华东师大版八年级数学下册 第17章 函数及其图象 一些函数重难点分类强化专题训练讲义(含答案)

合集下载

华东师大版数学八年级下册第17章函数及其图象总复习二(共28张PPT)

华东师大版数学八年级下册第17章函数及其图象总复习二(共28张PPT)
6、当k>0时,正比例函数中,y随x的增大而增大;反比例 函数中,在x>0或x<0时,y均随x的增大而减小.
当k<0时,正比例函数中,y随x的增大而减小;反比例 函数中,在x>0或x<0时,y均随x的增大而增大.
【快速抢答】 1、已知 x=3 是方程组 y=4
x+y=7 2x-y=2
的解,
那么一次函数y=-x+7和y=2x-2的交点坐标是 (3,4) .
3、如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点, 以B为直角顶点在第二象限作等腰直角三角形ABC. (1)求点C的坐标,并求出直线AC的解析式. (2)如图2,直线CB交y轴于点E,在直线CB上取一点D,连结 AD. 若AD=AC,求证:BD=DE.[提示:若直线y1=k1x+b1与 直线y2=k2x+b2垂直,则k1∙k2=-1] (3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-2.5,k) 是线段BC上一点,在x轴上是否存在一点N,使△BPN的面 积等于△BCM的面积的一半?若存在,请求出点N的坐标; 若不存在,请说明理由.
10、已知直线y=x+a与直线y=-x+b的交点坐标是(m,6), 则a+b= 12 .
11、已知三条直线y=2x-11,y=ax+7,y=-3x+4相交于同 一点,则a的值是 -4 .
12、如图,用图象法解某二元一次方程组时,在同一直角
坐标系中作出两个一次函数的图象,则所解的一元二
次方程组是( D )
2、如果直线y=-1.5x+m和y=0.5x+n都经过点A(-2,0), y=-1.5x-3
那么点A的坐标可以看作方程组 y=0.5x+1 的解.

(华东师大版)数学初二下册 《函数及其图象》全章复习与巩固—知识讲解(基础)

(华东师大版)数学初二下册 《函数及其图象》全章复习与巩固—知识讲解(基础)

《函数及其图象》全章复习与巩固—知识讲解(基础)【学习目标】1.理解变量与常量、变量与函数、直角坐标系、函数图象、平面直角坐标系的概念,能正确画出平面直角坐标系,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征;2.了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能用待定系数法确定一次函数与反比例函数的解析式;4.能写出实际问题中一次函数关系与反比例函数关系的解析式及自变量的取值范围,并能应用它们解决简单的实际问题;运用数形结合的方法,深刻理解和掌握函数的性质,学会用数学建模的方法与技巧.【知识网络】【要点梳理】要点一、变量与函数 1. 常量、变量、函数(1)常量:在问题研究过程中,取值始终保持不变的量,叫做常量. (2)变量:在某一变化过程中,可以取不同数值的量,叫做变量.(3)函数:一般地,在一个变化过程中. 如果有两个变量与,对于的每一个值,都有唯一的值与之对应,那么我们就说是自变量,是因变量,也称是的函数.是的函数,如果当=时=,那么叫做当自变量为时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法.要点二、平面直角坐标系 1. 有序数对定义:把有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b). 要点诠释:有序,即两个数的位置不能随意交换,(a ,b)与(b ,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 2. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).x y x y x y y x y x x a y b b a要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.3. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P 的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.4. 坐标平面(1)象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.(2)坐标平面的结构坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点. 5. 坐标的特征(1)各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. (2)象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a ,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a ,-a). (3)关于坐标轴对称的点的坐标特征P(a ,b)关于x 轴对称的点的坐标为 (a,-b); P(a ,b)关于y 轴对称的点的坐标为 (-a,b); P(a ,b)关于原点对称的点的坐标为 (-a,-b). (4)平行于坐标轴的直线上的点平行于x 轴的直线上的点的纵坐标相同; 平行于y 轴的直线上的点的横坐标相同.要点三、一次函数 1、一次函数的定义一次函数的一般形式为,其中、是常数,≠0.特别地,当=0时,一次函数即(≠0),是正比例函数.2、一次函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线可以看作由直线平移||个单位长度而得到(当>0时,向上平移;当<0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化. 3、一次函数的性质掌握一次函数的图象及性质(对比正比例函数的图象和性质)y kx b =+k b k b y kx b =+y kx =k y kx b =+y kx =b b b y kx b =+y kx =要点诠释:理解、对一次函数的图象和性质的影响:(1)决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限.(2)两条直线:和:的位置关系可由其系数确定:与相交;,且与平行; ,且与重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.4、求一次函数的表达式待定系数法:先设待求函数表达式(其中含有待定系数),再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法. 5、用函数的观点看方程(组)与不等式k b y kx b =+k y kx b =+αb y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l 12k k =12b b =⇔1l 2l x a =y b =要点四、反比例函数 1.反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式. 要点诠释:在中,自变量的取值范围是, ()可以写成()的形式,也可以写成的形式.2.反比例函数的图象和性质 (1)反比例函数图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 要点诠释:观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线; ky x=k 0k ≠x y x ky x=k x y 、k ky x=x k y x=()0ky k x=≠x y x y )0(≠=k xky x y x y -==和②的图象是中心对称图形,对称中心为原点(0,0); ③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.注:正比例函数与反比例函数, 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(2)反比例函数的性质①图象位置与反比例函数性质当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大. ②若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.③正比例函数与反比例函数的性质比较④反比例函数y =中的意义)0(≠=k x ky xky x k y -==和x y x k y 1=xk y 2=021<⋅k k 021>⋅k k 0k >x y 、y x 0k <x y 、y x a b ,ky x=a b --,k过双曲线(≠0) 上任意一点作轴、轴的垂线,所得矩形的面积为. 过双曲线(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.要点五、实践与探索 1.数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.2.正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 3.选择最佳方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、函数的概念1.下列说法正确的是:( )A.变量满足,则是的函数;B.变量满足,则是的函数;C.变量满足,则是的函数;D.变量满足,则是的函数.【答案】A ;【解析】B 、C 、D 三个选项,对于一个确定的的值,都有两个值和它对应,不满足单值对应的条件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )xky =k x y k x ky =k 2k ,x y 23x y +=y x ,x y x y =||y x ,x y x y =2y x ,x y 221y x -=y x x y【答案】B;类型二、平面直角坐标系2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B 的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B 到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).类型三、一次函数3.(春•高新区期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=6,O为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=6时,求P点坐标.【思路点拨】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=6代入(1)中函数关系即可得出x的值,进而得出y的值.【答案与解析】解:(1)∵A和P点的坐标分别是(4,0)、(x,y),∴S=×4×y=2y.∵x+y=6,∴y=6﹣x.∴S=2(6﹣x)=12﹣2x.∴所求的函数关系式为:S=﹣2x+12.(2)由(1)得S=﹣2x+12>0,解得:x<6;又∵点P在第一象限,∴x>0,综上可得x的范围为:0<x<6.(3)∵S=6,∴﹣2x+12=6,解得x=3.∵x+y=6,∴y=6﹣3=3,即P(3,3).【总结升华】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.举一反三:【变式】(2015秋•南京校级期末)已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.【答案】解:(1)当x=0时,y=﹣x+3=3,则Q(0,3),∵点Q恰与点P关于x轴对称,∴P(0,﹣3),把P (0,﹣3),A (﹣2,5)代入y=kx+b 得,解得,所以这个一次函数解析式为y=﹣4x ﹣3;(2)当y=0时,﹣x+3=0,解得x=6,则B (6,0),当y=0时,﹣4x ﹣3=0,解得x=﹣,则直线y=﹣4x ﹣3与x 轴的交点坐标为(﹣,0), 所以△ABP 的面积=×(6+)×5+×(6+)×3=27.4.已知正比例函数(≠0)的函数值随的增大而减小,则一次函数的图象大致是图中的( ).【答案】B ;【解析】∵随的增大而减小,∴ <0.∵中的系数为1>0,<0, ∴经过一、三、四象限,故选B .【总结升华】本题综合考查正比例函数和一次函数图象和性质,>0时,函数值随自变量的增大而增大.举一反三:【变式】已知正比例函数的图象上两点A(, ), B(,),当 时,有,那么 的取值范围是( ) A . B . C . D . 【答案】 A ;提示:由题意随着的增大而减小,所以,选A 答案.类型四、反比例函数5.如图所示,P 是反比例函数图象上一点,若图中阴影部分的面积是2,求此反比例函数的关系式.y kx =k y x y x k =+y x k y x k =+x k k x ()21y m x =-1x 1y 2x 2y 12x x <12y y >m 12m <12m >2m <0m >y x 210m -<ky x=【思路点拨】要求函数关系式,必须先求出的值,P 点既在函数的图象上又是矩形的顶点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(,),由图可知,P 点在第二象限,∴ <0,>0.∴ 图中阴影部分矩形的长、宽分别为-、.∵ 矩形的面积为2,∴ -=2,∴ =-2.∵ =,∴ =-2.∴ 此反比例函数的关系式是. 【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面积为||这一条件,进行坐标、线段、面积间的转换.举一反三:【变式】如图,过反比例函数的图象上任意两点A 、B ,分别作轴的垂线,垂足为,连接OA ,OB ,与OB 的交点为P ,记△AOP 与梯形的面积分别为,试比较的大小.【答案】解:∵,且, ∴.类型五、实践与探索6.(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22k x y x y x y xy xy xy k k 2y x=-x y k )(0x x2y >=x ''B A 、'AA B B PA ''21S S 、21S S与AOP AOA A OP S S S ''∆∆∆=-OB A OP A PBB S B S S ''''∆∆=-梯形AOA 112122A A S x y '∆==⨯=OB 112122B B B S x y '∆==⨯=21S S =元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【思路点拨】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.【总结升华】本题考查了一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)根据数量关系得出函数关系式;(2)根据费用的关系找出一元一次不等式或者一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为,每月所获得的利润为.(1)写出与之间的函数关系式,并指出自变量的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1)。

第17章 函数及其图象

第17章 函数及其图象

知识点 函数的表示方法
棱长为a的小正方体,按照如图所示的方法一直
摆放下去,自上而下分别叫第1层,第2层,…,第n(n>0)层,第n层的小正方体 的个数记为S,则第n个图中第n层小正方体的个数S可用下表来表示:
知识点 函数的表示方法
第1个图有1层,共1个小正方体; 第2个图有2层,第2层共有小正方体的个数为1+2=3; 第3个图有3层,第3层小正方体的个数为1+2+3=6,…, 以此类推,第n个图有n层,第n层小正方体的个数为S=1+2+3+4+…+n=
知识点 一次函数的性质
(1)当k>0时,y随x的增大而增大,这时函数的图象从左向右呈现上升趋势.
知识点 一次函数的性质
(2)当k<0时,y随x的增大而减小,这时函数的图象从左向右呈现下降趋势.
知识点 一次函数的性质
由k,b的符号可以确定一次函数y=kx+b(k≠0)图象所经过的象限;反过来, 由一次函数y=kx+b(k≠0)图象所经过的象限也可以确定k,b的符号.
k
知识点 反比例函数y= x (k≠0)的图象和性质
双曲线教堂 伦敦著名的建筑事务所steynstudio,最近在南非,美丽的乡村庄园中完成 了一个惊艳世界的作品——双曲线建筑的教堂,建筑师通过双曲线的设 计元素赋予了这座教堂轻盈、极简和雕塑般的气质.
k
知识点 反比例函数y= x (k≠0)的图象和性质
知识点 平面直角坐标系内点的坐标特征
(2)平面直角坐标系中对称点的坐标特征:
知识点 函数的图象及其画法
“龟兔赛跑”讲述了这样的故事:兔子和乌龟同时起跑后,领先的兔子看着慢慢 爬行的乌龟骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙 追赶,但为时已晚,乌龟还是先到达了终点……下面表示的是乌龟和兔子所行 的路程s与时间t的函数图象,你觉得这个图象与故事情节相吻合关概念

新华东师大版八年级数学下册《17章 函数及其图象 17.2 函数的图象 函数的图象》教案_6

新华东师大版八年级数学下册《17章 函数及其图象  17.2 函数的图象  函数的图象》教案_6

第17章 函数及其图象2.函数的图象【知识与技能】1.掌握用描点法画出一些简单函数的图象2.使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题【过程与方法】通过画图观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想【情感态度】通过师生共同交流、探讨,使学生在掌握知识的基础上,引导学生通过分析、归纳的方法,培养学生用类比的方法探索新知识的能力【教学重点】掌握用描点法画出一些简单函数的图象【教学难点】能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.一、情境导入,初步认识气温曲线是用图象表示函数的一个实际例子,那么什么是函数图象?你能利用函数解析式画出一些函数的图象吗?【教学说明】利用提问的方式,提起学生解决问题的欲望.二、思考探究,获取新知探究1:画函数图象画出函数y=212x 的图象. 解:列表用光滑曲线连线:【归纳结论】画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.探究2:利用函数图象解决实际问题王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上山,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)之间的S函数关系(从小强开始爬山时计时).看图回答问题.1.小强让爷爷先上多少米?2.山顶离山脚的距离有多少米?谁先爬上山顶?3.小强通过多少时间追上爷爷?在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标意义.再从图形中分析两变量的相互关系,寻找对应的现实情境.如图中的两条线段都可以看出随着自变量x的逐渐增大,函数值y也随着逐渐增大,再联系现实情境爬山所用时间越长,离开山脚的距离越大,当x达到最大值时,也就是到达山顶.解:1.60米 2.300米小强 3.8分三、运用新知,深化理解1.画出函数y=x+1的图象解:列表描点:连线:2.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.请你由图具体说明小明散步的情况.解:小明先走了约3分钟,到达离家250米处的一个阅报栏前看了5分钟报,又向前走了2分钟,到达离家450米处返回,走了6分钟到家.3.王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式=15 x 2+85x 击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?解:(1)列表如下:在直角坐标系中,描点、连线,便可得到这个函数的大致图象.(2)高尔夫球的最大飞行高度是3.2m ,球的起点与洞之间的距离是8m .【教学说明】通过练习,检测学生对描点法画函数图象、利用图象解决实际问题的掌握情况.四、师生互动,课堂小结由函数解析式画函数图象,一般按下列步骤进行:1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.1.布置作业:教材“习题17.2”中第4、5题.2.完成本课时对应练习.在教学中要强调:1.画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以取得不一致;2.在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.。

2021-2022学年华东师大版八年级数学下册第十七章函数及其图像必考点解析试题(含答案及详细解析)

2021-2022学年华东师大版八年级数学下册第十七章函数及其图像必考点解析试题(含答案及详细解析)

八年级数学下册第十七章函数及其图像必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是( )A .平面内两条互相垂直的数轴就构成了平面直角坐标系B .平面直角坐标系中两条数轴是互相垂直的C .坐标平面被两条坐标轴分成了四个部分,每个部分称为象限D .坐标轴上的点不属于任何象限2、如图,在平面直角坐标系中,已知11,02A ⎛⎫- ⎪⎝⎭,以1OA 为直边构造等腰12Rt OA A ,再以2OA 为直角边构造等腰23Rt OA A ,再以3OA 为直角边构造等腰34Rt OA A ,…,按此规律进行下去,则点1033A 的坐标为( )A .()5152,0-B .()5155152,2-C .()5145142,2-D .()5142,0-3、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇4、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是()A .B .C .D .5、如图,树叶盖住的点的坐标可能是( )A .()2,3B .()2,3-C .()3,4--D .()2,4-6、在平面直角坐标系的第二象限内有一点P ,点P 到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标是( )A .(2,3)-B .(3,2)-C .(3,2)-D .(2,3)-7、已知点A (x ,5)在第二象限,则点B (﹣x ,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限8、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9、某工厂投入生产一种机器,每台成本y (万元/台)与生产数量x (台)之间是函数关系,函数y 与自变量x 的部分对应值如表:则y 与x 之间的解析式是( )A .y =80- 2xB .y =40+ 2xC .y =65-1x 2 D .y =60-1x 210、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (单位:kPa )是气体体积V (单位:m 3)的反比例函数,其图象如图所示,当气球内的气压大于144kPa 时,气球将爆炸,为了安全起见,气球的体积应( )A .不大于23m 3 B .不小于23m 3 C .不大于32m 3 D .不小于32m 3 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、一般地,形如y =kx +b (k ≠0,k 、b 为常数)的函数,叫做______函数.注意:k 是常数,k ≠0,k 可以是正数、也可以是负数;b 可以取______ .2、如图,一次函数y kx b =+与3y x的图象相交于点(,5)P m ,则方程组3y x y kx b =+⎧⎨=+⎩的解是________.3、点(1,)A m ,(2,)B n 是直线y x =-上的两点,则m __n .(填<,>或)=4、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.5、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.6、将直线2y x =向上平移1个单位后的直线的表达式为______.7、函数y =-7x 的图象在______象限内,从左向右______,y 随x 的增大而______.函数y =7x 的图象在______象限内,从左向右______,y 随x 的增大而______.8、我们用含有两个数的表达方式来表示一个确定的___________,其中两个数各自表示不同的含义,这种________的两个数a 与b 组成的数对,叫做有序数对,记作( ),___ ).注意:①数a 与b 是有顺序的;②数a 与b 是有特定含义的;③有序数对表示平面内的点,每个点与有序数对________.9、若点(),2P m m +在x 轴上,则m 的值为______.10、一般地,任何一个二元一次方程都可以转化为一次函数y =kx +b (k 、b 为常数,且k ≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.由含有未知数x 和y 的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.三、解答题(5小题,每小题6分,共计30分)1、如图,在平面直角坐标系xOy 中,直线1:1l y x =+与x 轴交于点A ,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(,3)C m .(1)求直线2l 的解析式;(2)过x 轴上动点(,0)D t ,作垂直于x 轴的直线,分别与直线1l ,2l 交于P ,Q 两点.若2AQC ABC S S =△△,求此时点Q 的坐标.2、某地区现有荔枝树24000棵,计划今后每年栽荔枝树3000棵.(1)试写出荔枝树棵数y 与年数x 之间的函数关系式;(2)求当5x =时,y 的值.3、画出反比例函数6y x=和6y x =-的函数图象,并回答下列问题: (1)可以用函数图象画法 法,步骤为列表、 、连线.(2)观察图象可知,它们都是由两支曲线组成,因此称反比例函数的图象为 .函数6y x =的两支曲线分别位于第 象限;函数6y x=-的两支曲线分别位于第 象限.4、已知y -3与x 成正比例,并且x =4时,y =7,求y 与x 之间的函数关系式.5、如图,ABCD 中,8AB cm =,3BC cm =,E 是DC 中点,P 是线段AB 上一动点,连接PE ,设P ,A 两点间的距离为x cm ,P ,E 两点间的距离为y cm .(当点P 与点A 重合时,x 的值为0)小东根据学习一次函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,请补充完整(说明:相关数值保留一位小数);(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当y取最小值时,x的值约为cm.(结果保留一位小数)②当APE是等腰三角形时,PA的长度约为cm.(结果保留一位小数)-参考答案-一、单选题【解析】略2、A【解析】【分析】根据等腰直角三角形的性质得到OA 1=12,OA 2,OA 3OA 1033A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴的特点可得到点A 1033在x 轴负半轴,即可确定点A 1033的坐标.【详解】解:∵等腰直角三角形OA 1A 2的直角边OA 1在x 轴的负半轴上,且OA 1=A 1A 2=12,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=12,OA 22,OA 3=22,……,OA 1033 ∵A 1、A 2、A 3、…,每8个一循环,再回到x 轴的负半轴,1033=8×129+1,∴点A 1033在x 轴负半轴,∵OA 10335152=, ∴点A 1033的坐标为:()5152,0-,故选:A .【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜倍.也考查了直角坐标系中各象限内点的坐标特征.【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.4、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.5、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴()2,3-符合条件.故选:B .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.6、C【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第二象限的点P 到x 轴的距离是2,到y 轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.9、C【解析】略10、B【解析】【分析】根据题意得出当温度不变时,气球内的气体的气压P 是气体体积V 的反比例函数,且其图象过点(1.5,64),求出其解析式.从而得出当气球内的气压不大于144kPa 时,气体体积的范围.【详解】解:设球内气体的气压P (kPa)和气体体积V (m 3)的关系式为k P V=, ∵图象过点(1.5,64), ∴64 1.5k = 解得:k =96, 即96P V=. 在第一象限内,P 随V 的增大而减小,∴当144P ≤时,39621443V m ≥=.【点睛】本题考查了反比例函数的应用.根据图象上的已知点的坐标,利用待定系数法求出函数解析式是解答本题的关键.二、填空题1、一次任意实数【解析】略2、25xy=⎧⎨=⎩##52yx=⎧⎨=⎩【解析】【分析】先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.【详解】解:把P(m,5)代入y=x+3得m+3=5,解得m=2,所以P点坐标为(2,5),所以方程组3y xy kx b=+⎧⎨=+⎩的解是25xy=⎧⎨=⎩,故答案为:25xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.3、>【解析】【分析】根据正比例函数的增减性进行判断即可直接得出.【详解】k=-<,解:10∴y随着x的增大而减小,<,12∴>.m n故答案为:>.【点睛】题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.4、象限不属于一三y轴【解析】略5、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x <-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.6、21y x =+【解析】【分析】直线向上平移1个单位,将表达式中x 保持不变,等号右面加1即可.【详解】解:由题意知平移后的表达式为:21y x =+故答案为21y x =+.【点睛】本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.7、 第二、四象限 下降 减少 第一、三象限 上升 增大【解析】略8、 位置 有顺序 a b 一一对应【解析】略9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 一次函数 交点【解析】略三、解答题1、 (1)33y x =-(2)点Q 的坐标为(0,3)或(4,9)【解析】【分析】(1)根据直线1l 的解析式求得C 的坐标,然后根据待定系数法即可求得直线2l 的解析式;(2)分两种情况得到Q 的纵坐标,代入直线2l 的解析式即可求得t 的值,从而求得Q 的坐标.(1) 解:直线1:1l y x =+与2l 相交于点(,3)C m .31m ∴=+,解得2m =,(2,3)C ∴,设直线2l 为y kx b =+,直线2l :与x 轴交于点(1,0)B ,与2l 相交于点(2,3)C .∴023k b k b +=⎧⎨+=⎩,解得33k b =⎧⎨=-⎩, ∴直线2l 的解析式为33y x =-;(2)当点D 在B 的左侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),3Q t ∴-,代入33y x =-得,333t -=-,0t ∴=,()0,3Q ∴-;当点D 在B 的右侧时,ΔΔ2AQC ABC S S =,(2,3)C ,(),9Q t ∴,代入33y x =-得,933t =-,4t ∴=,()4,9Q ∴;综上,点Q 的坐标为(0,3)或(4,9).【点睛】本题是两条直线相交或平行问题,待定系数法求一次是的解析式,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.2、 (1)240003000y x =+;(2)39000y =【解析】【分析】(1)本题的等量关系是:荔枝树的总数=现有的荔枝树的数量+每年栽树的数量×年数,由此可得出关于荔枝树总数与年数的函数关系式.(2)根据(1)即可求出第5年的果树的数量.(1)解:240003000y x =+.(2)解:当5x =时,240003000539000y =+⨯=.【点睛】本题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数式,然后利用函数关系式即可解决题目的问题.3、 (1)描点;描点(2)双曲线;一、三;二、四【解析】略4、y=x+3【解析】【详解】解:依题意,设y-3与x之间的函数关系式为y-3=kx.∵x=4时,y=7,∴7-3=4k,解得k=1.∴y-3=x,即y=x+3.5、 (1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x 及y 的值,由此得到答案.(1)解:通过取点、画图、测量可得 2.0x =时, 4.5y cm =, 4.0x =时, 3.0y cm =, 故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当y 取最小值时,x 的值约为5.8cm ;②当APE ∆是等腰三角形时,有两种情况,如图:0x =时, 6.3y cm =,2 6.3AP cm ∴=,由函数图象得, 3.3x ≈时, 3.3y cm ≈,∴当APE ∆是等腰三角形时,PA 的长度约为3.3或6.3cm .故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.。

八年级数学下册第17章函数及其图象17.3一次函数4求一次函数的表达式课件新版华东师大版

八年级数学下册第17章函数及其图象17.3一次函数4求一次函数的表达式课件新版华东师大版
第六页,编辑于星期六:七点 五十一分。
【自主解答】依题意将A,B两点的坐标代入y=kx+b得
3 -3
-k 解b得,
2k b,
k 2,
b
1.
∴所求一次函数的表达式是y=-2x+1.
第七页,编辑于星期六:七点 五十一分。
【总结提升】点的坐标在求函数表达式中的作用 (1)函数表达式与函数图象可以相互转化,实现这种转化的工具就是点 的坐标. (2)若已知图象上某点的坐标,就可以把该点的横、纵坐标作为表达式 中的一对x,y的值,代入函数表达式,从而得到一个关于待定系数
答案:7.4
第二十六页,编辑于星期六:七点 五十一分。
4.(2013·湘潭中考)莲城超市以10元/件的价格调进一批商品,根 据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数 关系,如图所示.
(1)求销售量y与定价x之间的函数表达式.
(2)如果超市将该商品的销售价定为13元/件,不考虑其他因素,求超
的方程.
第八页,编辑于星期六:七点 五十一分。
知识点 2 用一次函数解决实际问题 【例2】(2013·陕西中考)“五一”节期间,申老师一家自驾游去了离家 170 km的某地,下面是他们离家的距离y(km)与汽车行驶时间x(h)之
间的函数图象.
①求他们出发0.5 h时,离家多少km. ②求出AB段图象的函数表达式. ③他们出发2 h时,离目的地还有多少km.
表达式是
.
【解析】∵一次函数y=(2-m)x+m的图象经过点(-1,0),∴0=(2-
m)×(-1)+m,解得m=1,
∴这个一次函数的表达式是y=x+1.
答案:y=x+1

华东师大版八年级下册第17章函数及其图象小结与复习课件(共25张)

华东师大版八年级下册第17章函数及其图象小结与复习课件(共25张)
图象可能是( A )
变式6.已知一次函数y=(2m+4)x+m-3,求: (1)当m为何值时,y随x的增大而增大? (2)当m为何值时,函数图象与y轴的交点在x轴下方? (3)当m为何值时,函数图象经过原点? (4)当m为何值时,这条直线平行于直线y=-x?
解:(1)2m+4>0,所以m>-2. (2)m-3<0,且2m+4≠0, ∴ m<3,且m≠-2. (3)m-3=0且2m+4≠0, ∴m=3. (4)2m+4=-1, ∴m=-52.
4.描点法画图象的步骤:列表、描点、连线
5.函数的三种表示方法:
列表法 解析法
图象法.
例1.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的
高h的关系式是V=πR2h,在这个变化过程中常量和
变量分别是什么?解:(1)常量是π和R,变量是V和h.
(2)设圆柱的高h不变,在圆柱的体积V与圆柱的底面半
则 k=_____3_______.
例 10 . 一 次 函 数 y = 5x - 10的 图 象 与 x 轴 的 交 点 坐 标 是 ____(_2_,__0_) ___,与y轴的交点坐标是_(0_,__-__1_0_).
例11、一次函数y=kx-k(k<0)的大致图象是( A )
例12、已知一次函数y1=ax+b和y2=bx+a(a≠b),两个函数的
y2=kx2(k2≠0)的图象交于 A(4,1),B(n,-2)两点. (1)求一次函数与反比例函数的表达式
(2)请根据图象直接写出y1<y2时x的取值范围. 解:(1)将 A(4,1)的坐标代入 y2=kx2得 k2=4,所以反 比例函数的表达式为 y2=4x. (将2)B根(n据,图-象2)的可坐以标看代出入y1<y2y=2时4x得x的n取=值-范2,围所为以x点<-B2的或0<x<4. 坐标为(-2,-2).将 A(4,1),B(-2,-2)的坐标分 别代入 y1=k1x+b 得4-k12+k1b+=b1=,-2,解得kb1==-12,1.所 以一次函数的表达式为 y1=12x-1.

华师大版八下第17章函数及其图象说课课件

华师大版八下第17章函数及其图象说课课件

学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB
(1)如图是yA与x之间函数关系的图象,请根据图象填空:m=
;n=

收费方式 A B
月使用费/元 12 m
包时上网时间/h 40 n
超时费/(元/h) 0.5 0.6
A型利润
B型利润
甲店
200
170
乙店
160
150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元), 求W关于x的函数关系式,并求出x的取值范围; (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种 方案设计出来.
3. 列出比较接近的函数表达式解决实际问题
练习题配备
请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象 和性质,并解决问题.
练习题配备
直线AB
与x轴负半轴、y轴正半轴分别交于A、B两点.
分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角
△OBF和等腰直角△ABE,连EF交y轴于P点,
(1)△EPB的面积是否为定值?
(2)若为定值,要求出用新老概念间的渗透突破一次函数与方程(组)和一元一次不等式的关系
1.解读函数图像信息,培养应用意识 教材42页第6题,64页第6题
扩大习题 人教版教材46页13题
练习题配备
202X年长春市数学中考试题第21题
练习题配备
202X年长春市数学中考试题第21题
2.利用合理做决策和方案设计类问题,增强解决问题的能力
扩大习题 北师版教材中96页第2题

新华东师大版八年级数学下册《17章 函数及其图象 17.3 一次函数 一次函数》教案_18

新华东师大版八年级数学下册《17章 函数及其图象  17.3 一次函数  一次函数》教案_18

《一次函数》教学设计一、教学目标1.知识与技能理解一次函数与正比例函数的定义。

通过对函数概念的进一步理解的过程,能把实际问题中的变量之间的关系用一次函数的形式刻画出来。

3.情感态度与价值观引导学生主动地从事观察、实验、猜想、交流、反思等数学活动,鼓励学生自主探索与合作交流,让学生活动成功的经验。

二、重难点1.重点:理解一次函数与正比例函数的定义。

2.难点:会寻找实际问题中的等量关系,并用函数关系式表达出来,提高学生解决实际问题的能力。

三、教学过程(一)、创设问题情境,导入新课问题1:某同学的家离校约3000米,骑自行车每分钟行驶300米。

问题2:小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.已知A地直达北京的高速公路全程570千米,小明想知道汽车从A地驶出后,距北京的路程(S)和汽车在高速公路上行驶的时间(t)有什么关系,以便根据时间估计自己和北京的距离。

问题3:某弹簧的自然长度为9厘米,在弹簧限度内,所挂物体的个数x每增加1个,弹簧长度y增加8厘米。

问题4:小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款数与从现在开始的月份数之间的函数关系式。

(二)、小组合作,探索新知请同学们找出这些函数的共同点,并回答问题:⑴ y =3000-300x (2) S=570-95t(3) y=9+8x (4)y=50+12x1、这些函数中自变量是什么?2、在这些函数式中,表示函数的自变量的式子,是关于自变量的几次式?3、关于x的一次式的一般形式是什么?归纳:若两个变量 x、y之间的关系可以表示成y=kx+b(k、b为常数,k ≠ 0)的形式,则称y是x的一次函数。

(x为自变量,y为因变量。

)特别地,当b=0时,一次函数y=kx(常数K≠0),也叫做正比例函数强调:做笔记及理解记忆(三)巩固练习,拓展提升1.下列函数中,哪些是一次函数,哪些是正比例函数?(1) y =-3x+7 (2) y =6x2-3x(3) y =8x (4) y =1+9x(5) y = -0.5x-12.写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的函数关系(2)圆的面积y ( 平方厘米 )与它的半径x ( 厘米)之间的关系3.已知函数y=(m+1)x+(m2-1),当m取什么值时, y是x的一次函数?当m取什么值时,y是x的正比例函数?强调:书写格式(四)课堂小结一次函数的与正比例函数的定义及其在生活中的实际应用(五)布置作业教材52页习题17.3第1.2题四、板书设计17.3.1一次函数一、⑴ y =3000-300x(2) S=570-95t(3) y=9+8x(4)y=50+12x二、1.一次函数的定义:函数表达式都是用自变量的一次整式表示的,这样的函数称为一次函数。

八级数学下册第17章函数及其图象阶段专题复习课件(新

八级数学下册第17章函数及其图象阶段专题复习课件(新
____k_>_0_时;,图象在第一、三象限;k<0时,图象在第二、 四④象__限________________________________________________ ____________________________________________________
k>0时,在每个பைடு நூலகம்限内,曲线从左到右下降,y随x的增大 _____________.
考点 2 平面直角坐标系 【知识点睛】 1.象限内点的坐标特点:“一”全正,“二”负正,“三”全 负,“四”正负. 2.对称点的特征:①关于x轴对称,横坐标不变,纵坐标互为 相反数;②关于y轴对称,纵坐标不变,横坐标互为相反数; ③关于原点对称,横、纵坐标互为相反数. 3.点到坐标轴或原点的距离:已知点(x,y),到x轴的距离 是|y|,到y轴的距离是|x|,到原点的距离是
【例1】(2012·徳阳中考改编)使函数y= x 有意义的x的取
值范围是( )
2x 1
A.x≥0
C.x≥0且x≠
1 2
B.x≠ 1 D.一切实2 数
【教你解题】
【中考集训】
1.(2013·泸州中考)函数y= x 1 自变量x的取值范围是( )
A.x≥1且x≠3
B.x≥x1 3
C.x≠3
D.x>1且x≠3
x2 y2 .
【例2】(2013·深圳中考)在平面直角坐标系中,点P(-20,a) 与点Q(b,13)关于原点对称,则a+b的值为( ) A.33 B.-33 C.-7 D.7 【思路点拨】关于原点对称→横、纵坐标互为相反数→求a,b 的值→计算. 【自主解答】选D.因为P,Q关于原点对称, 所以a=-13,b=20,所以a+b=7.

华东师大版八年级数学下册第17章函数及其图像课件全套

华东师大版八年级数学下册第17章函数及其图像课件全套
(2)半径为R的球, 体积为V,则V与R的函数关系
式的为函数V=,常量43是R_³_,_自__变_.量是_____, ____是_____
华东师大版八年级(下册)
第17章 函数及其图象
在某一变化过程中,可以取不同数 值的量,叫做变量.还有一种量,它的 取值始终保持不变,称之为常量.
如果在一个变化过程中,有两 个变量,如x和y,对于x的每一个值, y都有唯一的值与之对应,我们就说 x是自变量,y是因变量,此时也称y 是x的函数.
2.用A、B、C、D、E、F、G在数轴上 标出如下各点的位置:
-1,-4,2.5,0,-1.5,-3,0.5
–4 –3 –2 –1 0 1 2 3 4 5 6
讲台
第一排 第二排 第三排 第四排 第五排 第六排 第七排 第八排
第一组
黄平 田静 阿米 郭璐 王璐 权智威 陈学良 朱凯
第二组
李鑫 李科 虞苗苗 张泽 郑怡 崔珊珊 陈巍 张天
华东师大版八年级(下册)
第17章 函数及其图象
17.2 函数的图象(第1课时)
复习引入
1.什么是数轴? 2.什么是数轴的三要素?
-3 -2 -1 0 1 2 3
原点 正方向 单位长度
3.如何确定数轴上A、B两点的位置?
B
A
-3 -2 -1 0 1 2 3 x
a.数轴上的点与实数是一一对应的。
b.数轴上的每一个点对应一个实数, 这个实数就是这个点在数轴上的坐标。
2.列表法
把自变量x的一系列值和函数y的对应值列成一个表来表 示函数关系,这种表示法叫做列表法。如平方根表等。列 表法一目了然,表格中已有的自变量的每一个值,不需要 计算就可以直接查出与它对应的函数值,使用起来很方便, 但列表法有局限性,因为列出的对应值是有限的,而且在 表格中也不容易看出自变量与函数之间的对应规律。

华东师大版 八年级数学下册 第17章 函数及其图像 单元复习习题合集(知识点归纳 总结提升+单元复习)

华东师大版 八年级数学下册 第17章 函数及其图像 单元复习习题合集(知识点归纳 总结提升+单元复习)

第17章用函数知识解题变量与函数→一次函数(正比例函数)双曲线k>0,b>0、求函数解析式;归纳知识,加强理解并、实际问题列函数解析式,求自变量取值范围第17章教运用一次函数解决实24.5的函数关系通过例题讲解和纠结果如下使学生灵活应用小明将一个未知第17章角形的周长为,试写出元(3)点燃后匀速燃烧每分钟燃烧、判断哪些是一次函数(1)y=30-2x (2)y=10000+1981)通过例题讲解和纠、的一次函数的形式S甲、乙两家旅行三、课堂小结及练习第17章多媒体从反教学重点反比例的两支曲线分别位于第析解决问题。

使它的图象在第时错,加深学生对知识的第17章教情感态度价值观理解函数与x轴交点横坐标、方程的解、不等式的解集间的关系并应用2、如果一次函数y=kx+b,当><0归纳知识,加强理解并B C和反比例函数ky =,那么它们在同一坐B D ,则下 .以上都不正确反比例函数2第17章复习函数、平面直角坐标系、一次函数、反比例函数知识____________.时,在同一直角坐标系中,函数A B纠错,加深学生对C D第17章动时,究,发现问题一次函数与反比例函数的图象相交两点,则图中使反比例函数的值小于一次函数的值的A.x<-1元制版费;乙印刷厂提出:每本收元印刷费,不收制版费厂比较划算?请说明理由已知一次函数的图象第17章学思想的培养:函数图象与实际问题、待定系数法求函数解析式)某游池,假定进水管的水速是均匀归纳知识,加为原点,试,求点识,提高难度,使第17章情感态度价值观教法已知函数随你能想出几种判断的方法 7.已知反比例函数y= x2-m 的图象在第一三象限内,则m 的取值范通过例题讲解和纠>-y=三、课堂小结:四、课后作业:教材68页:1-7题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版八年级数学下册第17章函数及其图象一次函数重难点分类强化专题训练讲义专训1 四种常见确定一次函数表达式的方法名师点金:确定一次函数表达式的常用方法:一是直接利用定义确定k和b的值;二是利用待定系数法选取关于x,y的两对对应值代入表达式建立关于k,b的方程组,从而求出k和b;三是根据实际问题中变量间的数量关系列表达式;四是根据函数图象确定表达式.根据函数定义确定表达式1.已知函数y=(k+5)xk2-24是关于x的正比例函数,则表达式为________.2.当m为何值时,函数y=(m-3)xm2-8+3m是关于x的一次函数?并求其函数表达式.3.已知y=(a-1)x2-a2+b-3.(1)当a,b取何值时,y是x的一次函数?(2)当a,b取何值时,y是x的正比例函数?用待定系数法确定表达式4.若y-2与x+2成正比,且x=0时,y=6,求y关于x的函数表达式.5.一个一次函数的图象平行于直线y=-2x,且过点A(-4,2),求这个函数的表达式.根据实际问题中变量间的数量关系列表达式6.“黄金1号”玉米种子的价格为5元/kg.如果一次购买2 kg以上的种子,超过2 kg部分的种子的价格打8折.(1)根据题意,填写下表:购买种子数量/kg 1.5 2 3.5 4 …付款金额/元7.5 16 …(2)设购买种子数量为x kg,付款金额为y元,求y关于x的函数表达式;(3)若小张一次购买该种子花费了30元,求他购买种子的数量.根据函数图象确定表达式7.如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B 的横坐标如图所示.(1)求直线AB对应的函数表达式;(2)点P在直线AB上,是否存在点P使得三角形AOP的面积为1,如果存在,求出所有满足条件的点P的坐标.【导学号:71412026】(第7题)专训2 一次函数常见的四类易错题忽视函数定义中的隐含条件而致错1.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.2.已知关于x的函数y=kx-2k+3-x+5是一次函数,求k的值.忽视分类或分类不全而致错3.已知一次函数y=kx+4的图象与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式.4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值.5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值.忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图象是( )7.若函数y =⎩⎨⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围.忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A.m<0 B.m>0C.m<2 D.m>210.下列各图中,表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)的大致图象的是( )11.若一次函数y=kx+b的图象不经过第三象限,则k,b的取值范围分别为k________0,b________0.专训3 一次函数的两种常见应用名师点金:一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数表达式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题题型1行程问题(第1题)1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距300 km;②乙车比甲车晚出发1 h,却早到1 h;③乙车出发后2.5 h追上甲车;④当甲、乙两车相距50 km时,t=54或154.其中正确的结论有( )A.1个B.2个C.3个D.4个2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.(第2题)题型2工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(第3题)题型3实际问题中的分段函数4.某种铂金饰品在甲、乙两个商店销售.甲店标价为477元/g,按标价出售,不优惠;乙店标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商店购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一条质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商店购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.(第5题)利用一次函数解几何问题题型4利用图象解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数表达式;(3)当t为何值时,三角形APD的面积为10 cm2?(第6题)题型5利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P 与点A或D重合时,y=0)(1)写出y与x之间的函数表达式;(2)画出此函数的图象.(第7题)参考答案专训1 1.y =10x2.解:由题意得⎩⎨⎧m 2-8=1,m -3≠0,所以m =-3.所以函数表达式为y =-6x -9.3.解:(1)由题意得⎩⎨⎧2-a 2=1,a -1≠0,所以a =-1.所以当a =-1,b 取任意数时,y 是x 的一次函数.(2)由题意得⎩⎨⎧2-a 2=1,a -1≠0,b -3=0,所以a =-1,b =3.所以当a =-1,b =3时,y 是x 的正比例函数. 4.解:设y -2=k(x +2). 因为当x =0时,y =6.所以6-2=k(0+2),解得k =2.将k =2代入y -2=k(x +2)中,得y =2x +6. 所以y 关于x 的函数表达式为y =2x +6.5.解:设这个函数的表达式为y =kx +b ,由函数图象平行于直线y =-2x 得k =-2,由于图象经过点A(-4,2).所以2=-2×(-4)+b ,解得b =-6. 所以这个函数的表达式为y =-2x -6. 6.解:(1)10;18(2)根据题意,知当0≤x≤2时,种子的价格为5元/kg ,所以y =5x ; 当x >2时,其中有2 kg 的种子按5元/kg 付款, 其余的(x -2)kg 种子按4元/kg (即8折)付款. 所以y =5×2+4(x -2)=4x +2.所以y 关于x 的函数表达式为y =⎩⎨⎧5x ,0≤x≤2,4x +2,x >2.(3)因为30>10,所以他一次购买种子的数量超过2 kg .令30=4x +2,解得x =7. 答:他购买种子的数量是7 kg .7.解:(1)根据题意得A(0,2),B(4,0),设直线AB 对应的函数表达式为y =kx +b ,把A(0,2),B(4,0)的坐标分别代入y =kx +b 得b =2,0=4×k+2,解得k =-12,∴直线AB 对应的函数表达式为y =-12x +2.(2)存在点P 使得三角形AOP 的面积为1.设点P 的横坐标为a ,根据题意得S △AOP =12OA·|a|=|a|=1,解得a =1或a =-1,则点P 的坐标为(1,1.5)或(-1,2.5).专训21.解:若关于x 的函数y =(m +3)x |m +2|是正比例函数, 需满足m +3≠0且|m +2|=1,解得m =-1.2.解:若关于x 的函数y =kx -2k +3-x +5是一次函数,则有以下三种情况: ①-2k +3=1,解得k =1,当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数. ②x -2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数, 所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图象与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB=16,所以OA=8.所以点A的坐标为(8,0)或(-8,0).把(8,0)代入y=kx+4,得0=8k+4,解得k=-1 2 .把(-8,0)代入y=kx+4,得0=-8k+4,解得k=1 2 .所以这个一次函数的表达式为y=-12x+4或y=12x+4.4.解:①若k>0,则y随x的增大而增大,则当x=1时y=9,即k+b=9.②若k<0,则y随x的增大而减小,则当x=1时y=1,即k+b=1.综上可知,k+b的值为9或1.5.解:因为点P到x轴的距离为4,所以|a|=4,所以a=±4,当a=4时,P(2,4);此时4=-2+m,m=6;当a=-4时,同理可得m=-2.综上可知,m的值为-2或6.6.D7.D8.解:余下的图书数y(本)与学生人数x(人)之间的函数表达式为y=450-9x,自变量x的取值范围是0≤x≤50,且x为整数.9.D10.A11.<;≥专训31.B2.解:(1)0.5(2)设线段DE对应的函数表达式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b可得,80=2.5k+b,300=4.5k+b.解得k=110,b=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数表达式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得,300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数表达式为y=kx,因为当x=6时,y=360,所以k=60.即甲组加工零件的数量y与时间x之间的函数表达式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8 h后.设经过x1h装满第1箱.则60x1+100÷2×2(x1-2.8)+100=300,解得x1=3.从x=3到x=4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工.设装满第1箱后再经过x2h装满第2箱.则60x2+(4.8-3)×100=300,解得x2=2.故经过3 h恰好装满第1箱,再经过2 h恰好装满第2箱.4.解:(1)y甲=477x,y乙=⎩⎨⎧530x(0≤x≤3),424x+318(x>3).(2)当477x=424x+318时,解得x=6.即当x=6时,到甲、乙两个商店购买所需费用相同;当477x<424x+318时,解得x<6,又x≥4,于是,当4≤x<6时,到甲商店购买合算;当477x>424x+318时,解得x>6,又x≤10,于是,当6<x≤10时,到乙商店购买合算.5.解:(1)当x≤10时,由题意知y=ax.将x=10,y=15代入,得15=10a,所以a=1.5.故当x≤10时,y=1.5x.当x=8时,y=1.5×8=12.故应交水费12元.(2)当x>10时,由题意知y=b(x-10)+15.将x=20,y=35代入,得35=10b+15,所以b=2.故当x>10时,y与x之间的函数表达式为y =2x-5.点拨:本题解题的关键是从图象中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18 (2)PD =6-2(t -12)=30-2t ,S =12AD·PD=12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,三角形APD 的面积为10 cm 2. 7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x<3时,y =12×4x=2x ; ②当点P 在边BC 上运动,即3≤x<7时,y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时,y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为y =⎩⎨⎧2x (0≤x<3),6 (3≤x<7),-2x +20 (7≤x≤10).(2)函数图象如图所示.(第7题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图象.。

相关文档
最新文档