(2023•金山区二模)已知关于x的方程x2+3x+m=0有两个相等的实数根,那么m的值等于.【分析】根据根的判别式的意义得到32﹣4m=0,然后解方程即可.【解答】解:根据题意得Δ=32﹣4m=0,解得m=.故答案为:.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.8.(2023•崇明区二模)不等式组的解集是1≤x<3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣1≥0得:x≥1,由2x﹣3<x得:x<3,则不等式组的解集为1≤x<3,故答案为:1≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023•金山区二模)不等式组的解集是﹣2≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣2<x得:x<1,由≤x+1得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故答案为:﹣2≤x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023•闵行区二模)已知关于x的方程x2+4x+m=0有两个相等的实数根,那么m的值为4.【分析】由题意得,Δ=42﹣4m=0,计算求解即可.【解答】解:由题意得,Δ=42﹣4m=0,解得m=4,故答案为:4.【点评】本题考查了一元二次方程根的判别式.解题的关键在于熟练掌握一元二次方程有两个相等的实数根时,Δ=0.11.(2023•嘉定区二模)如果方程,那么x=2.【分析】先移项得到=1+x,再把方程两边平方得到x+7=(1+x)2,接着解一元二次方程,然后进行检验确定原方程的解.【解答】解:﹣x=1,移项,得=1+x,两边平方,得x+7=(1+x)2,整理得x2+x﹣6=0,解得x1=2,x2=﹣3,检验:当x=2时,方程左边=﹣2=1=右边,则x=2为原方程的解;当x=﹣3时,方程左边=﹣(﹣3)=5≠右边,则x=﹣3不是原方程的解;所以原方程的解为x=2.故答案为:2.【点评】本题考查了解无理方程:解无理方程关键是要去掉根号,将其转化为整式方程,应注意验根.12.(2023•松江区二模)不等式组的解集是﹣3<x<2.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x<2,则不等式组的解集为:﹣3<x<2.故答案为:﹣3<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.13.(2023•黄浦区二模)已知关于x的方程x2﹣3x+k=0无实数根,那么k的取值范围是k>.【分析】根据根的判别式Δ=b2﹣4ac<0列出关于k的不等式,通过解不等式即可求得k的取值范围.【解答】解:∵关于x的方程x2﹣3x+k=0无实数根,∴Δ=b2﹣4ac<0,即(﹣3)2﹣4×1×k<0,解得k>.故答案为:k>.【点评】本题考查了根的判别式,熟知一元二次方程根与判别式Δ=b2﹣4ac的关系是解题的关键.14.(2023•金山区二模)方程的解是﹣1.【分析】先把分式方程化为整式方程,求出x的值,再把x的值代入公分母进行检验即可.【解答】解:原方程可化为:﹣=0,去分母得,x2﹣1=0,解得x=1或x=﹣1,当x=1时,x﹣1=0,故x=1是原分式方程的增根,当x=﹣1时,x﹣1=﹣2,故x=﹣1是原分式方程的根.故答案为:﹣1.【点评】本题考查的是解分式方程,解答此类题目时要先把分式方程化为整式方程,在解得未知数的值时一定要验根.15.(2023•闵行区二模)方程=x的根是x=2.【分析】先把方程两边平方,使原方程化为整式方程x+2=x2,解此一元二次方程得到x1=2,x2=﹣1,把它们分别代入原方程得到x2=﹣1是原方程的增根,由此得到原方程的根为x=2.【解答】解:方程两边平方得,x+2=x2,解方程x2﹣x﹣2=0得x1=2,x2=﹣1,经检验x2=﹣1是原方程的增根,所以原方程的根为x=2.故答案为:x=2.【点评】本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.16.(2023•杨浦区二模)方程的解是x=0.【分析】把方程两边平方去根号后求解.【解答】解:两边平方得:x=x2,解方程的:x1=0,x2=1,检验:当x1=0时,方程的左边=右边=0,∴x=0为原方程的根当x2=1时,原方程不成立,故舍去.故答案为:x=0.【点评】本题主要考查解无理方程,在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.注意,最后把解得的x的值代入原方程进行检验.17.(2023•静安区二模)方程=x的解是x=1.【分析】本题要先平方化简后才能求出x的值.【解答】解:=x,两边都平方得x2﹣2x+1=0,即(x﹣1)2=0,∴x=1.【点评】本题要先平方化简后,化成x2=a(a≥0)的形式,利用数的开方直接求解.才能求出x的值.法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.18.(2023•浦东新区二模)方程的根是x=11.【分析】先把方程两边平方得到一元一次方程,再解一元一次方程,然后进行检验确定原方程的解.【解答】解:=3,两边平方,得x﹣2=9,解得x=11,检验:当x=11时,左边==3=右边,则x=11是原方程的解,所以原方程的解为x=11.故答案为:11.【点评】本题考查了无理方程:解无理方程关键是要去掉根号,将其转化为整式方程,应注意验根.19.(2023•崇明区二模)如果关于x的一元二次方程x2﹣2x﹣m=0有实数根,那么m的取值范围是m≥﹣1.【分析】利用判别式的意义得到Δ=(﹣2)2﹣4×(﹣m)≥0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣2)2﹣4×(﹣m)≥0,解得m≥﹣1,即m的取值范围是m≥﹣1.故答案为:m≥﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.20.(2023•徐汇区二模)方程组的解是,.【分析】由①得出(x﹣y)(x﹣2y)=0,求出x﹣y=0或x﹣2y=0③,由③和②组成两个二元一次方程组,求出两方程组的解即可.【解答】解:,由①得:(x﹣y)(x﹣2y)=0,x﹣y=0或x﹣2y=0③,由③和②组成两个二元一次方程组:,,解得:,,所以原方程组的解是,.故答案为:,.【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.(2023•宝山区二模)如果关于x的方程x2+2x﹣k=0有两个相等的实数根,那么k=﹣1.【分析】根据方程的系数结合根的判别式Δ=b2﹣4ac=0,即可得出关于k的一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程x2+2x﹣k=0有两个相等的实数根,∴Δ=b2﹣4ac=22﹣4×1×(﹣k)=0,解得:k=﹣1,∴k的值为﹣1.故答案为:﹣1.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.22.(2023•浦东新区二模)不等式组的解集是x>4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>2,得:x>4,则不等式组的解集为x>4,故答案为:x>4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2023•虹口区二模)如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是k≤4.【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:Δ=16﹣4k≥0,解得:k≤4.故答案为:k≤4.【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.24.(2023•静安区二模)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有25人.【分析】设小和尚有x人,大和尚有y人,由题意:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.列出二元一次方程组,解方程组即可.【解答】解:设小和尚有x人,大和尚有y人,由题意得:,解得:,即大和尚有25人,故答案为:25.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(2023•虹口区二模)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为.【分析】根据题意可知:x株需要6210文,(x﹣1)株的运费=一株椽的价钱,从而可以列出相应的方程.【解答】解:设这批椽的数量为x株,由题意可得:,故答案为:.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.26.(2023•闵行区二模)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为.【分析】设清酒x斗,醑酒y斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设清酒x斗,醑酒y斗,依题意得:,故答案为:.【点评】此题考查了由实际问题抽象出二元一次方程组、数字常识等知识,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题(共13小题)27.(2023•嘉定区二模)解方程组:.【分析】先用完全平方公式把方程②左边因式分解,得(x﹣y)2=4,从而推得x﹣y=±2,再分类讨论,即可求解.【解答】解:由②得(x﹣y)2=4,∴x﹣y=±2,当x﹣y=2时,得x=2+y④,把④代入①得2+y﹣3y=5,∴﹣2y=3,∴y=﹣,把y=﹣代入④得x=2﹣=,∴是原方程组的一个解,当x﹣y=﹣2时.得x=y﹣2⑤,把⑤代入①得(y﹣2)﹣3y=5,∴﹣2y=7,∴y=,把y=代入⑤得x=﹣2=∴是原方程组的一个解,所以原方程组的解为:,.【点评】本题考查了二次二元方程组,关键是将二元二次方程组转化为二元一次方程组.28.(2023•闵行区二模)解不等式组,并把解集在数轴上表示出来.【分析】分别解两个不等式得到x≥﹣3和x<1,则利用大小小大中间找确定不等式组的解集为﹣3≤x<1,然后利用数轴表示其解集.【解答】解:,解①得x≥﹣3,解②得x<1,所以不等式组的解集为﹣3≤x<1,用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.29.(2023•松江区二模)解方程组:.【分析】先变形②得出x+y=2,x+y=﹣2,作出两个方程组,求出方程组的解即可.【解答】解:由方程②得:(x+y)2=4,x+y=2,x+y=﹣2,即组成方程组或,解这两个方程组得:或,即原方程组的解为:或.【点评】本题考查了解二元一次方程组和解高次方程组的应用,能把高次方程组转化成二元一次方程组是解此题的关键.30.(2023•浦东新区二模)解方程:﹣=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.31.(2023•金山区二模)解方程组:.【分析】由②得出(x﹣y)2=4,求出x﹣y=±2③,由③和①组成两个二元一次方程组,求出方程组的解即可.【解答】解:,由②,得(x﹣y)2=4,x﹣y=±2③,由③和①组成两个二元一次方程组:,,解得:,,所以方程组的解是,.【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.32.(2023•徐汇区二模)求不等式组的整数解.【分析】分别求出不等式组中每个不等式的解集,从而得到不等式组的解集,即可得出答案.【解答】解:,解不等式①得:x<8,解不等式②得x≥,∴不等式组的解集为≤x<8,则不等式组整数解有2、3、4、5、6、6、7.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.33.(2023•宝山区二模)解方程组:.【分析】由②得出y=2x﹣5③,把③代入①得出4x2﹣(2x﹣5)2=15,求出x,再把x=2代入③求出y即可.【解答】解:,由②得:y=2x﹣5③,把③代入①,得4x2﹣(2x﹣5)2=15,解得:x=2,把x=2代入③,得y=﹣1,所以方程组的解是.【点评】本题考查了解高次方程组,能把方程组转化成4x2﹣(2x﹣5)2=15是解此题的关键.34.(2023•黄浦区二模)解方程组:.【分析】变形方程组中的②,用含y的代数式表示x,代入①得关于y的一元二次方程,先解一元二次方程求出y,再代入③求出x.【解答】解:由②,得x=y+1③,把③代入①,得(y+1)2﹣2y2﹣y=﹣1,整理,得y2﹣y﹣2=0,解这个方程,得y1=2,y2=﹣1.把y1=2,y2=﹣1代入③,得x1=3,x2=0.∴原方程组的解为,.【点评】本题考查了解方程组,掌握一元二次方程和方程组的解法是解决本题的关键.35.(2023•杨浦区二模)解不等式组并求出它的正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集,继而得出答案.【解答】解:解不等式①得:x≤,解不等式②得:x>,所以不等式组的解集为<x≤,则不等式组的正整数解为1,2,3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.(2023•崇明区二模)解方程组:.【分析】由②得出(x+2y)(x﹣y)=0,求出x+2y=0或x﹣y=0③,由③和①组成两个二元一次方程组,,求出方程组的解即可.【解答】解:,由②,得(x+2y)(x﹣y)=0,x+2y=0或x﹣y=0③,由③和①组成方程组,,解得:,,所以原方程组的解是,.【点评】本题考查了解高次方程组和解二元一次方程组,能把解高次方程组转化成解二元一次方程组是解此题的关键.37.(2023•虹口区二模)某商店以20元/千克的单价进货了一批商品,经调查发现,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图中线段AB所示.(1)求y与x的函数表达式;(2)要使每天的销售利润达到800元,销售单价应定为每千克多少元?【分析】(1)观察函数图象找出点的坐标,利用待定系数法可求出y与x的函数表达式;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)设y与x的函数表达式为y=kx+b(k≠0),将(20,60),(80,0)代入y=kx+b,得:,解得:,∴y与x的函数表达式为为y=﹣x+80.(2)根据题意得:(x﹣20)(﹣x+80)=800,整理得:x2﹣100x+2400=0,解得:x1=40,x2=60.答:销售单价应定为每千克40元或60元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.38.(2023•黄浦区二模)小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?【分析】(1)根据购买衣服及鞋子的原价,结合商场给出的两种促销活动,可分别求出选择两种促销活动需支付的费用,比较后可得出结论;(2)当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二,设裤子的价格为x元,则选择优惠活动一需支付(600+0.5x)元,选择优惠活动二需支付0.8(600+x)元,根据选择优惠活动二更省钱,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)选择优惠活动一需支付费用为600+500×0.5=850(元);选择优惠活动二需支付费用为(600+500)×0.8=880(元).∵850<880,∴她选择优惠活动一会更划算;(2)当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二,理由如下:设裤子的价格为x元,则选择优惠活动一需支付(600+0.5x)元,选择优惠活动二需支付0.8(600+x)元,根据题意得:600+0.5x>0.8(600+x),解得:x<400,∴当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二.【点评】本题考查了一元一次不等式的应用以及有理数的混合运算,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.39.(2023•嘉定区二模)A、B两城间的铁路路程为1800千米.为了缩短从A城到B城的行驶时间,列车实施提速,提速后速度比提速前速度每小时增加20千米.(1)如果列车提速前速度是每小时80千米,提速后从A城到B城的行驶时间减少t小时,求t的值;(2)如果提速后从A城到B城的行驶时间减少3小时,又这条铁路规定:列车安全行驶速度不超过每小时140千米.问列车提速后速度是否符合规定?请说明理由.【分析】(1)根据列车提速前所用的时间﹣提速后所用的时间可得到t的值;。
专题2方程与不等式—2.8分式方程5方案类-2021届鲁教版(五四制)九年级数学专题复习训练
分式及分式方程确定方案——取整【经典例题5】某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【解析】(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得:解得:x=10,经检验:x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本; ③购买这种笔1支,购买本子15本.练习1为提升青少年的身体素质,郑州市在全市中小学推行“阳光体育”活动,河南省实验中学为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足球,购买篮球的个数比足球的个数少2个,足球的单价为篮球单价的54.(1)求篮球、足球的单价分别为多少元?(2)学校计划用不多于5200元购买篮球、足球共60个,那么至少购买多少个足球?(3)在(2)的条件下,若篮球数量不能低过15个,那么有多少种购买方案?哪种方案费用最少?最少费用是多少?【解析】(1)设篮球的单价为x 元/个,则足球的单价为0.8x 元/个, 根据题意得:xx 8.08002800=+, 解得:x =100,经检验,x =100是原方程的解, ∴0.8x =80.答:篮球的单价为100元/个,足球的单价为80元/个.(2)设购买m个足球,则购买(60﹣m)个篮球,根据题意得:80m+100(60﹣m)≤5200,解得:m≥40.答:至少要购买40个足球;(3)由题意得,60﹣m≥15,解得:m≤45,∵m≥40,∴40≤m≤45,∵m为整数,∴m可取40,41,42,43,44,45,共6种购买方案;分别为足球40个,篮球20个;足球41个,篮球19个;足球42个,篮球18个;足球43个,篮球17个;足球44个,篮球16个;足球45个,篮球15个;设总费用为w元,由题意得,w=80m+100(60﹣m)=﹣20m+6000,∵﹣20<0,∴w随着m的增大而减小,∴当m=45时,w=5100,最小答:买足球45个,篮球15个费用最少,最少费用是5100元.练习2为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.【解析】(1)依题意,得:=,解得:m=18,经检验,m=18是原方程的解,且符合题意.∴m=值为18.(2)设购买A型污水处理设备x台,则购买B型污水处理设备(10﹣x)台,依题意得:18x+15(10﹣x)≤156,解得:x≤2,∵x是整数,∴有3种方案.当x=0时,y=10,月处理污水量为180×10=1800吨,当x=1时,y=9,月处理污水量为220+180×9=1840吨,当x=2时,y=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.练习3某工厂计划生产A 、B 两种产品共60件,需购买甲、乙两种材料,生产一件A 产品需甲种材料4千克,乙种材料1千克;生产一件B 产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元. (1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B 产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费40元,若生产一件B 产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)【解析】(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1553260y x y x ,解得⎩⎨⎧==3525y x , 所以甲材料每千克25元,乙材料每千克35元;(2)设生产A 产品m 件,生产B 产品(60−m )件,则生产这60件产品的材料费为 25×4m +35×1m +25×3(60−m )+35×3(60−m )=−45m +10800, 由题意:−45m +10800⩽9900,解得m ⩾20, 又∵60−m ⩾38,解得m ⩽22, ∴20⩽m ⩽22,∴m 的值为20,21,22, 共有三种方案:①生产A 产品20件,生产B 产品40件; ②生产A 产品21件,生产B 产品39件;③生产A产品22件,生产B产品38件;(3)设生产A产品m件,总生产成本为W元,加工费为:40m+50(60−m),则W=−45m+10800+40m+50(60−m)=−55m+13800,∵−55<0,∴W随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低。
2021年中考真题必刷题《第二专题:方程与不等式》
2021年中考真题必刷题《第二专题:方程与不等式》一、选择题1. (2020年安徽)下列方程中,有两个相等实数根的是A. X 2+1=2XB. X 2+1=0 C ・ X 2-2X =3 D ・ X 2-2X =02. (2020年南充)某工程队承接了 80万平方米的荒山绿化任务,为 了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%, 结果提前40天完成了这一任务。
设实际工作时每天绿化的而积为X 万平方米,则下而所列方程中正确的是()° 80 80 “ 小 8° 80(1 + 35%)B. — ------------------- = 40 D. — ----------------- --- ---------- =40 X (1 + 35%)X X X3. (2020年河南省)国家统计数据显示,我国快递业务收入逐年增加。
2017年至2019年我国快递业务收入由5000亿元增加到7500亿元。
设我国2017年至2019年快递业务收入的年平均增长率为X,则可列 方程为()A. 5000(l+2x) =7500B. 5000x2(l+x)=7500C. 5000(1+X )2=7500A. 80(1 + 35%) X 80 — = 40 XB. 80 80 - -- —=40 (1 + 35%)X X -D. 5000+5000(1+X )+5000(1+X )2=75004. (2020年浙江)不等式组卩3-4的解集在数轴上表示正确的 3x > 2x -1 是()5. (2020年遵义)如图,把一块长为40cm,宽为30cm 的矩形硬纸 板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并 用胶带粘好,即可做成一个无盖纸盒。
若该无盖纸盒的底而积为 600cm 2,设剪去小正方形的边长为xcm,则可列方程为A. (30-2x) (40-x) =600B. (30-x)(40-x)=600C. (30-x)(40-2x)=600C.(30-2x)(40-2x)=6006. (2020年随州市)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何”。
中考数学复习讲义课件 重点中学自主招生试题分类专题 题型二 方程与不等式
18.已知关于x的方程x2-2(k-3)x+k2-4k-1=0. (1)若这个方程有实数根,求k的取值范围; (2)若以方程x2-2(k-3)x+k2-4k-1=0的两个根 为横坐标、纵坐标的点恰在反比例函数y=m/x的图 象上,求满足条件的m的最小值.
用水加满,这时容器内纯酒精与水之比为13,则容
器的容积为()
9.满足等式 x y+y x- 2021x- 2021y+ 2021xy=2021 的
正整数对的个数是( B)
A.1
B.2
C.3
D.4
[解析] 由 x y+y x- 2021x- 2021y+ 2021xy=2021,得 ( xy- 2021)( x+ y+ 2021)=0. ∵ x+ y+ 2021>0,∴ xy- 2021=0, ∴ xy= 2021,故 xy=2021. 又 2021 是质数,且 x,y 都为正整数,
题型精讲
C
[归纳总结] 求代数式的值是经典题目,方法很多 很灵活,但基本思路要么变换已知,要么变换未知, 要么已知未知一起变,直到能代入求值.其中整体 思想的运用不容忽视,因为很多方程不需解,只需 变换成可以整体代入的形式即可求值. [易错分析] 解答本题时容易忽略题目中的隐含条 件,即二次根式有意义的条件,误将x=4和x=5代 入式子错选D答案.
m+1=1,2,3,6, m=0,1,2,5,
即
m-1=1,3,
m=2,4,
S△ABC=12×2 3× (2+ 2)2-( 3)2= 9+12 2. 综上,△ABC 的面积为 1 或 9+12 2.
2021学年初中数学五年河北经典中考题02 方程与不等式(含答案解析)
专题02 方程与不等式(五年河北)1 . 语句“的与的和不超过”可以表示为()A.B.C.D.【答案】A【解析】【分析】x的即x,不超过5是小于或等于5的数,由此列出式子即可.【详解】“x的与x的和不超过5”用不等式表示为x+x≤5.故选A.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2 .小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【答案】A【解析】【分析】直接把已知数据代入,进而得出的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1,∴(﹣1)2﹣3+c=0,解得:c=2,故原方程中c=4,则b2﹣4ac=9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A.【点睛】此题主要考查了一元二次方程解的意义,根的判别式,正确得出的值是解题关键.3 .有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【答案】A【解析】【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【详解】设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意,故选A.【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.4 .a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【答案】B【解析】试题解析:∵,∴ac<0.在方程中,△=≥﹣4ac>0,∴方程有两个不相等的实数根.故选B.5 . 若m>n,则下列不等式正确的是()C.6m<6n D.﹣8m>﹣8n A.m﹣2<n﹣2B.【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6 . 关于的方程有实数根,则满足()A.B.且C.且D.【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7 .关于的一元二次方程有两个实数根,则的取值范围是()A.B.C.且D.且【答案】D【解析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.8 .某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 【答案】A【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9 . 已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2B.2 C.−4D.4【答案】B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10 . 已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.30【答案】D【解析】∵α方程x2-2x-4=0的实根,∴α2-2α-4=0,即α2=2α+4,∴α3=2α2+4α=2(2α+4)+4α=8α+8,∴原式=8α+8+8β+6=8(α+β)+1 4,∵α,β是方程x2-2x-4=0的两实根,∴α+β=2,∴原式=8×2+14=30,故选D.11 . 关于的一元二次方程的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.12 . 已知是二元一次方程组的解,则的算术平方根为()A.±2 B.C.2 D.4【答案】C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵是二元一次方程组的解,∴,解得.∴.即的算术平方根为2.故选C.13 .我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()C.D.A.B.【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14 . 已知a,b满足方程组则a+b的值为()A.﹣4 B.4 C.﹣2 D.2【答案】B【解析】试题解析:,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.15 . 若α、β为方程2x2-5x-1=0的两个实数根,则的值为()A.-13 B.12 C.14 D.15【答案】B【解析】根据一元二次方程的根与系数的关系,可知2α2﹣5α﹣1=0,α+β=-,α·β=,因此可得2α2=5α+1,代入2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1=5×+3×(-)+1=12.故选B.点睛:此题主要考查了一元二次方程的根与系数的关系,关键是利用一元二次方程的一般式,得到根与系数的关系x1+x2=-,x1·x2=,然后变形代入即可.16 . 如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=_____;(2)当y=﹣2时,n的值为_____.【答案】3x; 1【解析】【分析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,直接写出m即可;(2)先转换成加法形式,表示出m,n,y,再把y=-2代入解出x,即可求出n. 【详解】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m=x+2x=3x;(2)由题知m=3x,n=2x+3,y=m+n,则y=3x+2x+3=5x+3,把y=-2代入,-2=5x+3,解得x=-1,则n=2×(-1)+3=1.【点睛】本题是对新定义的考查,熟练理解题上新定义内容和一元一次方程是解决本题的关键.17 . 已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.【答案】(1)-2;(2).【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m的取值,故可求解.【详解】(1)=;(2)依题意得<m解得m>-2∴负整数=-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则.18 .用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.(1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式;②为何值时,是的3倍?(注:(1)及(2)中的①不必写的取值范围)【答案】(1);(2)①;②.【解析】【分析】(1)设W=kx2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx2,∵时,∴3=9k∴k=∴与的函数关系式为;(2)①∵薄板的厚度为xcm,木板的厚度为6cm∴厚板的厚度为(6-x)cm,∴Q=∴与的函数关系式为;②∵是的3倍∴-4x+12=3×解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,是的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.19 . 已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x. 【答案】(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.20 .某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.21 .某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多3 0元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.【解析】【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.【详解】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意:解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∴m=50时,w有最小值=5500(元)【点睛】此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.22 .某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.23 .一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元. 【解析】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.详解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24 .某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【解析】(1)设该店有客房x间,房客y人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.解:(1)设该店有客房x间,房客y人;根据题意得:,解得:.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱若一次性定客房18间,则需付费20×18×0.8=288千<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.“点睛”本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.25 .为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【答案】(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.【解析】试题分析:(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.试题解析:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得:,解得:.答:一个足球的单价103元,一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤,∵m为整数,∴m最大取9答:学校最多可以买9个足球.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.26 .如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.考点:一元二次方程的应用题.。
2023年中考数学专题练——2方程和不等式
2023年中考数学专题练——2方程和不等式一.选择题(共5小题)1.(2022•泉山区校级三模)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x 人,根据题意可列方程为( ) A .6x +14=8xB .6(x +14)=8xC .8x +14=6xD .8(x ﹣14)=6x2.(2021•徐州模拟)已知x 1,x 2是关于x 的方程x 2﹣kx ﹣1=0的两个实数根,下列结论一定正确的是( ) A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<03.(2022•徐州二模)若一元二次方程ax 2+2x +1=0有两个不相等的实数根,则实数a 的取值范围是( ) A .a <1B .a ≤1C .a ≤1且a ≠0D .a <1且a ≠04.(2021•徐州二模)学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几支球队参赛?设有x 支球队参赛,则下列方程中正确的是( ) A .x (x +1)=28 B .x (x ﹣1)=28 C .12x (x +1)=28D .12x (x ﹣1)=285.(2020•徐州模拟)一元二次方程3x 2﹣4x +1=0的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根二.填空题(共11小题)6.(2022•徐州二模)如果关于x 的方程2x−3=1−k 3−x有增根,那么k = .7.(2022•徐州一模)已知关于x 的一元二次方程x 2﹣kx ﹣6=0的一个根是2,则它的另一个根为 .8.(2022•徐州一模)《九章算术》中记载;“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元,问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为 .9.(2022•邳州市一模)已知x 、y 满足方程组{x +3y =−1x −y =3,则x +y 的值为 .10.(2022•睢宁县模拟)方程组{3x +4y =19x −y =4的解是 .11.(2022•邳州市一模)若关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根,则k 的值是 .12.(2022•睢宁县模拟)如果关于x 的方程x 2+kx +9=0有两个相等的实数根,那么k 的值为 .13.(2022•鼓楼区校级一模)关于x 的一元二次方程x 2+x ﹣a =0的一个根是2,则另一个根是 .14.(2022•鼓楼区校级三模)设x 1,x 2是关于x 的方程x 2﹣3x +k =0的两个根,且x 1=2x 2,则k = .15.(2021•徐州模拟)若关于x 的一元二次方程x 2+8x +m =0有两个不相等的实数根,则m 的取值范围是 . 16.(2021•邳州市模拟)方程2x+4=1x−2的解为 .三.解答题(共14小题)17.(2022•鼓楼区校级二模)(1)解方程:x 2﹣2x ﹣3=0; (2)解不等式组:{2x +3≤1x −2>4x +4.18.(2022•鼓楼区校级三模)(1)解方程:2x+5=1x−3;(2)解不等式组:{−2x +3>5①2x−13≥12x −23②.19.(2022•丰县二模)(1)解方程:x 2﹣4x ﹣2=0; (2)解不等式组:{3x −1≥x12(x +1)<2.20.(2022•丰县二模)金山银山不如绿水青山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树900棵,由于青年志愿者支援,实际每天种树的棵数是原计划的1.5倍,结果提前4天完成任务.原计划每天种树多少棵?21.(2022•贾汪区二模)我国今年成功举办了北京冬奥会和冬残奥会,吉祥物“冰墩墩”和“雪容融”深受广大民众的喜爱,小王想购买两种吉祥物毛绒玩具,已知购买1件“冰墩墩”和1件“雪容融”共需230元,购买2件“冰墩墩”和3件“雪容融”共需540元,求吉祥物玩具“冰墩墩”和“雪容融”单价分别是多少?22.(2022•徐州二模)(1)解方程:x 2﹣2x ﹣2=0; (2)解不等式组:{2+x >−12x−13≤1.23.(2022•贾汪区二模)(1)解方程x 2﹣2x ﹣6=0; (2)解不等式组{2x −1≤x2(x +1)>x −2.24.(2022•鼓楼区校级三模)2020年初,受疫情影响,医用防护服生产车间有7人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变.原来生产车间每天生产防护服800套,现在每天生产防护服650套,求原来生产车间的工人有多少人? 25.(2022•睢宁县模拟)(1)解方程:x 2﹣4x +2=0;(2)解不等式组:{4x+13<x①x >2x②.26.(2022•邳州市一模)(1)解方程:x−3x−2+1=32−x; (2)解不等式组:{3x −5≥x +13x−42<x.27.(2022•邳州市一模)直播带货逐渐走进了人们的生活,某电商在抖音上销售一批小商品,平均每天可卖出20件,每件盈利30元通过市场调查发现,在一定范围内,小商品单价每降低1元,平均每天销售量增加2件,商家预期日利润为750元,决定降价促销,小商品的单价应降低多少元?28.(2022•徐州一模)(1)解方程:x 2﹣6x ﹣7=0; (2)解不等式组:{2x −2<x +1x +7>3x.29.(2022•睢宁县模拟)中国古代数学著作《孙子算经》中有这样一个问题,原文:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,所乘车都坐满,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?30.(2022•鼓楼区校级一模)(1)解方程:x (x ﹣7)=8(7﹣x ); (2)解不等式组:{4x −5>x +13x−42<x .2023年江苏省徐州市中考数学专题练——2方程和不等式参考答案与试题解析一.选择题(共5小题)1.(2022•泉山区校级三模)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x人,根据题意可列方程为()A.6x+14=8x B.6(x+14)=8x C.8x+14=6x D.8(x﹣14)=6x 【解答】解:设有牧童x人,若设牧童有x人,根据题意可列方程为:6x+14=8x.故选:A.2.(2021•徐州模拟)已知x1,x2是关于x的方程x2﹣kx﹣1=0的两个实数根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0【解答】解:∵x1,x2是关于x的方程x2﹣kx﹣1=0的两个实数根,∴x1+x2=k,x1•x2=﹣1,即x1和x2互为负倒数,∴x1≠x2,即选项A符合题意,选项B(当k为负数时,x1+x2<0)、选项C(x1•x2=﹣1<0)、选项D(x1和x2不一定都是负数)都不符合题意;故选:A.3.(2022•徐州二模)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≤1且a≠0D.a<1且a≠0【解答】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1且a≠0,故选:D.4.(2021•徐州二模)学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几支球队参赛?设有x 支球队参赛,则下列方程中正确的是( ) A .x (x +1)=28 B .x (x ﹣1)=28 C .12x (x +1)=28D .12x (x ﹣1)=28【解答】解:每支球队都需要与其他球队赛(x ﹣1)场,但2队之间只有1场比赛, 所以可列方程为:12x (x ﹣1)=28,故选:D .5.(2020•徐州模拟)一元二次方程3x 2﹣4x +1=0的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根D .两个不相等的实数根【解答】解:∵Δ=(﹣4)2﹣4×3×1=4>0 ∴方程有两个不相等的实数根. 故选:D .二.填空题(共11小题)6.(2022•徐州二模)如果关于x 的方程2x−3=1−k 3−x有增根,那么k = 2 .【解答】解:方程两边同时乘以x ﹣3得: 2=x ﹣3+k , x =5﹣k ,∵分式方程的增根是x =3, ∴5﹣k =3, 即k =2. 故答案为:2.7.(2022•徐州一模)已知关于x 的一元二次方程x 2﹣kx ﹣6=0的一个根是2,则它的另一个根为 ﹣3 .【解答】解:设另一个根为m ,由根与系数之间的关系得, m ×2=﹣6, ∴m =﹣3, 故答案为:﹣3.8.(2022•徐州一模)《九章算术》中记载;“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元,问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为 {8x =y +37x =y −4 .【解答】解:设共有x 个人,这个物品价格是y 元, 则{8x =y +37x =y −4. 故答案为:{8x =y +37x =y −4.9.(2022•邳州市一模)已知x 、y 满足方程组{x +3y =−1x −y =3,则x +y 的值为 1 .【解答】解:{x +3y =−1①x −y =3②①+②得:2x +2y =2, 2(x +y )=2, x +y =1. 故答案为:1.10.(2022•睢宁县模拟)方程组{3x +4y =19x −y =4的解是 {x =5y =1 .【解答】解:{3x +4y =19①x −y =4②,①+②×4得:7x =35, 解得:x =5,把x =5代入②得:y =1, 则方程组的解为{x =5y =1,故答案为:{x =5y =111.(2022•邳州市一模)若关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根,则k 的值是 −94.【解答】解:∵关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根, ∴Δ=32+4k =9+4k =0, 解得:k =−94. 故答案为:−94.12.(2022•睢宁县模拟)如果关于x 的方程x 2+kx +9=0有两个相等的实数根,那么k 的值为 ±6 .【解答】解:∵方程有两相等的实数根,∴Δ=b2﹣4ac=k2﹣36=0,解得k=±6.故答案为:±6.13.(2022•鼓楼区校级一模)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是﹣3.【解答】解:设另一个根为m,由根与系数之间的关系得,m+2=﹣1,∴m=﹣3,故答案为﹣3,14.(2022•鼓楼区校级三模)设x1,x2是关于x的方程x2﹣3x+k=0的两个根,且x1=2x2,则k=2.【解答】解:根据题意,知x1+x2=3x2=3,则x2=1,将其代入关于x的方程x2﹣3x+k=0,得12﹣3×1+k=0.解得k=2.故答案是:2.15.(2021•徐州模拟)若关于x的一元二次方程x2+8x+m=0有两个不相等的实数根,则m 的取值范围是m<16.【解答】解:根据题意得Δ=82﹣4m>0,解得m<16.故答案为m<16.16.(2021•邳州市模拟)方程2x+4=1x−2的解为x=8.【解答】解:方程两边都乘以(x+4)(x﹣2)得:2(x﹣2)=x+4,解得:x=8,检验:当x=8时,(x+4)(x﹣2)≠0,∴x=8是原方程的根.故答案为:x=8.三.解答题(共14小题)17.(2022•鼓楼区校级二模)(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:{2x +3≤1x −2>4x +4.【解答】解:(1)x 2﹣2x ﹣3=0, (x +1)(x ﹣3)=0, x +1=0或x ﹣3=0, x 1=﹣1,x 2=3; (2){2x +3≤1x −2>4x +4,解不等式2x +3≤1得:x ≤﹣1, 解不等式x ﹣2>4x +4得:x <﹣2. ∴不等式组的解集为x <﹣2.18.(2022•鼓楼区校级三模)(1)解方程:2x+5=1x−3;(2)解不等式组:{−2x +3>5①2x−13≥12x −23②.【解答】解:(1)去分母得:2(x ﹣3)=x +5, 解得:x =11,检验:把x =11代入得:(x +5)(x ﹣3)≠0, ∴分式方程的解为x =11; (2)由①得:x <﹣1, 由②得:x ≥﹣2,∴不等式组的解集为﹣2≤x <﹣1.19.(2022•丰县二模)(1)解方程:x 2﹣4x ﹣2=0; (2)解不等式组:{3x −1≥x12(x +1)<2.【解答】解:(1)x 2﹣4x ﹣2=0, 配方,得x 2﹣4x +4=6. 即(x ﹣2)2=6.解得x 1=2+√6,x 2=2−√6.(2)由3x ﹣1>x ,得x ≥12.由12(x +1)<2,得x <3.∴不等式组的解集是:12≤x <3.20.(2022•丰县二模)金山银山不如绿水青山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树900棵,由于青年志愿者支援,实际每天种树的棵数是原计划的1.5倍,结果提前4天完成任务.原计划每天种树多少棵? 【解答】解:设原计划每天种树x 棵.则实际每天种树1.5x 棵, 由题意,得:900x=9001.5x+4,解得:x =75,经检验,x =75是原方程的解,且符合题意. 答:原计划每天种树75棵.21.(2022•贾汪区二模)我国今年成功举办了北京冬奥会和冬残奥会,吉祥物“冰墩墩”和“雪容融”深受广大民众的喜爱,小王想购买两种吉祥物毛绒玩具,已知购买1件“冰墩墩”和1件“雪容融”共需230元,购买2件“冰墩墩”和3件“雪容融”共需540元,求吉祥物玩具“冰墩墩”和“雪容融”单价分别是多少?【解答】解:设吉祥物玩具“冰墩墩”的单价是x 元,“雪容融”的单价是y 元, 依题意得:{x +y =2302x +3y =540,解得:{x =150y =80.答:吉祥物玩具“冰墩墩”的单价是150元,“雪容融”的单价是80元. 22.(2022•徐州二模)(1)解方程:x 2﹣2x ﹣2=0; (2)解不等式组:{2+x >−12x−13≤1.【解答】解:(1)方程移项得:x 2﹣2x =2, 配方得:x 2﹣2x +1=3,即(x ﹣1)2=3, 开方得:x ﹣1=±√3, 解得:x 1=1+√3,x 2=1−√3; (2){2+x >−1①2x−13≤1②,由①得:x >﹣3,由②得:x ≤2,则不等式组的解集为﹣3<x ≤2.23.(2022•贾汪区二模)(1)解方程x 2﹣2x ﹣6=0; (2)解不等式组{2x −1≤x 2(x +1)>x −2.【解答】解:(1)方程移项得:x 2﹣2x =6, 配方得:x 2﹣2x +1=7,即(x ﹣1)2=7, 开方得:x ﹣1=±√7, 解得:x 1=1+√7,x 2=1−√7; (2){2x −1≤x ①2(x +1)>x −2②,由①得:x ≤1, 由②得:x >﹣4,则不等式组的解集为﹣4<x ≤1.24.(2022•鼓楼区校级三模)2020年初,受疫情影响,医用防护服生产车间有7人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变.原来生产车间每天生产防护服800套,现在每天生产防护服650套,求原来生产车间的工人有多少人? 【解答】解:设原来生产车间的工人有x 人, 根据题意,得8008x=65010(x−7),解得x =20,经检验,x =20是原方程的根, 答:原来生产车间的工人有20人.25.(2022•睢宁县模拟)(1)解方程:x 2﹣4x +2=0;(2)解不等式组:{4x+13<x①x >2x②.【解答】解:(1)∵x 2﹣4x +2=0, ∴x 2﹣4x =﹣2,∴x 2﹣4x +4=﹣2+4,即(x ﹣2)2=2, 则x ﹣2=√2或x ﹣2=−√2,解得x 1=2+√2,x 2=2−√2;(2)解不等式①得:x <﹣1,解不等式②得:x <0,则不等式组的解集为x <﹣1.26.(2022•邳州市一模)(1)解方程:x−3x−2+1=32−x ; (2)解不等式组:{3x −5≥x +13x−42<x . 【解答】解:(1)x−3x−2+1=32−x , x ﹣3+x ﹣2=﹣3,解得:x =1,检验:当x =1时,x ﹣2≠0,∴x =1是原方程的根;(2){3x −5≥x +1①3x−42<x②, 解不等式①得:x ≥3,解不等式②得:x <4,∴原不等式组的解集为:3≤x <4.27.(2022•邳州市一模)直播带货逐渐走进了人们的生活,某电商在抖音上销售一批小商品,平均每天可卖出20件,每件盈利30元通过市场调查发现,在一定范围内,小商品单价每降低1元,平均每天销售量增加2件,商家预期日利润为750元,决定降价促销,小商品的单价应降低多少元?【解答】解:设每件小商品降价x 元,由题意得,(30﹣x )(20+2x )=750,整理得:x 2﹣20x +75=0,解得:x 1=5,x 2=15.又∵降价促销,∴小商品的单价应降低15元.答:小商品的单价应降低15元.28.(2022•徐州一模)(1)解方程:x 2﹣6x ﹣7=0;(2)解不等式组:{2x −2<x +1x +7>3x. 【解答】解:(1)∵x 2﹣6x ﹣7=0,∴(x ﹣7)(x +1)=0,则x ﹣7=0或x +1=0,解得x 1=7,x 2=﹣1;(2)解不等式2x ﹣2<x +1得,x <3,解不等式x +7>3x 得,x <72,所以不等式组的解集是x <3.29.(2022•睢宁县模拟)中国古代数学著作《孙子算经》中有这样一个问题,原文:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,所乘车都坐满,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【解答】解:设共有x 人,y 辆车,根据题意得:{x 3+2=y x−92=y , 解得:{x =39y =15, 答:共有39人,15辆车.30.(2022•鼓楼区校级一模)(1)解方程:x (x ﹣7)=8(7﹣x );(2)解不等式组:{4x −5>x +13x−42<x . 【解答】解:(1)x (x ﹣7)=8(7﹣x ),x (x ﹣7)+8(x ﹣7)=0,(x ﹣7)(x +8)=0,x ﹣7=0或x +8=0,所以x 1=7,x 2=﹣8;(2){4x −5>x +1①3x−42<x②, 解①得x >2,解②得x<4,所以不等式组的解集为2<x<4.。
高考数学专项复习专题二一元二次函数一元二次函数方程和不等式
专题二一元二次函数、方程和不等式06 等式性质与不等式性质题型一由不等式性质比较数(式)大小题型二作差法比较代数式大小题型三作商法比较代数式大小题型四由不等式性质证明不等式题型五利用不等式求值或取值范围07 基本不等式(1)题型一由基本不等式比较大小题型二由基本不等式证明不等关系题型三基本不等式求积的最大值题型四基本不等式求和的最小值题型五二次与二次(或一次)的商式的最值问题07 基本不等式(2)题型一条件等式求最值题型二基本不等式的恒成立问题题型三对勾函数求最值题型四基本不等式的应用08 二次函数与一元二次方程、不等式(1)题型一解含有参数的一元二次不等式题型二由一元二次不等式的解确定参数题型三一元二次方程根的分布问题题型四一元二次不等式与二次函数、一元二次方程的关系08 二次函数与一元二次方程、不等式(2)题型一 一元二次不等式在实数集上恒成立问题 题型二 一元二次不等式其他恒成立问题 题型三 一元二次不等式有解问题 题型四 一元二次不等式的应用一元二次函数、方程和不等式讲义§2.1等式性质与不等式性质 1.作差法比较大小0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=.2.不等式的基本性质(1)(对称性)a b b a >⇔> (2)(传递性),a b b c a c >>⇒> (3)(可加性)a b a c b c >⇔+>+(4)(可乘性),0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< (5)(同向可加性),a b c d a c b d >>⇒+>+ (6)(正数同向可乘性)0,0a b c d ac bd >>>>⇒> (7)(正数乘方法则)0(,1)n n a b a b n N n >>⇒>∈>且 §2.2基本不等式① 重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式: ()2222()()a b a b a b R +≥+∈,② 基本不等式:2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥; 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”. §2.3二次函数与一元二次方程.不等式b06 等式性质与不等式性质题型一 由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是( ) A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .2.已知,,R a b c ∈,下列命题为真命题的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则a d b c ->- C .若a b >,c d >,则ac bd > D .若22a b >,且0ab <则11a b< 【答案】B【解析】:A 若,0a b c >=则220ac bc ==,A 不正确;B :因为a b >,c d >,则c d -<-,所以a d b c ->-,故B 正确;C :当0b c ==时,可得不等式不成立,故C 不正确.D :若3,2a b ==-,满足条件,但11a b>,所以D 不正确. 故选:B .3.已知,,a b c ∈R ,若a b c >>,且230a b c ++=,则下列不等关系正确的是( ) A .ac bc < B .a b c b >C .c c a c b c>-- D .()2a bc abc +>+【答案】ACD【解析】230a b c ++=,a b c >>,0c ∴<,0a >, 对于A ,a b >,0c <,ac bc ∴<,A 正确;对于B ,当0b =时,满足a b c >>,此时0a b c b ==,B 错误; 对于C ,a b c >>,0a c b c ∴->->,11a cbc ∴<--,又0c <,c c a c b c∴>--,C 正确; 对于D ,a b >,0a b ∴->,()()a a b c a b ∴->-,即2a ab ac bc ->-,整理可得:故选:ACD.4.已知g b 糖水中含有g a 糖(0b a >>),若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有( ) A .a a m b b m+<+B .22mm a m a b m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313ba -<- 【答案】ABD【解析】对于A ,由题意可知a a mb b m+<+,正确; 对于B ,因为2mm <,所以2222m mm ma m a m m ab m b m m b +++-+<=+++-+,正确; 对于C ,22a m a m m a mb m b m m b m ++++<=++++即()()()()22a m b m a m b m ++<++,错误; 对于D ,1122131131311333b b b b a --+<==<--+,正确. 故选:ABD5.已知1m n >>,则下列不等式中一定成立的是( ) A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二 作差法比较代数式大小1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误.而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.2.设2243P a a =-+,()()13Q a a =--,a ∈R ,则有( ) A .P Q ≥ B .P Q > C .P Q < D .P Q ≤【答案】A【解析】解:∵ ()()22214330P a a Q a a a -=-+---=≥,∵ P Q ≥. 故选:A.3.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B【答案】B 【解析】()2234A B a ab ab b-=+--22a ab b =-+223204b a b ⎛⎫=-+ ⎪⎝⎭≥,A B ∴≥.故选:B4.已知a b c d ,,,均为实数,下列命题正确的有( ) A .若0ab >,0bc ad ->,则0c da b ->B .若0ab >,0c da b ->,则0bc ad ->C .若0bc ad ->,0c da b->,则0ab >D .如果0a b >>,0c d >>,则bc bd > 【答案】ABCD【解析】对于A ,因为0ab >,0bc ad ->,所以0c d bc ada b ab --=>,故A 正确; 对于B ,因为0ab >,又0c d a b ->,即0bc adab ->,所以0bc ad ->,故B 正确; 对于C ,因为0bc ad ->,又0c d a b ->,即0bc adab->,所以0ab >,故C 正确; 对于D ,因为0a b >>,0c d >>,,所以bc bd >,故D 正确. 故选:ABCD5.已知221110,1,1,,a A a B a C D -<<=+=-==,则,,,A B C D 的大小关系是________.(用“>”连【答案】C A B D >>> 【解析】由题意不妨取14a =-,这时171544,,,161635A B C D ====. 由此猜测:C A B D >>>下面给出证明:()()2221324111111a a a a a C A a a a a⎡⎤⎛⎫-++⎢⎥ ⎪-++⎝⎭⎢⎥⎣⎦-=-+==+++, 又21310,0,0,24a a a C A ⎛⎫+>->++>∴> ⎪⎝⎭222(1)(1)20A B a a a A B -=-=>∴>+-,,()2221512411111a a a a a B D a a a a⎡⎤⎛⎫--⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦-=--==---. 又∵102a -<<,10a ∴->,又∵22151150,24224a B D ⎛⎫⎛⎫--<---<∴> ⎪ ⎪⎝⎭⎝⎭,综上所述,C A B D >>>. 故答案为:C A B D >>>.6.现有A B C D 、、、四个长方体容器,A B 、的底面积均为2x ,高分别为,x y ;C D 、的底面积均为2y ,高也分别为x y 、 (其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种? 【答案】未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案.【解析】由条件得3223,,,,A B C D V x V x y V xy V y ====,则()()()()()23223A B C D V V V V x x y xy y x y x y +-+=+-+=+-当x y >时, A B C D V V V V +>+,当x y <时, A B C D V V V V +<+()()()()()322322A C B D V V V V x xy x y y x y x y +-+=+-+=+-当x y >时, A C B D V V V V +>+,当x y <时, A C B D V V V V +<+()()()()()233220A D B C V V V V x y x y xy x y x y +-+=+-+=-+>所以未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案. 题型三 作商法比较代数式大小(2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.∵当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ∵当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且ab 时,a b b a a b a b >.2.已知0a >,0b >,试比较+a b 与a b b a+的大小; 【答案】a ba bb a++(当且仅当a b =时取等号) 【解析】方法一:由题意()()()a b a b a b a a b b a b b a a b ba ab ab--+--⎛⎫+-+==⎪⋅⎝⎭()()2a ba bab+-=,因为0a >,0b >,所以0a b +>,()20a b-≥,0ab >,所以()()20a ba bab+-≥,当且仅当a b =时等号成立,所以a ba b b a+≤+(当且仅当a b =时取等号). 方法二:由()()()()a b a b a b aba ab b a b ab ba ab ab ab a bab a b +++-++-===+++()2a babab-+==()211a b ab-+,当且仅当a b =时等号成立,所以a ba bb a++(当且仅当a b =时取等号). 3.设,a b R +∈,试比较a b a b 与b a a b 的大小. 【答案】当a b =时两者相等;当a b 时a b b a a b a b >.【解析】依题意,,a b R +∈,当ab 时,a ba b b a a b a a b b -⎛⎫= ⎪⎝⎭:当0a b >>时,1,0a a b b >->,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭;当0b a >>时,01,0b a b a <<-<,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭.故当ab 时,1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭,即a b b a a b a b >.4.(1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小;(2)已知a ,b ,c ∵{正实数},且a 2+b 2=c 2,当n ∵N ,n >2时比较c n 与a n +b n 的大小. 【答案】(1)(x 2+y 2)(x -y )>(x 2-y 2)(x +y );(2)a n +b n <c n . 【解析】(1)(x 2+y 2)(x -y )-(x 2-y 2)(x +y )()()()222x y x y x y ⎡⎤=-+-+⎣⎦()()2x y xy =-⨯-因为0x y <<, 则0,20x y xy -<-<, 故()()20x y xy -⨯->, 即(x 2+y 2)(x -y )-(x 2-y 2)(x +y )>0 (x 2+y 2)(x -y )>(x 2-y 2)(x +y ).(2)∵a ,b ,c ∵{正实数},∵a n ,b n ,c n >0.而n n n a b c +=n na b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∵a 2+b 2=c 2,则22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1,∵0<a c <1,0<bc<1. ∵n ∵N ,n >2,∵2na a c c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,2nb bc c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. ∵n n n a b c +=n n a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭<22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1. ∵a n +b n <c n .1.设a ,b 为正实数,则下列命题中是真命题的是( ) A .若221a b -=,则1a b -< B .若111b a-=,则1a b -<C .若1a b -=,则1a b -<D .若1a ,1b ,则1a b ab --【答案】AD【解析】对于A 选项,由a ,b 为正实数,且221a b -=,可得1a b a b-=+,所以0a b ->, 所以0a b >>, 若1a b -≥,则11a b≥+,可得1a b +≤,这与0a b a b +>->矛盾,故1a b -<成立,所以A 中命题为真命题;对于B 选项,取5a =,56b =,则111b a -=,但5516a b -=->,所以B 中命题为假命题;对于C 选项,取4a =,1b =,则1a b -=,但31a b -=>,所以C 中命题为假命题;对于D 选项,由1,1a b ≤≤,则()()()()2222222211110a b ab a b a b a b---=+--=--,即()()221a b ab -≤-,可得1a b ab --,所以D 中命题为真命题.故选AD.2.已知三个不等式:0,0,0c dab bc ad a b>->->(其中a b c d ,,,均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成正确命题的个数是______. 【答案】3【解析】若0,0ab bc ad >->成立,不等式0bc ab ->两边同除以ab 可得0c da b->,即0,0c dab bc ad a b>->⇒->; 若0,0c d ab a b >->成立,不等式0c da b ->两边同乘ab ,可得0bc ad ->,即0,00c dab bc ad a b>->⇒->;若0c d a b ->,0bc ad ->成立,则0c d bc ada b ab --=>,又0bc ad ->,则0ab >, 即0c da b->,00bc ad ab ->⇒>. 综上可知,以三个不等式中任意两个为条件都可推出第三个不等式成立,故可组成的正确命题有3个.故答案为:3.3.设n N ∈,1n >,1A n n =--,1B n n =+-,试比较A 与B 的大小. 【答案】A B >【解析】()()11111111n n n n n n A n n n n n n --+---=--===+-+-,同理可得11B n n=++,n N ∈,1n >,所以11n n n n +-<++,则1111n n n n>+-++,因此,A B >,故答案为A B >. 3.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--; (3)在(2)中的不等式中,能否找到一个代数式,满足2()bc a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为 0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意.4.设绝对值小于1的全体实数构成集合S ,在S 中定义一种运算“*”,使得*1a ba b ab+=+,求证:如果a ,b S ∈,那么*a b S ∈. 【答案】证明见解析【解析】由题意,绝对值小于1的全体实数构成集合S ,因为a S ∈,b S ∈,所以1a <,1b <,可得21a <,21b <, 则210b ->,210a -<,所以()()22110ba--<,即222210a b a b +--<,所以2222212a b ab ab a b ++<++,即()()221a b ab +<+,所以()()2211a b ab +<+,即11a bab+<+,所以*a b S ∈. 5.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证xx a+>y y b +. 【答案】见解析【解析】,,,a b x y 都是正数,且1a >1b,x >y ,,x y a b a b x y∴>∴<, 故11a b x y +<+,即0x a y b x y ++<<, x yx a y b∴>++. 题型五 利用不等式求值或取值范围1.实数x ,y ,z 满足0x y z ++=,0xyz >,若111T x y z=++,则( ) A .0T > B .0T < C .0T =D .0T ≥【答案】B【解析】因为0x y z ++=且0xyz >,所以不妨设0x >,则0y <,0z <, 则()2y x z xz xy yz xz y xzT xyz xyz xyz++++-+===. 因为0x >,0z <,所以0xz <,又20y -<, 所以20y xz -+<,又0xyz >,所以0T <. 故选:B.2.设实数,x y 满足01xy <<且01x y xy <+<+,那么,x y 的取值范围是 A .1x >且1y > B .01x <<且1y < C .01x <<且01y << D .1x >且01y << 【答案】C【解析】∵1x y xy +<+, ∵10,x xy y -+-< ∵()110,x y y -+-<∵()()110,x y --< ∵()()110,x y -->∵1x >,1y >或1x <,1y <.又∵01xy <<,0x y +>,∵01x <<,01y <<. 故选C.3.设实数x ,y 满足238xy ≤≤,249x y ≤≤,求34x y的最大值. 【答案】27【解析】令()3224mn x x xy y y ⎛⎫=⋅ ⎪⎝⎭,则3422m n n m x y x y -+-⋅=⋅,所以2324m n n m +=⎧⎨-=-⎩,解得2,1m n ==-,所以()232124x x xy y y -⎛⎫=⋅ ⎪⎝⎭,由题意得2249,38x xy y≤≤≤≤, 所以2221111681,83x y xy ⎛⎫≤≤≤≤ ⎪⎝⎭,所以()[]2321242,27x x xy y y -⎛⎫=⋅∈ ⎪⎝⎭.故34x y 的最大值为27. 故答案为:274.若108a b -<<<,求a b +的取值范围. 【答案】018a b <+<【解析】当0a ≥时有08a ≤<,08b <<,故016a b <+<,即0616a <+<; 当0a <时,100a -<<,故010a <-<,因为108b -<<所以1018a b -<-+< 又a b <,所以018a b <-+<,即018a b <+<. 综上018a b <+<.5.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ 【答案】137x y ≤-≤【解析】令3()()x y s x y t x y -=++- ()()s t x s t y =++-则31s t s t +=⎧⎨-=-⎩, 12s t =⎧∴⎨=⎩, 又11x y -≤+≤∵ 13x y ≤-≤, 22()6x y ∴≤-≤⋯∵∴∵+∵得137x y ≤-≤.07 基本不等式(1)题型一 由基本不等式比较大小 1.设b aM a b=+,其中a ,b 是正实数,且a b ,242N x x =-+-,则M 与N 的大小关系是( ).A .M N ≥B .M N >C .M N <D .M N ≤【答案】B【解析】∵a ,b 都是正实数,且a b ,∵22b a b a M a b a b=+>⋅=,即2M >, 又∵()2242442N x x x x =-+-=--++,()2222x =--+≤,即2N ≤,∵M N >, 故选B.2.已知0a >,0b >,2a b A +=,B ab =,2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤ B .A C B ≤≤ C .B C A ≤≤ D .C B A ≤≤【答案】D【解析】由于0a >,0b >,故2a b ab +≥,则2a bab +≥,即A B ≥, 结合02a b ab +<≤可得:12a bab ≥+,两边乘以ab 可得:2ab ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选D .3.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥C .2216a b +≥D .228a b +≥【答案】ABD【解析】A .因为4a b +=,所以24ab ≤,所以4ab ≤,取等号时2a b ==,故正确; B .因为1141a b a b ab ab++==≥,取等号时2a b ==,故正确; C .因为22222228a b a b a b ++≥⋅==,取等号时2a b ==,故错误;D .因为2222a b a b++≥,所以228a b +≥,取等号时2a b ==,故正确. 故选:ABD.4.设0a >,0b >,下列不等式恒成立的是( ). A .21a a +>B .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .296a a +>E.若111a b+=,则4ab ≤【答案】ABC【解析】解:对于选项A ,由于22131024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴21a a +>,故A 恒成立;对于选项B ,由于12a a+≥,12b b +≥,∴114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当1a b ==时,等号成立,故B 恒成立;对于选项C ,由于2a b ab +≥,1112a b ab+≥,∴()114a b a b ⎛⎫++≥ ⎪⎝⎭,当且仅当a b =时,等号成立,故C 恒成立;对于选项D ,当3a =时,296a a +=,故D 不恒成立; 对于选项E ,111a b +=,∴111112a b a b=+≥⨯,∴4ab ≥,当且仅当2a b ==时,等号成立.故E 不恒成立,即不等式恒成立的是ABC , 故选ABC.题型二 由基本不等式证明不等关系1.若0x >,0y >,4x y +≤,则下列不等式中成立的是( ) A .114x y ≤+ B .111x y+≥C .2xy ≥D .11xy≥ 【答案】B【解析】对于A ,因为4x y +≤,所以114x y ≥+,所以A 不正确; 对于B ,若0,0x y >>,设,04x y a a +=<≤,得1x ya+=,所以11111114()2(22)1y x x y x y a x y a x y a a ⎛⎫⎛⎫+=++=++≥+=≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2x y ==时,等号成立,所以B 正确;对于C ,因为0,0x y >>,由4x y +≤,所以42x y xy ≥+≥,即2xy ≤,当且仅当2x y ==时,等号成立,所以C 不正确;对于D ,由上面可知2xy ≤,则4xy ≤,得114xy ≥,所以D 不正确; 故选:B2.已知a,b,c 均为正实数,且a+b+c=1,求证:(1a -1)(1b -1)(1c-1)≥8.【答案】证明见解析【解析】主要考查不等关系与基本不等式.证明:因为a, b, c (0,),∈+∞且a+b+c=1,所以111(1)(1)(1)()()()2)22)8.a b c a a b c b a b c c a b c a b c b c a c b a a a b b c c b c a c b aa ab bc c ++-++-++----=⋅⋅=+++≥⨯⨯⨯⨯⨯=. 3.已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c>9.【答案】证明见解析【解析】∵a ,b ,c ∵R +,且a +b +c =1,∵1a +1b +1c =a b c a b c a b c a b c++++++++ , =3+b a +c a +a b +c b +a c +b c =3+⎛⎫+ ⎪⎝⎭b a a b +⎛⎫+ ⎪⎝⎭c a a c +⎛⎫+ ⎪⎝⎭c b b c ,≥3+2b a a b ⋅+2⋅c aa c +2⋅cb b c=3+2+2+2=9. 当且仅当a =b =c 时取等号, 所以1a +1b +1c>9.4.已知0a >,0b >,1a b +=,求证:11254a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【答案】见解析 【解析】()()()22222211254112541254a b a b ab a b a b ab a b ⎛⎫⎛⎫++⇔++⇔+++ ⎪⎪⎝⎭⎝⎭ 2243380(41)(8)0a b ab ab ab ⇔-+⇔--1a b +=,2212a b ab ∴+=-.104ab<,410ab ∴-,80ab -<. ∵(41)(8)0ab ab --成立,故原不等式成立.5.已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. 【答案】见解析【解析】设,,a b x b c y c a z +=+=+=,则0,0,0x y z >>>, 且()()22x y z z x ya abc b c y +++-=++-+=-=. 同理,,22x y z y z xb c +-+-==. 所以原不等式的左边222y z x z x y x y zx y z+-+-+-=++ 1322y x zx z y x y x z y z ⎡⎤⎛⎫⎛⎫⎛⎫=+++++-⎢ ⎪⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦133(222)222≥⨯++-=. 当且仅当,x y z x y x x z ==,且z yy z=,即,x y z a b c ====时,等号成立. 题型三 基本不等式求积的最大值1.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为( )(单位:cm 2).A .8B .10C .16D .20【答案】C【解析】设BC =x ,连结OC ,得OB =216x -,所以AB =2216x -, 所以矩形ABCD 面积S =2216x x -,x ∵(0,4), S =2()22222162161616x x x x x x -=-≤+-= . 即x 2=16﹣x 2,即x =22时取等号,此时max 16y =故选:C2.已知,a b 为正数,2247a b +=,则21a b +的最大值为( ) A .7B .3C .22D .2【答案】D【解析】222211411212222a b a b a b ⎛⎫+++=⨯+≤= ⎪⎝⎭,当且仅当2241a b =+时,取得最大值.故选:D3.(1)已知x ,y R +∈,求x y x y++的最大值;(2)求满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值,并说明理由. 【答案】(1)2 (2)2.见解析【解析】(1)∵x ,y R +∈,∵22212x y x y xy xyx y x y x y ⎛⎫+++==+≤ ⎪ ⎪+++⎝⎭, 当且仅当x y =时,对等号, ∵当x y =时,x y x y++的最大值为2.(2)∵a ,b R +∈,∵设0a m =>,0b n =>,2a m =,2b n =, ∵22222m n mn mn +≥=,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值, ∵222224242m n k m n k m n k mn +≥+≥=, ∵222k ≤,解得2k ≤,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值为2. 4.我们学习了二元基本不等式:设0a >,0b >,2a bab +≥,当且仅当a b =时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值. (1)对于三元基本不等式请猜想:设0,0,c 0,3a b ca b ≥ 当且仅当a b c ==时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设0,0,0,a b c >>>求证:2229a b ca b c abc(3)利用(1)猜想的三元基本不等式求最值:设0,0,c 0,1,a b a b c 求111a b c 的最大值.【答案】(1)33a b cabc (2)证明见解析(3)827 【解析】(1)通过类比,可以得到当0a >,0b >,0c >时33a b c abc ,当且仅当a b c ==时,等号成立;(2)证明:0a >,0b >,0c >,由(1)可得22232223a b c a b c ++≥,∴22233222333333a b c a b c a b c abca b c abc()()2229a b c a b c abc ∴++++≥(3)解:由(1)可得,33a b c abc ++⎛⎫≥ ⎪⎝⎭,即33a b c abc ++⎛⎫≤ ⎪⎝⎭,由题,已知0a >,0b >,0c >,1a b c ++=,10a b c ∴-=+>,10b a c -=+>,10c a b -=+>,∴33322811133327b ca ca ba b c b c a c a ba b c ∴当且仅当b c a c a b +=+=+,即a b c ==时取等,即111a b c 的最大值为8275.设∵ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且C =3π,a +b =λ,若∵ABC 面积的最大值为93,求λ的值. 【答案】 12 【解析】S ∵ABC =12absin C =34ab , 根据基本不等式2224a b ab λ+⎛⎫≤= ⎪⎝⎭ , 当且仅当a=b 时,等号成立, ∵S ∵ABC =34ab≤34·223216a b λ+⎛⎫= ⎪⎝⎭,令2316λ=93,解得λ=12. 题型四 基本不等式求和的最小值1.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是_______. 【答案】6【解析】由xy +x -y -10=0,得101y x y +=+=91,111y y ++>+, 故()99121611x y y y y y +=++≥⋅+=++,当且仅当911y y =++,即y =2时,等号成立. 故答案为:6.2.若0a b +≠,则2221()a b a b +++的最小值为________.【答案】2【解析】由于()222222222a b a b a b ab a b +++⎛⎫≤≤⇒+≥ ⎪⎝⎭, 所以()()222222211122()2()2()a b a b a b a b a b a b ++++≥+≥⋅=+++,当且仅当a b =且()2212()a b a b +=+时等号成立, 即()34144222a b a b a b a b a b -=⎧=⎧⎪⎪⇒⇒==⎨⎨+=⎪⎪+=⎩⎩时等号成立. 所以2221()a b a b +++的最小值为2.故答案为:23.已知ab >0,则()()22222424541ab a b ab +++++的最小值为_____.【答案】4.【解析】解:根据题意,ab >0,故22224244a b a b ab +≥⨯=,当且仅当a =2b 时等号成立,则原式()()()22222224245(4)245(41)4414141ab a b ab ab ab ab ab ab ++++++++=≥==+++44141ab ab +++,又由ab >0,则4ab +1>1, 则有44141ab ab ++≥+()424141ab ab +⨯=+4,当且仅当4ab +1=2,即4ab =1时等号成立,综合可得:()()22222424541ab a b ab +++++的最小值为4,当且仅当a =2b 12=时等号成立 故答案为:4.4.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值为__________. 【答案】4【解析】因为0a b c >>>,所以()222221111210251025()a ac c a a ac c ab a a b ab a a b ++-+=+⎡⎤⎢⎥⎣⎦++-+-- ()()()()222222222211445 55204 2a a c a a c a a c a b a b a a b a b ⎡⎤⎢⎥⎛⎫=++-≥++-=++-≥⋅+=-+-⎣⎦⎪⎝⎭,当且仅当252a b c === 时取等号,此时221121025()a ac c ab a a b ++-+-的最小值为4. 故答案为:4.题型五 二次与二次(或一次)的商式的最值问题1.若41x -<<,则当22222x x x -+-取最大值时x 的值为( )A .3-B .2-C .1-D .0【答案】D【解析】变形,可得()()()()222112221111222121221x x x x x x x x x x -+-+-++-===+----,41x -<<,510x ∴-<-<,原式()()()11111121221221221x x x x x x ⎡⎤---=+=-+≤-⋅=-⎢⎥---⎣⎦, 当且仅当()11221x x -=-,即0x =时取等号,因此,22222x x x -+-取最大值时0x =. 故选:D.2.(1)若,0x y >,且280x y xy +-=,求x y +的最小值;(2)若41x -<<,求22222x x x -+-的最大值.【答案】(1)18;(2)-1.【解析】(1)由280x y xy +-=,得821x y+=,()828210y x x y x y x y x y ⎛⎫+=++=++ ⎪⎝⎭8210218y xx y ≥+⋅=,当且仅当212x y ==时取等号故当212x y ==,x y +取最小值18.(2)若41x -<<,则()2221112221x x x x x -+⎡⎤=--+⎢⎥--⎣⎦()1121x x-+≥-当且仅当0x =时取等号 ()111121x x ⎡⎤∴--+≤-⎢⎥-⎣⎦.即若41x -<<,22222x x x -+-的最大值为1-.3.(1)求当0x >时,2342x x y x ++=的最小值;(2)求当1x >时,221x y x +=-的最小值.【答案】(1)72;(2)232+.【解析】(1)当0x >时,234322372222222x x x x x x x ++=++≥⋅+=,当且仅当2x =时等号成立,所以当0x >时,函数2342x x y x++=的最小值为72;(2)()22112312111xxy x x x x -+⎡⎤+⎣⎦===-++---, 当1x >时,10x ->,所以()32122321y x x ≥-⋅+=+-, 当且仅当311x x -=-,即在13x =+时等号成立, 所以,当1x >时,221x y x +=-的最小值为232+.4.若,,x y z 均为正实数,则222xy yzx y z +++的最大值是_______.【答案】22【解析】因为,,x y z 均为正实数,所以2222222()11(2)2xy yz xy yzx y y x z y z ++=+++++ 22222()2222xy yzxy yz xy yz x y y z ++≤==+⋅+⋅⋅, 当且仅当2222x y y z ⎧=⎪⎪⎨⎪=⎪⎩,即22x z y ==时等号成立.故答案为:22. 、专题7 基本不等式(2)题型一 条件等式求最值1.已知0<a <1,0<b <1,且44430ab a b --+=,则12a b+的最小值是______.【答案】4243+【解析】已知01,01a b <<<<,由44430ab a b --+=得44441ab a b --+=,即1(1)(1)4a b --=, 令()()10,1,10,1,41x a y b xy =-∈=-∈=, 所以()10,14y x =∈,所以1,14x ⎛⎫∈ ⎪⎝⎭, 故12121218111114114x a b x y xx x x+=+=+=+------()()12421422224441141444134441x x x x x x x x ⎛⎫⎡⎤=++=++=++-+- ⎪⎣⎦------⎝⎭ ()()()()4412444412441242264434441344413x x x x x x x x ⎡⎤----=+++≥+⋅=+⎢⎥----⎣⎦, 当且仅当()()4412444441x x xx --=--即3224x -=时,取等号. 故答案为:4243+. 2.已知正实数x ,y 满足14xy <,且2441y y xy x ++=,则13x y x+-的最小值为______. 【答案】22【解析】解:正实数x ,y 满足14xy <,且2441y y xy x++= 所以21442y y xy x +--=,即()42y x y x y x +-+=,也即()142x y y x ⎛⎫+-= ⎪⎝⎭ 则()1123422x y y x y x y x x x y+-=-++=++≥+ 当且仅当()2142x y x y x y y x ⎧+=⎪+⎪⎨⎛⎫⎪+-= ⎪⎪⎝⎭⎩,即2142x y y x ⎧+=⎪⎨-=⎪⎩,则5234832348x y ⎧-=⎪⎪⎨+⎪=⎪⎩时取等号,此时1711164xy -=<,所以取得最小值22. 故答案为:22.3.已知0a >,0b >,1c >且1a b +=,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值为______. 【答案】422+【解析】因为0a >,0b >,1a b +=,所以222221()22a a a b a b ab ab ab ab +++++==222222ab abab+≥=+,又1c >,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭2221c c ≥+- =122(c 1)21c ⎡⎤-++≥⎢⎥-⎣⎦1222(1)24221c c ⎡⎤-⋅+=+⎢⎥-⎣⎦,其中等号成立的条件:当且仅当222112(1)1a b a b c c ⎧⎪=⎪+=⎨⎪⎪-=-⎩,解得21a =-,22b =-,212c =+,所以21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值是422+. 故答案为:422+.4.若正实数a ,b 满足()2261a b ab +=+,则21aba b ++的最大值为______.【答案】16【解析】()()()221621216a b ab a b a b ab +-=⇒+++-= ,即21216ab a b a b +-=++又()22236323224a b ab a b a b +⎛⎫=⋅⋅≤=+ ⎪⎝⎭,等号成立的条件为2a b = ,原式整理为()()()2223212244a b a b a b +≤++⇒+≤ ,即022a b <+≤ ,那么2121121666ab a b a b +--=≤=++,所以21ab a b ++ 的最大值是16.5.求下列函数的最值(1)求函数22(1)1x y x x +=>-的最小值.(2)若正数x ,y 满足35x y xy +=,求34x y +的最小值. 【答案】(1)223+;(2)5.【解析】(1)2(1)2(1)33(1)223211x x y x x x -+-+==-+++--,当且仅当2(1)3x -=即31x =+时等号成立,故函数y 的最小值为223+.(2)由35x y xy +=得13155y x+=, 则1331213133634(34)()2555555525x y x y x y y x y x +=++=+++=, 当且仅当12355y x x y =,即12y =,1x =时等号成立, 故34x y +的最小值为5.题型二 基本不等式的恒成立问题1.已知a ,b 为正实数,且23a b ab +=,若0a b c +-≥对于满足条件的a 、b 恒成立,则c 的取值范围为.( ) A .2213c c ⎧⎫⎪⎪≤+⎨⎬⎪⎪⎩⎭B .322c c ⎧⎫≤+⎨⎬⎩⎭C .{}6c c ≤D .{}322c c ≤+【答案】A【解析】将23a b ab +=变形为213a b+=,所以()()11121223322132333a b a a b a b b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2a b =时,即632,333a b =-=-时取等号.0a b c +-≥恒成立等价于c a b ≤+恒成立,即()min c a b ≤+,所以2213c ≤+故选:A .2.已知x 、y 都为正数,且4x y +=,若不等式14m x y +>恒成立,则实数m 的取值范围是________.【答案】94m ∴< 【解析】x 、y 都为正数,且4x y +=,由基本不等式得()14144x y x y x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭445259y x y xx y x y=++≥⋅+=,即1494x y +≥,当且仅当2y x =时,等号成立,所以,14x y +的最小值为94,94m ∴<.3.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围. 【答案】(1)10;(2)9122m -≤≤.【解析】(1)2025225x y x y =+≥⋅,解得10xy ≤, 当且仅当5x =,2y =取等号, ∵xy 最大值为10. (2)101555592104421042101041x y y x y x x x x y x y y y ⎛⎫⎛⎫++=++≥+⋅= ⎪⎪⎝⎭⎝⎭+=, 当且仅当203x =,43y =取等号, ∵2944m m +≤,解得9122m -≤≤. 4.设a b c >>,且11ma b b c a c+≥---恒成立,求实数m 的取值范围. 【答案】4m ∴≤ 【解析】由a b c >>知0a b ->,0b c ->,0a c ->. ∴原不等式等价于a c a cm a b b c--+≥--.要使原不等式恒成立,只需a c a ca b b c--+--的最小值不小于m 即可. ()()()()2224a b b c a b b c a c a c b c a b b c a ba b b c a b b c a b b c a b b c-+--+-------∴+=+=++≥+⋅=-------- 当且仅当b c a ba b b c--=--,即2b a c =+时,等号成立. 4m ∴≤5.已知16k >,若对任意正数x ,y ,不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】12k k ⎧⎫⎨⎬⎩⎭【解析】∵0x >,0y >,∵不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立等价于1322x y k ky x ⎛⎫-+ ⎪⎝⎭恒成立.又16k >,∵1132322x y k k k k y x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(当且仅当132k x ky ⎛⎫-= ⎪⎝⎭时,等号成立),∵12322k k ⎛⎫- ⎪⎝⎭,解得13k -(舍去)或12k ,∵实数k 的取值范围为12k k ⎧⎫⎨⎬⎩⎭.题型三 对勾函数求最值1.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174- B .最小值174-C .最大值174D .最小值174【答案】D【解析】设a x =-,b y =-,则0a >,0b >.由12a b ab +=≥得14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立.综上可得,1xy xy +有最小值174. 故选D .2.已知52x ≥,则24524x x y x -+=-有( )A .最大值52B.最小值54C .最大值1D.最小值1【答案】D【解析】解:由522x≥>得,()()()2221451121242222xx xy xx x x-+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当122xx-=-,即3x=时,等号成立,故选:D.题型四基本不等式的应用1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则()A.2a bx+=B.2a bx+≤C.2a bx+>D.2a bx+≥【答案】B【解析】解:由题意得,2(1)(1)(1)A a b A x++=+,则2(1)(1)(1)a b x++=+,因为211(1)(1)2a ba b+++⎛⎫++≤ ⎪⎝⎭,所以21122a b a bx++++≤=+,所以2a bx+≤,当且仅当a b=时取等号,故选:B2.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB上取一点C,使得AC a=,BC b=,过点C作CD AB⊥交圆周于D,连接OD.作CE OD⊥交OD于E.由CD DE可以证明的不等式为()A.2(0,0)abab a ba b>>+B.(0,0)2a bab a b+>>C.22(0,0)22a b a ba b++>>D.222(0,0)a b ab a b+>>【答案】A【解析】解:由射影定理可知2CD DE OD=,即222DC ab abDEa bOD a b===++,由DC DE得2ababa b+,故选:A.。
第二讲方程与不等式-PPT
解得:m≤2
所以 3-m≠0
3m-1 (m+3)
又 ∵方程 △= (1)2 4 (3 m)=m1-2 4
当m=2 时 △=0, ∴方程有两个相等得就是实数根;
当m<2时 △<0, ∴方程无实数根。
例5、 已知关于x得方程mx2 14x 7 0 有两个
x x 实数根 1与 2,关于y 得方程 y2 2(n 1) y n2 2n 0
3
2
这时原方程转换成关于k得一元一次方程, 解得:k=1。故选 (B)
例2、方程 x2 4x 2 得正根为
()
A、2 6 B、 2 6 C、2 6 D、 2 6
解析:利用配方法或公式法求解得正根 x= -2+ 6、
故选(D)
例3、 (2008江苏省苏州市)解不等式组:
x 3 0, 2(x 1) 3≥3x.
2
所以m= 4 2 (6) (4)2 =-8, 42
∵当n=0时,m=-6; 当n=4时,m=10、 ∴m得取值范围就是-8≤m<10、
例6、 (2007江苏扬州课改)为了加强公民得节水意识,合理利 用水资源,某市采用价格调控手段达到节水得目得、该市自 来水收费价格见价目表、
若某户居民月份用水 8m3,
第二讲方程与不等式
在求解方程时应灵活选用,值得注意得就是分式方程求解,验 根。
对于一元一次不等式(组)得求解,要熟练地掌握不等 式得基本性质,它就是不等式求解得基础,在解不等式(组) 时,若不等式两边同时乘以或除以同一个负数时不等号方向 要改变。而不等式组得解就是每个不等式解得公共部分,它常 通过数轴这一步骤来得到不等式解得。
价目表
则应收水费:
2 6 4 (8 6) 2元0、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程与不等式一、不等式与不等式组知识结构及内容:1几个概念6应用1、 概念:方程、方程的解、解方程、方程组、方程组的解2、 一元一次方程:解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零) 例题:.解方程:(1) 3131=+-x x (2)x x x -=--+22132 解:(3)【湘潭】 关于x 的方程mx+4=3x+5的解是x=1,则m= 。
解:3、一元二次方程: (1) 一般形式:()002≠=++a c bx ax(2)解法:直接开平方法、因式分解法、配方法、公式法求根公式()002≠=++a c bx ax ()042422≥--±-=ac b aac b b x 例题:①、解下列方程:(1)x 2-2x =0; (2)45-x 2=0; (3)(1-3x )2=1; (4)(2x +3)2-25=0.(5)(t -2)(t +1)=0; (6)x 2+8x -2=0(7 )2x 2-6x -3=0; (8)3(x -5)2=2(5-x )② 填空:(1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2 (3)x 2+23x +( )=(x + )2 (3)判别式△=b ²-4ac 的三种情况与根的关系当0>∆ ,当0=∆ 当0<∆时没有实数根。
当△≥0时 有两个实数根例题.①.的方程x 2+2x +k =0有两个相等的实数根,则k 满足 ( )A.k >1B.k ≥1C.k =1D.k <1②(常州市)关于x 的一元二次方程01)12(2=-+++k x k x 根的情况是( )(A )有两个不相等实数根 (B )有两个相等实数根(C )没有实数根 (D )根的情况无法判定③.(浙江富阳市)已知方程022=++q px x 有两个不相等的实数根,则p 、q 满足的关系式是( ) A 、042>-q p B 、02>-q p C 、042≥-q p D 、02≥-q p (4)根与系数的关系:x 1+x 2=ab-,x 1x 2=a c例题: (浙江富阳市)已知方程011232=-+x x 的两根分别为1x 、2x ,则2111x x + 的值是( )A 、112 B 、211 C 、112- D 、211-4、 方程组:−−−−→−−−−→代入消元代入消元加减消元加减消元三元一次方程组二元一次方程组一元一次方程 二元(三元)一次方程组的解法:代入消元、加减消元例题:【泸州】解方程组⎩⎨⎧=-=+.82,7y x y x 【南京】解方程组20328x y x y -=⎧⎨+=⎩解 解【苏州】解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩ 【遂宁课改】解方程组:128x y x y -=⎧⎨+=⎩ 解 解【宁德】解方程组:⎩⎪⎨⎪⎧x +y =93(x +y )+2x =33解5、分式方程:分式方程的解法步骤:(1) 一般方法:选择最简公分母、去分母、解整式方程,检验 (2) 换元法例题:①、解方程:211442-=+-x x 的解为 ,065422=++-x x x 根为 ②、【北京市海淀区】当使用换元法解方程03)1(2)1(2=-+-+x x x x 时,若设1+=x x y ,则原方程可变形为( )A .y 2+2y +3=0B .y 2-2y +3=0C .y 2+2y -3=0D .y 2-2y -3=0(3)、用换元法解方程433322=-+-xx x x 时,设x x y 32-=,则原方程可化为( ) (A )043=-+y y (B )043=+-y y (C )0431=-+y y (D )0431=++yy 6、应用:(1)分式方程(行程、工作问题、顺逆流问题) (2)一元二次方程(增长率、面积问题) (3)方程组实际中的运用例题:①轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度) 解:②乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城.已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C 城.求两车的速度 解③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%) 解④【05绵阳】已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值⑤【05南通】某校初三(2)班2 3表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩⑥已知三个连续奇数的平方和是371,求这三个奇数. 解⑦一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长. 解:1几个概念 (二)不等式与不等式组 2不等式3不等式(组)1、几个概念:不等式(组)、不等式(组)的解集、解不等式(组)2、不等式:(1)怎样列不等式:1.掌握表示不等关系的记号2.掌握有关概念的含义,并能翻译成式子. (1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a 为非负数,a 为正数,a 不是正数 解:② (2)8与y 的2倍的和是正数; (3)x 与5的和不小于0;(5)x 的4倍大于x 的3倍与7的差; (2)不等式的三个基本性质不等式的性质1:如果a >b ,那么a +c >b +c ,a -c>b -c 推论:如果a +c >b ,那么a>b -c 。
不等式的性质2:如果a >b ,并且c >0,那么ac>bc 。
不等式的性质3:如果a>b ,并且c<0,那么ac<bc 。
(3) 解不等式的过程,就是要将不等式变形成x >a 或x <a 的形式步骤:(与解一元一次方程类似) 去分母、去括号、移项、合并同类项、系数化一 (注:系数化一时,系数为正不等号方向不变;系数为负方向改变)例题:①解不等式31(1-2x )>2)12(3-x 解:②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(4) 在数轴上表示解集:“大右小左”“” (5) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边(1)3a - 3b -,(2)13a +13b +,(3)2a - 2b -(4)21a + 21b +,(5)1a -+ 1b -+③【05黄岗】不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( )A 、2-<xB 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥1④求不等式组2≤3x -7<8的整数解。
解:课后练习:1、下面方程或不等式的解法对不对?(1) 由-x =5,得x =-5;( ) (2) 由-x >5,得x>-5;( ) (3) 由2x>4,得x<-2;( )(4) 由-21≤3,得x ≥-6。
( ) 2、判断下列不等式的变形是否正确:(1) 由a <b ,得ac<bc ;( )(2) 由x>y ,且m ≠0,得-m x<my -;( ) (3) 由x>y ,得xz 2 > yz 2;( )(4) 由xz 2 > yz 2,得x>y ;( )3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个,问有几个孩子?有多少只苹果?辅导班方程与不等式资料答案:例题:.解方程: (1)解:(x=1) (x=1) (3)【05湘潭】 解: (m=4 ) 例题:①、解下列方程:解: (1)( x1= 0 x2= 2 ) (2) (x1= 3√5 x2= —3√5 )(3)(x1=0 x2= 2/3) (4)(x1= — 4 x2= 1) (5)( t1= — 1 t2= 2 ) (6)(x1= — 4+3√2 x2= — 4—3√2 ) (7)(x1=(3+√15)/2 x2= ( 3—√15)/2 ) (8)(x1= 5 x2= 3/13) ② 填空:(1)x 2+6x +( 9 )=(x + 3 )2; (2)x 2-8x +(16)=(x -4 )2;(3)x 2+23x +(9/16 )=(x +3/4 )2 例题.①. ( C ) ② B ③.(A ) (4)根与系数的关系:x 1+x 2=ab-,x 1x 2=a c例题:( A )例题:【05泸州】解方程组⎩⎨⎧=-=+.82,7y x y x 解得: x=5y=2【05南京】解方程组 20328x y x y -=⎧⎨+=⎩解得: x=2y=1【05苏州】解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩ 解得: x=3 y=1/2 【05遂宁课改】解方程组:128x y x y -=⎧⎨+=⎩ 解得 : x=3y=2【05宁德】解方程组:⎩⎪⎨⎪⎧x +y =93(x +y )+2x =33 例题:①、解方程:211442-=+-x x 065422=++-x x x 根为 (x= 2) ②、【北京市海淀区】( D ) (3)、( A )例题:①解:设船在静水中速度为x 千米/小时依题意得:80/(x+3)= 60/(x-3) 解得:x=21 答:(略)②解:设乙车速度为x 千米/小时,则甲车的速度为(x+10)千米/小时 依题意得:450/(x+10)=400/x 解得x=80 x+1=90 答:(略) ③解:设原零售价为a 元,每次降价率为x 依题意得:a(1-x )²=a/2 解得:x ≈0.292 答:(略) ④【05绵阳】解:A=6/5 B= -4/5⑤解:A ⑥解:三个连续奇数依次为x-2、x 、x+2 依题意得:(x-2)² + x ² +(x+2)² =371 解得:x=±11 当x=11时,三个数为9、11、13;当x= —11时,三个数为 —13、—11、—9 答(略) ⑦解:设小正方形的边长为x cm 依题意:(60-2x )(40-2x )=800 解得x1=40 (不合题意舍去) x2=10 答(略)例题:用不等式表示:①a 为非负数,a 为正数,a 不是正数解: a ≥0 a ﹥0 a ≤0② 解:(1)2x/3 —5<1 (2)8+2y >0 (3)x+5≥0 (4)x/4 ≤2 (5)4x >3x —7 (6)2(x —8)/ 3 ≤ 0 例题:①解不等式31(1-2x )>2)12(3-x 解得:x <1/2 ②解:设每天至少读x 页依题意(10-5)x + 100 ≥ 300 解得x ≥40 答(略) (6) 写出下图所表示的不等式的解集x ≥ -1/2x <0例题:① ②例题:如果a>b ,比较下列各式大小(1)3a - > 3b -,(2)13a +> 13b +,(3)2a - < 2b -(4)21a + > 21b +,(5)1a -+ < 1b -+③【05黄岗】( C )④求不等式组2≤3x -7<8的整数解。