高中数学---椭圆知识点小结

合集下载

高二选修一椭圆的知识点

高二选修一椭圆的知识点

高二选修一椭圆的知识点椭圆是高中数学的重要内容之一,作为高二学生选修的数学课程之一,椭圆的知识点对于学生的数学素养和理解力有着重要的影响。

本文将介绍高二选修一中涉及的椭圆的知识点。

一、椭圆的定义与性质椭圆是平面上一点到两个给定定点的距离之和等于常数的点的集合。

这两个给定定点分别称为椭圆的焦点,常数称为椭圆的离心率。

椭圆具有如下性质:1. 椭圆的离心率小于1,且等于0时为圆。

2. 椭圆的中心即为焦点所连直线的垂直平分线的交点。

3. 椭圆的长半轴和短半轴分别是焦点所连直线的垂直平分线与椭圆的交点到焦点的距离。

4. 椭圆的顶点是和焦点在同一直线上的两个点。

二、椭圆的方程表达椭圆的方程表达有两种形式:标准方程和一般方程。

1. 标准方程椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。

2. 一般方程椭圆的一般方程为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F均为常数。

三、椭圆的参数方程椭圆的参数方程是将椭圆的坐标表示为参数θ的函数形式。

椭圆的参数方程为x = h + a cosθ,y = k + b sinθ,其中θ为参数。

四、椭圆的焦点与直径椭圆的焦点是指离心率所决定的椭圆上两个特殊的点,位于椭圆的长轴上。

椭圆的直径是从椭圆上一点到椭圆的另一点的最长线段。

五、椭圆与切线椭圆上的任意一点处都存在切线。

椭圆的切线与椭圆的法线垂直。

六、椭圆的重要参数椭圆的重要参数包括离心率、焦距、短半轴、长半轴、准线等,这些参数可以通过椭圆的方程表达或者几何性质求解。

七、椭圆的应用椭圆在日常生活和工程领域中有着广泛的应用。

例如,椭圆的形状可以模拟行星的轨道,从而研究天体运动;椭圆的形状也可以用来设计汽车、船舶和建筑物等工程项目。

高三椭圆的知识点

高三椭圆的知识点

高三椭圆的知识点椭圆是高中数学中重要的几何图形之一,它在解决实际问题中具有广泛的应用。

下面将介绍高三椭圆的相关知识点,包括定义、性质以及常见的解题方法。

一、椭圆的定义椭圆可由平面上到两个定点(焦点)F1和F2的距离之和等于常数2a,确定的点P的轨迹得到。

椭圆的中心为焦点连线中点O,以及焦点连线的中垂线l。

离心率e小于1,表明椭圆是一个封闭图形。

二、椭圆的性质1. 焦距性质:椭圆上的每一点到两个焦点的距离之和等于常数2a。

2. 几何定义椭圆:直角坐标系中,椭圆的方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标,a为横半轴长,b为纵半轴长。

椭圆的右右焦点F(h+c,k)和左焦点(h-c,k)。

3. 参数方程椭圆:通过参数方程x = h + a*cosθ,y = k + b*sinθ,其中θ为参数。

4. 离心率与半轴关系:离心率e的定义为e = c/a,离心率与半轴关系式为c^2 = a^2 - b^2。

5. 曲线方程性质:椭圆是一个二次曲线,代数方程为Ax^2 + By^2 + Cx + Dy + E = 0。

三、椭圆的重要定理1. 线性方程:椭圆的一般方程Ax^2 + By^2 + Cx + Dy + E = 0可以通过平行于坐标轴的两条直线进行化简,并找到方程相应的参数。

2. 切线与法线:过椭圆上任一点的切线与法线斜率的关系式分别为k1 = -x0b^2 / (y0a^2),k2 = y0b^2 / (x0a^2)。

3. 曲线的切线方程:切线方程的一般形式为y = kx + b,切线与椭圆交点的坐标可通过求解方程得到。

4. 曲线的法线方程:法线方程的一般形式为y = -kx + c,法线与椭圆交点的坐标可通过求解方程得到。

四、椭圆的解题方法在解题过程中,可以运用椭圆的基本定义、性质和定理来求解与椭圆相关的各种问题。

具体方法如下:1. 已知椭圆方程求解:将已知的椭圆方程转化为标准方程,找出椭圆的参数,并求解各属性,如中心坐标、焦点坐标、离心率等。

椭圆高中知识点总结

椭圆高中知识点总结

椭圆高中知识点总结椭圆是一个在数学中经常被研究的几何图形。

它有许多重要的性质和特点,是高中数学中的重要知识点之一、在以下的总结中,我将介绍椭圆的定义、方程、性质、焦点及其应用等方面的知识点。

一、椭圆的定义:椭圆可以通过两个焦点和一个定长的线段来定义。

具体地说,椭圆是平面上到两个给定点的距离之和等于定长的点的集合。

这两个给定点称为焦点,定长称为焦距。

二、椭圆的方程:椭圆的标准方程为:[(x-h)^2/a^2]+[(y-k)^2/b^2]=1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的长半轴和短半轴的长度。

三、椭圆的性质:1.椭圆的长半轴和短半轴之间存在关系:c^2=a^2–b^2,其中c是焦点到椭圆中心的距离。

2.椭圆是对称图形,具有关于x轴和y轴的对称性。

3.椭圆的离心率e满足0<e<1,且离心率越大,椭圆越扁平;离心率为0时,椭圆退化成为一个点。

4.椭圆的周长可以用椭圆的长半轴和短半轴的长度来表示:L=4aE(e),其中E(e)是椭圆的第一类型椭圆积分。

5. 椭圆的面积可以用椭圆的长半轴和短半轴的长度来表示:S =πab。

四、椭圆的焦点:椭圆上有两个与焦点有关的重要的点,分别是两个焦点的位置。

焦点到椭圆上任一点的距离之和等于椭圆的焦距。

焦距与椭圆的半轴之间的关系为c^2=a^2–b^2五、椭圆的应用:1.椭圆在天文学中被广泛应用,用于描述行星和卫星的轨道形状。

2.椭圆在工程学中用于设计椭圆形的机械零件。

3.椭圆在地理学中用于描述地球的地理形状和地球上的纬度和经度线。

4.椭圆在艺术和建筑设计中被用于创作椭圆形的艺术品和建筑结构。

总结:椭圆是一个广泛应用于数学和其他科学领域的重要几何图形。

通过椭圆的定义、方程、性质和焦点等方面的知识点,我们可以更好地理解和应用椭圆。

椭圆的应用广泛,涉及到天文学、工程学、地理学、艺术和建筑设计等不同领域。

掌握椭圆的相关知识,对于我们理解和应用数学都有很大的帮助。

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点

高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。

本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。

一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。

二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。

2. 对称性质:椭圆关于长轴和短轴都具有对称性。

3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。

4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。

离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。

三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。

四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。

五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。

2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。

3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。

4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。

六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。

通过改变θ的取值,可以得到椭圆上的所有点坐标。

七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。

例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。

此外,椭圆在艺术设计和建筑设计中也常常被使用。

高中椭圆知识点归纳

高中椭圆知识点归纳

高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。

- 椭圆的标准方程。

2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。

- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。

2. 离心率- 离心率是衡量椭圆形状的一个参数。

- 离心率的计算公式:e = c/a。

3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。

三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。

2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。

四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。

2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。

五、椭圆的应用1. 天文学- 行星轨道的描述。

2. 工程学- 轮轴和凸轮设计。

3. 物理学- 电场和磁场中的某些路径。

六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。

2. 椭圆的变换- 平移和旋转椭圆。

七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。

- 当两个焦点重合时,椭圆退化为抛物线。

八、练习题1. 椭圆方程的求解。

2. 焦点性质的应用。

3. 椭圆的几何关系计算。

以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。

在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。

此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。

高中数学椭圆知识点总结

高中数学椭圆知识点总结

高中数学椭圆知识点总结第一篇:椭圆的定义及基本性质一、椭圆的定义椭圆是指平面内到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

两点F1和F2称为椭圆的焦点,中间的线段称为椭圆的长轴,垂直于长轴的线段称为椭圆的短轴,长轴的一半a称为椭圆的半长轴,短轴的一半b称为椭圆的半短轴。

二、椭圆的基本性质1. 椭圆上的任意一点P到两焦点F1和F2的距离之和等于椭圆的长轴长度2a。

2. 椭圆上的任意一点P到两焦点F1和F2的距离之差等于椭圆的短轴长度2b。

3. 椭圆上与长轴平行的直线称为椭圆的次中心轴,垂直于长轴的直线称为椭圆的主中心轴。

4. 椭圆的离心率e等于焦点距离除以长轴长度,即e=√(a²-b²)/a。

5. 椭圆的面积为πab。

6. 椭圆的周长无解析式,但可以通过积分求解。

7. 椭圆对称性:关于长轴、短轴、次中心轴和主中心轴都有对称轴。

三、椭圆的求解椭圆的标准方程为(x²/a²)+(y²/b²)=1,其中a和b 分别为半长轴和半短轴的长度。

椭圆的一般方程为Ax²+Bxy+Cy²+Dx+Ey+F=0,其中A、B、C、D、E、F为常数。

常用的求解方法有以下几种:1. 椭圆的标准方程变形法。

通过移项、变形等方法将一般方程转化为标准方程。

2. 半坐标轴法。

通过平移和旋转椭圆,使其长轴与坐标轴平行或垂直。

3. 矩阵法。

通过矩阵运算,将一般方程转化为标准方程。

四、椭圆的应用椭圆在生活和工程中有广泛的应用。

例如,在太阳系中行星的运动轨迹、卫星的轨道以及天体的椭球形等都具有椭圆的特征。

此外,在建筑设计中,椭圆形的建筑物也十分常见,如伦敦的温布利球场和巴黎的凯旋门等。

椭圆也广泛应用于牙轮、机械手、调速器等机械制造中。

高中数学-椭圆知识点

高中数学-椭圆知识点

高中数学-椭圆知识点椭圆是一种常见的几何图形,在高中数学中经常被讨论和应用。

下面是椭圆的一些重要知识点:1. 椭圆的定义和性质- 椭圆是平面上一点到两个给定点的距离之和等于常数的轨迹。

这两个给定点称为焦点,距离之和称为焦距。

- 椭圆的形状是一个长轴和短轴决定的闭合曲线。

长轴的两个端点是焦点,短轴是长轴垂直的线段。

- 椭圆有对称轴和中心,对称轴是长轴和短轴的中垂线,中心是椭圆的中点。

2. 椭圆的方程- 椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是中心坐标,a和b分别是长轴和短轴的半长。

- 标准方程中的参数a和b决定了椭圆的大小和形状。

- 当椭圆的中心在坐标原点时,方程简化为x²/a² + y²/b² = 1。

- 椭圆的离心率e是焦距与长轴长度之比。

3. 椭圆的性质和推论- 椭圆的离心率e满足0<e<1,离心率越接近0,椭圆越圆。

- 椭圆的焦点到直径的垂直距离是常数,称为椭圆的算术平均数定理。

- 椭圆的面积为πab,周长近似为2π√((a²+b²)/2)。

- 椭圆关于长轴和短轴有对称性,即对称轴垂直于长轴和短轴。

4. 椭圆的应用- 椭圆在物理学、工程学、天文学等领域中有广泛应用,例如描述行星轨道、弹道等。

- 椭圆可以用来模拟和预测某些运动和变化的特性。

- 椭圆的数学性质可以用于解决一些几何和物理问题。

以上是关于高中数学中椭圆的一些重要知识点。

了解和掌握这些知识有助于更好地理解椭圆的性质和应用。

(注:此处提供的是简要的椭圆知识点概述,具体内容请参考相关高中数学教材或资料。

)。

高中椭圆知识点总结

高中椭圆知识点总结

高中椭圆知识点总结椭圆是高中数学课程中的一个重要内容,它不仅在几何图形中有重要应用,还在物理学、天文学等领域中具有重要意义。

本文将详细介绍高中椭圆的相关知识点,包括椭圆的定义、椭圆的基本性质、椭圆的方程和参数化表示、椭圆的焦点和准线、椭圆的标准方程、椭圆的离心率等内容。

一、椭圆的定义椭圆是平面上到两个固定点距离之和等于常数的点的轨迹。

这两个固定点称为椭圆的焦点,焦点之间的距离称为椭圆的焦距,椭圆的长轴是连接两个焦点的直线段,长度为2a;椭圆的短轴是与长轴垂直并通过椭圆中心的直线段,长度为2b。

椭圆的离心率e定义为焦距与长轴之比,即e=c/a。

二、椭圆的基本性质1. 椭圆的对称性:椭圆关于它的长轴和短轴具有对称性,即椭圆上任意一点关于长轴或短轴对称的点仍在椭圆上。

2. 椭圆的内部线段:椭圆上任意两点的连线与长轴和短轴的交点分别为两个焦点,这条连线的中点在椭圆的中垂线上。

3. 椭圆的切线:椭圆上任意一点处的切线与椭圆的法线垂直,并且通过这个点的法线与该点的切线的交点在椭圆的辅助圆上。

4. 椭圆的束焦性质:从椭圆外一点引两条切线,这两条切线的交点与这个点的连线垂直于椭圆主轴。

三、椭圆的方程和参数化表示椭圆的方程有两种形式:标准方程和参数化方程。

标准方程是以椭圆的中心为原点建立坐标系,长轴与x轴重合,短轴与y轴重合的方程,一般形式为x^2/a^2 + y^2/b^2 = 1(a>b)或y^2/a^2 + x^2/b^2 = 1(a>b)。

参数化表示是以椭圆的中心为坐标原点,长轴与x轴重合,用参数t表示椭圆上的各个点的坐标,一般形式为x = a*cos(t),y =b*sin(t)。

四、椭圆的焦点和准线椭圆的两个焦点的坐标可以通过椭圆的方程求得,设焦点为F1(c,0)和F2(-c,0),其中c = sqrt(a^2 - b^2)。

椭圆的两条准线是通过焦点且垂直于长轴的两条直线,其方程分别为x = a/e和x = -a/e。

椭圆知识点总结(精选4篇)

椭圆知识点总结(精选4篇)

椭圆知识点总结(精选4篇)椭圆形面积公式篇一圆锥曲线的定义(1)你知道椭圆、双曲线、抛物线的第一定义吗?作答:______________________(2)椭圆、双曲线、抛物线的第二定义你掌握了吗?作答:______________________(1)平面内与两个定点f1,f2的距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆;与两个定点f1,f2的距离之差的绝对值等于常数(小于f1f2)的点的轨迹叫做双曲线;与一个定点f和一条定直线l(l不经过点f)距离相等的点的轨迹叫做抛物线。

(2)已知点f是平面上的一个定点,l是平面上不过点f的一条定直线,动点p到点f 的距离和它到直线l的距离之比是一个常数e.当01时,动点p的轨迹是双曲线;当e=1时,动点p的轨迹是抛物线.椭圆的几何性质(1)你知道椭圆的焦半径公式吗?焦点弦公式还记得吗?作答:______________________(2)如何计算椭圆的焦点三角形的面积?作答:______________________(3)你知道如何求解椭圆的切线方程吗?作答:______________________以方程■+■=1(ab0)为例.(1)①设p(x0,y0),f1,f2分别为其左、右焦点,则pf1=a+ex0,pf2=a-ex0;②过点f1(-c,0)的弦ab长为ab=2a+e(xa+xb),过点f2(c,0)的弦ab长为ab=2a-e (xa+xb),其中xa,xb分别为a,b两点的横坐标.(2)设p点是椭圆上一点,f1,f2分别为其左、右焦点,则s■=b2tan■(θ为pf1,pf2的夹角).特别地,若pf1pf2,此三角形面积为b2.(3)过椭圆■+■=1上一点p(x0,y0)处的切线方程是■+■=1;过椭圆■+■=1外一点p (x0,y0)所引两条切线的切点弦方程是■+■=1.双曲线的几何性质(1)双曲线的焦半径公式还会用吗?作答:______________________(2)如何计算双曲线的焦点三角形的面积?作答:______________________(3)与已知双曲线有同一条渐近线的双曲线方程如何表示?作答:______________________(4)你知道如何求解双曲线的切线方程吗?作答:______________________以方程■-■=1(a0,b0)为例.(1)设p(x0,y0),f1,f2分别为其左、右焦点。

高中椭圆的相关知识点总结

高中椭圆的相关知识点总结

高中椭圆的相关知识点总结椭圆是高中数学中重要的一部分内容,涉及到多种知识点和应用领域,如几何、物理、化学等。

本文将从定义、性质、方程、焦点、直径、离心率、参数方程、运动学等多个方面综合总结高中椭圆的相关知识点。

一、椭圆的定义与性质椭圆是一个平面内到两个定点的距离之和等于常数的点集,该常数称为椭圆的长轴长度。

椭圆的短轴长度等于两定点的距离差的一半。

椭圆的对称轴分为长轴和短轴,中心是椭圆两个焦点的中点。

椭圆有以下性质:1. 椭圆两个焦点到中心的距离相等;2. 椭圆长轴、短轴相互垂直;3. 椭圆上任意一点到两个焦点距离之和等于椭圆长轴长度。

二、椭圆的方程椭圆的方程常常用标准方程表示。

标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\quad (a>b>0) $$其中,$a$、$b$分别为椭圆的长轴长度和短轴长度。

若焦点所在两端点在$x$轴上,则椭圆的标准方程为:$$(x-\frac{c}{a})^2+y^2=\frac{b^2-c^2}{a^2}x^2\quad (a>b>0)$$其中,$c$为椭圆的焦距,满足$c^2=a^2-b^2$。

三、椭圆的焦点和直径椭圆的焦点是椭圆上距离中心相等的两点。

椭圆的直径有长直径和短直径之分。

长直径是椭圆上距离两个焦点的距离的两倍,短直径是椭圆上距离两个焦点连线垂线的长度的两倍。

椭圆上的一条直线既是长直径又是短直径,这条直线被称为椭圆的主对称轴。

椭圆还有次对称轴和交错对称轴,它们分别与主对称轴垂直或成一定的夹角。

四、椭圆的离心率离心率是描述椭圆形状的一个重要指标,它等于椭圆长轴与短轴之差的一半与长轴的一半之比,即:$$e=\frac{\sqrt{a^2-b^2}}{a} $$离心率越小,椭圆形状越扁平,越接近于一个圆形;离心率越大,椭圆形状越拉长,越接近于一条线段。

五、椭圆的参数方程椭圆的参数方程是用参数的方式表示椭圆上的点坐标。

高中数学---椭圆知识点小结

高中数学---椭圆知识点小结

高中数学---椭圆知识点小结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e ==22。

高中数学---椭圆知识点小结

高中数学---椭圆知识点小结

高二数学椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=4、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

高三知识点总结椭圆

高三知识点总结椭圆

高三知识点总结椭圆椭圆作为高中数学中的重要知识点之一,在几何学和代数学中都有广泛的应用。

它具有独特的性质和特点,需要我们掌握其定义、基本性质以及相关公式和定理。

接下来,我将对椭圆的知识点进行总结。

1. 椭圆的定义和相关术语椭圆是一个平面上的几何图形,由到两个定点的距离之和等于常数的点的集合组成。

其中,两个定点称为焦点,常数称为焦距。

椭圆的中心是焦点连线的中垂线的交点,椭圆的长轴是焦点连线的延长线段,短轴是长轴上截取的一段等于焦距的线段。

2. 椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)表示椭圆的中心坐标,a和b分别表示长轴和短轴的一半长度。

通过标准方程,我们可以确定椭圆的中心、长短轴和离心率。

3. 椭圆的离心率和焦距关系椭圆的离心率是一个衡量椭圆形状的重要指标。

离心率的计算公式为e = √(a²-b²)/a,其中a和b分别表示长轴和短轴的一半长度。

当离心率小于1时,椭圆是一个闭合曲线,当离心率等于1时,椭圆退化为一个抛物线。

4. 椭圆的焦点坐标和焦距的计算椭圆的焦点坐标可以通过中心坐标和离心率计算得到。

设横轴为x轴,纵轴为y轴,椭圆的焦点坐标为(F₁,0)和(-F₁,0),其中F₁ = e * a。

椭圆的焦距为2F₁。

5. 椭圆的参数方程椭圆还可以通过参数方程来表示。

如果椭圆的焦点在原点上方,参数方程可表示为x = h + a * cosθ,y = k + b * sinθ,其中θ为参数。

6. 椭圆的性质和定理椭圆有许多重要的性质和定理,如椭圆离心率定理、椭圆三点共线定理、椭圆的切线方程等。

掌握这些性质和定理,对于解题和证明椭圆相关问题非常有帮助。

7. 椭圆的应用椭圆广泛应用于几何学、物理学、电子学等领域。

在几何学中,椭圆常用于描述行星的轨道、天体运动和地震波的传播等。

在物理学中,椭圆常用于描述光的偏振和电场的变化等。

高三数学椭圆知识点归纳

高三数学椭圆知识点归纳

高三数学椭圆知识点归纳椭圆是高中数学中的一个重要概念,它在代数几何和解析几何等领域有广泛的应用。

本文将对高三数学中的椭圆知识点进行归纳和总结,帮助读者更好地理解和掌握这一内容。

1. 椭圆的定义和性质椭圆可以通过一定的几何条件得到:对于给定的两个焦点F1和F2以及一个固定的常数c,椭圆上的任意一点P到F1和F2的距离之和等于常数c。

椭圆的中心是焦点的中垂线的交点,称为圆心O。

椭圆的性质包括:- 椭圆上的任意两点到两个焦点的距离之和等于常数c。

- 椭圆的离心率e满足0<e<1,离心率越小,椭圆的形状越扁。

- 椭圆是一个闭合曲线,它的内部被椭圆内部所围成。

2. 椭圆方程的一般形式椭圆的方程可以表示为标准形式和一般形式。

标准形式:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆在x轴和y轴上的半轴长度。

一般形式:Ax^2 + By^2 + Cx + Dy + E = 0,其中A、B、C、D和E是常数,且A和B不能同时为0。

3. 椭圆的焦点和直径椭圆的焦点是椭圆上的两个特殊点,它们与椭圆的几何特性密切相关。

椭圆的焦点到圆心的距离称为焦距,记为f。

椭圆的两条主轴分别是纵轴和横轴,它们的长度分别是2a和2b。

椭圆的两个焦点和两条主轴之间有以下关系:- 焦点到圆心的距离等于椭圆的半长轴长度,即OF1 = OF2 = a。

- 焦点、圆心和椭圆上的任意一点构成的三角形恒定,即△OF1P ≌△OF2P。

4. 椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,它用于刻画椭圆的形状特征。

离心率e定义为焦距与椭圆的半长轴之比,即e = f/a。

离心率越小,椭圆的形状越趋向于圆形;离心率越接近于1,椭圆的形状越扁平。

椭圆的焦半径是椭圆上任意一点到两个焦点之间的距离,它满足下列关系:- 焦半径的平方等于离心率与椭圆上该点到圆心距离的乘积,即PF^2 = 2aPF。

高中椭圆知识点总结

高中椭圆知识点总结

高中椭圆知识点总结椭圆是一种重要的几何图形,在高中数学中起着重要作用。

下面将对高中椭圆的相关知识进行总结。

一、椭圆的定义和基本性质椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。

这两个点称为椭圆的焦点,直线F1F2的中点O称为椭圆的中心。

椭圆的长轴是经过焦点F1和F2的直线段,短轴是垂直于长轴通过中心O的直线段。

椭圆的离心率e是焦距与长轴之比,且0<e<1。

椭圆的离心率越小,形状越扁。

二、椭圆的方程椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别是椭圆的长轴和短轴的长度。

若椭圆的中心在原点,则方程简化为x²/a² + y²/b² = 1。

三、椭圆的焦点和准线椭圆的焦点与准线是椭圆的重要性质。

焦点F1和F2在椭圆的长轴上,且与中心O的距离为c,有c² = a² - b²。

椭圆的准线是与焦点F1F2垂直的直线,与椭圆的长轴平行,且与椭圆的短轴相交于两点A和B。

四、椭圆的离心率椭圆的离心率e是焦距与长轴之比,即e = c/a。

离心率越小,椭圆越扁平,离心率越大,椭圆越接近于圆。

五、椭圆的参数方程椭圆的参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。

六、椭圆的性质1. 椭圆上的任意一点到两个焦点的距离之和等于常数2a。

2. 椭圆的离心率e小于1,且e越接近于0,椭圆越接近于圆。

3. 椭圆的焦点到准线的距离相等。

4. 椭圆的长轴和短轴相交于两个点,这两个点称为椭圆的顶点。

5. 椭圆的切线与椭圆的准线垂直。

七、椭圆的相关定理1. 椭圆的切线与椭圆的法线垂直。

2. 切线和法线的交点位于椭圆的焦点上。

3. 在椭圆上任取两点A和B,以A、B为焦点作直线,交椭圆于C、D两点,则AC + BD = AB。

4. 过椭圆上的一点作椭圆的两条切线,这两条切线的交点在椭圆的主轴上。

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。

三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。

二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

高中数学椭圆知识点总结

高中数学椭圆知识点总结

高中数学椭圆知识点总结一、椭圆的定义椭圆是平面上的一个几何图形,它是平面上的一个点到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,连接焦点的直线称为长轴,长轴上的一半称为半长轴,长轴的中垂线称为短轴,短轴的一半称为半短轴。

椭圆的数学定义可以表示为:对于给定的两个不同点F1和F2,以及一个正数c,平面上的点P到F1和F2的距离之和等于常数c,即|PF1|+|PF2|=2a(a>0)。

二、椭圆的方程椭圆的标准方程为:x²/a²+y²/b²=1,其中a>b>0。

如果椭圆的中点在原点上,且长轴与x 轴重合,则椭圆的标准方程可以简化为x²/a²+y²/b²=1。

在此方程中,a称为长半轴,b称为短半轴,而长半轴和短半轴的关系可以表示为a²=b²+c²。

对于长轴与y轴重合的椭圆,其标准方程可以表示为:x²/b²+y²/a²=1。

三、椭圆的性质1. 椭圆的焦点性质:设椭圆的焦点为F1(c,0)和F2(-c,0),椭圆的标准方程为x²/a²+y²/b²=1,则a²=b²+c²;2. 椭圆的离心率:离心率e定义为焦点F到椭圆上任意一点P的距离的比值,即e=PF/PM,其中PF为点P到焦点F的距离,PM为点P到椭圆的直径的一半,通常表示为e²=1-b²/a²;3. 椭圆的对称性:椭圆以长轴和短轴为对称轴,对称于x轴和y轴;4. 椭圆的焦点与直径关系:椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度;5. 椭圆的参数方程:椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中θ为参数,a和b分别为椭圆的长短半轴;6. 椭圆的面积:椭圆的面积可以表示为S=πab,其中a和b分别为椭圆的长短半轴。

高中椭圆知识点总结

高中椭圆知识点总结

高中椭圆知识点总结一、基本概念1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹,即PF1+PF2=2a,其中F1和F2称为椭圆的焦点,2a称为椭圆的长轴。

通常情况下,椭圆的焦点在x轴上。

1.2 椭圆的相关术语椭圆上的点P到两个焦点的距离之和等于常数2a,a称为椭圆的半长轴,a的倒数b称为椭圆的半短轴,焦点连线与长轴的交点O称为椭圆的中心,椭圆上离中心最远的点称为椭圆的顶点,离中心最近的点称为椭圆的底点。

1.3 椭圆的离心率椭圆的离心率e是参数a和b之间的一个函数,表示椭圆形状的狭窄程度。

离心率的计算公式为e=sqrt(1-b^2/a^2)。

二、性质2.1 椭圆的焦点性质椭圆上任意一点到两个焦点的距离之和等于常数2a,这是椭圆的定义。

这个性质可以用来证明椭圆的方程。

2.2 椭圆的对称性椭圆关于其长轴和短轴具有对称性,这意味着椭圆沿着这两个轴的对称轴进行对称,两侧的图形是互相重合的。

2.3 椭圆的焦斜率椭圆上的任意一点P到两个焦点的连线与椭圆的切线的夹角是一个常数,称为椭圆的焦斜率。

2.4 椭圆的参数方程椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中θ为参数,取值范围为0到2π。

这个参数方程可以将椭圆表示为一个参数方程的集合。

2.5 椭圆的面积椭圆的面积可以用公式πab来计算,其中a为半长轴,b为半短轴。

3. 椭圆的方程3.1 椭圆的标准方程椭圆的标准方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心,a为半长轴,b为半短轴。

3.2 椭圆的一般方程椭圆的一般方程可以表示为Ax²+By²+2Dx+2Ey+F=0,其中A、B、D、E、F为常数,A和B不全为0,经过合适的平移和旋转可以得到标准方程。

4. 椭圆的应用4.1 椭圆在天体运动中的应用椭圆曲线在天体运动中有重要的应用,例如行星绕太阳运动的轨道就是一个椭圆。

高中椭圆公式知识点总结

高中椭圆公式知识点总结

高中椭圆公式知识点总结1. 椭圆的定义椭圆是平面上一个固定点F1和F2到平面上任意一点P的距离之和等于常数2a的轨迹。

椭圆也可以通过平面上满足一定条件的点的集合来定义。

在直角坐标系中,椭圆可以用一个方程表示为(x - h)^2/a^2 + (y - k)^2/b^2 = 1或者(x - h)^2/b^2 + (y - k)^2/a^2 = 1,其中(h, k)是椭圆的中心坐标,a和b分别是半长轴和半短轴的长度。

2. 标准方程的推导椭圆的标准方程是(x - h)^2/a^2 + (y - k)^2/b^2 = 1或者(x - h)^2/b^2 + (y - k)^2/a^2 = 1。

这个方程的推导可以通过椭圆的定义和几何性质来完成。

首先,根据椭圆的定义,椭圆上任意一点P(x, y)到F1和F2的距离之和等于常数2a。

利用点到定点的距离公式可以得出椭圆的标准方程。

3. 椭圆的性质椭圆有许多重要的性质,包括焦点、准线、长轴、短轴等。

椭圆的焦点是定义椭圆形状的重要点,它与椭圆的长轴和短轴有重要的关系。

准线是与椭圆焦点有关的一条线,在椭圆的性质中有重要应用。

此外,椭圆还有其他一些重要的性质,比如切线的斜率和椭圆方程中的参数关系等。

4. 椭圆的参数方程椭圆的参数方程可以用参数t表示椭圆上的点的坐标。

通过引入参数t,可以方便地描述椭圆上的点的运动和轨迹。

参数方程也可以用来描述椭圆的性质和几何特征。

椭圆的参数方程对于理解和研究椭圆的数学性质非常有帮助。

5. 椭圆的公式在学习椭圆的知识时,学生需要掌握椭圆的标准方程和参数方程。

椭圆的标准方程是(x - h)^2/a^2 + (y - k)^2/b^2 = 1或者(x - h)^2/b^2 + (y - k)^2/a^2 = 1,其中(h, k)是椭圆的中心坐标,a和b分别是半长轴和半短轴的长度。

椭圆的参数方程可以用参数t表示椭圆上的点的坐标,通常表示为x = h + a*cos(t),y = k + b*sin(t),其中(a, b)是椭圆的长短轴长度。

椭圆高中知识点总结

椭圆高中知识点总结

椭圆是高中数学中的一个重要内容,涉及许多知识点。

以下是椭圆高中知识点的总结:1. 椭圆的定义:如果一个平面内到两个定点$F_{1},F_{2}$的距离之和等于常数(大于$|F_{1}F_{2}|$),则这个平面内的图形叫做椭圆。

这两个定点叫做椭圆的焦点,焦点到椭圆中心的距离叫做焦距。

2. 椭圆的方程:标准方程为$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$(其中$a > b > 0$)。

这个方程表示一个椭圆,其中$a$是椭圆的长半轴长度,$b$是短半轴长度。

3. 椭圆的性质:* 范围:椭圆在x轴上的范围是$-a \leqslant x \leqslant a$,在y轴上的范围是$-b \leqslant y \leqslant b$。

* 离心率:椭圆的离心率定义为$\frac{c}{a}$,其中$c$是焦点到中心的距离。

离心率可以用来描述椭圆的形状,离心率越接近1,椭圆越扁平;离心率越接近0,椭圆越圆。

* 焦点:椭圆有两个焦点,分别位于$F_{1}(-c,0)$和$F_{2}(c,0)$。

4. 椭圆的参数方程:椭圆的参数方程表示法通常使用$\cos$和$\sin$函数,具体形式为$\left\{ \begin{matrix} x = a\cos\theta \\ y = b\sin\theta\end{matrix} \right.$。

5. 椭圆的截线:如果一条直线与椭圆相交于两点A和B,则线段AB的长度等于椭圆上的点到焦点距离之差的绝对值的和。

6. 椭圆的焦点三角形:以两个焦点为端点的线段所构成的三角形称为焦点三角形。

当椭圆的长轴垂直于x轴时,焦点三角形为等腰直角三角形。

7. 椭圆的对称性:椭圆既是关于x轴对称的图形,也是关于y轴对称的图形,同时也可以使用参数方程来表示其对称性。

8. 椭圆的极坐标方程:极坐标系下,椭圆的方程为$\frac{\rho^{2}\cos^{2}\theta}{a^{2}} +\frac{\rho^{2}\sin^{2}\theta}{b^{2}} = 1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学椭圆知识点
1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数
)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭
圆的焦距.
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨
迹无图形.
2、椭圆的标准方程
1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2
22b a c -=;
2).当焦点在y 轴上时,椭圆的标准方程:12222=+b
x a y )0(>>b a ,其中2
22b a c -=;
3、椭圆:122
22=+b
y a x )0(>>b a 的简单几何性质
(1)对称性:对于椭圆标准方程122
22=+b
y a x )0(>>b a :是以x 轴、y 轴
为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对
称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆
122
22=+b
y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a
c
a c e ==
22。

②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。

e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。

当且
仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+2
2。

注意: 椭圆122
22=+b
y a x 的图像中线段的几何特征(如下图):
)2(21a PF PF =+
e PM PF PM PF ==
2
21
1;
)2(22
1c
a PM PM =+;
4、椭圆的令一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。

即上图中有
e PM PF PM PF ==
2
21
1
5:椭圆12222=+b y a x 与 122
22=+b
x a y )0(>>b a 的区别和联系
标准方程
122
22=+b y a x )0(>>b a 12
2
22=+b x a y )0(>>b a 图形
性质
焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性
关于x 轴、y 轴和原点对称
顶点 )0,(a ±,),0(b ±
),0(a ±,)0,(b ±
轴长 长轴长=a 2,短轴长=b 2
离心率
)10(<<=
e a
c
e 准线方程 c
a x 2
±=
c
a y 2
±=
焦半径
01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档