电感式传感器
电感式传感器
• 需要采取相应的防护措施
成本相对较高
• 由于制造工艺和材料的要求较高,成本相对较高
• 在一些对成本敏感的应用中,可能不如其他类型的传感器受欢迎
电感式传感器的性能比较
与电阻式传感器的比较
与电容式传感器的比较
• 电感式传感器具有较高的灵敏度和精度,但成本较高
• 电感式传感器具有较高的灵敏度和精度,但受电磁场影
降低传感器的成本和体积
• 优化制造工艺,降低传感器的成本和体积
• 采用新型材料和封装技术,提高传感器的性能和寿命
电感式传感器的市场需求分析
工业领域的需求
• 自动化生产线、机器人、过程控制等领域的需求持续增长
• 对传感器的性能、稳定性和可靠性要求不断提高
家用电器领域的需求
• 家电安全检测、节能控制、智能化等领域的需求持续增长
D O C S S M A RT C R E AT E
电感式传感器原理与应用
CREATE TOGETHER
DOCS
01
电感式传感器的基本原理
电感式传感器的定义与分类
电感式传感器的定义
• 以电感量为测量对象的传感器
• 通过电感变化量来检测被测量的变化
电感式传感器的分类
• 按结构分:线圈式、磁珠式、变压器式等
• 保证磁通的稳定性和线性度
⌛️
提高传感器的稳定性和可靠性
• 采取防护措施,减小环境因素的影响
• 优化制造工艺,提高传感器的性能和寿命
电感式传感器的制作方法与技巧
线圈的制作方法
磁路系统的制作方法
传感器的封装方法
• 绕制线圈,选择合适的导线材料和
• 选择合适的磁芯材料和磁路结构
• 采用塑料、金属等封装材料,保护
电感式传感器
汇报人:XX
• 电感式传感器概述 • 电感式传感器结构与设计 • 电感式传感器性能参数 • 电感式传感器测量电路 • 电感式传感器应用实例 • 电感式传感器发展趋势与挑战
01
电感式传感器概述
定义与工作原理
定义
电感式传感器是利用电磁感应原理将被测非电量转换 成线圈自感系数或互感系数的变化,再由测量电路转 换为电压或电流的变化量输出的装置,用来检测位移 、压力、振动、应变、流量等参数。
铁粉芯磁芯具有较低的磁导率 和较高的饱和磁感应强度,适
用于大电流和低频电路。
硅钢片
硅钢片磁芯具有较低的磁滞损 耗和涡流损耗,适用于高精度
测量和控制系统。
非晶合金
非晶合金磁芯具有优异的磁性 能和机械性能,适用于高性能
传感器和电力电子器件。
03
电感式传感器性能参数
灵敏度与分辨率
灵敏度
电感式传感器的灵敏度是指其输出信 号与被测量变化之间的比值。高灵敏 度意味着传感器能够检测到微小的被 测量变化,并产生相应的输出信号。
压力测量应用
液压系统压力监测
在液压系统中,电感式传感器可 测量油液的压力变化,确保系统
的正常运行和安全性。
气动系统压力检测
电感式传感器可用于气动系统中, 检测气体压力的变化,为系统的稳 定性和效率提供保障。
工业过程压力监控
在化工、石油等工业过程中,电感 式传感器可实时监测管道或容器内 的压力变化,确保生产安全。
06
电感式传感器发展趋势与挑战
微型化与集成化发展趋势
微型化设计
随着微电子技术和微纳加工技术 的发展,电感式传感器的体积不 断缩小,实现微型化,有利于其 在狭小空间和复杂环境中的应用
电感式传感器
和Z2=Z—△Z,当ZL→∞时,电桥的输出电压为
.
.
U0
Z1
.
U
R1
.
U
Z1 2R
R(Z1
Z
2
)
.
U
U
Z(4-1-6)
Z1 Z2 R1 R2
(Z1 Z2 ) 2R
2Z
当ωL>>R’时,上式可近似为:
.
.
U0
U
L
2L
(4-1-7)
由上式可以看出:交流电桥的输出电压与传感器线圈电感的相对变化量是成正比的。
图4.2.2 差动变压器的等效电路
1-一次绕组 2、3 二次绕组 4-衔铁
.
由图4.2.2可以看出一次绕组的电流为:
.
I1
U1
R1 jL1
二次绕组的感应动势为:
.
E 21
jM1
.
I1
.
;E 22
jM 2
.
I1
.
由于二次绕组反向串接,所以输出总电动势为:
.
E2
j(M1
M2)
R1
U1 jL1
· E0
0
x
为了减小零点残余电动势可采取以下方法:
图4.2.3 差动变压器输出特性
I. 尽可能保证传感器几何尺寸、线圈电气参数玫磁路的对称。磁性材料要经过处理, 消除内部的残余应力,使其性能均匀稳定。
第四章电感式传感器
式中,r 、rc 为螺管、铁芯的半径;l、l为c 螺管、铁芯 的长度; lc 、rc 位移量。
所以,传感器灵敏度为:
K
4 2 N 2
l2
r
1 rc2
107
采用差动形式,灵敏度可提高一倍。 提高灵敏度的途径:
①使线圈与铁芯尺寸比值和趋于1; ②铁芯的材料选用导磁率大的材料。
三种自感式传感器的比较: ◆ 变间距式: 灵敏度最高,且随间距增大而减小;
4.2.4 误差因素分析
(1)激励电源的影响 幅值和频率都会直接影响输出,必须适当选择 合适的值。
(2)温度的影响: 温度变化,引起线圈磁场发生变化,从而产生 温漂(品质因数Q低时,影响更为严重。
解决方法:①采用恒流源供电; ②提高线圈的品质因数; ③采用差动电桥。
(3)零点残余电压 差动变压器在初始状态下,衔铁处于中间位置, 存在零点残余电压,
常用测量电路为: ◆ 差动整流电路 ◆ 相敏检波电路
1. 差动整流电路 差动整流电路分为全波和半波电路,如图所示:
以图(c)为例,波形变化为:
2.相敏检测电路
4.2.6 应用
(1)差动变压器式加速度传感器
(2)差动变压器式微压力变送器
微压传感器
退出
电感测微仪------差动式自感传感器测量微位移
4.1 自感式传感器
自感传感器的常见形式有气隙型和螺管型。
一、气隙型电感传感器 1. 工作原理:
线圈的电感为:
N2 L
Rm
Rm
l1
1S1
l2
2S2
l
0S
一般铁心的磁阻远较气隙磁阻小,有
Rm
l
0S
电感值与以下几个参数有关:与线圈匝数N 平方成正比;与空气隙有效截面积S成正比;与 空气隙长度所反比。
第六章 电感式传感器
0
3
灵敏度:
L2
L0
0
1
0
0
2
0
3
K
L / L0
1 2
0
L
L1
L2
2L0
0
1
0
2
实际上由于线圈内部的磁场是不均匀的,电感量的增 量ΔL与△x存在着一定的非线性。
为提高灵敏度和线性度,螺线管型自感式传感器常 采用差动结构。
6.1 自感式传感器
广西大学电气工程学院
双螺管型差动型
L1
L2
u
x
特性曲线
等效电路
将传感器两线圈接于电桥 的相邻桥臂时,其输出灵 敏度可提高一倍,并改善 了非线性特性,还能减少 干扰影响。
• 对电源采取稳压、稳频、屏蔽、加滤波电容等 措施,可减弱或消除电源的影响。
• 铁芯磁感应强度的工作点一定要选在磁化曲线 的线性段,以免在电源电压波动时,铁芯磁感 应强度进入饱和区而使导磁率发生很大变动。
6.1 自感式传感器
零点残余电压及其补偿
在电桥预平衡时,无法实 现平衡,最后总要存在着 某个输出值ΔU0,这称为 零点残余电压
应在设计制造时采取措施, 保证两电感线圈的对称。
减少电源中的谐波成分 在测量电桥中接入可调电
位器 采用相敏整流电路
广西大学电气工程学院
理想状态
ΔU0
实际状态
uo
理想状态
实际状态
第六章 电感式传感器
广西大学电气工程学院
《电感式传感器》课件
战
新材料与新技术的应用
新材料
研究新型的敏感材料,如纳米材料、生物材料等,以 提高传感器的性能和稳定性。
新技术
引入新型的信号处理和数据处理技术,如人工智能、 机器学习等,以提高传感器的测量精度和响应速度。
提高测量精度与稳定性
优化设计
通过改进传感器的结构和设计,提高其测量精度和稳 定性。
误差补偿
采用误差补偿技术,减小或消除传感器测量过程中的误 差,提高测量精度。
03 电感式传感器的设计与优化
线圈材料与线圈结构
线圈材料
线圈材料的选择对电感式传感器的性 能有着重要影响。常用的线圈材料包 括铜、镍和铁等,它们具有不同的电 导率、磁导率和机械性能。
线圈结构
线圈的结构包括绕线方式、匝数、线 径等参数,这些参数直接影响着电感 式传感器的灵敏度和线性度。
磁芯材料与磁路设计
VS
互感优化
互感是电感式传感器中的一种干扰因素, 它会影响传感器的测量精度。优化互感的 方法包括合理安排线圈和磁芯的位置、采 用屏蔽措施等。
04 电感式传感器的实际应用案例
测量长度与位移的案例
总结词
在工业自动化生产线上,电感式传感器常被 用于测量长度和位移,以确保产品质量和生 产效率。
详细描述
电感式传感器利用电磁感应原理,通过测量 金属物体在磁场中的位移变化来检测长度和 位移量。这种传感器具有高精度、非接触、 长寿命等优点,广泛应用于金属材料、塑料 、纸张等产品的长度和位移检测。
测量电路与输出信号处理
总结词
电感式传感器需要配合适当的测量电路和输出信号处理方式,以获得准确的测量结果。
详细描述
电感式传感器输出的信号通常比较微弱,需要配合适当的测量电路和输出信号处理方式,如放大器、 滤波器、模数转换器等,以获得准确的测量结果。此外,为了减小误差和提高测量精度,还需要对电 感式传感器的输出信号进行误差补偿和校准。
电感式传感器
5 4 6 7
~220V 稳压电源
振荡器 V
3 差动变压器 1 相敏检波电路
2
1接头 2 膜盒 3 底座 4 线路板 5 差动变压器 6 衔铁 7 罩壳
这种变送器可分档测量(–5×105~6×105)N/m2压力,输出 信号电压为(0~50)mV,精度为1.5级。
3.加速度传感器
• 用于测定振动物体的频率和振幅时其激励频率必 须是振动频率的十倍以上,才能得到精确的测量 结果。可测量的振幅为(0.1~5)mm,振动频率为 (0~150)Hz。
1 2 振荡器 检 波 器 滤 波 器 输出
稳压电源
a
~220V
(b)
1 弹性支承 2 差动变压器
1
(a)
加速度a方向
电感式传感器
电感式传感器的概念
• 电感式传感器建立在电磁感应的 基础上,把输入物理量转换为线 圈的电感或互感的变化,在由电 流或电压的变化。
被测非电量
电磁 感应
自感系数L
互感系数M 测量电路
U I
电感式传感器
优点: 结构简单 工作可靠 灵敏度高 分辨率高 线性度较好 测量精度高 零点稳定 输出功率 较大 ,在检测技术 工业生产和科学研究领 域得到了广泛的应用。 缺点: 存在交流零位信号,不适于高频动态信号 测量。
电涡流式传感器的测量电路 • 利用电涡流式变换元件进行测量时,为了得 到较强的电涡流效应; • 通常激磁线圈工作在较高频率下,所以信号 转换电路主要有调幅电路和调频电路两种。
1.调幅式(AM)电路
调幅式电路结 构
电磁炉工作示意图
电磁炉内部励磁线圈
04电感式传感器
三、电感式传感器的应用
2.力和压力测量
图2-41是差动变压器式力传感器。当力作用于传感器时,弹 性元件产生变形,从而导致衔铁相对线圈移动。线圈电感的 变化通过测最电路转换为输出电压,其大小反映了受力的大 小。
三、电感式传感器的应用
2.力和压力测量
差动变压器与膜片、膜盒和弹簧管等相结合,可以组成压力 传感器。图2-42是微压力传感器结构示意图。在无压力作用 时,膜盒在初始状态,与膜盒连接的衔铁位于差动变压器线 圈的中心。当压力输入膜盒后,膜盒的自由端产生位移并带 动衔铁移动,差动变压器产生一正比于压力的输出电压
二、差动变压器式传感器
1.工作原理
零点残余电动势的存在,使得传感器的输出特性在零点附近 不灵敏,给测量带来误差,此值的大小是衡量差动变压器性 能好坏的重要指标
二、差动变压器式传感器
1.工作原理
为了减小零点残余电动势可采取以下方法: ①尽可能保证传感器几何尺寸、线圈电气参数和磁路的对称。 磁性材料要经过处理,消除内部的残余应力,使其性能均匀 稳定。 ②选用合适的测量电路,如采用相敏整流电路,既可判别衔 铁移动方向又可改善输出特性,减小零点残余电动势。
它的主要缺点是响应较慢,不宜于快速动态测量,而且传 感器的分辨率与测量范围有关,测量范嗣大.分辨率低:反之 则高。
第三节、电感式传感器
电感式传感器种类很多,一般分为自感式和互感式两大类。 人们习惯上讲电感式传感器通常指自感式传感器,而互感式传 感器由于是利用变压器原理,又往往做成差动式,故常称为差 动变压器式传感器。因为电涡流也是一种电磁感应现象,所以 也将电涡流传感器列入本节。
三、电感式传感器的应用
3.振动和加速度的测量
图2-43为测量振动与加速度的电感传感器结构图,衔铁受振 动和加速度的作用,使弹簧受力变形,与弹簧连接的衔铁的 位移大小反映了振动的幅度和频率以及加速度的大小电压
电感式传感器
农业应用:在农业生产中,利用电感式传感器可以监测农作物的生长状况,例如土壤 湿度、化肥浓度等,为农民提供更加科学的种植建议 医疗领域:在医疗领域,电感式传感器可以用于监测病房内的空气质量,以及手术室 内的烟雾和气体的排放情况,从而提高医疗安全和质量
结论
应急救援
在灾难救援现场,电感式传 感器可以用于检测空气中的 有害物质,为救援人员提供 安全保障,同时为灾后环境
的评估提供科学依据
结论
综上所述,基于电感式传感器的烟雾探测器具有广泛的 应用前景,不仅在消防安全领域发挥着重要作用,还涉
及到环保、农业、医疗等多个领域
随着技术的不断进步和应用需求的不断扩大,电感式传 感器将会得到进一步的改进和完善,为人类的生产和生
20xx
电感式传感器
-
01
引言02 工作原理源自03 系统组成04
优点
05
应用
06
结论
1
引言
引言
在预防火灾和保障人类 生命财产安全的过程中 ,火灾探测器的角色日 益凸显
其中,电感式传感器以 其非接触、高灵敏度、 高可靠性的特点,被广 泛应用于各种烟雾探测 器中
本文将详细介绍基于电 感式传感器的烟雾探测 器的工作原理、系统组 成、优点及其在现实生 活中的应用
活提供更加优质的服务
-
恳请各位导师批评指正
感谢您的聆听
汇报人:XXXX
指导老师:XXX
5
应用
应用
1
基于电感式传感器的烟雾探测器广泛 应用于各种场所,如家庭、办公室、
第2-3章 电感式传感器
W2b 的互感Mb 相等,致使两个次级绕组的互感电势相等,即
e2a=e2b 。由于次级绕组反相串联,因此,差动变压器输出电压 . Uo=e2a-e2b=0。 当被测体有位移时,与被测体相连的衔铁的位置将发生相 应 的 变 化 , 使 δa≠δb , 互 感 Ma≠Mb , 两 次 级 绕 组 的 互 感 电 势 . e2a≠e2b,输出电压Uo=e2a-e2b≠0,即差动变压器有电压输出, 此 电压的大小与极性反映被测体位移的大小和方向。
则式(2-3-3)可写为
(2-3-4)
2 Rm 0 A0
(2-3-5)
联立式(2-3-1)、 式(2-3-2)及式(2-3-5), 可得
W 2 W 2 0 A0 L Rm 2
(2-3-6)
W 2 W 2 0 A0 L Rm 2
上式表明:当线圈匝数为常数时,电感L仅仅是磁 路中磁阻Rm 的函数,改变δ或A0 均可导致电感变化,
1
差动变隙式电感传感器
衔铁上移Δδ:两个线圈的电感变化量ΔL1 、ΔL2 分别由
式(2-3-10)及式(2-3-12)表示, 差动传感器电感的
总变化量ΔL=ΔL1+ΔL2, 具体表达式为
L L1 L2 2 L0 1 0 0
对上式进行线性处理, 即忽略高次项得
当衔铁下移时:
U0 U
0
2. 变压器式交流电桥
C + U 2 - + U -2 D
U
Z1 + U - A
Z2
o
B
变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交流
变压器次级线圈的1/2阻抗。 当负载阻抗为无穷大时, 桥
电感式传感器
工作原理:利用磁阻效应通过改变磁阻值来检测磁场变化
特点:灵敏度高响应速度快抗干扰能力强
发展趋势:随着技术的不断进步变磁阻式传感器的性能和稳定性将不断提高应用领域也将不断扩大。
差分变压器式传感器
添加标题
添加标题
添加标题
添加标题
特点:灵敏度高线性度好抗干扰能力强
工作原理:利用两个线圈之间的互感变化来检测位移
测量电路的组成
信号处理:将传感器信号转换为可读的电信号
显示设备:将处理后的信号显示给用户如LED显示屏、LCD显示屏等
电感式传感器:通过感应磁场变化来测量物体位置或速度的传感器
测量电路:用于接收和处理传感器信号的电路
电感式传感器的类型
变磁阻式传感器
应用领域:广泛应用于汽车电子、工业自动化、医疗设备等领域
使用注意事项与安全防范措施
添加标题
添加标题
添加标题
添加标题
避免在潮湿、高温、腐蚀性环境中使用传感器
定期检查传感器的接线是否牢固避免松动或脱落
定期校准传感器确保其精度和稳定性
遵守操作规程避免误操作导致传感器损坏或人身伤害
感谢您的观看
汇报人:
测量力和扭矩
电感式传感器可以测量力和扭矩
电感式传感器在汽车工业中的应用
电感式传感器在机械制造中的应用
电感式传感器在航空航天中的应用
在机器人和自动化系统中的应用
自动化生产线:通过检测物体位置实现自动化生产线的精确控制
机器人导航:通过检测磁场变化实现机器人的自主导航
机器人抓取:通过检测物体磁场实现机器人的精确抓取
定期清洁传感器表面避免灰尘和污垢影响测量精度
定期检查传感器的电源和接地情况确保正常工作
第3章 电感式传感器-11.26
传 感 器 技 术 • 及 应 用 • 第 3 章 电 感 式 传 感 器
当传感器的衔铁处于中间位置,即 Z1=Z2=Z时,有U0=0,电桥平衡。 当传感器衔铁上移时,即Z1=Z+Δ Z, Z2=Z−Δ Z,此时
Z U L U Uo Z 2 L 2
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
感 器
传 感 器 技 术 及 应 用
• 在实际使用中,常采用两个相同的传感器线圈
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
(b) (c) 图3-4 差动式电感传感器 (a)变气隙型;(b)变面积型;(c)螺管型 1—线圈;2—铁芯;3—衔铁;4—导杆 (a)
传 感 器 技 术 及 应 用 • 第 3 章
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
图3-7 滚柱直径自动分选装置图 1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管 6—电感测微器 7—钨钢测头 8—限位挡板 9—电磁翻板 10—容器(料斗)
传 感 电感式滚柱直径分选装置(外形) 器 技 (参考中原量仪股份有限公司资料) 术 及 滑道 应 用 第 3 章 电 感 式 传 感 器
线圈中电感量为:
W L I I
• 式中:ψ ——线圈总磁链;I ——通过线圈 的电流;W——线圈的匝数; ——穿过线圈 电 的磁通。 感
式 传 感 器
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
IW Rm
l1 l2 2 Rm 1S1 2 S2 0 S0
分选仓位
轴承滚子外形
传 感 器 技 术 及 应 用 第 3 章 电 感 式 传 感 器
电感式传感器
电感L为:
LW2 Rm
气隙很小,能够以为气隙中旳磁场是均匀旳。若忽
视磁路磁损,则磁路总磁阻为
Rm
l1
1S1
l2
2S2
2 0S0
一般气隙磁阻远不小于铁芯和衔铁旳磁阻,即
2 0S0
l1
1S1
2 0S0
l2
2S2
所以
Rm
2 0S0
电感L为:
W2 L
W 20S0
Rm
2
上式表白:当线圈匝数为常数时,电感L仅仅是磁路中 磁阻Rm旳函数,变化δ或S0均可造成电感变化,所以变
磁阻式传感器又可分为变气隙厚度δ旳传感器和变气隙
面积S0旳传感器。
二、输出特征
L与δ之间是非线性关系,特征曲线如图所示。
L
L W 2 W 20S0
Rm
2
L0+L
L0 L0-L
o - +
变隙式电感传感器旳L-δ特征
分析: 当衔铁处于初始位置时,初始电感量为
L0
0S0W 2 0
2
当衔铁上移Δδ时,传感器气隙减小Δδ,即δ=δ0-Δδ,
次级绕组。两个初级绕组旳同名端顺向串联, 而两个次级绕组 旳同名端则反相串联。
当没有位移时,衔铁C处于初始平衡位置,它与两个铁芯旳
间隙有δa0=δb0=δ0,则绕组W1a和W2a间旳互感Ma与绕组W1b和W2b 旳互感Mb相等,致使两个次级绕组旳互感电势相等,即e2a=e2b。 因为次级绕组反相串联,所以,差动变压器输出电压Uo=e2ae.2b=0。
Ui
分析:当衔铁处于初始平衡位置时,因δa=δb=δ0, 则Uo=0。 但是假如被测体带动衔铁移动,例如向上移动Δδ,则有
第3章电感式传感器
第3章电感式传感器本章要点:电感式传感器的概念、原理、种类、特性及用途变磁阻式传感器的结构、原理及应用差动变压器式传感器的结构、原理及应用电涡流式传感器的结构、原理及应用概述电感式传感器(inductance type transducer)是利用电磁感应原理将被测非电量如位移、压力、流量、振动等转换成线圈自感量L或互感量M的转变,再由测量电路转换为电压或电流的转变量输出的一种传感器。
由铁心和线圈组成的将直线或角位移的转变转换为线圈电感量转变的传感器,又称电感式位移传感器。
这种传感器的线圈匝数和材料导磁系数都是必然的,其电感量的转变是由于位移输入量致使线圈磁路的几何尺寸转变而引发的。
当把线圈接入测量电路并接通鼓励电源时,就可取得正比于位移输入量的电压或电流输出。
依照工作原理的不同,电感式传感器可分为变磁阻式传感器(variable reluctive transducer)、变压器式传感器(transformer type transducer )和电涡流式传感器(eddy current type transducer)等种类。
外形如彩图3、彩图3-1及彩图3-2所示。
电感式传感器有以下特点:工作靠得住,寿命长;灵敏度高,分辨率高(位移转变μm,角度转变’’);测量精度高,线性好(非线性误差可达%%);性能稳固,重复性好。
电感式传感器的要紧缺点是灵敏度、线性度和测量范围彼此制约,存在交流零位信号,传感器自身频率响应低,不适用于高频动态测量。
电感式传感器要紧用于位移测量和能够转换成位移转变的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。
这种传感器能实现信息的远距离传输、记录、显示和操纵,在工业自动操纵系统中被普遍采纳。
在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。
带有模拟输出的电感式接近传感器是一种测量式操纵位置误差的电子信号发生器,其用途超级普遍。
第3章 电感式传感器
第3章 电感式传感器
Rm RF Rδ
l1 l 2 2 2 1S1 2 S2 0 S 0 S
ll —— 磁通通过铁芯的长度(m); Sl —— 铁芯横截面积(m2);
1 —— 铁芯材料的导磁率(H/m)
l2 —— 磁通通过衔铁的长度(m);
S2 —— 衔铁横截面积(m2);
1. 结构和工作原理 2. 输出特性
3. 测量电路
17
第3章 电感式传感器
1.结构和工作原理
变气隙厚度式差动结构
变面积式差动结构
螺管式差动结构
以变气隙厚度式差动电感传感器为例: 初始状态时,衔铁位于中间位臵,两边空隙相等。因此,两只电感线 圈的电感量相等,电桥输出为0,即电桥处于平衡状态。 当衔铁偏离中间位臵向上或向下移动时,造成两边气隙不一样,使两 只电感线圈的电感量一增一减(变化量相等),电桥不平衡。电桥输出电 压的大小与衔铁移动的大小成比例,其相位则与衔铁移动量的方向有关。 向下、向上移动同样位移,输出电压幅值相等相位相差180º 。因此,只要能 测量出输出电压的大小和相位,就可以决定衔铁位移的大小和方向。
灵敏度
L L0 KL x a
13
第3章 电感式传感器
五、螺管插铁型电感传感器
结构:一个螺管线圈内套入一个活动 的柱型衔铁,就构成了螺管型电感传感器。 (开磁路) 工作原理:螺管型电感传感器是基于 线圈激励的磁通路径因活动的柱型衔铁的 插入深度不同,其磁阻发生变化,从而使 线圈电感量产生了改变。在一定范围内, 线圈电感量与衔铁位移量(衔铁插入深度) 有对应关系。
2
3.2 差动变压器式传感器(互感)
第3章 电感式传感器
3.1 电感式传感器
一文读懂电感式传感器
一文读懂电感式传感器电感式传感器被大量应用在各行各业。
特别是机床行业,以及汽车制造等行业更是应用广泛。
电感式传感器利用电磁感应原理将被测非电量转换成线圈自感系数或互感系数的变化,再由测量电路转换为电压或电流的变化量输出,这种装置称为电感式传感器。
电感式传感器是利用线圈自感或互感的改变来实现测量的一种装置。
通常由振荡器、开关电路及放大输出电路三大部分组成。
其结构简单,无活动电触点,工作寿命长。
而且灵敏度和分辨力高,输出信号强。
线性度和重复性都比较好,能实现信息的远距离传输、记录、显示和控制。
可以测量位移、振动、压力、流量、比重等参数。
电感式传感器的核心部分是可变的自感或互感,在将被测量转换成线圈自感或互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。
这类传感器的主要特征是具有电感绕组。
电感式传感器的特点(1)结构简单:没有活动的电触点,寿命长。
(2)灵敏度高:输出信号强,电压灵敏度每毫米能达到上百毫伏。
(3)分辨率大:能感受微小的机械位移与微小的角度变化。
(4)重复性与线性度好:在一定位移范围内,输出特性的线性度好,输出稳定。
(5)电感式传感器的缺点是存在交流零位信号,不适宜进行高频动态测量。
电感式传感器的类型电感式传感器可分为自感式传感器、差动变压式传感器和电涡流传感器三种类型。
自感式传感器1、自感式传感器的结构自感式传感器由线圈、铁芯和衔铁三部分组成。
铁芯与衔铁由硅钢片或坡莫合金等导磁材料制成。
自感式传感器结构图2、自感式传感器的工作原理自感式传感器是把被测量变化转换成自感L的变化,通过一定的转换电路转换成电压或电流输出。
传感器在使用时,其运动部分与动铁心(衔铁)相连,当动铁芯移动时,铁芯与衔铁间的气隙厚度δ发生改变,引起磁路磁阻变化,导致线圈电感值发生改变,只要测量电感量的变化,就能确定动铁芯的位移量的大小和方向。
自感式传感器的工作原理示意图当线圈匝数N为常数时,电感L仅仅是磁路中磁阻的函数,只要改变δ或S均可导致电感变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气隙型电感传感器
L
4.1 自感式传感器
特性分析(对于变气隙式求灵敏度和线性度的表达式) ①当气隙lδ发生变化时,自感
的变化与气隙变化均呈非线
性关系,其非线性程度随气
ΔL1 L0 ΔL2
隙相对变化Δlδ/lδ 的增大而增
加;
lδ lδ0
②气隙减少Δlδ所引起的自感变化ΔL1与气隙增加同样Δlδ 所引起的自感变化ΔL2并不相等,即ΔL1>ΔL2,其差值 随Δlδ/lδ的增加而增大。
①结构简单、可靠,测量力小
衔铁为(0.5~200)×10-4N时,磁吸力为(1~10)×10-4N。
②分辨力高 机械位移:0.1μm,甚至更小;角位移:0.1角秒。 输出信号强,电压灵敏度可达数百mV/mm 。 ③重复性好,线性度优良 在几十μm到数百mm的位移范围内,输出特性的线性 度较好,且比较稳定。
概述
第4章 电感式传感器
感测量:位移、振动、压力、应变、流量、比重等。 种类: 根据转换原理,分自感式和互感式两种; 根据结构型式,分气隙型和螺管型。
被测非电量
电磁 感应
自感系数L 互感系数M
测量 电路
U、I、f
自感式传感器 电感式传感器 互感式传感器 电涡流式传感器
概述
第4章 电感式传感器
优点:
令:μ = μ 2;S1 = S2 = S。设磁路总长为 l
4.1 自感式传感器
,气隙长度为 l ,
特性分析(对于变气隙式求灵敏度和线性度的表达式)
1
μr 为导磁体相对磁导率
于是磁路总磁阻为:
1 l l 1 l l r 1 Rm l S 0 S r r 0 1 l l r Rm 0 S r
第4章 电感式传感器
实验:
气隙变小,电感变大,电流变小
气隙型电感传感器
4.1 自感式传感器
线圈
线圈电感:
铁芯
N L Rm
N - 线圈匝数 Rm- 磁路总磁阻
2
1 l 2
衔铁
l
气隙型电感传感器
气隙型电感传感器
4.1 自感式传感器
线圈
Rm- 磁路总磁阻:
l l1 l2 Rm 1 S1 2 S2 0 S
1 铁芯磁导率 2 衔铁磁导率 0 真空磁导率,0 4 *107 H / m
l 空气隙总长
气隙型电感传感器
4.1 自感式传感器
线圈
线圈电感:
N L Rm
2 2
铁芯
N l 0 S
N 2 0 S l
衔铁
1 l 2
l
N - 线圈匝数
气隙型电感传感器
第4章 电感式传感器
概述
电感式传感器示例
第4章 电感式传感器
电 感 粗 糙 度 仪 接近式传感器
各种电感式传感器
非接触式位移传感器
测厚传感器
概述
电感式传感器示例
第4章 电感式传感器
概述
第4章 电感式传感器
电感式传感器是一种机电转换装置,
特别是在自动控制设备中广泛应用。
电感式传感器利用电磁感应定律将 被测非电量转换为电感或互感的变化。
气隙型电感传感器
L
4.1 自感式传感器
特性分析(对于变气隙式求灵敏度和线性度的表达式)
1 传感器灵敏度:K L L L l l 1 l l r
ΔL1
1 线性度: l l 1 l l r
L0
ΔL2
lδ0
lδ
由于转换原理的非线性,以及正反方向移动时 电感变化量的不对称性,因此,为了保证精度, 变间隙式传感器只能工作在一个很小的区域, 因而只能用于微小位移的测量。
1 2 0且S1 S2 S
Rm- 磁路总磁阻:
l l1 l2 Rm 1 S1 2 S2 0 S
l1 铁芯磁路总长 l2 衔铁磁路总长 S 气隙磁通截面积 S1 铁芯截面积 S2 衔铁截面积
l Rm 0 S
l1 铁芯磁路总长 l2 衔铁磁路总长 S 气隙磁通截面积 S1 铁芯截面积 S2 衔铁截面积
铁芯
1 l 2
衔铁
l
1 铁芯磁导率 2 衔铁磁导率 0 真空磁导率,0 4 *107 H / m
l 空气隙总长
气隙型电感传感器
气隙型电感传感器
4.1 自感式传感器
不足:存在交流零位信号,不宜于高频动态测量。
电感式传感器
第4章 电感式传感器
§4.1 自感式传感器 §4.2 差动式变压器
§4.3 式传感器
第4章 电感式传感器
气隙型电感传感器 螺管型电感传感器 电感线圈的等效电路 测量电路
4.1 自感式传感器
S 气隙磁通截面积 0 真空磁导率,0 4 *107 H / m
l 空气隙总长
气隙型电感传感器
4.1 自感式传感器
线圈 铁芯
线圈电感: N 2 0 S L l N - 线圈匝数
S 气隙磁通截面积 0 真空磁导率 l 空气隙总长
1 l 2
衔铁
差动式气隙型电感传感器
4.1 自感式传感器
在实际使用中,常采用两个相同的传
感线圈共用一个衔铁,构成差动式自感传 感器,两个线圈的电气参数和几何尺寸要 提高灵敏度外,对温度变化、电源频率变
求完全相同。这种结构除了可以改善线性、 化等的影响也可以进行补偿,从而减少了
外界影响造成的误差。
l
S
如果S保持不变,则L为lδ的单值函数,构成变 气隙式自感传感器. 若保持lδ不变,使S随被测量(如位移)变化,则 构成变截面式自感传感器,
气隙型电感传感器
L
4.1 自感式传感器
L= f (S)
N 0 S L l
2
L= f (lδ)
lδ , S
电感传感器特性
气隙型电感传感器
r 1
N 2 0 S N 2 1 K 式中 K 0 S N 2 自感系数: L Rm l r l l r l 由上式可见,当气隙长度 l 减少l 时会导致自感系数L增加Δ L1;
而当气隙长度 l 增大同样的 l 时会导致自感系数L减小Δ L2: