2013届高考数学一轮复习讲义:8.6 立体几何中的向量方法(Ⅰ) 证明平行与垂直
2016高考第一轮复习8.6.1立体几何中的向量方法_证明平行与垂直解析
主页
利用空间向量证明平行问题
例 1 如图所示,在正方体 ABCD—A1B1C1D1 中, M、N 分别是 C1C、B1C1 的中点.求证:MN ∥平面 A1BD.
证明 方法一 如图所示,以 D 为原点,DA、 DC、DD1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系, 设正方体的棱长为 1,
一轮复习讲义
立体几何中的向量方法(Ⅰ) ——证明平行与垂直
主页
要点梳理
忆一忆知识要点
1.用向量表示直线或点在直线上的位置 (1)给定一个定点 A 和一个向量 a,再任给一个实数 t,以 A → 为起点作向量AP=ta,则此向量方程叫做直线 l 的参数方 程.向量 a 称为该直线的方向向量. (2)对空间任一确定的点 O, 点 P 在直线 l 上的充要条件是存 → → → 在唯一的实数 t,满足等式OP=(1-t)OA+tOB,叫做空间 直线的向量参数方程.
u2=0 ⇔ u1 ·
.
主页
知识网络
空间几何体的结构 空间几何体 空间几何体的体积、表面积
柱、锥、台、球的结构特征 三视图与直观图的画法
点、线、面之间的位置关系
主页
知识网络
主页
要点梳理 1.线线、线面、面面间的平行关系
设直线 l , m 的方向向量分别为 a , b ,平面
, 的法向量分别为 u, v ,则
取 x=1,得 y=-1,z=-1.∴n=(1,-1,-1). 1 1 → 又MN· n=2,0,2· (1,-1,-1)=0, → ∴MN⊥n,又 MN⊄平面 A1BD, ∴MN∥平面 A1BD. → → → 1 → 1→ 方法二 MN=C1N-C1M= C1B1- C1C 2 2 1 → 1→ → = (D1A1-D1D)= DA1, 2 2 → → ∴MN∥DA1,又∵MN 与 DA1 不共线,∴MN∥DA1,
高考数学总复习 第八篇《第50讲 立体几何中的向量方法(1) 证明平行与垂直 》课件 理 苏教版
证明 ∵平面PAD⊥平面ABCD且ABCD为正方形, ∴AB、AP、AD两两垂直,以A为坐标原点,建立如图所示的 空间直角坐标系Axyz,则A(0,0,0)、B(2,0,0)、C(2,2,0)、 D(0,2,0)、P(0,0,2)、E(0,0,1)、F(0,1,1)、G(1,2,0). → → → ∴PB=(2,0,-2),FE=(0,-1,0),FG=(1,1,-1),
→ → 设 D(0,y,0),由 AC⊥CD,得AC· CD=0,
2 3 2 3 即 y= ,则 D0, , , 0 3 3 → → 3 3 1 1 1 ∴CD=- , ,0 .又AE= , , , 2 6 4 4 2
1 ∴n= ,-1,1, 2
1 2 2 n ,- , . ∴平面ABC的单位法向量为± =± 3 3 |n| 3
答案
1 2 2 ,- , ± 3 3 3
考向一 利用空间向量证明平行问题 【例1】►如图所示,在正方体ABCDA1B1C1D1中,M、N分别是 C1C、B1C1的中点.求证:MN∥平面A1BD.
∴PD⊥AB,又 AB∩AE=A,∴PD⊥平面 AEB. 法二 → → 3 1 1 AB=(1,0,0),AE= , , , 4 2 4
设平面 ABE 的一个法向量为 n=(x,y,z), x=0, 则1 3 1 x+ 4 y+2z=0, 4 令 y=2,则 z=- 3,∴n=(0,2,- 3).
考向二 利用空间向量证明垂直问题 【例2】►如图所示,在棱长为1的正方体OABCO1A1B1C1中, E,F分别是棱AB,BC上的动点,且AE=BF=x,其中 0≤x≤1,以O为原点建立空间直角坐标系Oxyz. (1)求证A1F⊥C1E; (2)若E,F,C1四点共面 → 1 → → 求证:A1F= A1C1+A1E. 2
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直-PPT精选.ppt
即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
t=2, ∴t-s=0,
-t=-2,
解得 s=t=2.
∴P→B=2F→E+2F→G, 又∵F→E与F→G不共线,∴P→B、F→E与F→G共面.
∵PB⊄平面 EFG,∴PB∥平面 EFG.
利用空间向量证明垂直问题
例 2 如图所示,在四棱锥 P—ABCD 中, PA⊥底面 ABCD,AB⊥AD,AC⊥CD, ∠ABC=60°,PA=AB=BC,E 是 PC 的中点.证明: (1)AE⊥CD; (2)PD⊥平面 ABE.
[难点正本 疑点清源] 1.直线的方向向量实质上是与直线平行的非零向量,它有无数
多个,平面的法向量也有无数个. 2.利用空间向量解决立体几何中的平行问题
(1)证明两条直线平行,只需证明这两条直线的方向向量是 共线向量,但要注意说明这两条直线不共线. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直,但要说明直线 不在平面内. ②证明能够在平面内找到一个向量与已知直线的方向向量共线, 也要说明直线不在平面内. ③利用共面向量定理,即证明直线的方向向量与平面内的 两个不共线向量是共面向量.同时要注意强调直线不在平面内.
一轮复习讲义
立体几何中的向量方法(Ⅰ) ——证明平行与垂直
要点梳理
忆一忆知识要点
1.用向量表示直线或点在直线上的位置
(1)给定一个定点 A 和一个向量 a,再任给一个实数 t,以 A 为起点作向量A→P=ta,则此向量方程叫做直线 l 的参数方
程.向量 a 称为该直线的方向向量.
(2)对空间任一确定的点 O,点 P 在直线 l 上的充要条件是存 在唯一的实数 t,满足等式O→P=(1-t)O→A+tO→B,叫做空间
高三数学复习立体几何中的向量方法第一课时证明平行和垂直课件理
(2)点面距的求法 设 n 是平面α的法向量,点 A 在平面α内,点 B 在平面α外,则点 B 到平面α
uuur 的距离为 | AB n | .
|n|
(3)线面距、面面距均可转化为点面距再用(2)中方法求解.
| a || b |
(2)求直线与平面所成的角 设直线 l 的方向向量为 a,平面α的法向量为 n,直线 l 与平面α所成的角为 θ,a,n 的夹角为 ,则 sin θ=|cos |= | a n | .
| a || n |
(3)求二面角的大小 ①若 AB,CD 分别是二面角α l β的两个面内与棱 l 垂直的异面直线,则二
uuur uuur 面角的大小就是向量 AB 与 CD 的夹角(如图(1)).
②设 n1,n2 分别是二面角α l β的两个面α,β的法向量,则向量 n1 与 n2 的 夹角(或其补角)的大小就是二面角的平面角的大小(如图(2)(3),其中图(2) 中向量夹角的大小即为二面角平面角,图(3)中则为其补角). 4.求空间距离 (1)两点间距离求法 若 A(x1,y1,z1),B(x2,y2,z2),
又根据(1)的结论知 AP⊥BC,
所以 AP⊥平面 BMC,于是 AM⊥平面 BMC. 又 AM⊂ 平面 AMC,故平面 AMC⊥平面 BMC.
反思归纳 利用向量法证垂直问题的类型及常用方法
提醒:用向量结论还原几何结论时,要注意书写规范.
【即时训练】如图所示,在四棱锥 P-ABCD 中,PC⊥平面 ABCD,PC=2,在四边形 ABCD 中,∠B=∠C=90°,AB=4,CD=1,点 M 在 PB 上,PB=4PM,PB 与平面 ABCD 成 30°的角.求证:CM∥平面 PAD.
高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书
第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直向量方法是解决平行与垂直关系问题的一种常用方法。
在届高考数学一轮复习中,立体几何中的向量方法Ⅰ主要围绕平面中向量的运算和性质展开,通过向量的加减法、数量积、向量积等运算,来验证平行关系和垂直关系。
一、平行关系的向量验证如果两条直线平行,那么它们的方向向量也是平行的。
因此,我们可以通过直线上的两个向量的比较来判断直线是否平行。
具体的步骤如下:1.设有两条直线l1和l2,分别表示为:l1:A1+t1*B1l2:A2+t2*B2其中A1、B1、A2、B2为已知向量。
2.使用向量的坐标表示,将l1和l2中的向量分解为坐标向量,得到:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)其中x1、y1、z1、x2、y2、z2、a1、b1、c1、a2、b2、c2为已知数。
3.由于l1和l2平行,所以它们的方向向量a1、b1、c1和a2、b2、c2成比例。
即有:a1/a2=b1/b2=c1/c2=k其中k为非零实数。
4.通过比较系数等,求解k的值。
如果k的值存在且不为零,那么说明l1和l2平行;否则,l1和l2不平行。
示例:设有直线l1:r1=(1,2,3)+t(2,3,-1)和直线l2:r2=(4,5,6)+t(-1,-6,4)。
求证l1、l2平行。
解:将l1和l2化为坐标表示:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)得:l1:(1,2,3)+t1*(2,3,-1)l2:(4,5,6)+t2*(-1,-6,4)。
比较方向向量的系数:2/(-1)=3/(-6)=(-1)/4=k。
令2/(-1)=3/(-6)=(-1)/4=k,解得k=-2因此,由于k存在且不为零,故l1和l2平行。
二、垂直关系的向量验证两条直线垂直可以理解为它们的方向向量的数量积为零。
高考数学一轮总复习 8.6 立体几何中的向量方法(一)证明平行与垂直课件 理 苏教版
2.空间位置关系的向量表示
位置关系
直线l1,l2的方向向量分 别为n1,n2. 直线l的方向向量为n,平 面α的法向量为m
平面α
l⊥α
α∥β
α⊥β
向量表示
n1∥n2⇔n1=λn2 n1⊥n2⇔ n1·n2 =0
n⊥m⇔ m·n=0
n∥m⇔n=λm n∥m⇔ n=λm . n⊥m⇔ n·m=0 .
证明 (1)如图所示,以 O 为坐标原点,以射线 OP 为 z 轴的正半 轴建立空间直角坐标系 O-xyz. 则 O(0,0,0),A(0,-3,0), B(4,2,0),C(-4,2,0),P(0,0,4). 于是A→P=(0,3,4), B→C=(-8,0,0), ∴A→P·B→C=(0,3,4)·(-8,0,0)=0, 所以A→P⊥B→C,即 AP⊥BC.
设平面 A1BD 的法向量是 n=(x,y,z). 则 n·D→A1=0,且 n·D→B=0,得xx+ +zy==00,. 取 x=1,得 y=-1,z=-1.∴n=(1,-1,-1). 又M→N·n=12,0,12·(1,-1,-1)=0, ∴M→N⊥n, 又 MN⊄平面 A1BD,∴MN∥平面 A1BD.
辨析感悟
1.平行关系
(1)直线的方向向量是唯一确定的.
(×)
(2)两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=
(-2,0,2),则l1与l2的位置关系是平行.
(√)
2.垂直关系
(3)已知A→B=(2,2,1),A→C=(4,5,3),则平面 ABC 的单位法向量
是 n0=±13,-23,23.
2.利用向量知识证明空间位置关系,要注意立体几何中相关 定理的活用,如证明直线a∥b,可证向量a=λb,若用直线方 向向量与平面法向量垂直判定线面平行,必需强调直线在平 面外等.
精品导学案:立体几何中的向量方法(一)——证明平行与垂直
第7讲 立体几何中的向量方法(一)——证明平行与垂直[最新考纲]1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.空间位置关系的向量表示辨 析 感 悟1.平行关系(1)直线的方向向量是唯一确定的.(×)(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√) 2.垂直关系(3)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝ ⎛⎭⎪⎫13,-23,23.(√) (4)(2014·青岛质检改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)[感悟·提升]1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.学生用书第125页考点一 利用空间向量证明平行问题【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .审题路线 若用向量证明线面平行,可转化为判定向量MN →∥DA 1→,或证明MN →与平面A 1BD 的法向量垂直.证明 法一 如图所示,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0).于是MN →=⎝ ⎛⎭⎪⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. ∴n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n , 又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→.∴MN →∥DA 1→, 又∵MN 与DA 1不共线, ∴MN ∥DA 1,又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 (2013·浙江卷选编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 如图所示,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0), 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为点M 为AD 的中点,故M (0,2,1). 又点P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .考点二 利用空间向量证明垂直问题【例2】 (2014·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【训练2】 如图所示,在直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 如图,建立空间直角坐标系A -xyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N (2,0,0), 又C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, ∴B 1F →⊥AF →,即B 1F ⊥AF .又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .学生用书第126页 考点三 利用空间向量解决探索性问题【例3】 (2014·福州调研)如图,在长方体ABCD -A1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.审题路线 由长方体特征,以A 为坐标原点建立空间坐标系,从而将几何位置关系转化为向量运算.第(1)问证明B 1E →·AD 1→=0,第(2)问是存在性问题,由DP →与平面B 1AE 的法向量垂直,通过计算作出判定.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1).故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 规律方法 立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.本题是设出点P 的坐标,借助向量运算,判定关于z 0的方程是否有解.【训练3】 如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD . (2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →= ⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,由BE →·DS →=0⇔t =13.∴当SE ∶EC =2∶1时,BE →⊥DS →.又BE 不在平面P AC 内,故BE ∥平面P AC .1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.思想方法8——运用空间向量研究空间位置关系中的转化思想【典例】 (2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 法一 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).①由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),∴A 1C →·BD →=0,A 1C →·BB 1→=0,② ∴A 1C ⊥BD ,A 1C ⊥BB 1,且BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D .③ 法二 ∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又底面ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .④又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,又BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D . ⑤(2)解 设平面OCB 1的法向量n =(x ,y ,z ).∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧ n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos<n ,A 1C →>|=12×2=12. ⑥ 又0≤θ≤π2,∴θ=π3.[反思感悟] (1)转化化归是求解空间几何的基本思想方法:①中将空间位置、数量关系坐标化.②和③体现了线线垂直与线面垂直的转化,以及将线线垂直转化为向量的数量积为0.在④与⑤中主要实施线面、线线垂直的转化.⑥中把求“平面夹角的余弦值”转化为“两平面法向量夹角的余弦值”.(2)空间向量将“空间位置关系”转化为“向量的运算”.应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.【自主体验】如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,D 为AB 的中点,AC =BC =BB 1.求证:(1)BC 1⊥AB 1;(2)BC 1∥平面CA 1D .证明 如图,以C 1点为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1→=(0,-2,-2),AB 1→=(-2,2,-2),所以BC 1→·AB 1→=0-4+4=0,因此BC 1→⊥AB 1→,故BC 1⊥AB 1.(2)连接A 1C ,取A 1C 的中点E ,连接DE ,由于E (1,0,1),所以ED →=(0,1,1),又BC 1→=(0,-2,-2),所以ED →=-12BC 1→,又ED 和BC 1不共线,所以ED ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,故BC 1∥平面CA 1D .对应学生用书P321基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α,β的法向量分别为μ=(-2,3,-5),v =(3,-1,4),则( ).A .α∥βB .α⊥βC .α、β相交但不垂直D .以上都不正确解析 ∵-23≠3-1≠-54,∴μ与v 不是共线向量,又∵μ·v =-2×3+3×(-1)+(-5)×4=-29≠0,∴μ与v 不垂直,∴平面α与平面β相交但不垂直.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ).A .相交B .平行C .在平面内D .平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.(2014·泰安质检)已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( ).A .垂直B .不垂直C .平行D .以上都有可能解析 易知AB →=(-1,1,0),AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,∴AC →·n=0,则AB →⊥n ,AC →⊥n ,即AB ⊥l ,AC ⊥l ,又AB 与AC 是平面ABC 内两相交直线,∴l ⊥平面ABC .答案 A如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ).A .平行B .异面C .垂直D .以上都不对解析以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0). ∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .答案 C5.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ).A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 解析 连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C二、填空题6.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.解析 ∵α⊥β,∴a ·b =x -2+6=0,则x =-4.答案 -47.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1).则不重合的两个平面α与β的位置关系是________.解析 AB →=(0,1,-1),AC →=(1,0,-1),∴n ·AB →=0,n ·AC →=0,∴n ⊥AB →,n ⊥AC →,故n 也是α的一个法向量.又∵α与β不重合,∴α∥β.答案 平行8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.答案 ①②③三、解答题 9.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .10.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.(1)求证:CM ∥平面P AD ;(2)求证:平面P AB ⊥平面P AD .证明以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32, (1)设n =(x ,y ,z )为平面P AD 的一个法向量,则⎩⎪⎨⎪⎧ DP →·n =0,DA →·n =0,即⎩⎨⎧ -y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧ z =12y ,x =-32y , 令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)取AP 的中点E ,并连接BE ,则E (3,2,1),BE →=(-3,2,1),∵PB =AB ,∴BE ⊥P A . 又BE →·DA →=(-3,2,1)·(23,3,0)=0,∴BE →⊥DA →,则BE ⊥DA .∵P A ∩DA =A .∴BE ⊥平面P AD ,又∵BE ⊂平面P AB ,∴平面P AB ⊥平面P AD .能力提升题组(建议用时:25分钟)一、选择题1.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ).A.257B.67C.187D.407解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得x =407,y =-157.于是x +y =407-157=257. 答案 A2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( ).①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ).A .1B .2C .3D .4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案 C二、填空题3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.答案 1三、解答题4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点. 学生用书第128页。
高三数学大一轮复习 8.7立体几何中的向量方法(Ⅰ)证明平行与垂直课件 理 新人教A版
(4)设平面 α 和 β 的法向量分别为 u1, 要说明直线不在平面内. u2,则 α∥β⇔_u_1_∥__u_2_.
基础知识·自主学习
要点梳理
难点正本 疑点清源
3.用向量证明空间中的垂直关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1⊥l2⇔_v_1_⊥___v_2_ ⇔__v_1_·_v_2__=0. (2)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l⊥α⇔__v_∥___u___. (3)设平面 α 和 β 的法向量分别为 u1 和 u2,则 α⊥β⇔_u__1_⊥___u_2__⇔_u__1_·_u_2_=___0___.
证明线面平行,可以利用判定
分别是 C1C、B1C1 的中点. 求证:MN∥平面 A1BD.
定理先证线线平行;也可以寻 找平面的法向量.
动画展示
题型分类·深度剖析
题型一
利用空间向量证明平行问题
【例 1】如图所示,在正方体 ABCD—A1B1C1D1 中,M、N 分别是 C1C、B1C1 的中点. 求证:MN∥平面 A1BD.
∴MN∥平面 A1BD.
题型分类·深度剖析
题型一
利用空间向量证明平行问题
【例 1】如图所示,在正方体 ABCD—A1B1C1D1 中,M、N 分别是 C1C、B1C1 的中点. 求证:MN∥平面 A1BD.
动画展示
思维启迪
解析
探究提高
用向量证明线面平行的方法有 (1) 证 明 该 直 线 的 方 向 向 量 与 平 面的某一法向量垂直; (2) 证 明 该 直 线 的 方 向 向 量 与 平 面内某直线的方向向量平行; (3) 证 明 该 直 线 的 方 向 向 量 可 以 用平面内的两个不共线的向量线 性表示; (4)本题易错点:只证明 MN∥A1D, 而忽视 MN⊄平面 A1BD.
高考数学大一轮复习8.6立体几何中的向量方法(一)证明平行与垂直教师用书理苏教版
§8.6 立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.若直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),则直线l 与平面α的位置关系为________. 答案 l ∥α或l α2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点中,在平面α内的是________. ①P 1(2,3,3)②P 2(-2,0,1)③P 3(-4,4,0) ④P 4(3,-3,4)答案 ①解析 逐一验证法,对于①,MP →1=(1,4,1), ∴MP →1·n =6-12+6=0,∴MP →1⊥n ,∴点P 1在平面α内,同理可验证其他三个点不在平面α内.3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________. 答案407,-157,4 解析 由题意知,BP →⊥AB →,BP →⊥BC →. 所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+-z =0,x -+5y +--=0,x -+y -3z =0,解得x =407,y =-157,z =4.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α内的三点,设平面α的法向量a=(x ,y ,z ),则x ∶y ∶z =________. 答案 2∶3∶(-4)解析 ∵AB →=(1,-3,-74),AC →=(-2,-1,-74),a ·AB →=0,a ·AC →=0,∴⎩⎪⎨⎪⎧x =23y ,z =-43y ,∴x ∶y ∶z =23y ∶y ∶(-43y )=2∶3∶(-4).题型一 证明平行问题例1 (2013·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .思维点拨 证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量. 证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系O -xyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连结OF ,同证法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=(34x 0,24+34y 0,0)又由证法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .思维升华 用向量证明线面平行的方法有:(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.方法一 (1)证明 如图(1),连结AD 1,由ABCD -A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1.所以BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ . 图(1)(2)解 如图(2),连结BD .因为E ,F 分别是AB ,AD 的中点, 所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ . 图(2)在Rt△EBQ 和Rt△FDP 中,因为BQ =DP =λ,BE =DF =1,于是EQ =FP =1+λ2,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取EF ,PQ ,MN 的中点为H ,O ,G ,连结OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是平面EFPQ 与平面PQMN 所成的二面角的平面角.若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连结EM ,FN ,则由EF ∥MN ,且EF =MN ,知四边形EFNM 是平行四边形. 连结GH ,因为H ,G 分别是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-(22)2=λ2+12, OG 2=1+(2-λ)2-(22)2=(2-λ)2+12, 由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 方法二 以D 为原点,射线DA ,DC ,DD1分别为x ,y ,z 轴的正半轴建立如图(3)所示的空间直角坐标系D -xyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).(1)证明 当λ=1时,FP →=(-1,0,1), 图(3) 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 题型二 证明垂直问题例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .思维点拨 证明线面垂直可以利用线面垂直的定义,即证线与平面内的任意一条直线垂直;也可以证线与面的法向量平行.证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.方法二 如图所示,取BC 的中点O ,连结AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .思维升华 用向量证明垂直的方法:(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角. (1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .证明 (1)以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M (32,0,32),∴DP →=(0,-1,2),DA →=(23,3,0), CM →=(32,0,32), 令n =(x ,y ,z )为平面PAD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1). ∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面PAD , ∴CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥PA .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又PA ∩DA =A ,∴BE ⊥平面PAD ,又∵BE ⊂平面PAB ,∴平面PAB ⊥平面PAD . 题型三 解决探索性问题例3 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.思维点拨 设BD 与AC 交于点O ,连结A 1O ,证明OB ,OC ,OA 1两两垂直,从而以点O 为坐标原点建立空间直角坐标系.(1)证明AA 1→·BD →=0;(2)根据两个平面的法向量夹角余弦值求二面角的余弦值;(3)设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,利用CP →=λCC 1→,求出点P 坐标,再根据BP →与平面DA 1C 1的法向量垂直求λ的值.解 (1)设BD 与AC 交于点O ,则BD ⊥AC ,连结A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1. (2)由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0).设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量,则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0,即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55, 所以,二面角D -A 1A -C 的余弦值为55. (3)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连结BD ,设AC 交BD 于点O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →所在直线分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图. 设底面边长为a ,则高SO =62a , 于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0, B ⎝⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面PAC . 理由如下:由已知条件知DS →是平面PAC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎪⎫-22a ,22a -t ,62at , 而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE 不在平面PAC 内,故BE ∥平面PAC .利用向量法解决立体几何问题典例:(14分)(2014·课标全国Ⅱ)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD的体积.规范解答(1)证明 连结BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .[2分]因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .[4分](2)解 因为PA ⊥平面ABCD ,四边形ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立如图空间直角坐标系A -xyz ,[6分]则D (0,3,0),E (0,32,12),AE →=(0,32,12). 设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0).[7分]设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧ n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧ mx +3y =0,32y +12z =0,可取n 1=(3m ,-1,3).[9分]又n 2=(1,0,0)为平面DAE 的一个法向量,由题设|cos 〈n 1,n 2〉|=12,即 33+4m 2=12,解得m =32.[11分] 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12, 三棱锥E -ACD 的体积V =13×12×3×32×12=38.[14分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.方法与技巧1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.设平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,h ,k ),若α∥β,则h +k 的值为________.答案 0解析 由α∥β得a ∥b ,∴-21=h 2=k -2,∴h =-4,k =4,∴h +k =0.2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是________.答案 平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是________. 答案 (5,13,-3)解析 由题意知,AB →=(-2,-6,-2),设点D (x ,y ,z ),则DC →=(3-x,7-y ,-5-z ),因为AB →=DC →,所以x =5,y =13,z =-3,即D (5,13,-3).4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=________.答案 657解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧ 7=2t -μ,5=-t +4μ,λ=3t -2μ,∴⎩⎪⎨⎪⎧ t =337,μ=177,λ=657.5.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为________.答案 90°解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0).∴PM →=(2,1,-3),AM →=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .6.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.答案 平行解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.答案 16解析 PA →=(-1,-3,2),PB →=(6,-1,4).根据共面向量定理,设PC →=xPA →+yPB → (x 、y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y,2x +4y ),∴⎩⎪⎨⎪⎧ 2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y , 解得x =-7,y =4,a =16.8.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t =________. 答案 5解析 ∵α⊥β,∴u ⊥v ,∴u ·v =0,∴-12-8+4t =0,t =5.9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面PAB ,EF ⊄平面PAB ,∴EF ∥平面PAB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面PAD .∵DC ⊂平面PDC ,∴平面PAD ⊥平面PDC .B 组 专项能力提升(时间:30分钟)1.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为________.答案 (22,22,1) 解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1),∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎪⎨⎪⎧ x -2=-22,y -2=-22⇒⎩⎪⎨⎪⎧ x =22,y =22. 2.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 答案 平行 解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →, ∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量,∴MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →.又∵MN ⊄平面B 1BCC 1,∴MN ∥平面B 1BCC 1.3.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝ ⎛⎭⎪⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x+y=1.∴有2个符合题意的点P ,即对应有2个λ.4.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .证明 (1)如图建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连结CN ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0,B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF ,又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .5.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E ⎝ ⎛⎭⎪⎫a ,a 2,0、 P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点.。
高考数学一轮复习 第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 新人教A版
第八章 立体几何 第6讲 立体几何中的向量方法(一)——证明平行与垂直练习 理 新人教A 版基础巩固题组 (建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =( ) A.2B.-4C.4D.-2解析 ∵α∥β,∴两平面法向量平行,∴-21=-42=k-2,∴k =4.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A.相交 B.平行C.在平面内D.平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内. 答案 D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A.P (2,3,3) B.P (-2,0,1) C.P (-4,4,0)D.P (3,-3,4)解析 逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 答案 A4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ) A.平行B.异面C.垂直D.以上都不对解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0). ∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0, 即PM →⊥AM →,∴AM ⊥PM . 答案 C5.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ) A.1B.2C.3D.4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确. 答案 C 二、填空题6.已知直线l 的方向向量为ν=(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是________.解析 ∵ν·u =0,∴ν⊥u ,∴l ∥α或l ⊂α. 答案 l ∥α或l ⊂α7.(2016·青岛模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.解析 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x +y =407-157=257.答案2578.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确. 由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误. 答案 ①②③ 三、解答题9.(2016·北京房山一模)如图,四棱锥P -ABCD 的底面为正方形,侧棱PA ⊥底面ABCD ,且PA =AD =2,E ,F ,H 分别是线段PA ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ; (2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系A -xyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0). (1)∵PB →=(2,0,-2),EH →=(1,0,-1), ∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH . (2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .10.(2016·日照调研)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED . (1)求证:PA ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由. (1)证明 ∵PA =AD =1,PD =2, ∴PA 2+AD 2=PD 2,即PA ⊥AD .又PA ⊥CD ,AD ∩CD =D ,∴PA ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎪⎫0,23,13,AC →=(1,1,0),AE →=⎝ ⎛⎭⎪⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.能力提升题组 (建议用时:20分钟)11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ) A.(1,1,1) B.⎝⎛⎭⎪⎫23,23,1 C.⎝⎛⎭⎪⎫22,22,1 D.⎝⎛⎭⎪⎫24,24,1 解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO , 又O 是正方形ABCD 对角线交点, ∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C12.(2016·衡水中学调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( ) A.相交 B.平行C.垂直D.不能确定解析 分别以C 1B 1、C 1D 1,C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系,如图, ∵A 1M =AN =23a , 则M ⎝ ⎛⎭⎪⎫a ,23a ,a 3, N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,∴MN →=⎝ ⎛⎭⎪⎫-a 3,0,23a .又C 1(0,0,0),D 1(0,a ,0), ∴C 1D 1→=(0,a ,0), ∴MN →·C 1D 1→=0,∴MN →⊥C 1D 1→.∵C 1D 1→是平面BB 1C 1C 的法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C . 答案 B13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________. 解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系, 设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ), 由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案 114.(2014·湖北卷改编)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.(1)证明 以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ . (2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN的一个法向量为m=(λ-2,2-λ,1).则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22,故存在λ=1±22,使平面EFPQ⊥平面PQMN.。
「精品」高考数学一轮复习第八章立体几何8.7立体几何中的向量方法(一)证明平行与垂直课件理-精品资料
命题点2 证面面垂直
例3 (2017·武汉月考)如图,在四棱锥P-ABCD中, 底 面 ABCD 是 边 长 为 a 的 正 方 形 , 侧 面 PAD⊥ 底 面 ABCD,且PA=PD= 2 AD,设E,F分别为PC,BD
2 的中点. (1)求证:EF∥平面PAD; 证明
(2)求证:平面PAB⊥平面PDC. 证明
由题意得c=ta+μb=(2t-μ,-t+4μ,3t-2μ),
7=2t-μ, ∴5=-t+4μ,
λ=3t-2μ,
t=373, ∴μ=177,
λ=675.
1 2 3 4 5 6 7 8 9 10 11 12
2.(2017·西安质检)若平面α,β的法向量分别是n1=(2,-3,5),n2= (-3,1,-4),则 答案 解析
则下列点P中,在平面α内的是 答案 解析
√A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
逐一验证法,对于选项 A,M→P=(1,4,1), ∴M→P·n=6-12+6=0,∴M→P⊥n,
∴点P在平面α内,同理可验证其他三个点不在平面α内.
1 2 3 4 5 6 7 8 9 10 11 12
§8.7 立体几何中的向量方法(一)——证明平行与垂直
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一 非零 向量作为它的方向向量.
(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,
题型一 利用空间向量证明平行问题
例 1 (2016·重 庆 模 拟 ) 如 图 所 示 , 平 面 PAD⊥ 平 面 ABCD,ABCD为正方形,△PAD是直角三角形,且PA =AD=2,E,F,G分别是线段PA,PD,CD的中点. 求证:PB∥平面EFG.
高三数学大一轮复习 立体几何中的向量方法(Ⅰ)证明平行与垂直教案 理
芯衣州星海市涌泉学校§立体几何中的向量方法(Ⅰ)——证明平行与垂直2021高考会这样考1.利用线线、线面、面面关系考察空间向量的运算;2.能用向量方法证明线面的平行或者者垂直;3.考察用向量方法解决立体几何中的一些探究性问题.复习备考要这样做1.理解直线的方向向量与平面的法向量;能用向量语言表述与直线、直线与平面、平面与平面的垂直和平行关系;3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);4.理解向量方法在研究立体几何问题中的应用.1.用向量表示直线或者者点在直线上的位置(1)给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量=ta,那么此向量方程叫做直线l的参数方程.向量a称为该直线的方向向量.(2)对空间任一确定的点O,点P在直线l上的充要条件是存在唯一的实数t,满足等式=(1-t)+t,叫做空间直线的向量参数方程.2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,那么l1∥l2(或者者l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α一一共面的两个不一一共线向量v1和v2,那么l∥α或者者l⊂α⇔存在两个实数x,y,使v=xv1+yv2.(3)设直线l的方向向量为v,平面α的法向量为u,那么l∥α或者者l⊂α⇔v⊥u.(4)设平面α和β的法向量分别为u1,u2,那么α∥β⇔u1∥u2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,那么l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,那么l⊥α⇔v∥u.(3)设平面α和β的法向量分别为u1和u2,那么α⊥β⇔u1⊥u2⇔u1·u2=0.[难点正本疑点清源]利用空间向量解决立体几何中的平行问题(1)证明两条直线平行,只需证明这两条直线的方向向量是一一共线向量,但要注意说明这两条直线不一一共线.(2)证明线面平行的方法①证明直线的方向向量与平面的法向量垂直,但要说明直线不在平面内.②证明可以在平面内找到一个向量与直线的方向向量一一共线,也要说明直线不在平面内.③利用一一共面向量定理,即证明直线的方向向量与平面内的两个不一一共线向量是一一共面向量.同时要注意强调直线不在平面内.1.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),那么l1与l2的位置关系是__________.答案平行解析∵v2=-2v1,∴v1∥v2,又l1与l2不重合,∴l1∥l2.2.=(1,5,-2),=(3,1,z),假设⊥,=(x-1,y,-3),且BP⊥平面ABC,那么实数x,y,z分别为______________.答案,-,4解析由题意知,⊥,⊥.所以即解得,x=,y=-,z=4.3.a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),那么以下结论正确的选项是() A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对答案C解析∵c=2a,∴a∥c,又a·b=(-2,-3,1)·(2,0,4)=-4+0+4=0,∴a⊥b.4.假设平面α,β垂直,那么下面可以作为这两个平面的法向量的是() A.n1=(1,2,1),n2=(-3,1,1)B.n1=(1,1,2),n2=(-2,1,1)C.n1=(1,1,1),n2=(-1,2,1)D.n1=(1,2,1),n2=(0,-2,-2)答案A解析两个平面垂直时其法向量也垂直,只有选项A中的两个向量垂直.5.假设平面α、β的法向量分别为n1=(2,-3,5),n2=(-3,1,-4),那么() A.α∥βB.α⊥βC.α、β相交但不垂直D.以上均不正确答案C题型一利用空间向量证明平行问题例1如下列图,在正方体ABCD—A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.思维启迪:证明线面平行,可以利用断定定理先证线线平行;也可以寻找平面的法向量.证明方法一如下列图,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,那么M,N,D(0,0,0),A1(1,0,1),B(1,1,0),于是=,设平面A1BD的法向量是n=(x,y,z).那么n·=0,且n·=0,得取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又·n=·(1,-1,-1)=0,∴⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.方法二=-=-=(-)=,∴∥,又∵MN与DA1不一一共线,∴MN∥DA1,又∵MN⊄平面A1BD,A1D⊂平面A1BD,∴MN∥平面A1BD.探究进步用向量证明线面平行的方法有(1)证明该直线的方向向量与平面的某一法向量垂直;(2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不一一共线的向量线性表示;(4)此题易错点:只证明MN∥A1D,而无视MN⊄平面A1BD.如下列图,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.求证:PB∥平面EFG.证明∵平面PAD⊥平面ABCD且ABCD为正方形,∴AB、AP、AD两两垂直,以A为坐标原点,建立如下列图的空间直角坐标系Axyz,那么A(0,0,0)、B(2,0,0)、C(2,2,0)、D(0,2,0)、P(0,0,2)、E(0,0,1)、F(0,1,1)、G(1,2,0).∴=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴解得s=t=2.∴=2+2,又∵与不一一共线,∴、与一一共面.∵PB⊄平面EFG,∴PB∥平面EFG.题型二利用空间向量证明垂直问题例2如下列图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.证明方法一设平面A1BD内的任意一条直线m的方向向量为m.由一一共面向量定理,那么存在实数λ,μ,使m=λ+μ.令=a,=b,=c,显然它们不一一共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,那么=a+c,=a+b,=a-c,m=λ+μ=a+μb+λc,·m=(a-c)·=4-2μ-4λ=0.故⊥m,结论得证.方法二如下列图,取BC的中点O,连接AO.因为△ABC为正三角形,所以AO⊥BC.因为在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,所以AO⊥平面BCC1B1.取B1C1的中点O1,以O为原点,以,,为x轴,y轴,z轴建立空间直角坐标系,那么B(1,0,0),D(-1,1,0),A1(0,2,),A(0,0,),B1(1,2,0).设平面A1BD的法向量为n=(x,y,z),=(-1,2,),=(-2,1,0).因为n⊥,n⊥,故⇒令x=1,那么y=2,z=-,故n=(1,2,-)为平面A1BD的一个法向量,而=(1,2,-),所以=n,所以∥n,故AB1⊥平面A1BD.探究进步证明线面平行和垂直问题,可以用几何法,也可以用向量法.用向量法的关键在于构造向量,再用一一共线向量定理或者者一一共面向量定理及两向量垂直的断定定理.假设能建立空间直角坐标系,其证法较为灵敏方便.如下列图,直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.证明(1)如图建立空间直角坐标系A—xyz,令AB=AA1=4,那么A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).取AB中点为N,连接CN,那么N(2,0,0),C(0,4,0),D(2,0,2),∴=(-2,4,0),=(-2,4,0),∴=,∴DE∥NC,又∵NC⊂平面ABC,DE⊄平面ABC.故DE∥平面ABC.(2)=(-2,2,-4),=(2,-2,-2),=(2,2,0).·=(-2)×2+2×(-2)+(-4)×(-2)=0,·=(-2)×2+2×2+(-4)×0=0.∴⊥,⊥,即B1F⊥EF,B1F⊥AF,又∵AF∩FE=F,∴B1F⊥平面AEF.题型三利用空间向量解决探究性问题例3(2021·)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?假设存在,求AP的长;假设不存在,说明理由.思维启迪:利用向量法建立空间直角坐标系,将几何问题进展转化;对于存在性问题可通过计算下结论.(1)证明以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,那么A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=,=(a,0,1),=.∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)解假设在棱AA1上存在一点P(0,0,z0).使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=.要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.又DP⊄平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=.探究进步对于“是否存在〞型问题的探究方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点〞,假设该点坐标不能求出,或者者有矛盾,那么断定“不存在〞.如下列图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,那么侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.(1)证明连接BD,设AC交BD于O,那么AC⊥BD.由题意知SO⊥平面ABCD.以O为坐标原点,,,分别为x轴、y轴、z轴正方向,建立空间直角坐标系如图.设底面边长为a,那么高SO=a,于是S,D,B,C,=,=,那么·=0.故OC⊥SD.从而AC⊥SD.(2)解棱SC上存在一点E使BE∥平面PAC.理由如下:由条件知是平面PAC的一个法向量,且=,=,=.设=t,那么=+=+t=,而·=0⇔t=.即当SE∶EC=2∶1时,⊥.而BE不在平面PAC内,故BE∥平面PAC.利用空间向量解决立体几何问题典例:(12分)(2021·大纲全国)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.考点分析此题以四棱锥为载体,考察多面体的构造特征,线面垂直的断定以及直线与平面所成角的计算.解题策略此题有两种解题思路:①利用常规方法,从线线垂直证明线面垂直,作出所求线面角;②利用空间向量,将线面垂直转化为两个向量的关系,利用平面的法向量求线面角.标准解答(1)证明以C为坐标原点,射线CD为x轴正半轴,射线CB为y轴的正半轴,建立如下列图的空间直角坐标系C-xyz.设D(1,0,0),那么A(2,2,0),B(0,2,0).[2分]又设S(x,y,z),那么x>0,y>0,z>0.=(x-2,y-2,z),=(x,y-2,z),=(x-1,y,z),由||=||得=,故x=1.由||=1得y2+z2=1.①又由||=2得x2+(y-2)2+z2=4,即y2+z2-4y+1=0.②联立①②得[6分]于是S(1,,),=(-1,-,),=(1,-,),=(0,,).因为·=0,·=0,故DS⊥AS,DS⊥BS.又AS∩BS=S,所以SD⊥平面SAB.[8分](2)解设平面SBC的法向量a=(m,n,p),那么a⊥,a⊥,a·=0,a·=0.又=(1,-,),=(0,2,0),故取p=2得a=(-,0,2).[10分]又=(-2,0,0),cos〈,a〉==,所以AB与平面SBC所成角的正弦值为.[12分]解后反思直线和平面的位置关系可以利用直线的方向向量和平面的法向量之间的关系来判断.证明的主要思路:(1)证明线线平行:可证两条直线的方向向量一一共线;(2)证明线面平行:①证明直线的方向向量和平面的法向量垂直,②证明直线的方向向量可用平面内的两个不一一共线向量线性表示;(3)证明面面平行:可证两个平面的法向量一一共线;(4)证明线线垂直:可证两条直线的方向向量垂直;(5)证明线面垂直:①证明直线的方向向量和平面内的两个不一一共线向量垂直,②证明直线的方向向量与平面的法向量一一共线;(6)证明面面垂直:可证两个平面的法向量互相垂直.方法与技巧用向量知识证明立体几何问题有两种根本思路:一种是用向量表示几何量,利用向量的运算进展判断;另一种是用向量的坐标表示几何量,一一共分三步:(1)建立立体图形与空间向量的联络,用空间向量(或者者坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.假设用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A组专项根底训练(时间是是:35分钟,满分是是:57分)一、选择题(每一小题5分,一一共20分)1.平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),那么以下点P中,在平面α内的是()A.P(2,3,3) B.P(-2,0,1)C.P(-4,4,0) D.P(3,-3,4)答案A解析逐一验证法,对于选项A,=(1,4,1),∴·n=6-12+6=0,∴⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.2.空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).假设|a|=,且a分别与,垂直,那么向量a为()A.(1,1,1)B.(-1,-1,-1)C.(1,1,1)或者者(-1,-1,-1)D.(1,-1,1)或者者(-1,1,-1)答案C解析由条件知=(-2,-1,3),=(1,-3,2),可观察出a=±(1,1,1).3.假设直线l的一个方向向量为a=(2,5,7),平面α的一个法向量为u=(1,1,-1),那么() A.l∥α或者者l⊂αB.l⊥αC.l⊂αD.l与α斜交答案A4.如图,在长方体ABCD—A1B1C1D1中,AB=2,AA1=,AD=2,P为C1D1的中点,M为BC的中点.那么AM与PM的位置关系为()A.平行B.异面C.垂直D.以上都不对答案C解析以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如下列图的空间直角坐标系D—xyz,依题意,可得,D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),M(,2,0).∴=(,2,0)-(0,1,)=(,1,-),=(,2,0)-(2,0,0)=(-,2,0),∴·=(,1,-)·(-,2,0)=0,即⊥,∴AM⊥PM.二、填空题(每一小题5分,一一共15分)5.设l1的方向向量为a=(1,2,-2),l2的方向向量为b=(-2,3,m),假设l1⊥l2,那么m=________.答案26.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,那么a=________.答案16解析=(-1,-3,2),=(6,-1,4).根据一一共面向量定理,设=x+y(x、y∈R),那么(2a-1,a+1,2)=x(-1,-3,2)+y(6,-1,4)=(-x+6y,-3x-y,2x+4y),∴解得x=-7,y=4,a=16.7.如图,在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=,那么MN与平面BB1C1C的位置关系是________.答案平行解析∵正方体棱长为a,A1M=AN=,∴=,=,∴=++=++=(+)++(+)=+.又∵是平面B1BCC1的法向量,∴·=·=0,∴⊥.又∵MN⊄平面B1BCC1,∴MN∥平面B1BCC1.三、解答题(一一共22分)8.(10分)如图,直三棱柱ABC—A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.求证:(1)BC1⊥AB1;(2)BC1∥平面CA1D.证明如图,以C1点为原点,C1A1,C1B1,C1C所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AC=BC=BB1=2,那么A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),C1(0,0,0),D(1,1,2).(1)由于=(0,-2,-2),=(-2,2,-2),所以·=0-4+4=0,因此⊥,故BC1⊥AB1.(2)连接A1C,取A1C的中点E,连接DE,由于E(1,0,1),所以=(0,1,1),又=(0,-2,-2),所以=-,又ED和BC1不一一共线,所以ED∥BC1,又DE⊂平面CA1D,BC1⊄平面CA1D,故BC1∥平面CA1D.9.(12分)如图,在底面是矩形的四棱锥P—ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.求证:(1)EF∥平面PAB;(2)平面PAD⊥平面PDC.证明(1)以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如下列图的空间直角坐标系,那么A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),∴E,F,=,=(1,0,-1),=(0,2,-1),=(0,0,1),=(0,2,0),=(1,0,0),=(1,0,0).∵=-,∴∥,即EF∥AB,又AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.(2)∵·=(0,0,1)·(1,0,0)=0,·=(0,2,0)·(1,0,0)=0,∴⊥,⊥,即AP⊥DC,AD⊥DC.又AP∩AD=A,∴DC⊥平面PAD.∵DC⊂平面PDC,∴平面PAD⊥平面PDC.B组专项才能提升(时间是是:25分钟,满分是是:43分)一、选择题(每一小题5分,一一共15分)1.a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).假设c与a及b都垂直,那么m,n的值分别为()A.-1,2 B.1,-2C.1,2 D.-1,-2答案A解析由得c=(m+4,m+2n-4,m-n+1),故a·c=3m+n+1=0,b·c=m+5n-9=0.解得2.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量一一共面,那么实数λ等于()A. B. C. D.答案D解析由题意得c=ta+μb=(2t-μ,-t+4μ,3t-2μ),∴,∴.3.如下列图,在正方体ABCD—A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,那么直线NO、AM的位置关系是()A.平行B.相交C.异面垂直D.异面不垂直答案C解析建立坐标系如图,设正方体的棱长为2,那么A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),=(-1,0,-2),=(-2,0,1),·=0,那么直线NO、AM的位置关系是异面垂直.二、填空题(每一小题5分,一一共15分)4.平面α和平面β的法向量分别为a=(1,1,2),b=(x,-2,3),且α⊥β,那么x=________.答案-4解析∵a·b=x-2+6=0,∴x=-4.5.a=(2,-1,2),b=(2,2,1),那么以a,b为邻边的平行四边形的面积为________.答案解析|a|==3,|b|==3,a·b=2×2+(-1)×2+2×1=4,∴cos〈a,b〉==,sin〈a,b〉=,S平行四边形=|a||b|·sin〈a,b〉=.6.在正方体ABCD—A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,那么满足=λ的实数λ的有________个.答案2解析建立如图的坐标系,设正方体的边长为2,那么P(x,y,2),O(1,1,0),∴OP的中点坐标为,又知D1(0,0,2),∴Q(x+1,y+1,0),而Q在MN上,∴xQ+yQ=3,∴x+y=1,即点P坐标满足x+y=1.∴有2个符合题意的点P,即对应有2个λ.三、解答题7.(13分)在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.(1)证明如图,以DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设AD=a,那么D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E、P(0,0,a)、F.=,=(0,a,0).∵·=0,∴⊥,即EF⊥CD.(2)解设G(x,0,z),那么=,假设使GF⊥平面PCB,那么由·=·(a,0,0)=a=0,得x=;由·=·(0,-a,a)=+a=0,得z=0.∴G点坐标为,即G点为AD的中点.。
【新】版高考数学一轮复习第八章立体几何8.7立体几何中的向量方法(一)__证明平行与垂直理
第八章 立体几何 8.7 立体几何中的向量方法(一)——证明平行与垂直 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A .(-1,1,1)B .(1,-1,1)C .(-33,-33,-33) D .(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.2.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( ) A .l ∥α B .l ⊥α C .l 与α斜交 D .l ⊂α或l ∥α答案 B解析 由a =-n 知,n ∥a ,则有l ⊥α,故选B.3.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( )A .2B .-4C .4D .-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0,∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 (2016·重庆模拟)如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG .引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(2016·北京海淀区模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD . 题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 (2017·武汉月考)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD . 因为PA =PD =22AD ,所以PA ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a2,a,0).因为E 为PC 的中点,所以E (-a 4,a 2,a4).易知平面PAD 的一个法向量为OF →=(0,a 2,0),因为EF →=(a 4,0,-a 4),且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0,所以EF ∥平面PAD .(2)因为PA →=(a 2,0,-a 2),CD →=(0,-a,0),所以PA →·CD →=(a 2,0,-a 2)·(0,-a,0)=0,所以PA →⊥CD →,所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,所以PA ⊥平面PDC . 又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(2016·青岛模拟)如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB=AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, ∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB ,∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0),设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C . 题型三 利用空间向量解决探索性问题例4 (2016·北京)如图,在四棱锥PABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由. (1)证明 ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面PAD .∵PD ⊂平面PAD ,∴AB ⊥PD .又PA ⊥PD ,PA ∩AB =A ,且PA ,PB ⊂平面PAB , ∴PD ⊥平面PAB .(2)解 取AD 中点O ,连接CO ,PO ,∵PA =PD , ∴PO ⊥AD .又∵PO ⊂平面PAD , 平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD , ∵CO ⊂平面ABCD , ∴PO ⊥CO ,∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0). 则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量.由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12.即n =⎝ ⎛⎭⎪⎫12,-1,1.设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=|12-1-1|14+1+1×3=33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,∴BM →·n =0,即(-1,-λ,λ)·⎝ ⎛⎭⎪⎫12,-1,1=0,解得λ=14,∴在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.(2016·深圳模拟)如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.解 (1)如图,以D 为坐标原点,建立空间直角坐标系Dxyz ,依题意得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0),所以NE →=(-12,0,-1),AM →=(-1,0,1),因为|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010.所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=(12,-1,0),所以ES →=EA →+AS →=(12,λ-1,λ).由ES ⊥平面AMN , 得⎩⎪⎨⎪⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,λ-+λ=0,解得λ=12,此时AS →=(0,12,12),|AS →|=22.经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22.19.利用向量法解决立体几何问题典例 (12分)(2016·吉林实验中学月考)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[1分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分] 易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[9分]把y =233代入上式得x =43,∴P (43,233,0),∴BP →=13BC →,∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[12分]1.(2016·茂名调研)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637 C.607 D.657 答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ,∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.2.(2017·西安质检)若平面α,β的法向量分别是n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上答案均不正确答案 C解析 ∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0, ∴n 1与n 2不垂直,且不共线. ∴α与β相交但不垂直.3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内 答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面, ∴AB 与平面CDE 平行或在平面CDE 内.5.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.6.(2016·泰安模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M (a ,2a 3,a 3),N (2a 3,2a 3,a ),MN →=(-a 3,0,2a 3).又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .7.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是__________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n , ∴m ∥n ,∴α∥β.8.(2016·潍坊模拟)已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.*9.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 由题意可知,建立空间直角坐标系,如图所示.则A (0,-1,0),B (0,1,0),S (0,0,3),M (0,0,32),设P (x ,y,0), ∴AM →=(0,1,32),MP →=(x ,y ,-32),即y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-342=72. 10.如图,在三棱锥PABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,OD ,OP 所在直线为y 轴,z 轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, ∴AP →⊥BC →,即AP ⊥BC . (2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0,∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .11.(2016·长沙模拟)如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点.*12.如图所示,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H 是BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB .证明 (1)∵四边形ABCD 为正方形,∴AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .又EF ⊥FB ,FB ∩BC =B ,∴EF ⊥平面BFC . ∴EF ⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . 又AB ∩BC =B ,∴FH ⊥平面ABC .以H 为坐标原点,HB →为x 轴正方向,HF →为z 轴正方向,建立如图所示空间直角坐标系.设BH =1,则A (1,-2,0),B (1,0,0),C (-1,0,0),D (-1,-2,0),E (0,-1,1),F (0,0,1). 设AC 与BD 的交点为G ,连接GE ,GH , 则G (0,-1,0),∴GE →=(0,0,1), 又HF →=(0,0,1),∴HF →∥GE →. 又GE ⊂平面EDB ,HF ⊄平面EDB , ∴FH ∥平面EDB .(2)∵AC →=(-2,2,0),GE →=(0,0,1), AC →·GE →=0, ∴AC ⊥GE .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 3 3 → → ∴AE· =- × + × =0, CD 2 4 6 4 → → ∴AE⊥CD,即 AE⊥CD.
→ 2 3 (2)方法一 ∵P(0,0,1),∴PD=0, ,-1. 3 3 2 3 1 → → 又AE· = × PD + ×(-1)=0, 4 3 2 → → ∴PD⊥AE,即 PD⊥AE. → → → ∵AB=(1,0,0),∴PD· =0, AB
建立如图所示的空间直角坐标系 A—xyz, 则 A(0,0,0)、B(2,0,0)、C(2,2,0)、D(0,2,0)、 P(0,0,2)、E(0,0,1)、F(0,1,1)、G(1,2,0). → → ∴PB=(2,0,-2),FE=(0,-1,0), → FG=(1,1,-1),
→ → → 设PB=sFE+tFG, 即(2,0,-2)=s(0,-1,0)+t(1,1,-1), t=2, ∴t-s=0, -t=-2, 解得 s=t=2.
(-2,1,0). → → 因为 n⊥BA1,n⊥BD,
→ -x+2y+ 3z=0, n· 1=0, BA 故 ⇒ -2x+y=0, → n· =0 BD 令 x=1,则 y=2,z=- 3,故 n=(1,2,- 3)为平面 A1BD 的 → 一个法向量,而AB1=(1,2,- 3), → → 所以AB1=n,所以AB1∥n,故 AB1⊥平面 A1BD.
→ → 设平面 A1BD 的法向量为 n=(x,y,z),BA1=(-1,2, 3),BD=
利用空间向量解决探索 性问题
例 3 如图,四棱锥 P—ABCD 中,PA⊥平 面 ABCD,PB 与底面所成的角为 45° , 底面 ABCD 为直角梯形,∠ABC= 1 ∠BAD=90° ,PA=BC= AD=1. 2 (1)求证:平面 PAC⊥平面 PCD; (2)在棱 PD 上是否存在一点 E, CE∥平面 PAB?若存在, 使 请确定 E 点的位置;若不存在,请说明理由.
利用空间向量证明平行问题
例 1 如图所示,在正方体 ABCD—A1B1C1D1 中, M、N 分别是 C1C、B1C1 的中点.求证:MN ∥平面 A1BD.
证明 方法一 如图所示,以 D 为原点,DA、 DC、DD1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系, 设正方体的棱长为 1,
变式训练 1
如图所示,平面 PAD⊥平面 ABCD,ABCD 为正方形,△PAD 是直角三角形,且 PA= AD=2,E、F、G 分别是线段 PA、PD、CD 的中点. 求证:PB∥平面 EFG. 证明 ∵平面 PAD⊥平面 ABCD 且 ABCD 为正方形,
∴AB、AP、AD 两两垂直,以 A 为坐标原点,
u ⇔ u1·2=0
.
[难点正本
疑点清源]
1.直线的方向向量实质上是与直线平行的非零向量,它有无数 多个,平面的法向量也有无数个. 2.利用空间向量解决立体几何中的平行问题 (1)证明两条直线平行,只需证明这两条直线的方向向量是 共线向量,但要注意说明这两条直线不共线. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直,但要说明直线 不在平面内. ②证明能够在平面内找到一个向量与已知直线的方向向量共线, 也要说明直线不在平面内. ③利用共面向量定理,即证明直线的方向向量与平面内的 两个不共线向量是共面向量.同时要注意强调直线不在平面内.
取 x=1,得 y=-1,z=-1.∴n=(1,-1,-1). 1 1 → 又MN· 2,0,2· n= (1,-1,-1)=0, → ∴MN⊥n,又 MN⊄平面 A1BD, ∴MN∥平面 A1BD. → → → 1 → 1→ 方法二 MN=C1N-C1M= C1B1- C1C 2 2 1 → 1→ → = (D1A1-D1D)= DA1, 2 2 → → ∴MN∥DA1,又∵MN 与 DA1 不共线,∴MN∥DA1,
证明 方法一 设平面 A1BD 内的任意一条 直线 m 的方向向量为 m.由共面向量定理,则存在实数 λ,μ, → → 使 m=λBA1+μBD. → → → 令BB1=a,BC=b,BA=c,显然它们不共面,并且|a|=|b|=|c| =2,a· b=a· c=0,b· c=2,以它们为空间的一个基底,
∴PD⊥AB,又 AB∩AE=A,∴PD⊥平面 ABE.
方法二 设平面 ABE 的一个法向量为 n=(x,y,z), 3 1 → → 1 ∵AB=(1,0,0),AE= , , , 4 2 4 → x=0 n· =0 AB ∴ ,即1 , 3 1 → 4x+ 4 y+2z=0 n· =0 AE
→ → → ∴PB=2FE+2FG, → → → → → 又∵FE与FG不共线,∴PB、FE与FG共面.
∵PB⊄平面 EFG,∴PB∥平面 EFG.
利用空间向量证明垂直问题
例 2 如图所示,在四棱锥 P—ABCD 中, PA⊥底面 ABCD,AB⊥AD,AC⊥CD, ∠ABC=60° ,PA=AB=BC,E 是 PC 的中点.证明: (1)AE⊥CD; (2)PD⊥平面 ABE.
立体几何中的向量方法(Ⅰ) ——证明平行与垂直
要点梳理
忆一忆知识要点
1.用向量表示直线或点在直线上的位置 (1)给定一个定点 A 和一个向量 a,再任给一个实数 t,以 A → 为起点作向量AP=ta,则此向量方程叫做直线 l 的参数方 程.向量 a 称为该直线的方向向量. (2)对空间任一确定的点 O, P 在直线 l 上的充要条件是存 点 → → → 在唯一的实数 t,满足等式OP=(1-t)OA+tOB,叫做空间 直线的向量参数方程.
①
∴(-1,y-1,z)· (0,2,0)=0,∴y=1. 1 将 y=1 代入①,得 z= .∴E 是 PD 的中点, 2
∴存在 E 点使 CE∥平面 PAB,此时 E 为 PD 的中点.
变式训练 3
如图所示,在三棱锥 A—BCD 中,侧面 ABD、 ACD 是全等的直角三角形,AD 是公共的斜边, 且 AD= 3,BD=CD=1,另一个侧面 ABC 是 正三角形. (1)求证:AD⊥BC; (2)求二面角 B—AC—D 的余弦值; (3)在线段 AC 上是否存在一点 E, ED 与平面 BCD 成 30° 使 角? 若存在,确定点 E 的位置;若不存在,说明理由.
证明 ∵AB、AD、AP 两两垂直,建立如图 所示的空间直角坐标系, 设 PA=AB=BC=1,则 P(0,0,1).
(1)∵∠ABC=60° , ∴△ABC 为正三角形. 1 1 3 3 1 ∴C , ,0,E , , . 2 4 2 2 4
设 D(0,y,0),由 AC⊥CD, → → 得AC· =0, CD 2 3 2 3 即 y= ,则 D0, ,0, 3 3 3 3 1 → 1 → 1 ∴CD=- , ,0.又AE= , , , 6 4 2 2 4
方法二
如图所示,取 BC 的中点 O,连结 AO.
因为△ABC 为正三角形,所以 AO⊥BC.
因为在正三棱柱 ABC—A1B1C1 中,平面 ABC⊥ 平面 BCC1B1, 所以 AO⊥平面 BCC1B1.
→ → → 取 B1C1 的中点 O1,以 O 为原点,以OB,OO1,OA为 x 轴,y 轴,z 轴建立空间直角坐标系,则 B(1,0,0),D(-1,1,0),A1(0,2, 3), A(0,0, 3),B1(1,2,0).
xv1+yv2
.
(3)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l∥α 或 l⊂α⇔ v⊥u . (4)设平面 α 和 β 的法向量分别为 u1, 2, α∥β⇔ u1 ∥u2 . u 则
要点梳理
忆一忆知识要点
3.用向量证明空间中的垂直关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1⊥l2⇔v1⊥v2 v ⇔ v1·2=0 . (2)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l⊥α ⇔ v∥u . (3)设平面 α 和 β 的法向量分别为 u1 和 u2,则 α⊥β⇔ u1⊥u2
又∵MN⊄平面 A1BD,A1D⊂平面 A1BD, ∴MN∥平面 A1BD.
探究提高
用向量证明线面平行的方法: (1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行; (3)证明该直线的方向向量可以用平面内的两个不共线的向量线 性表示; (4)本题易错点为:只证明 MN∥A1D,而忽视 MN⊄平面 A1BD.
令 y=2,则 z=- 3,∴n=(0,2,- 3). 3 → 2 3 → ∵PD=0, ,-1,显然PD= 3 n. 3 → → ∴PD∥n,∴PD⊥平面 ABE,即 PD⊥平面 ABE.
变式训练 2
如图所示,正三棱柱 ABC—A1B1C1 的所有 棱长都为 2,D 为 CC1 的中点.求证:AB1 ⊥平面 A1BD.
要点梳理
忆一忆知识要点
2.用向量证明空间中的平行关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1∥l2(或 l1 与 l2 重合)⇔ v1∥v2 . (2)设直线 l 的方向向量为 v, 与平面 α 共面的两个不共线向 量 v1 和 v2,则 l∥α 或 l⊂α⇔ 存在两个实数 x,y,使 v=
→ → 因此BC· =-1+1=0,所以 AD⊥BC. DA
设平面 ABC 的法向量为 n1=(x,y,z), → → 则由 n1⊥BC知:n1· =-x+y=0, BC → → 同理由 n1⊥AC知:n1· =-x-z=0, AC (2)解
(1)证明
∵PA⊥面 ABCD,
∴PB 与平面 ABCD 所成的角为∠PBA=45° .
∴AB=1,由∠ABC=∠BAD=90° , 易得 CD=AC= 2, 由勾股定理逆定理得 AC⊥CD.