高考关于圆的方程
高考圆复习题
高考圆复习题一、选择题1. 圆的标准方程是:A. \((x-a)^2+(y-b)^2=r^2\)B. \(x^2+y^2=r^2\)C. \((x-a)^2+(y-b)^2=1\)D. \(x^2+y^2=1\)2. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切3. 圆的切线与半径垂直,切点到圆心的距离等于:A. 半径的长度B. 切线的长度C. 圆心到切点的距离D. 半径的一半二、填空题4. 若圆的方程为 \(x^2+y^2=9\),圆心坐标为(0,0),半径为3,则圆上任意一点P(x,y)到圆心的距离为______。
5. 圆 \(x^2+y^2+Dx+Ey+F=0\) 与直线 \(Ax+By+C=0\) 相切,则\(D^2+E^2-4F=\) ______。
三、解答题6. 已知圆 \((x-2)^2+(y+1)^2=9\),求圆心坐标和半径。
7. 证明:圆的任意一条直径所对的圆周角是直角。
8. 已知圆心在原点,半径为4的圆,求经过点P(3,2)的圆的切线方程。
四、综合题9. 圆 \(x^2+y^2-4x-6y-10=0\) 与直线 \(2x+3y-11=0\) 相交于A、B 两点,求弦AB的长度。
10. 已知圆 \(x^2+y^2=16\) 内接于一个矩形,求矩形的面积最大值。
【答案】1. A2. B3. A4. 35. \(AB^2\)6. 圆心坐标为(2,-1),半径为3。
7. 证明略。
8. 切线方程为 \(x+3y-7=0\) 或 \(3x-y-5=0\)。
9. 弦AB的长度为 \(\sqrt{65}\)。
10. 矩形面积最大值为32。
【结束语】通过以上题目的练习,相信同学们对圆的方程、性质、与直线的位置关系等知识点有了更深刻的理解和掌握。
希望同学们能够继续努力,不断巩固和提高自己的数学能力,为即将到来的高考做好充分的准备。
数学一轮复习讲义第8章§8-3圆的方程2023年新高考
§8.3 圆的方程考试要求 1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.知识梳理1.圆的定义和圆的方程定义平面上到定点的距离等于定长的点的集合叫做圆圆心C (a ,b )标准(x -a )2+(y -b )2=r 2(r >0)半径为r 圆心C (-D 2,-E2)方程一般x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)半径r =12D 2+E 2-4F2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系:(1)|MC |>r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)|MC |=r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)|MC |<r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.常用结论1.以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.2.圆心在过切点且与切线垂直的直线上.3.圆心在任一弦的垂直平分线上.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( √ )(2)圆x 2+y 2=a 2的半径为a .( × )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )教材改编题1.圆x2+y2-4x+6y=0的圆心坐标和半径分别是( )A.(2,3),3 B.(-2,3),3C.(-2,-3),13 D.(2,-3),13答案 D解析 圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=13. 2.圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D解析 因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的方程为(x-1)2+(y-1)2=2.3.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围为________.答案 (-2,2)解析 ∵原点(0,0)在圆(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,解得-2<m<2.题型一 圆的方程例1 (1)(2022·深圳模拟)已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为( )A.(x+3)2+(y-1)2=1B.(x-3)2+(y+1)2=1C.(x+3)2+(y+1)2=1D.(x-3)2+(y-1)2=1答案 C解析 到两直线3x-4y=0,3x-4y+10=0的距离都相等的直线方程为3x-4y+5=0,联立Error!解得Error!又两平行线间的距离为2,所以圆M的半径为1,从而圆M的方程为(x+3)2+(y+1)2=1. (2)已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.答案 x2+y2+2x+4y-5=0解析 方法一 设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意得Error!解得Error!故所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.方法二 线段AB的垂直平分线方程为2x+y+4=0,联立Error!得交点坐标O(-1,-2),又点O到点A的距离d=10,所以圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.教师备选1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),则圆E的标准方程为( ) A.(x-32)2+y2=254 B.(x+34)2+y2=2516C.(x-34)2+y2=2516D.(x-34)2+y2=254答案 C解析 方法一 (待定系数法)设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则由题意得Error!解得Error!所以圆E的一般方程为x2+y2-32x-1=0,即(x-34)2+y2=2516.方法二 (几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-12=2(x-1)上.由题意知圆E的圆心在x轴上,所以圆E的圆心坐标为(34,0).则圆E的半径为|EB|=(2-34)2+(0-0)2=54,所以圆E的标准方程为(x-34)2+y2=2516.2.在平面直角坐标系Oxy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为( )A .x 2+(y -1)2=4 B .x 2+(y -1)2=2C .x 2+(y -1)2=8 D .x 2+(y -1)2=16答案 B解析 由直线x -by +2b +1=0可得该直线过定点A (-1,2),设圆心为B (0,1),由题意可知要使所求圆的半径最大,则r max =|AB |=(-1-0)2+(2-1)2=2,所以半径最大的圆的标准方程为x 2+(y -1)2=2.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练1 (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=4答案 A解析 根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)(2022·长春模拟)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+(y -1)2=1B .(x -2)2+(y -1)2=1C .(x +2)2+(y -1)2=1D .(x -2)2+(y +1)2=1答案 B解析 设圆心坐标为(a ,b )(a >0,b >0),由圆与直线4x -3y =0相切,可得圆心到直线的距离d =|4a -3b |5=r =1,化简得|4a -3b |=5,①又圆与x 轴相切,可得|b |=r =1,解得b =1或b =-1(舍去),把b =1代入①得4a -3=5或4a -3=-5,解得a =2或a =-12(舍去),所以圆心坐标为(2,1),则圆的标准方程为(x -2)2+(y -1)2=1.题型二 与圆有关的轨迹问题例2 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0.因为AC ⊥BC ,且BC ,AC 斜率均存在,所以k AC ·k BC =-1,又k AC =yx +1,k BC =yx -3,所以yx +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1(y ≠0).因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).教师备选已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知点P 坐标为(2x -2,2y ).因为点P 在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON(图略),则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2 (1)当点P在圆x2+y2=1上运动时,连接它与定点Q(3,0),则线段PQ的中点M 的轨迹方程是( )A.(x+3)2+y2=1B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1答案 C解析 设M(x,y),P(x0,y0),因为PQ的中点为M,所以Error!所以Error!又因为P在圆x2+y2=1上,所以(2x-3)2+4y2=1,所以M的轨迹方程即为(2x-3)2+4y2=1.(2)自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为( )A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=0答案 D解析 由题意得,圆心C的坐标为(3,-4),半径r=2,连接PC,CQ(图略),因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P 的轨迹方程为6x -8y -21=0.题型三 与圆有关的最值问题命题点1 利用几何性质求最值例3 已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)求y -3x +2的最大值和最小值;(3)求y -x 的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =22.又|QC |=(2+2)2+(7-3)2=42,∴|MQ |max =42+22=62,|MQ |min =42-22=22.(2)可知y -3x +2表示直线MQ 的斜率k .设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0.∵直线MQ 与圆C 有交点,∴|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,∴y -3x +2的最大值为2+3,最小值为2-3.(3)设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值,∴|2-7+b |12+(-1)2=22,∴b =9或b =1.∴y -x 的最大值为9,最小值为1.命题点2 利用函数求最值例4 (2022·湘潭质检)设点P (x ,y )是圆x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0).则PA → ·PB →的最大值为________.答案 12解析 由题意,得PA →=(2-x ,-y ),PB →=(-2-x ,-y ),所以PA → ·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以PA → ·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以当y =4时,PA → ·PB →的值最大,最大值为6×4-12=12.延伸探究 若将本题改为“设点P (x ,y )是圆(x -3)2+y 2=4上的动点,定点A (0,2),B (0,-2)”,则|PA → +PB →|的最大值为________.答案 10解析 由题意,知PA →=(-x ,2-y ),PB →=(-x ,-2-y ),所以PA → +PB →=(-2x ,-2y ),由于点P (x ,y )是圆上的点,故其坐标满足方程(x -3)2+y 2=4,故y 2=-(x -3)2+4,所以|PA → +PB →|=4x 2+4y 2=26x -5.由圆的方程(x -3)2+y 2=4,易知1≤x ≤5,所以当x =5时,|PA → +PB →|的值最大,最大值为26×5-5=10.教师备选1.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7 B .6 C .5 D .4答案 B解析 ∵在Rt △APB 中,原点O 为斜边中点,|AB |=2m (m >0),∴|OC |-r ≤m =|OP |≤|OC |+r ,又C (3,4),r =1,∴4≤|OP |≤6,即4≤m ≤6.2.若点P 为圆x 2+y 2=1上的一个动点,A (-1,0),B (1,0)为两个定点,则|PA |+|PB |的最大值为( )A .2 B .22 C .42 D .4答案 B解析 由已知得线段AB 为圆的直径.所以|PA |2+|PB |2=4,由基本不等式得(|PA |+|PB |2)2≤|PA |2+|PB |22=2,所以|PA |+|PB |≤22,当且仅当|PA |=|PB |=2时,等号成立.思维升华 与圆有关的最值问题的求解方法(1)借助几何性质求最值:形如μ=y -bx -a,t =ax +by ,(x -a )2+(y -b )2形式的最值问题.(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.(3)求解形如|PM |+|PN |(其中M ,N 均为动点)且与圆C 有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.跟踪训练3 (1)已知A (-2,0),B (2,0),点P 是圆C :(x -3)2+(y -7)2=1上的动点,则|AP |2+|BP |2的最小值为( )A .9 B .14 C .16 D .26答案 D解析 设O 为坐标原点,P (x ,y ),则|AP |2+|BP |2=(x +2)2+y 2+(x -2)2+y 2=2(x 2+y 2)+8=2|PO |2+8.圆C 的圆心为C (3,7),半径为r =1,OC =4,所以|PO |2的最小值为(OC -r )2=(4-1)2=9,所以|AP |2+|BP |2的最小值为26.(2)已知x ,y 满足x 2+y 2-4x -2y -4=0,则2x +3y +3x +3的最大值为( )A .2 B.174 C.295 D.13134答案 B解析 由x 2+y 2-4x -2y -4=0得(x -2)2+(y -1)2=9.2x +3y +3x +3=2+3×y -1x +3=2+3k PA ,其中A (-3,1)为定点,点P (x ,y )为圆上一点.设过定点A 的直线l :y -1=k (x +3)与圆相切,则|5k |1+k 2=3,解得k =±34,所以-34≤k PA ≤34,所以2x +3y +3x +3的最大值为2+3×34=174.课时精练1.圆x 2+y 2+4x -6y -3=0的圆心坐标和半径分别为( )A .(4,-6),16 B .(2,-3),4C .(-2,3),4 D .(2,-3),16答案 C解析 将圆的一般方程化为标准方程得(x +2)2+(y -3)2=16,则圆心坐标为(-2,3),半径为4.2.圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( )A .(x -2)2+(y -1)2=1B .(x +1)2+(y -2)2=1C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=1答案 A解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),所以圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1.3.已知圆C 的半径为2,圆心在x 轴正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案 D解析 设圆心为(a,0)(a>0),由题意知圆心到直线3x+4y+4=0的距离d=|3a+4|32+42=3a+45=r=2,解得a=2,所以圆心坐标为(2,0),则圆C的方程为(x-2)2+y2=4,化简得x2+y2-4x =0,故选D.4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1答案 A解析 设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则Error!解得Error!因为点Q在圆x2+y2=4上,所以x20+y20=4,即(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.5.(多选)已知△ABC的三个顶点为A(-1,2),B(2,1),C(3,4),则下列关于△ABC的外接圆圆M的说法正确的是( )A.圆M的圆心坐标为(1,3)B.圆M的半径为5C.圆M关于直线x+y=0对称D.点(2,3)在圆M内答案 ABD解析 设△ABC的外接圆圆M的方程为x2+y2+Dx+Ey+F=0,则Error!解得Error!所以△ABC的外接圆圆M的方程为x2+y2-2x-6y+5=0,即(x-1)2+(y-3)2=5.故圆M的圆心坐标为(1,3),圆M的半径为5,因为直线x+y=0不经过圆M的圆心(1,3),所以圆M 不关于直线x+y=0对称.因为(2-1)2+(3-3)2=1<5,故点(2,3)在圆M内.6.(多选)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是( )A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π答案 ABD解析 圆心坐标为(k,k),在直线y=x上,A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0,∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,∴B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0,∵Δ=16-8=8>0,有两个不相等实根,∴经过点(2,2)的圆C k有两个,C错误;由圆的半径为2,得圆的面积为4π,D正确.7.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,6)在圆C内,则m 的取值范围为________.答案 (0,4)解析 设圆心为C(a,0),由|CA|=|CB|,得(a+1)2+12=(a-1)2+32,解得a=2.半径r=|CA|=(2+1)2+12=10.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+(6)2<10,解得0<m<4.8.已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|PA|+|PQ|的最小值是________.答案 25解析 因为圆C:x2+y2-4x-2y=0,故圆C是以C(2,1)为圆心,半径r=5的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),故Error!解得Error!故A′(-4,-2).连接A′C交圆C于Q(图略),由对称性可知|PA|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|-r=25.9.已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线l:x+y-1=0上.(1)求圆心为C的圆的标准方程;(2)设点P在圆C上,点Q在直线x-y+5=0上,求|PQ|的最小值.解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0),∵圆经过点A (-1,1)和B (-2,-2),且圆心在直线l :x +y -1=0上,∴Error!解得a =3,b =-2,r =5,∴圆的标准方程为(x -3)2+(y +2)2=25.(2)∵圆心C 到直线x -y +5=0的距离为d =|3+2+5|2=52>5,∴直线与圆C 相离,∴|PQ |的最小值为d -r =52-5.10.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16,当|QM |最小时,|CQ |最小,此时CQ ⊥l 1,|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.11.点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,|PA |=1,则点P 的轨迹方程是( )A .(x -1)2+y 2=4B .(x -1)2+y 2=2C .y 2=2xD .y 2=-2x答案 B解析 ∵|PA |=1,∴点P 和圆心的距离恒为2,又圆心坐标为(1,0),设P (x ,y ),∴由两点间的距离公式,得(x -1)2+y 2=2.12.等边△ABC 的面积为93,且△ABC 的内心为M ,若平面内的点N 满足|MN |=1,则NA →·NB →的最小值为( )A .-5-23B .-5-43C .-6-23D .-6-43答案 A解析 设等边△ABC 的边长为a ,则面积S =34a 2=93,解得a =6.以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系.由M 为△ABC 的内心,则M 在OC 上,且OM =13OC ,则A (-3,0),B (3,0),C (0,33),M (0,3),由|MN |=1,则点N 在以M 为圆心,1为半径的圆上.设N (x ,y ),则x 2+(y -3)2=1,即x 2+y 2-23y +2=0,且3-1≤y ≤1+3,又NA →=(-3-x ,-y ),NB →=(3-x ,-y ),所以NA →·NB →=(x +3)(x -3)+y 2=x 2+y 2-9=23y -11≥23×(3-1)-11=-5-23.13.(多选)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是( )A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为42答案 ACD解析 因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在直线y =-x 上,A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入这两个方程可知其在圆C 上,故C 正确;它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.14.已知长为2a (a >0)的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为________.答案 x 2+y 2=a 2解析 如图,不论直线怎么移动,线段AB 的中点P (x ,y )与原点O 的连线始终为Rt △OAB 斜边上的中线,即|OP |=a ,即x 2+y 2=a 2.故所求的轨迹方程为x 2+y 2=a 2.15.已知直线l :3x +4y +m =0,圆C :x 2+y 2-4x +2=0,则圆C 的半径r =________;若在圆C 上存在两点A ,B ,在直线l 上存在一点P ,使得∠APB =90°,则实数m 的取值范围是______.答案 2 [-16,4] 解析 圆的标准方程为(x -2)2+y 2=2,圆心为C (2,0),半径为r =2,若在圆C 上存在两点A ,B ,在直线l 上存在一点P ,使得∠APB =90°,过P 作圆的两条切线PM ,PN (M ,N 为切点),则由题意得,∠MPN ≥90°,而当CP ⊥l 时,∠MPN 最大,只要此最大角≥90°即可,此时圆心C 到直线l 的距离为d =|CP |=|6+m |5.所以r d =2|6+m |5≥22,解得-16≤m ≤4.16.在平面直角坐标系Oxy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A ,B ,C 三点的圆过定点.解 由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),可得Δ=m 2-8m >0,则m <0或m >8,x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC → ·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M (-14,0)即圆心,半径r =|CM |=174,故所求圆的方程为(x +14)2+y 2=1716.(2)证明 设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0,将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0.整理得x 2+y 2-y -m (x +2y -2)=0.令Error!可得Error!或Error!故过A ,B ,C 三点的圆过定点(0,1)和(25,45).。
高三第一轮复习圆的方程及求法
圆的方程及求法【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想. 主干知识归纳1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹) 2.圆的方程:方法规律总结1.待定系数法求圆的方程(1) 若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2) 若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 2.几何法求圆的方程:利用圆的有关几何性质,如“圆心在圆的任一条弦的垂直平分线上”、“半径, 弦心距,弦长的一半构成直角三角形”等.3.求与圆有关的轨迹问题的四种方法【指点迷津】【类型一】确定圆的方程【例1】:求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程 【解析】: 设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组()()⎪⎩⎪⎨⎧=++=-+-=+013211222222b a r b a r b a ,解之得⎪⎩⎪⎨⎧=-==534r b a ,∴圆的标准方程是(x -4)2+(y +3)2=25. 答案:(x -4)2+(y +3)2=25.【例2】:已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程.【解析】:法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝⎛⎭⎫-D 2,-E2.由题意可得⎪⎩⎪⎨⎧=--=+-+-+=+--0205)5(106)6(222E D F E D F E ,消去F 得⎩⎨⎧ D +E -10=0D -E -2=0,解得⎩⎨⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0,标准方程为(x +3)2+(y +2)2=25. 法二:因为A (0,-6),B (1,-5),所以线段AB 的中点D 的坐标为⎝⎛⎭⎫12,-112,直线AB 的斜率k AB =1)6(5----=1,因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎫x -12,即x +y +5=0.圆心C 的坐标是方程组⎩⎨⎧ x +y +5=0x -y +1=0的解,解得⎩⎨⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=22)26()30(+-++=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. 答案:(x +3)2+(y +2)2=25.【类型二】与圆有关的轨迹问题【例1】:已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON (图略),则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【例2】:已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.【解析】:(1)设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1. 又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).答案:(1) x 2+y 2-2x -3=0(x ≠3且x ≠-1).(2) (x -2)2+y 2=1(x ≠3且x ≠1).例3.(2010·山东烟台调研)若圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .y 2-4x +4y +8=0B .y 2+2x -2y +2=0C .y 2+4x -4y +8=0D .y 2-2x -y -1=0【解析】:由圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称可知两圆半径相等且两圆圆心连线的中点在直线y =x -1上,故可得a =2,即点C (-2,2),所以过点C (-2,2)且与y 轴相切的圆P 的圆心的轨迹方程为(x +2)2+(y -2)2=x 2,整理即得y 2+4x -4y +8=0. 答案:C.【同步训练】【一级目标】基础巩固组一、选择题1. 已知两点A (9,4)和B (3,6),则以AB 为直径的圆的方程为( )A .(x -6)2+(y -5)2=10B .(x +6)2+(y +5)2=10C .(x -5)2+(y -6)2=10D .(x +5)2+(y +6)2=10【解析】:线段AB 的中点坐标(6,5)为圆心坐标,半径=21|AB|=10答案:A.2. (2014·四川成都外国语学校)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1【解析】:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1. 答案:B.3. 若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)【解析】:曲线C 的方程可化为(x +a )2+(y -2a )2=4,则该方程表示圆心为(-a,2a ),半径等于2的圆.因为圆上的点均在第二象限,所以a >2. 答案:D.4. 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2或a >32B .-32 <a <0C .-2<a <0D .-2<a <32【解析】:方程x 2+y 2+ax +2ay +2a 2+a -1=0转化为(x +2a )2+(y +a )2=-43a 2-a +1,所以若方程表示圆,则有-43a 2-a +1>0,∴3a 2+4a -4<0,∴-2<a <32 .答案:D.5. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1∶2,则圆C 的方程为( )A .⎝⎛⎭⎫x ±332+y 2=43B .⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13【解析】:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π,设圆心(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:C. 二、填空题6. 经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________. 【解析】:由⎩⎨⎧ x =1,x +y =2,得⎩⎨⎧x =1,y =1,即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1. 答案:(x -1)2+(y -1)2=1.7. 已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 【解析】: ∵圆的方程可化为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1).8. 圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,则圆的方程为______________. 【解析】:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得为(2,1),进一步可求得半径为2,所以圆的标准方程为(x -2)2+(y -1)2=2. 答案:(x -2)2+(y -1)2=2. 三、解答题9. 已知圆的方程是x 2+y 2+2(m -1)x -4my +5m 2-2m -8=0, (1)求此圆的圆心与半径;(2)求证:不论m 为何实数,它们表示圆心在同一条直线上的等圆. 【解析】:(1)配方得:(x +m -1)2+(y -2m )2=9∴圆心为(1-m,2m ),半径r =3.(2)证明:由(1)可知,圆的半径为定值3,且⎩⎨⎧x =1-my =2m ,∴2x +y =2.∴不论m 为何值,方程表示的圆的圆心在直线2x +y -2=0上,且为等圆.答案:(1) 圆心为(1-m,2m ),半径r =3. (2) 圆心在直线2x +y -2=0上,且为等圆.10. (2010·辽宁抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解析】:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). ∵P 点在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.答案:(1) (x -1)2+y 2=1. (2) x 2+y 2-x -y -1=0.【二级目标】能力提升题组一、选择题1. 已知二元二次方程Ax 2+Cy 2+Dx +Ey +F =0,则⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,是方程表示圆的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解析】:取A =C =4,D =2,E =2,F =1时,满足⎩⎨⎧A =C ≠0,D 2+E 2-4F >0,但是4x 2+4y 2+2x +2y +1=0不表示圆;方程13x 2+13y 2+x +y +1=0表示圆,其中A =13,C =13,D =1,E =1,F =1,但不满足D 2+E 2-4F >0.综上可知,选D . 答案:D.2. (2010·浙江宁波调研)若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14【解析】:由题意知,圆C 的圆心坐标为(-4,-1).又直线l 始终平分圆C ,所以直线l 必过圆心,故4=4a +b ≥24ab ,故ab ≤1. 答案:C. 二、填空题3. (2009·扬州调研)若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________.【解析】:∵直线ax +by =1过点A (b ,a ), ∴ab +ab =1, ∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π, ∴面积的最小值为π.答案:π.【高考链接】1. (2016年浙江省文科第10题)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x+8y +5a =0表示圆,则圆心坐标是 ,半径是 【解析】:由题可得a 2=a +2,解得a =-1或a =2当a =-1时,方程为x 2+y 2+4x+8y -5=0表示圆,故圆心为(-2,-4),半径为5 当a =2时,方程不表示圆 答案:(-2,-4),5.2. (2009年上海第题)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1【解析】:设中点M 的坐标为(x ,y ),与之对应的圆上动点Q 的坐标为(x 0,y 0),显然M 与Q 的对应关系为:⎩⎪⎨⎪⎧x =x 0+42,y =y 0+(-2)2,同时Q 满足在圆x 2+y 2=4上,即x 20+y 20=4;利用M 与Q 的对应关系将x 、y 代入,得中点M 的轨迹方程为:(x -2)2+(y +1)2=1.答案:A.3. (2015年湖北省第16题)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.【解析】:试题分析:设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1, 即01x =,半径0r y =.又因为2AB =,所以222011y +=,即0y r =,所以圆C 的标准方程为22(1)(2x y -+=,令0x =得:1)B .设圆C 在点B处的切线方程为1)kx y -=,则圆心C到其距离为:d ==,解之得1k =.即圆C 在点B 处的切线方程为x 1)y =+,于是令0y =可得x 1=,即圆C 在点B 处的切线在x轴上的截距为1--故应填22(1)(2x y -+=和1--答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)1--。
高考数学圆的方程与性质选择题
高考数学圆的方程与性质选择题1. 请根据圆的标准方程 (x-a)^2 + (y-b)^2 = r^2,判断圆心坐标和半径。
2. 圆的方程 (x-2)^2 + (y+1)^2 = 9 是一个什么圆?3. 已知一个圆的方程是 (x-1)^2 + (y-2)^2 = 16,请问这个圆的半径是多少?4. 如果一个圆的方程是 x^2 + y^2 = 1,那么这个圆的圆心坐标和半径分别是什么?5. 已知一个圆的方程是 (x-2)^2 + (y-3)^2 = 4,请判断这个圆是否是圆心在原点的圆。
6. 请根据圆的方程 x^2 + y^2 - 2x - 4y + 5 = 0,判断这个圆的圆心坐标和半径。
7. 已知一个圆的方程是 (x-3)^2 + (y+2)^2 = 1,请问这个圆的半径是多少?8. 请判断圆的方程 x^2 + y^2 - 4x + 2y - 15 = 0 是否是一个标准圆的方程。
9. 如果一个圆的方程是 (x-1)^2 + (y-2)^2 = 5,请问这个圆的圆心坐标和半径分别是什么?10. 已知一个圆的方程是 (x+2)^2 + (y-3)^2 = 1,请判断这个圆的圆心坐标和半径。
11. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的半径。
12. 已知一个圆的方程是 x^2 + y^2 = 4,请问这个圆的圆心坐标和半径分别是什么?13. 请判断圆的方程 x^2 + y^2 - 2x - 4y + 5 = 0 是否是一个标准圆的方程。
14. 如果一个圆的方程是 (x-3)^2 + (y+2)^2 = 1,请问这个圆的半径是多少?15. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的圆心坐标和半径。
16. 已知一个圆的方程是 (x+2)^2 + (y-3)^2 = 1,请判断这个圆的圆心坐标和半径。
17. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的半径。
高考数学一轮复习圆的方程
F=0,
16+4D+F=0, 2-D+E+F=0,
D=-4,
解得E=-6, F=0,
易得 D2+E2-4F>0,所以过这
三点的圆的方程为 x2+y2-4x-6y=0,即(x-2)2+(y-3)2=13.
若圆过(0,0),(4,0),(4,2)三点, 设过这三点的圆的一般方程为 x2+y2+Dx+Ey+F=0,分别将三点
第二节
圆与方程
第二节 圆与方程
1.回顾确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想. 3.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. 4.能用直线和圆的方程解决一些简单的问题.
必备知识·系统归纳 先整体系统知识,再分课时研究题点考法
Ⅰ.主干知识的再认再现
圆心到直线 l 的距离为 2 = 2<2,所以直线 l 与圆相交.又圆 心不在直线 l 上,所以直线不过圆心.故选 D. 答案:D
4.(人教 A 版选择性必修①P98·T3 改编)直线 y= 3x 被圆 C:x2+y2-2x
=0 截得的线段长为
()
A.2
B. 3
C.1
D. 2
解析:圆 C:x2+y2-2x=0 的圆心为(1,0),半径为 1,圆心到直线 y = 3x 的距离为 d= |3+3| 1= 23,弦长为 2· 1- 232=1,故选 C.
16+4D+F=0,
可 得 2-D+E+F=0, 20+4D+2E+F=0,
D=-156, 解 得 E=-2,
F=-156,
易得 D2+E2-
4F>0,所以过这三点的圆的方程为 x2+y2-156x-2y-156=0,即x-852 +(y-1)2=12659.
高考数学(理)复习第55讲圆的方程
(方法二)设所求圆的一般方程为 x2+y2+Dx+Ex+F=0, 则由条件得
12+02+D+0+F=0 32+02+3D+0+F=0 D E - =- 2 2 D=-4 ,解得E=-4 F=3
解析:设所求方程为 x2+y2+Dx+Ey+F=0,
22+-12+2D-E+F=0 2 2 则5 +0 +5D+0+F=0 2 2 6 + 1 +6D+E+F=0 D=-4 ,解得E=-8 F=-5
,
故所求圆的一般方程为 x2+y2-4x-8y-5=0.
3.圆 x2-2x+y2-3=0 的圆心到直线 x- 3y-3=0 的距离为 .
(2)设圆 C 的方程为(x2+y2-4x+2y)+λ(x2+y2-2y-4) =0,即(1+λ)x2+(1+λ)y2-4x+(2-2λ)y-4λ=0,其中 λ≠ -1. λ-1 2 由圆 C( , )在 2x+4y=1 上,得 1+λ 1+λ λ-1 2 1 2· +4· =1,求得 λ= . 3 1+λ 1+λ 从而可得圆 C 的方程为 x2+y2-3x+y-1=0.
(3) x2+y2+2x-4y+5即为 [x--1]2+y-22, 可 视为点(x,y)到定点(-1,2)的距离的最值,可转化为圆心 (2,-3)到定点(-1,2)的距离与半径的和或差.又因为圆 心到定点 (- 1,2)的距离为 34,所以 x2+y2+2x-4y+5 的最大值为 34+1,最小值为 34-1.
【拓展演练 2】 已知实数 x,y 满足方程 x2+y2-4x+1=0. (1)求 y-x 的最大值和最小值; (2)求 x2+y2 的最大值和最小值.
高中数学必修二:圆的方程
2019-2020学年高一数学必修二第三节:圆的方程1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( )(2)方程(x -a )2+(y -b )2=t 2(t ∈R)表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F>0.()答案:(1)√ (2)× (3)× (4)√2.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C.3D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.3.(教材习题改编)圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________.解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=24.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是________. 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0可化为⎝⎛⎭⎫x +a 22+(y +a )2=-34a 2-a +1,因为该方程表示圆,所以-34a 2-a +1>0,即3a 2+4a -4<0,所以-2<a <23.答案:⎝⎛⎭⎫-2,23 5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)考点一 求圆的方程 (重点保分型考点——师生共研)(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.❶(1)证明:坐标原点O 在圆M 上;❷(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.❸[学审题]①由此条件可知,直线AB 的方程可设为x =my +2.如果设为点斜式,则需讨论斜率的存在性;②若坐标原点O 在圆M 上,则OA ⊥OB ; ③由此可知PA ⊥PB ,|MO |=|MP |.解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)法一:由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP ―→·BP ―→=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4.所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854,圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. 法二:由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ). 又圆M 过坐标原点O 和点P (4,-2), ∴|MO |=|MP |,即(m 2+2)2+m 2=(m 2-2)2+(m +2)2, 整理得2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854,圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516. [解题师说]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心的方法求圆的标准方程,其关键是确定圆心,确定圆心的主要方法有:(1)当题目条件中出现直线与圆相切时,可利用圆心在过切点且与切线垂直的直线上来确定圆心位置;(2)当题目条件中出现直线与圆相交,可考虑圆心在弦的垂直平分线上; (3)当题目条件出现两圆相切时,可考虑切点与两圆的圆心共线.[冲关演练]1.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=82.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 答案:⎝⎛⎭⎫x -322+y 2=2543.(2018·广东七校联考)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为________________.解析:法一:∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |, 又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2=2|a |,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 法二:设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7, 即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切, ∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上, ∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 答案:(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9考点二 与圆有关的轨迹问题 (重点保分型考点——师生共研)也出现在解答题中,难度适中,属于中低档题.[典题领悟]设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解:如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,因为O ,M ,P 三点不共线,所以应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285. [解题师说]1.掌握“3方法”2.明确“5步骤”3.关注1个易错点此类问题在解题过程中,常因忽视对特殊点的验证而造成解题失误.(如典题领悟)[冲关演练]在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1. 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.考点三 与圆有关的最值问题 (题点多变型考点——追根溯源)角度(一) 斜率μ=y -bx -a型最值问题 1.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3, 解得k =± 3.所以yx 的最大值为3,最小值为- 3. [题型技法] 形如μ=y -bx -a型的最值问题,可转化过定点(a ,b )的动直线斜率的最值问题求解.如本题y x =y -0x -0表示过坐标圆点的直线的斜率.角度(二) 截距μ=ax +by 型最值问题2.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y -x 的最大值和最小值. 解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.[题型技法] 形如μ=ax +by 型的最值问题,常转化为动直线截距的最值问题求解.如本题可令b =y -x ,即y =x +b ,从而将y -x 的最值转化为求直线y =x +b 的截距的最值问题.另外,此类问题也常用三角代换求解.由于圆的方程可整理为(x -2)2+y 2=3,故可令⎩⎨⎧ x -2=3cos θ,y =3sin θ,即⎩⎨⎧x =3cos θ+2,y =3sin θ,从而y -x =3sin θ-3cos θ-2=6sin ⎝⎛⎭⎫θ-π4-2,进而求出y -x 的最大值和最小值.角度(三) 距离μ=(x -a )2+(y -b )2型最值问题3.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值. 解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.[题型技法] 形如μ=(x -a )2+(y -b )2型的最值问题,可转化为动点(x ,y )与定点(a ,b )的距离的平方求最值.如本题中x 2+y 2=(x -0)2+(y -0)2,从而转化为动点(x ,y )与坐标原点的距离的平方.[题“根”探求]看个性角度(一)是求μ=y -bx -a型最值问题; 角度(二)是将角度一中的yx 变换为y -x ,即求μ=ax +by 型最值问题; 角度(三)则是将所求问题变为求距离的平方的最值问题找共性求解与圆有关的最值问题,其通法是数形结合和转化化归思想,其流程为:[冲关演练]1.(2018·厦门模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为( )A .6 B.112C .8D.212解析:选B x 2+y 2-2y =0可化为x 2+(y -1)2=1,则圆C 为以(0,1)为圆心,1为半径的圆.如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小,直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离d =165,又|AB |=32+42=5,∴△ABP 的面积的最小值为12×5×⎝⎛⎭⎫165-1=112.2.已知实数x ,y 满足(x -2)2+(y -1)2=1,则z =y +1x 的最大值与最小值分别为________和________.解析:由题意,得y +1x 表示过点A (0,-1)和圆(x -2)2+(y -1)2=1上的动点(x ,y )的直线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y =kx -1,即kx -y -1=0,则|2k -2|k 2+1=1,解得k =4±73,所以z max =4+73,z min =4-73. 答案:4+73 4-73(一)普通高中适用作业A 级——基础小题练熟练快1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧ x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.2.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )A .2B .-2C .1D .-1解析:选D 因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.3.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C.2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2. ∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 5.(2018·成都高新区月考)已知圆C 经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,则该圆的面积是( )A .5πB .13πC .17πD .25π解析:选D 法一:设圆心为(a ,a +1),半径为r (r >0),则圆的标准方程为(x -a )2+(y-a -1)2=r 2,又圆经过点A (1,1)和点B (2,-2),故有⎩⎪⎨⎪⎧(1-a )2+(-a )2=r 2,(2-a )2+(-3-a )2=r 2,解得⎩⎪⎨⎪⎧a =-3,r =5,故该圆的面积是25π. 法二:由题意可知圆心C 在AB 的中垂线y +12=13⎝⎛⎭⎫x -32,即x -3y -3=0上.由⎩⎪⎨⎪⎧ x -3y -3=0,x -y +1=0,解得⎩⎪⎨⎪⎧x =-3,y =-2,故圆心C 为(-3,-2),半径r =|AC |=5,圆的面积是25π. 6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.(2018·广州综合测试)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=28.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)9.(2018·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=910.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=2B 级——中档题目练通抓牢1.(2018·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程为( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:选B 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2018·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.3.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x +1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0平行,且它们之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.4.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为 ________________.解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ), 半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:x 2+⎝⎛⎭⎫y ±332=435.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π46.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410, ∴|PA |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.7.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标.(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴x 2-3x +y 2=0. 易知直线l 的斜率存在, 故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.C 级——重难题目自主选做1.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22,解得16-210≤t ≤16+210, 所以m +2n 的最大值为16+210. (2)记点Q (-2,3),因为n -3m +2表示直线MQ 的斜率k ,所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0.由直线MQ 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2. 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.2.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝⎛⎭⎫65,125.(2)证明:设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0, 即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧ x 2+y 2-4y =0,x +2y -8=0解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎨⎧x =85,y =165,所以该圆必经过定点(0,4)和⎝⎛⎭⎫85,165.(二)重点高中适用作业A 级——保分题目巧做快做1.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B .(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A 因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=2 2. 所以所求圆的方程为(x -1)2+y 2=8.2.若圆C 的半径为1,圆心C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为( ) A .x 2+y 2=1 B .(x -3)2+y 2=1 C .(x -1)2+y 2=1D .x 2+(y -3)2=1解析:选A 因为圆心C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.3.(2018·兰州模拟)若直线ax +by +1=0(a >0,b >0)把圆(x +4)2+(y +1)2=16分成面积相等的两部分,则12a+2b 的最小值为( )A .10B .8C .5D .4解析:选B ∵圆(x +4)2+(y +1)2=16的圆心坐标为(-4,-1),直线ax +by +1=0把圆分成面积相等的两部分,∴该直线过点(-4,-1),∴-4a -b +1=0,即4a +b =1,∴12a +2b =⎝⎛⎭⎫12a +2b (4a +b )=4+8a b +b 2a≥4+28a b ×b 2a =8,当且仅当a =18,b =12时取“=”,故选B.4.(2018·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心;②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4 B .3 C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,确定曲线C 关于x 轴,y 轴对称,关于原点对称,故①正确.②x 2+y 4=1⇒0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②正确;③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③正确;④由③知,π×12<S <2×2,即π<S <4,故④正确.选A.5.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x +1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0平行,且它们之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.6.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是________. 解析:圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4. 答案:(x -1)2+(y -3)2=47.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)8.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为____________________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5, 因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=59.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标.(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴x 2-3x +y 2=0. 易知直线l 的斜率存在, 故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22,解得16-210≤t ≤16+210, 所以m +2n 的最大值为16+210. (2)记点Q (-2,3),因为n -3m +2表示直线MQ 的斜率k ,所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0.由直线MQ 与圆C 有公共点, 得|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.B 级——拔高题目稳做准做1.(2018·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.2.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为 ________________.解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ), 半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43. 答案:x 2+⎝⎛⎭⎫y ±332=433.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π44.已知圆C 和直线x -6y -10=0相切于点(4,-1),且经过点(9,6),则圆C 的方程为________________.解析:因为圆C 和直线x -6y -10=0相切于点(4,-1), 所以过点(4,-1)的直径所在直线的斜率为-6, 其方程为y +1=-6(x -4), 即y =-6x +23.又因为圆心在以(4,-1),(9,6)两点为端点的线段的中垂线y -52=-57⎝⎛⎭⎫x -132上,即5x +7y -50=0上,由⎩⎪⎨⎪⎧y =-6x +23,5x +7y -50=0解得圆心坐标为(3,5), 所以半径为(9-3)2+(6-5)2=37, 故所求圆的方程为(x -3)2+(y -5)2=37. 答案:(x -3)2+(y -5)2=375.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ ―→·MQ ―→的最小值.解:(1)设圆心C (a ,b ),由已知得M (-2,-2),则⎩⎪⎨⎪⎧ a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,PQ ―→·MQ ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2.令x =2cos θ,y =2sin θ,所以PQ ―→·MQ ―→=x +y -2 =2(sin θ+cos θ)-2=2sin ⎝⎛⎭⎫θ+π4-2, 又⎣⎡⎦⎤sin ⎝⎛⎭⎫θ+π4min =-1, 所以PQ ―→·MQ ―→的最小值为-4.6.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为2 2 的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0) 的距离等于线段OF 的长?若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆C 的圆心为C (a ,b ),则圆C 的方程为(x -a )2+(y -b )2=8.因为直线y =x 与圆C 相切于原点O ,所以O 点在圆C 上,且OC 垂直于直线y =x ,于是有⎩⎪⎨⎪⎧ a 2+b 2=8,b a =-1,解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =2. 由于点C (a ,b )在第二象限,故a <0,b >0,所以圆C 的方程为(x +2)2+(y -2)2=8.(2)假设存在点Q 符合要求,设Q (x ,y ),则有⎩⎪⎨⎪⎧(x -4)2+y 2=16,(x +2)2+(y -2)2=8,解得x =45或x =0(舍去). 所以存在点Q ⎝⎛⎭⎫45,125,使Q 到定点F (4,0)的距离等于线段OF 的长.。
高考数学复习:圆的方程
命题角度4 利用函数或基本不等式求最值问题
例6 设圆x2+y2=2的切线l与x轴正半轴、y轴正半轴分别交于点A,B,当
x+y-2=0
|AB|取最小值时,切线l的方程为
设点 A,B 的坐标分别为 A(a,0),B(0,b)(a>0,b>0),则直线 AB
又所求圆在直线 x-y-3=0 上截得的弦长为√6,
圆心(a,-a)到直线 x-y-3=0 的距离
∴d +
2
√6
2
2
2
(2-3)
=r2,即
2
|2-3|
d=
,
√2
3
+ =2a2,
2
解得 a=1.故所求圆的方程为(x-1)2+(y+1)2=2.
(方法二)设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),
故 y-x 的最大值为-2+√6,最小值为-2-√6.
命题角度3 距离型最值问题
例5 在例3的条件下求x2+y2的最大值和最小值.
解 如图,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在
原点和圆心连线与圆的两个交点处取得最大值和最小值.
因为圆心到原点的距离为 (2-0)2 + (0-0)2 =2,
例2 如图,已知点A(-1,0),B(1,0),C是圆x2+y2=1上的动点,连接BC并延长
至点D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.
解 设动点P(x,y),由题意可知P是△ABD的重心.
圆的方程(含答案)
圆的方程【知识清单】: 1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.注意:对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.【考点突破】:考点一 圆的方程(基础送分型考点——自主练透)1.(易错题)(2015·潍坊模拟)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4解析:选D 由题意知圆C 的半径为2,且圆心坐标可设为(2,b ),因此有(2-1)2+(b -0)2=2,解得b =±3,从而圆C 的方程为(x -2)2+(y ±3)2=4.2.(2016·石家庄一检)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为( ) A .x 2+y 2=1 B .(x -3)2+y 2=1 C .(x -1)2+y 2=1D .x 2+(y -3)2=1解析:选A 因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.3.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A ..53B .213C .253D .43解析:选B 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,解得⎩⎪⎨⎪⎧D =-2,E =-433,F =1.∴△ABC 外接圆的圆心为⎝⎛⎭⎫1,233, 故△ABC 外接圆的圆心到原点的距离为12+⎝⎛⎭⎫2332=213.[谨记通法]:1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上,如“题组练透”第1题. (3)两圆相切时,切点与两圆圆心共线.[提醒]:解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题(常考常新型考点——多角探明)[命题分析]与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.常见的命题角度有: 角度一:斜率型最值问题1.(2016·抚顺模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0,求yx 的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx的几何意义是圆上一点与原点连线的斜率, 所以设yx =k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3, 解得k =±3.所以yx 的最大值为3,最小值为- 3.角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.在[角度一]条件下求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3. 角度四:建立目标函数求最值问题4.已知圆C :(x -3)2+(y -4)2=1 和两点A (-m,0), B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4解析:选B 由(x -3)2+(y -4)2=1知圆上点P (x 0,y 0)可化为⎩⎪⎨⎪⎧x 0=3+cos θ,y 0=4+sin θ.∵∠APB =90°,即 AP ·BP =0,∴(x 0+m )(x 0-m )+y 20=0,∴m 2=x 20+y 20=26+6cos θ+8sin θ=26+10sin(θ+φ)≤36⎝⎛⎭⎫其中tan φ=34, ∴0<m ≤6,即m 的最大值为6.[方法归纳]:求解与圆有关的最值问题的2大规律(1)借助几何性质求最值:处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(2)建立函数关系式求最值:根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的. 考点三 与圆有关的轨迹问题(重点保分型考点——师生共研)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r ,则y 2+2=r 2,x 2+3=r 2. ∴y 2+2=x 2+3,即y 2-x 2=1. ∴P 点的轨迹方程为y 2-x 2=1. (2)设P 的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1得(x 0+1)2-x 20=1,∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3, ∴圆P 的方程为x 2+(y -1)2=3;②当y 0=x 0-1时,由y 20-x 20=1得(x 0-1)2-x 20=1,∴⎩⎪⎨⎪⎧x 0=0,y 0=-1, ∴r 2=3,∴圆P 的方程为x 2+(y +1)2=3. 综上所述,圆P 的方程为x 2+(y ±1)2=3.已知 OP =(2+2cos α,2+2sin α),α∈R ,O 为坐标原点,向量 OQ 满足 OP +OQ =0,则动点Q 的轨迹方程是________.解析:设Q (x ,y ),由 OP +OQ =(2+2cos α+x,2+2sin α+y )=(0,0),∴⎩⎪⎨⎪⎧x =-2-2cos α,y =-2-2sin α, ∴(x +2)2+(y +2)2=4. 答案:(x +2)2+(y +2)2=4[由题悟法]:与圆有关的轨迹问题的4种求法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.【三维演练】:一抓基础,多练小题做到眼疾手快3.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( ) A .2 B .22C .1D . 2解析:选D 已知圆的圆心是(1,-2),到直线x -y =1的距离是|1+2-1|12+12=22= 2.4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r =2;又因为y =-x 与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由y =-x 和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为________. 解析:(x ,y )关于原点P (0,0)的对称点为(-x ,-y ), 则(-x +2)2+(-y )2=5,即(x -2)2+y 2=5. 答案:(x -2)2+y 2=5二保高考,全练题型做到高考达标3.(2016·深圳五校联考)已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )A .2B .-2C .1D .-1解析:选D 因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.4.(2016·济南模拟)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 设圆C 1的圆心坐标C 1(-1,1)关于直线x -y -1=0的对称点为(a ,b ),依题意得⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的方程为(x -2)2+(y +2)2=1.5.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是( ) A .(4,6) B .[4,6] C .[4,6)D .(4,6]解析:选A 易求圆心(3,-5)到直线4x -3y =2的距离为5.令 r =4,可知圆上只有一点到已知直线的距离为1;令r =6,可知圆上有三点到已知直线的距离为1,所以半径r 取值范围在(4,6)之间符合题意.6.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为__________________.解析:因为直线mx -y -2m -1=0恒过定点(2,-1),所以圆心(1,0)到直线mx -y -2m -1=0的最大距离为d =(2-1)2+(-1-0)2=2,所以半径最大时的半径r =2,所以半径最大的圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=27.直线x -2y -2k =0与2x -3y -k =0的交点在圆x 2+y 2=9 的外部,则k 的取值范围是________.解析:由⎩⎪⎨⎪⎧ x -2y -2k =0,2x -3y -k =0,得⎩⎪⎨⎪⎧x =-4k ,y =-3k .∴(-4k )2+(-3k )2>9,即25k 2>9, 解得k >35或k <-35.答案:⎝⎛⎭⎫-∞,-35∪⎝⎛⎭⎫35,+∞ 8.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则|PQ |的最小值为________. 解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为|MQ |=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:49.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.10.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求 PQ ·MQ 的最小值.解:(1)设圆心C (a ,b ), 由已知得M (-2,-2), 则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2,PQ ·MQ =(x -1,y -1)·(x +2,y +2) =x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,∴ PQ ·MQ =x +y -2=2(sin θ+cos θ)-2=2sin ⎝⎛⎭⎫θ+π4-2, 所以 PQ · MQ 的最小值为-4.三上台阶,自主选做志在冲刺名校1.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5, 因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=52.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求直线l 的方程及△POM 的面积. 解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM =(x ,y -4), MP =(2-x,2-y ),由题设知 CM ·MP =0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以直线l 的斜率为-13,所以直线l 的方程为y =-13x +83.又|OM |=|OP |=22,点O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.【拓展延伸】:题型一:利用基本量的数学思想求圆的方程1、 已知方程22240x y x y m +--+=,(1)若此方程表示圆,求圆心坐标及m 的取值范围. (2)若(1)中的圆与直线240x y +-=相交于11(,)M x y 、22N(,)x y 两点,且OM ON ⊥,求圆的方程 .2、 已知方程222610x y x y ++-+=,直线:m 3l x y += (1)若直线l 和圆C 相切,求实数m 的值;(2)是否存在m 的值,使直线l 和圆C 相交于A,B 两点,且0OA OB ⋅=(其中O 为坐标原点),若存在,试求出m 的值;否则,请说明理由 .题型二:与圆有关的最值问题1、 过直线240x y ++=和圆222410x y x y ++-+=的交点,且面积最大的圆的方程为________.. 2、(1)已知点P(,)x y 在圆2211x y +-=()上运动,则12y x --的最大值为________;最小值为________. (2)已知实数x 、y 满足010y 221x y x ≤≤⎧⎪≤≤⎨⎪-≥⎩________. 题型三:点与圆的位置关系1、已知圆22:640C x y x y +-+=,试判断点T(1-,-2)与圆C 的位置关系.2、已知21a (y c M ,)、22a (y cM ,),其中222a - c ,a b c 0b =>且,,, ,点F (c ,0)在以MN 为直径的圆P 上,试判断原点与圆P 的位置关系.题型四:直线与圆的位置关系:1、直线1+=ax y 与圆03222=--+x y x 的交点的个数是2、已知平面区域00240x y x y ≥⎧⎪≥⎨⎪+-≤⎩恰好被面积最小的圆C :222x a y b r -+-=()()覆盖.(1) 试求圆C 的方程;若斜率为1的直线l 与圆C 交于不同的两点A 、B ,满足CA CB ⊥,求直线l 的方程.3、 已知:以点2C(t t,)(t R 0∈≠,t )为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B .(1)求证:AOB ∆面积为定值;(2)设直线24y x =-+与圆C 交于M 、N 两点,若OM ON =,求圆C 的方程.题型五:与(动)圆有关的定点、定直线问题1、 已知圆C 方程:228m 6m+26+10m m x y x y m +--+=∈≠()(R,0) (1)证明:圆C 恒过一个定点M ,并求出此定点M 坐标;(2)判断直线4330x y +-=与圆C 的位置关系,并证明你的结论.2、已知圆C :221316x y -+-=()() ,直线:(2m 3)(m 4)220l x y m ++++-=(1)求证:无论m 取任何实数,直线l 必经过一个定点,请求出这个定点坐标; (2)当m 取任意实数时,直线l 与圆C 的位置关系有无不变性?试说明理由;(3)请判断直线l 被圆C 截得的弦何时最短?试求出截得的弦最短时,m 的值以及弦的长度a.3、已知圆C :221x y += ,直线1l 过点A(3,0),且与圆C 相切 (1)求直线1l 的方程;(2)设圆C 与x 轴相交于P 、Q 两点,M 是圆C 上异于P 、Q 的任意一点,过点A 且与x 轴垂直的直线记为2l ,直线PM 交2l 于 'P ,直线QM 交2l 于 'Q ,试证明:以'P 'Q 为直径的圆'C 总经过定点,请求出定点坐标.。
高考数学公式总结归纳
高考数学公式总结归纳高中数学理科是10本书,文科是9本书,数学公式非常多,如果基础知识不扎实,平时做题查阅公式就要浪费很多时间。
接下来是小编为大家整理的高考数学公式总结归纳,希望大家喜欢!高考数学公式总结归纳一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
高考数学公式总结归纳二乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab|a-b||a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1_2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa)) ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa)) 和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb某些数列前n项和1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13 +15++(2n-1)=n22+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62 +72+82++n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6 _++n(n+1)=n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_斜棱柱侧面积s=c_正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_圆柱体v=pi_2h高考数学公式总结归纳三抛物线公式y = ax^2+bx+c 就是y等于ax的平方加上ba > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py面积公式圆的体积公式 4/3(pi)(r^3)圆的面积公式 (pi)(r^2)圆的周长公式 2(pi)r正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_ 斜棱柱侧面积 S=c'_正棱锥侧面积 S=1/2c_' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_2圆柱侧面积 S=c_=2pi_ 圆锥侧面积 S=1/2__=pi__弧长公式 l=a_ a是圆心角的弧度数r>0 扇形面积公式 s=1/2__ 锥体体积公式 V=1/3__ 圆锥体体积公式V=1/3_i_2h斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长柱体体积公式 V=s_ 圆柱体V=pi_2h高考数学公式总结归纳四高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。
高考数学复习圆的方程
第3讲圆的方程最新考纲考向预测1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.命题趋势以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择题、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.核心素养直观想象、数学运算1.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系.(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.常用结论1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y常见误区1.对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.2.解答与圆有关的最值问题要注意数形结合,充分运用圆的性质.1.判断正误(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B =0,D2+E2-4AF>0.()答案:(1)√(2)×(3)×(4)√2.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:选D.因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的方程为(x-1)2+(y-1)2=2.3.(多选)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法中正确的是()A.圆M的圆心为(4,-3)B.圆M被x轴截得的弦长为8C.圆M的半径为25D.圆M被y轴截得的弦长为6解析:选ABD.圆M的一般方程为x2+y2-8x+6y=0,则(x-4)2+(y+3)2=25.圆的圆心坐标为(4,-3),半径为5.显然选项C不正确.ABD均正确.4.(易错题)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是解析:将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2. 答案:(-∞,-22)∪(22,+∞)5.若圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________.解析:设圆心坐标为C (a ,0), 因为点A (-1,1)和B (1,3)在圆C 上, 所以|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2,所以圆心为C (2,0),半径|CA |=(2+1)2+1=10, 所以圆C 的方程为(x -2)2+y 2=10. 答案:(x -2)2+y 2=10求圆的方程[题组练透]1.(2021·长沙模拟)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43解析:选B.圆心在直线BC 的垂直平分线,即x =1上,设圆心D (1,b ),由|DA |=|DB |得|b |=1+(b -3)2,解得b =233,所以圆心到原点的距离为d=12+⎝⎛⎭⎪⎫2332=213. 2.已知圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:选A.因为圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,所以圆的圆心坐标为(2,0).所以圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选A.3.已知圆心在x 轴上,半径为5的圆位于y 轴右侧,且截直线x +2y =0所得弦的长为2,则圆的方程为________.解析:根据题意,设圆的圆心坐标为(a ,0)(a >0),则圆的标准方程为(x -a )2+y 2=5(a >0),则圆心到直线x +2y =0的距离d =|a +2×0|12+22=55a .又该圆截直线x +2y =0所得弦的长为2,所以可得12+⎝ ⎛⎭⎪⎫55a 2=5,解得a =2 5.故圆的方程为(x -25)2+y 2=5.答案:(x -25)2+y 2=5求圆的方程的两种方法(1)直接法根据圆的几何性质,直接求出圆心坐标和半径,进而写出圆的方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.与圆有关的最值问题角度一借助几何性质求最值已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求y-3x+2的最大值和最小值;(3)求y-x的最大值和最小值.【解】(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2 2.又|QC|=(2+2)2+(7-3)2=42,所以|MQ|max=42+22=62,|MQ|min=42-22=2 2.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以|2k-7+2k+3|1+k2≤22,可得2-3≤k≤2+3,所以y-3x+2的最大值为2+3,最小值为2- 3.(3)设y-x=b,则x-y+b=0.当直线y=x+b与圆C相切时,截距b取到最值,所以|2-7+b|12+(-1)2=22,所以b=9或b=1.所以y-x的最大值为9,最小值为1.与圆有关的最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:常见类型解题思路μ=y-bx-a型转化为动直线斜率的最值问题t=ax+by型转化为动直线截距的最值问题,或用三角代换求解m=(x-a)2+(y-b)2型转化为动点与定点的距离的平方的最值问题设点P (x ,y )是圆(x -3)2+y 2=4上的动点,定点A (0,2),B (0,-2),则|P A →+PB→|的最大值为________. 【解析】 由题意,知P A →=(-x ,2-y ),PB →=(-x ,-2-y ),所以P A →+PB →=(-2x ,-2y ),由于点P (x ,y )是圆上的点,故其坐标满足方程(x -3)2+y 2=4,故y 2=-(x -3)2+4,所以|P A →+PB →|=4x 2+4y 2=26x -5.由圆的方程(x -3)2+y 2=4,易知1≤x ≤5,所以当x =5时,|P A →+PB →|的值最大,最大值为26×5-5=10.【答案】 10建立函数关系式求最值根据已知条件列出相关的函数关系式,再根据关系式的特征选用基本不等式、函数单调性等方法求最值.1.已知点P (x ,y )为圆C :x 2+y 2-4x +3=0上一点,C 为圆心,则PC →·PO →(O为坐标原点)的取值范围是( )A .[-3,1]B .[-1,1]C .[-1,3]D .[1,3]解析:选C.将圆C 的方程x 2+y 2-4x +3=0化为(x -2)2+y 2=1,所以圆心C 的坐标为(2,0).所以PC →=(2-x ,-y ).而PO →=(-x ,-y ),所以PC →·PO →=x 2+y 2-2x .因为x 2+y 2-4x +3=0,所以x 2+y 2=4x -3,所以PC →·PO →=4x -3-2x =2x -3.因为(x -2)2+y 2=1,所以(x -2)2≤1,所以-1≤x -2≤1,即1≤x ≤3.因此-1≤2x -3≤3,从而PC →·PO →(O 为坐标原点)的取值范围为[-1,3].故选C.2.(多选)若P 是圆C :(x +3)2+(y -3)2=1上任一点,则点P 到直线y =kx -1距离的值可以为( )A .4B .6C .32+1D .8解析:选ABC.由题意,知圆C :(x +3)2+(y -3)2=1的圆心坐标为(-3,3),半径为1,直线y =kx -1过定点(0,-1).由图可知,圆心C 到直线y =kx -1距离的最大值为(-3-0)2+(3+1)2=5,则点P 到直线y =kx -1距离的最大值为5+1=6,最小值为5-1=4,因此A ,B ,C 正确,只有D 不正确.故选ABC.3.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |的最小值为________.解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4的下半圆(包括与x 轴的交点).令点Q 的坐标为(x ,y ),则⎩⎨⎧x =2a ,y =a -3,得y =x2-3,即x -2y -6=0,作出图象如图所示.由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离,因此|PQ |的最小值是5-2.答案:5-2与圆有关的轨迹问题已知A (2,0)为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 【解】 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.与圆有关的轨迹问题的四种求法1.(2020·高考全国卷Ⅲ)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线解析:选A.以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设A (-a ,0),B (a ,0),C (x ,y ),因为AC →·BC →=1,所以(x +a )(x -a )+y ·y =1,所以x 2+y 2=a 2+1,所以点C 的轨迹为圆,故选A.2.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足|AC |=2|BC |,则点C 的轨迹方程为( )A .x 2+y 2+6x +1=0B .x 2+y 2-6x +1=0C .x 2+y 2-103x +1=0D .x 2+y 2+103x +1=0解析:选B.由题意可设点C 的坐标为(x ,y ),因为满足|AC |=2|BC |,由两点间的距离公式可得(x +1)2+(y -0)2=2×(x -1)2+(y -0)2,即x 2+2x +1+y 2=2(x 2-2x +1+y 2),所以x 2+y 2-6x +1=0即为点C 的轨迹方程.故选B.[A 级 基础练]1.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则实数a 的取值范围是( ) A .-15<a <1 B .-1<a <15 C .-1<a <1D .0<a <1解析:选A.由(2a )2+(a -2)2<5,得-15<a <1.故选A. 2.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选D.由题意得⎩⎨⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎨⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎨⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆.3.(多选)设圆A :x 2+y 2-2x -3=0,则下列说法正确的是( ) A .圆A 的半径为2B .圆A 截y 轴所得的弦长为2 3C .圆A 上的点到直线3x -4y +12=0的最小距离为1D .圆A 与圆B :x 2+y 2-8x -8y +23=0相离解析:选ABC.把圆A 的方程x 2+y 2-2x -3=0化成标准方程为(x -1)2+y 2=4,所以圆A 的圆心坐标为(1,0),半径为2,A 正确;圆A 截y 轴所得的弦长|CD |=2×4-1=23,B 正确;圆心(1,0)到直线3x -4y +12=0的距离为3,故圆A 上的点到直线3x -4y +12=0的最小距离为3-2=1,C 正确;圆B :x 2+y 2-8x -8y +23=0的圆心为(4,4),半径为3,根据(4-1)2+42=5可知,圆A 与圆B 相外切,D 错误,故选ABC.4.(2020·高考全国卷Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A.55B.255C.355D.455解析:选B.因为圆与两坐标轴都相切,点(2,1)在该圆上,所以可设该圆的方程为(x -a )2+(y -a )2=a 2(a >0),所以(2-a )2+(1-a )2=a 2,即a 2-6a +5=0,解得a =1或a =5,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x -y -3=0的距离为|2×1-1-3|22+(-1)2=255或|2×5-5-3|22+(-1)2=255,故选B. 5.(2020·全国统一考试模拟卷)已知点A 为曲线y =x +4x (x >0)上的动点,B 为圆(x -2)2+y 2=1上的动点,则|AB |的最小值是( )A .3B .4C .3 2D .4 2解析:选A.根据题意,|AB |的最小值为曲线y =x +4x (x >0)上的点到圆心(2,0)的距离的最小值减去圆的半径1.由于曲线y =x +4x (x >0)上最低点的坐标为(2,4),结合图象可知,所求的最小值为(2-2)2+42-1=3.6.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆. 答案:(-2,-4) 57.过两点A (1,4),B (3,2)且圆心在直线y =0上的圆的标准方程为________. 解析:设圆的标准方程为(x -a )2+(y -b )2=r 2.因为圆心在直线y =0上,所以b =0,所以圆的方程为(x -a )2+y 2=r 2.又因为该圆过A (1,4),B (3,2)两点,所以⎩⎨⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解得⎩⎨⎧a =-1,r 2=20.所以所求圆的方程为(x +1)2+y 2=20. 答案:(x +1)2+y 2=208.(2020·山西太原期中)已知长为2a (a >0)的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为________.解析:如图,不论直线怎么移动,线段AB 的中点P 与原点O 的连线始终为Rt △OAB 斜边上的中线,即|OP |=a ,即x 2+y 2=a 2.故所求的轨迹方程为x 2+y 2=a 2.答案:x 2+y 2=a 29.已知圆经过点A (2,-3)和B (-2,-5).(1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程.解:(1)要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2)因为k AB =12,AB 的中点坐标为(0,-4),所以AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎨⎧2x +y +4=0,x -2y -3=0,得⎩⎨⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此所求圆的方程为(x +1)2+(y +2)2=10.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又因为直径|CD |=410,所以|P A |=210,所以(a +1)2+b 2=40.②由①②解得⎩⎨⎧a =-3,b =6,或⎩⎨⎧a =5,b =-2. 所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.[B 级 综合练]11.(多选)(2020·山东青岛检测)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是( )A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为4 2解析:选ACD.因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在y =-x 的图象上,A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入可知满足(x -1)2+(y +1)2=1,故C 正确;它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.12.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________. 解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5.答案:(x -2)2+(y -1)2=513.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16,当|QM |最小时,|CQ |最小,此时CQ ⊥l 1,|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.14.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线P A ,PB ,切点分别为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)设P (b ,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎨⎧x 2+y 2-4y =0,x +2y -8=0,解得⎩⎨⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165.所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165. [C 级 创新练]15.阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.下面我们来研究与此相关的一个问题,已知圆O :x 2+y 2=1上的动点M 和定点A ⎝ ⎛⎭⎪⎫-12,0,B (1,1),则2|MA |+|MB |的最小值为( ) A. 6 B.7 C.10 D.11解析:选C.当点M 在x 轴上时,点M 的坐标为(-1,0)或(1,0).若点M 的坐标为(-1,0),则2|MA |+|MB |=2×12+(1+1)2+12=1+5;若点M 的坐标为(1,0),则2|MA |+|MB |=2×32+(1-1)2+12=4.当点M 不在x 轴上时,取点K (-2,0),连接OM ,MK ,因为|OM |=1,|OA |=12,|OK |=2,所以|OM ||OA |=|OK ||OM |=2.因为∠MOK =∠AOM ,所以△MOK ∽△AOM ,则|MK ||MA |=|OM ||OA |=2,所以|MK |=2|MA |,则2|MA |+|MB |=|MB |+|MK |. 易知|MB |+|MK |≥|BK |,可知|MB |+|MK |的最小值为|BK |.因为B (1,1),K (-2,0),所以(2|MA |+|MB |)min =|BK |=(-2-1)2+(0-1)2=10.综上,易知2|MA |+|MB |的最小值为10.故选C.16.(2021·东北师范大学附中摸底)如图,将边长为1的正方形ABCD 沿x 轴正方向滚动,先以点A 为旋转中心顺时针旋转,当点B 落在x 轴时,又以点B 为旋转中心顺时针旋转,如此继续下去.设顶点C 滚动时的曲线为y =f (x ),则f (5)=________;当2<x ≤3时,f (x )=________.解析:由题意,知正方形ABCD 的对角线长为 2.如图,当x =0时,点C 的坐标为(0,1),即f (0)=1;当x =1时,点C 的坐标为(1,2),即f (1)=2;当x =2时,点C 的坐标为(2,1),即f (2)=1;当x =3时,点C 的坐标为(3,0),即f (3)=0;当x =4时,点C 的坐标为(4,1),即f (4)=1;当x =5时,点C 的坐标为(5,2),即f (5)= 2.当2<x ≤3时,顶点C 的轨迹是以点(2,0)为圆心,1为半径的四分之一圆,所以顶点C 的方程为(x -2)2+y 2=1(2<x ≤3),所以y =-x 2+4x -3,所以当2<x ≤3时,f (x )=-x 2+4x -3.答案:2-x2+4x-3第3讲圆的方程最新考纲考向预测1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.命题趋势以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择题、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.核心素养直观想象、数学运算1.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系.(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.常用结论1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y常见误区1.对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.2.解答与圆有关的最值问题要注意数形结合,充分运用圆的性质.1.判断正误(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B =0,D2+E2-4AF>0.()答案:(1)√(2)×(3)×(4)√2.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:选D.因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的方程为(x-1)2+(y-1)2=2.3.(多选)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法中正确的是()A.圆M的圆心为(4,-3)B.圆M被x轴截得的弦长为8C.圆M的半径为25D.圆M被y轴截得的弦长为6解析:选ABD.圆M的一般方程为x2+y2-8x+6y=0,则(x-4)2+(y+3)2=25.圆的圆心坐标为(4,-3),半径为5.显然选项C不正确.ABD均正确.4.(易错题)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是解析:将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.答案:(-∞,-22)∪(22,+∞)5.若圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________.解析:设圆心坐标为C (a ,0),因为点A (-1,1)和B (1,3)在圆C 上,所以|CA |=|CB |,即(a +1)2+1=(a -1)2+9,解得a =2,所以圆心为C (2,0),半径|CA |=(2+1)2+1=10,所以圆C 的方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=10求圆的方程[题组练透]1.(2021·长沙模拟)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43解析:选B.圆心在直线BC 的垂直平分线,即x =1上,设圆心D (1,b ),由|DA |=|DB |得|b |=1+(b -3)2,解得b =233,所以圆心到原点的距离为d=12+⎝ ⎛⎭⎪⎫2332=213. 2.已知圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:选A.因为圆的半径为2,圆心在x 轴的正半轴上,且与y 轴相切,所以圆的圆心坐标为(2,0).所以圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选A.3.已知圆心在x 轴上,半径为5的圆位于y 轴右侧,且截直线x +2y =0所得弦的长为2,则圆的方程为________.解析:根据题意,设圆的圆心坐标为(a ,0)(a >0),则圆的标准方程为(x -a )2+y 2=5(a >0),则圆心到直线x +2y =0的距离d =|a +2×0|12+22=55a .又该圆截直线x +2y =0所得弦的长为2,所以可得12+⎝ ⎛⎭⎪⎫55a 2=5,解得a =2 5.故圆的方程为(x -25)2+y 2=5.答案:(x -25)2+y 2=5求圆的方程的两种方法(1)直接法根据圆的几何性质,直接求出圆心坐标和半径,进而写出圆的方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.与圆有关的最值问题角度一借助几何性质求最值已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求y-3x+2的最大值和最小值;(3)求y-x的最大值和最小值.【解】(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2 2.又|QC|=(2+2)2+(7-3)2=42,所以|MQ|max=42+22=62,|MQ|min=42-22=2 2.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以|2k-7+2k+3|1+k2≤22,可得2-3≤k≤2+3,所以y-3x+2的最大值为2+3,最小值为2- 3.(3)设y-x=b,则x-y+b=0.当直线y=x+b与圆C相切时,截距b取到最值,所以|2-7+b|12+(-1)2=22,所以b=9或b=1.所以y-x的最大值为9,最小值为1.与圆有关的最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:常见类型解题思路μ=y-bx-a型转化为动直线斜率的最值问题t=ax+by型转化为动直线截距的最值问题,或用三角代换求解m=(x-a)2+(y-b)2型转化为动点与定点的距离的平方的最值问题设点P (x ,y )是圆(x -3)2+y 2=4上的动点,定点A (0,2),B (0,-2),则|P A →+PB→|的最大值为________. 【解析】 由题意,知P A →=(-x ,2-y ),PB →=(-x ,-2-y ),所以P A →+PB→=(-2x ,-2y ),由于点P (x ,y )是圆上的点,故其坐标满足方程(x -3)2+y 2=4,故y 2=-(x -3)2+4,所以|P A →+PB→|=4x 2+4y 2=26x -5.由圆的方程(x -3)2+y 2=4,易知1≤x ≤5,所以当x =5时,|P A →+PB→|的值最大,最大值为26×5-5=10.【答案】 10建立函数关系式求最值根据已知条件列出相关的函数关系式,再根据关系式的特征选用基本不等式、函数单调性等方法求最值.1.已知点P (x ,y )为圆C :x 2+y 2-4x +3=0上一点,C 为圆心,则PC →·PO→(O 为坐标原点)的取值范围是( )A .[-3,1]B .[-1,1]C .[-1,3]D .[1,3]解析:选C.将圆C 的方程x 2+y 2-4x +3=0化为(x -2)2+y 2=1,所以圆心C 的坐标为(2,0).所以PC →=(2-x ,-y ).而PO →=(-x ,-y ),所以PC →·PO→=x 2+y 2-2x .因为x 2+y 2-4x +3=0,所以x 2+y 2=4x -3,所以PC →·PO→=4x -3-2x =2x -3.因为(x -2)2+y 2=1,所以(x -2)2≤1,所以-1≤x -2≤1,即1≤x ≤3.因此-1≤2x -3≤3,从而PC →·PO →(O 为坐标原点)的取值范围为[-1,3].故选C.2.(多选)若P 是圆C :(x +3)2+(y -3)2=1上任一点,则点P 到直线y =kx -1距离的值可以为( )A .4B .6C .32+1D .8解析:选ABC.由题意,知圆C :(x +3)2+(y -3)2=1的圆心坐标为(-3,3),半径为1,直线y =kx -1过定点(0,-1).由图可知,圆心C 到直线y =kx -1距离的最大值为(-3-0)2+(3+1)2=5,则点P 到直线y =kx -1距离的最大值为5+1=6,最小值为5-1=4,因此A ,B ,C 正确,只有D 不正确.故选ABC.3.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |的最小值为________.解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4的下半圆(包括与x 轴的交点).令点Q 的坐标为(x ,y ),则⎩⎨⎧x =2a ,y =a -3,得y =x 2-3,即x -2y -6=0,作出图象如图所示.由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离,因此|PQ |的最小值是5-2.答案:5-2与圆有关的轨迹问题已知A (2,0)为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.【解】 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.与圆有关的轨迹问题的四种求法1.(2020·高考全国卷Ⅲ)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC→=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线解析:选A.以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设A (-a ,0),B (a ,0),C (x ,y ),因为AC →·BC→=1,所以(x +a )(x -a )+y ·y =1,所以x 2+y 2=a 2+1,所以点C 的轨迹为圆,故选A.2.已知A (-1,0),B (1,0),C 为平面内的一动点,且满足|AC |=2|BC |,则点C 的轨迹方程为( )A .x 2+y 2+6x +1=0B .x 2+y 2-6x +1=0C .x 2+y 2-103x +1=0D .x 2+y 2+103x +1=0解析:选B.由题意可设点C 的坐标为(x ,y ),因为满足|AC |=2|BC |,由两点间的距离公式可得(x +1)2+(y -0)2=2×(x -1)2+(y -0)2,即x 2+2x +1+y 2=2(x 2-2x +1+y 2),所以x 2+y 2-6x +1=0即为点C 的轨迹方程.故选B.[A 级 基础练]1.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则实数a 的取值范围是( )A .-15<a <1B .-1<a <15C .-1<a <1D .0<a <1解析:选A.由(2a )2+(a -2)2<5,得-15<a <1.故选A.2.方程|x |-1=1-(y -1)2所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆解析:选D.由题意得⎩⎨⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎨⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎨⎧(x +1)2+(y -1)2=1,x ≤-1. 故原方程表示两个半圆.3.(多选)设圆A :x 2+y 2-2x -3=0,则下列说法正确的是( )A .圆A 的半径为2B .圆A 截y 轴所得的弦长为2 3C .圆A 上的点到直线3x -4y +12=0的最小距离为1D .圆A 与圆B :x 2+y 2-8x -8y +23=0相离解析:选ABC.把圆A 的方程x 2+y 2-2x -3=0化成标准方程为(x -1)2+y 2=4,所以圆A 的圆心坐标为(1,0),半径为2,A 正确;圆A 截y 轴所得的弦长|CD |=2×4-1=23,B 正确;圆心(1,0)到直线3x -4y +12=0的距离为3,故圆A 上的点到直线3x -4y +12=0的最小距离为3-2=1,C 正确;圆B :x 2+y 2-8x -8y +23=0的圆心为(4,4),半径为3,根据(4-1)2+42=5可知,圆A 与圆B 相外切,D 错误,故选ABC.4.(2020·高考全国卷Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.455解析:选B.因为圆与两坐标轴都相切,点(2,1)在该圆上,所以可设该圆的方程为(x -a )2+(y -a )2=a 2(a >0),所以(2-a )2+(1-a )2=a 2,即a 2-6a +5=0,解得a =1或a =5,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x -y -3=0的距离为|2×1-1-3|22+(-1)2=255或|2×5-5-3|22+(-1)2=255,故选B. 5.(2020·全国统一考试模拟卷)已知点A 为曲线y =x +4x (x >0)上的动点,B为圆(x -2)2+y 2=1上的动点,则|AB |的最小值是( )A .3B .4C .3 2D .4 2解析:选A.根据题意,|AB |的最小值为曲线y =x +4x (x >0)上的点到圆心(2,0)的距离的最小值减去圆的半径1.由于曲线y =x +4x (x >0)上最低点的坐标为(2,4),结合图象可知,所求的最小值为(2-2)2+42-1=3.6.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:已知方程表示圆,则a 2=a +2,解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0,化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案:(-2,-4) 57.过两点A (1,4),B (3,2)且圆心在直线y =0上的圆的标准方程为________. 解析:设圆的标准方程为(x -a )2+(y -b )2=r 2.因为圆心在直线y =0上,所以b =0,所以圆的方程为(x -a )2+y 2=r 2.又因为该圆过A (1,4),B (3,2)两点,所以⎩⎨⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解得⎩⎨⎧a =-1,r 2=20.所以所求圆的方程为(x +1)2+y 2=20. 答案:(x +1)2+y 2=208.(2020·山西太原期中)已知长为2a (a >0)的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为________.解析:如图,不论直线怎么移动,线段AB 的中点P 与原点O 的连线始终为Rt △OAB 斜边上的中线,即|OP |=a ,即x 2+y 2=a 2.故所求的轨迹方程为x 2+y 2=a 2.答案:x 2+y 2=a 29.已知圆经过点A (2,-3)和B (-2,-5).(1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程.解:(1)要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2)因为k AB =12,AB 的中点坐标为(0,-4),所以AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎨⎧2x +y +4=0,x -2y -3=0,得⎩⎨⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此所求圆的方程为(x +1)2+(y +2)2=10.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又因为直径|CD |=410,所以|P A |=210,所以(a +1)2+b 2=40.②由①②解得⎩⎨⎧a =-3,b =6,或⎩⎨⎧a =5,b =-2. 所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.[B 级 综合练]11.(多选)(2020·山东青岛检测)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是( )A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为4 2解析:选ACD.因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在y =-x 的图象上,A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入可知满足(x -1)2+(y +1)2=1,故C 正确;它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.12.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________. 解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5.答案:(x -2)2+(y -1)2=513.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16,当|QM |最小时,|CQ |最小,此时CQ ⊥l 1,|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.14.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线P A ,PB ,切点分别为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)设P (b ,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎨⎧x 2+y 2-4y =0,x +2y -8=0,解得⎩⎨⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165.所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165. [C 级 创新练]15.阿波罗尼斯是古希腊著名数学家,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线论》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.下面我们来研究与此相关的一个问题,已。
第3节 圆的方程--2025年高考数学复习讲义及练习解析
第三节圆的方程1.圆的定义及圆的方程=D 2+E 2-4F2的圆;当D 2+E 2-4F =0时,-D 2,D2+E 2-4F <0时,不表示任何图形.2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2或x 2+y 2+Dx +Ey +F =0之间存在着下列关系:位置关系判断方法几何法代数法(标准方程)代数法(一般方程)点在圆上|MC |=r (x 0-a )2+(y 0-b )2=r 2x 20+y 20+Dx 0+Ey 0+F =0点在圆外|MC |>r (x 0-a )2+(y 0-b )2>r 2x 20+y 20+Dx 0+Ey 0+F >0点在圆内|MC |<r(x 0-a )2+(y 0-b )2<r 2x 20+y 20+Dx 0+Ey 0+F <01.确定圆的方程时,常用到的圆的两个性质(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.1.概念辨析(正确的打“√”,错误的打“×”)(1)圆x2+y2=a2的半径为a.()(2)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(3)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()答案(1)×(2)√(3)√2.小题热身(1)圆x2+y2-4x+6y=0的圆心坐标和半径分别是()A.(2,3),3B.(-2,3),3C.(-2,-3),13D.(2,-3),13答案D解析圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=13.故选D.(2)(人教A选择性必修第一册2.4.1练习T1改编)圆心为(1,1)且过原点的圆的标准方程是________________.答案(x-1)2+(y-1)2=2解析因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的标准方程为(x -1)2+(y-1)2=2.(3)(人教A选择性必修第一册复习参考题2T7改编)若圆C:x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0过坐标原点,则实数m的值为________.答案2解析∵x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0表示圆,∴[-2(m-1)]2+[2(m-1)]2-4(2m2-6m+4)>0,∴m>1.又圆C过原点,∴2m2-6m+4=0,∴m=2或m=1(舍去),∴m=2.(4)(人教A选择性必修第一册复习参考题2T6改编)圆心在直线x+y=0上,且过点(0,2),(-4,0)的圆的标准方程为________________.答案(x+3)2+(y-3)2=10解析点(0,2)与点(-4,0)确定直线的斜率为k=2-00-(-4)=12,其中点为(-2,1),所以线段的中垂线方程为y-1=-2(x+2),即2x+y+3=0,又圆心在直线x+y=0上,由x+y+3=0,+y=0,=-3,=3,所以圆心为(-3,3),r=(-3)2+(3-2)2=10,所以圆的标准方程为(x+3)2+(y-3)2=10.考点探究——提素养考点一求圆的方程例1(1)已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的一般方程是________________.答案x2+y2+4x-2y=0解析设直径的两个端点分别为A(a,0),B(0,b),圆心C为点(-2,1),由中点坐标公式,得a+02=-2,0+b2=1,解得a=-4,b=2.∴半径r=(-2+4)2+(1-0)2=5,∴圆的方程是(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.(2)(2024·江苏南京一中月考)已知△ABC的顶点A(0,0),B(0,2),C(-2,2),则其外接圆的标准方程为________________.答案(x+1)2+(y-1)2=2解析设△ABC的外接圆的方程为(x-a)2+(y-b)2=r2,因为△ABC的顶点A(0,0),B(0,2),C(-2,2),2+b2=r2,2+(2-b)2=r2,2-a)2+(2-b)2=r2,=-1,=1,=2,因此(x+1)2+(y-1)2=2即为所求圆的方程.【通性通法】(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②若已知条件没有明确给出圆心和半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.【巩固迁移】1.(2024·河北邯郸模拟)已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使得A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则这个圆的标准方程为________________.答案(x-2)2+(y+1)2=13解析由题设知,|PA|=10,|PB|=13,|PC|=5,∴|PA|<|PB|<|PC|,要使A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则圆以|PB|为半径,故圆的标准方程为(x -2)2+(y+1)2=13.2.已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.答案x2+y2+2x+4y-5=0解析解法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意,得2-a)2+(-3-b)2=r2,2-a)2+(-5-b)2=r2,-2b-3=0,=-1,=-2,2=10,故所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.解法二:线段AB的垂直平分线方程为2x+y+4=0,x+y+4=0,-2y-3=0,解得交点坐标C(-1,-2),又点C到点A的距离d=10,所以所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.考点二与圆有关的轨迹问题例2(2024·山东枣庄八中月考)已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且直线AC,BC的斜率均存在,所以k AC k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简,得x2+y2-2x-3=0.因此直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=12|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式,得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1),知点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入,得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1(y ≠0).所以直角边BC 的中点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).【通性通法】求与圆有关的轨迹问题的方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式求解.【巩固迁移】3.已知两点A (-5,0),B (5,0),动点P 到点A 的距离是它到点B 的距离的3倍,则点P 的轨迹方程为________________.答案x 2+y 2-252x +25=0解析设P (x ,y ),由题意可知|PA |=3|PB |,由两点间距离公式,可得(x +5)2+y 2=3(x -5)2+y 2,化简,得x 2+y 2-252x +25=0.4.(2023·江苏淮安一模)已知点A (2,0)是圆x 2+y 2=4上一点,点B (1,1)是圆内一点,P ,Q 为圆上的动点.(1)求线段AP 的中点M 的轨迹方程;(2)若∠PBQ =90°,求线段PQ 的中点N 的轨迹方程.解(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,点P 的坐标为(2x -2,2y ).因为点P在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 的中点M 的轨迹方程为(x -1)2+y 2=1.(2)如图,设PQ 的中点N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 的中点N 的轨迹方程为x 2+y 2-x -y -1=0.考点三与圆有关的最值问题(多考向探究)考向1借助几何性质求最值例3已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求y-3x+2的最大值和最小值;(3)求y-x的最大值和最小值.解(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2 2.又|QC|=(2+2)2+(7-3)2=42,所以|MQ|max=42+22=62,|MQ|min=42-22=22.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以|2k-7+2k+3|k2+1≤22,解得2-3≤k≤2+3,所以y-3x+2的最大值为2+3,最小值为2- 3.(3)设y-x=b,则x-y+b=0.当直线x-y+b=0与圆C相切时,截距b取到最值,所以|2-7+b|12+(-1)2=22,解得b=9或b=1,所以y-x的最大值为9,最小值为1.【通性通法】借助几何性质求最值的常见形式及求解方法(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【巩固迁移】5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A .4B .5C .6D .7答案A解析设圆心为C (x ,y ),则(x -3)2+(y -4)2=1,化简得(x -3)2+(y -4)2=1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,如图.所以|OC |+1≥|OM |=32+42=5,所以|OC |≥5-1=4,当且仅当C 在线段OM 上时取得等号.故选A.6.已知A (-2,0),B (2,0),点P 是圆C :(x -3)2+(y -7)2=1上的动点,则|AP |2+|BP |2的最大值为()A .40B .46C .48D .58答案D解析设O 为坐标原点,P (x ,y ),则|AP |2+|BP |2=(x +2)2+y 2+(x -2)2+y 2=2(x 2+y 2)+8=2|PO |2+8.圆C 的圆心为C (3,7),半径为r =1,|OC |=4,所以|PO |2的最大值为(|OC |+r )2=(4+1)2=25,所以|AP |2+|BP |2的最大值为58.考向2构建目标函数求最值例4(2023·湘潭质检)设点P (x ,y )是圆x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则PA →·PB →的最大值为________.答案12解析由题意,得PA →=(2-x ,-y ),PB →=(-2-x ,-y ),所以PA →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以PA →·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以当y =4时,PA →·PB →的值最大,最大值为6×4-12=12.【通性通法】建立函数关系式求最值时,首先根据已知条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.【巩固迁移】7.等边三角形ABC 的面积为93,且△ABC 的内心为M ,若平面内的点N 满足|MN |=1,则NA →·NB →的最小值为()A .-5-23B .-5-43C .-6-23D .-6-43答案A解析设等边三角形ABC 的边长为a ,则面积S =34a 2=93,解得a =6.以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系.由M 为△ABC 的内心,则M 在OC 上,且|OM |=13|OC |,则A (-3,0),B (3,0),C (0,33),M (0,3),由|MN |=1,则点N 在以M 为圆心,1为半径的圆上.设N (x ,y ),则x 2+(y -3)2=1,即x 2+y 2-23y +2=0,且3-1≤y ≤1+3,又NA →=(-3-x ,-y ),NB →=(3-x ,-y ),所以NA →·NB →=(x +3)(x -3)+y 2=x 2+y 2-9=23y -11≥23×(3-1)-11=-5-2 3.考向3利用对称性求最值例5一束光线,从点A (-2,2)出发,经x 轴反射到圆C :(x -3)2+(y -3)2=1上的最短路径的长度是()A .52-1B .52+1C .32+1D .32-1答案A解析如图,依题意知,圆C 的圆心C (3,3),半径r =1,点A (-2,2)关于x 轴的对称点为A ′(-2,-2),连接A ′C 交x 轴于点O ,交圆C 于点B ,圆外一点与圆上的点的距离的最小值是圆外这点到圆心的距离减去圆的半径,于是得点A ′与圆C 上的点的距离的最小值为|A ′B |=|A ′C |-r =(-2-3)2+(-2-3)2-1=52-1.在x 轴上任取点P ,连接AP ,A ′P ,PC ,PC交圆C于点B′,而|AO|=|A′O|,|AP|=|A′P|,|AO|+|OB|=|A′O|+|OB|=|A′B|=|A′C|-r≤|A′P|+|PC|-r=|AP|+|PB′|,当且仅当点P与点O重合时取“=”,所以最短路径的长度是52-1.故选A.【通性通法】求解形如|PA|+|PB|且与圆C有关的折线段的最值问题的基本思路:(1)“动化定”,把与圆上动点的距离转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.【巩固迁移】8.(2024·浙江金华模拟)已知圆C:x2+(y-2)2=1上一动点A和定点B(6,2),点P为x轴上一动点,则|PA|+|PB|的最小值为________.答案213-1解析根据题意画出圆C:x2+(y-2)2=1,以及点B(6,2)的图象如图,作B关于x轴的对称点B′,连接B′C,则当A,P分别是B′C与圆和x轴的交点时,|PA|+|PB|最小,最小值|AB′|为点C(0,2)到点B′(6,-2)的距离减去圆的半径,即|AB′|=(6-0)2+(-2-2)2-1=213-1.课时作业一、单项选择题1.(2023·甘肃酒泉模拟)已知点(1,1)在圆x2+y2+ax+a=0外,则实数a的取值范围为() A.(-1,+∞)B.(-1,0)C.(-1,0)∪(4,+∞)D.(-∞,0)∪(4,+∞)答案C解析∵点(1,1)在圆x2+y2+ax+a=0外,∴a2-4a>0,且12+12+a+a>0,解得-1<a <0或a>4.∴实数a的取值范围为(-1,0)∪(4,+∞).故选C.2.(2023·重庆九龙坡期中)在平面直角坐标系xOy中,已知P(-2,4),Q(2,6)两点,若圆M 以PQ为直径,则圆M的标准方程为()A.x2+(y+5)2=5B.x2+(y-5)2=5C.x2+(y+5)2=25D.x2+(y-5)2=25答案B解析因为圆M以PQ为直径,所以圆心M的坐标为(0,5),半径为|MQ|=(0-2)2+(5-6)2=5,所以圆M的标准方程为x2+(y-5)2=5.故选B. 3.(2024·河南洛阳阶段考试)方程x2+y2+2x-m=0表示一个圆,则m的取值范围是() A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]答案A解析由方程x2+y2+2x-m=0,可化为(x+1)2+y2=m+1,要使得方程x2+y2+2x-m=0表示一个圆,则满足m+1>0,解得m>-1,所以m的取值范围为(-1,+∞).故选A. 4.(2024·山东淄博淄川区期末)圆(x+2)2+(y-12)2=4关于直线x-y+6=0对称的圆的方程为()A.(x+6)2+(y+4)2=4B.(x-4)2+(y+6)2=4C.(x-4)2+(y-6)2=4D.(x-6)2+(y-4)2=4答案D解析由圆的方程(x+2)2+(y-12)2=4可得,圆心坐标为(-2,12),半径为2,由题意可得关于直线x-y+6=0对称的圆的圆心为(-2,12)关于直线对称的点,半径为2,设所求圆的圆心为(a,b),-b+122+6=0,1,解得a=6,b=4,故圆的方程为(x-6)2+(y-4)2=4.故选D.5.点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是() A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2x D.y2=-2x答案B解析∵|PA |=1,∴点P 和圆心的距离恒为2,又圆心坐标为(1,0),设P (x ,y ),∴由两点间的距离公式,得(x -1)2+y 2=2.故选B.6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为()A .7B .6C .5D .4答案B解析∵在Rt △APB 中,原点O 为斜边中点,|AB |=2m (m >0),∴|OC |-r ≤m =|OP |≤|OC |+r ,又C (3,4),r =1,∴4≤|OP |≤6,即4≤m ≤6.故选B.7.若点P 为圆x 2+y 2=1上的一个动点,A (-1,0),B (1,0)为两个定点,则|PA |+|PB |的最大值为()A .2B .22C .42D .4答案B解析由已知,得线段AB 为圆的直径.所以|PA |2+|PB |2=4,由基本不等式,得≤|PA |2+|PB |22=2,所以|PA |+|PB |≤22,当且仅当|PA |=|PB |=2时,等号成立.故选B.8.(2023·内蒙古赤峰模拟)已知圆O :x 2+y 2=1,点P (x 0,y 0)是直线l :3x +2y -4=0上的动点,若在圆O 上总存在不同的两点A ,B ,使得直线AB 垂直平分OP ,则y 0的取值范围为()AB ,2413C-1013,D.-1013,答案C解析在圆O 上总存在不同的两点A ,B 使得AB 垂直平分OP .若P 为直线l 与y 轴的交点,得P (0,2),此时圆O 上不存在不同的两点A ,B 满足条件;若P为直线l 与x 轴的交点,得此时直线AB 的方程为x =23,满足条件,y 0=0;当直线AB 的斜率存在且不为0时,∵AB ⊥OP ,k OP =y 0x 0,∴k AB =-x 0y 0,∴直线AB 的方程为y -y 02=-化为2x 0x +2y 0y-x 20-y 20=0,由圆心到直线AB 的距离d =x 20+y 202<1,得x 20+y 20<4,又3x 0+2y 0-4=0,化为13y 20-16y 0-20<0,解得-1013<y 0<2,∴y 0-1013,故选C.二、多项选择题9.已知△ABC 的三个顶点为A (-1,2),B (2,1),C (3,4),则下列关于△ABC 的外接圆圆M 的说法正确的是()A .圆M 的圆心坐标为(1,3)B .圆M 的半径为5C .圆M 关于直线x +y =0对称D .点(2,3)在圆M 内答案ABD解析设△ABC 的外接圆圆M 的方程为x 2+y 2+Dx +Ey +F =0,+4-D +2E +F =0,+1+2D +E +F =0,+16+3D +4E +F =0,=-2,=-6,=5.所以△ABC 的外接圆圆M 的方程为x 2+y 2-2x -6y +5=0,即(x -1)2+(y -3)2=5.故圆M 的圆心坐标为(1,3),圆M 的半径为5,因为直线x +y =0不经过圆M 的圆心(1,3),所以圆M 不关于直线x +y =0对称.因为(2-1)2+(3-3)2=1<5,故点(2,3)在圆M 内.故选ABD.10.设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π答案ABD解析圆心C 的坐标为(k ,k ),在直线y =x 上,故A 正确;令(3-k )2+(0-k )2=4,化简,得2k 2-6k +5=0,∵Δ=36-40=-4<0,∴2k 2-6k +5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简,得k 2-4k +2=0,∵Δ=16-8=8>0,有两个不相等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD.三、填空题11.(2024·安徽蚌埠模拟)已知定点A (4,0),P 是圆x 2+y 2=4上的一动点,Q 是AP 的中点,则点Q 的轨迹方程是________.答案(x -2)2+y 2=1解析如图所示,设P (x 0,y 0),Q (x ,y ),则x 20+y 20=4①,因为Q 为AP 的中点,所以x ,y 0=2x -4,0=2y②,所以由①②得,(2x -4)2+(2y )2=4,即(x -2)2+y 2=1,所以点Q 的轨迹方程为(x -2)2+y 2=1.12.(2023·广东湛江三模)已知圆C 过点A (-2,0),B (2,4),当圆心C 到原点O 的距离最小时,圆C 的标准方程为________.答案(x -1)2+(y -1)2=10解析由A (-2,0),B (2,4),可得线段AB 中点的坐标为(0,2),又k AB =4-02-(-2)=1,所以AB 垂直平分线的方程为y =-x +2,则圆心C 在线段AB 的垂直平分线y =-x +2上,当圆心C 到原点O 的距离最小时,则OC 垂直于直线y =-x +2,则OC ∥AB ,所以直线OC的方程为y =x ,=x ,=-x +2=1,=1,所以圆心C (1,1),又半径r 2=|AC |2=(-2-1)2+(0-1)2=10,所以圆C 的标准方程为(x -1)2+(y -1)2=10.13.(2024·福建泉州期中)已知点P (m ,n )在圆C :(x -2)2+(y -2)2=9上运动,则(m +2)2+(n +1)2的最大值为________.答案64解析由题意得,圆心C (2,2),半径r =3.(m +2)2+(n +1)2表示圆C 上的点P 到点M (-2,-1)的距离的平方,因为|CM |=5,所以|PM |max =5+3=8,即(m +2)2+(n +1)2的最大值为64.14.已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|PA |+|PQ |的最小值是________.答案25解析因为圆C :x 2+y 2-4x -2y =0,故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ),+n +22+2=0,1,=-4,=-2,故A ′(-4,-2).由对称性可知|PA |+|PQ |=|A ′P |+|PQ |≥|A ′Q |≥|A ′C |-r =2 5.四、解答题15.(2023·广东佛山期中)已知圆C 过点A (4,0),B (0,4),且圆心C 在直线l :x +y -6=0上.(1)求圆C 的方程;(2)若从点M (4,1)发出的光线经过直线y =-x 反射,反射光线l 1恰好平分圆C 的圆周,求反射光线l 1的一般方程.解(1)由A (4,0),B (0,4),得直线AB 的斜率为k AB =0-44-0=-1,线段AB 的中点D (2,2),所以k CD =1,直线CD 的方程为y -2=x -2,即y =x ,+y -6=0,=x ,=3,=3,即C (3,3),所以半径r =|AC |=(4-3)2+(0-3)2=10,所以圆C 的方程为(x -3)2+(y -3)2=10.(2)由l 1恰好平分圆C 的圆周,得l1经过圆心C (3,3),设点M 关于直线y =-x 的对称点N (x ,y ),则直线MN 与直线y =-x 垂直,且线段MNy =-x 上,则有(-1)=-1,=-x +42,=-1,=-4,所以N (-1,-4),所以直线CN 即为直线l 1,且k l 1=k CN =3-(-4)3-(-1)=74,反射光线l 1的方程为y -3=74(x -3),即7x -4y -9=0.16.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A ,B ,C 三点的圆过定点.解由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),由题意可得Δ=m 2-8m >0.则m <0或m >8,x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M -14,,半径r =|CM |=174,+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0,将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0,整理,得x 2+y 2-y -m (x +2y -2)=0.2+y 2-y =0,+2y -2=0,=0,=1=25,=45.故过A ,B ,C 三点的圆过定点(0,1)17.(多选)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是()A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为42答案ACD解析因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在直线y =-x 上,故A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入这两个方程可知其在圆C 上,故C 正确;由C 项知,它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.故选ACD.18.(多选)(2023·浙江温州期末)已知圆C :(x -2)2+(y -3)2=1,点M (4,2),点P 在圆C 上,O 为原点,则下列命题正确的是()A .M 在圆上B .线段MP 的长度的最大值为5+1C .当直线MP 与圆C 相切时,|MP |=2D .MO →·MP →的最大值为25+6答案BCD解析将M (4,2)代入圆的方程,(4-2)2+(2-3)2=5>1,所以M 在圆外,A 错误;线段MP的长度的最大值为|MC |+1=(4-2)2+(2-3)2+1=5+1,B 正确;当直线MP 与圆C 相切时,|MC |2=|MP |2+1=[(4-2)2+(2-3)2]2,∴|MP |=2,C 正确;设动点P (x ,y ),点P 的轨迹是圆心为(2,3),半径为1的圆,x =2+cos θ,y =3+sin θ,又M (4,2),所以MO →·MP →=(-4,-2)·(x -4,y -2)=-4(x -4)+(-2)·(y -2)=-4x -2y +20,因为x =2+cos θ,y =3+sin θ,所以MO →·MP →=-4cos θ-2sin θ+6=25sin(θ+φ)+6,θ∈[0,2π),且sin φ=-255,cos φ=-55,则MO →·MP →的最大值为25+6,D 正确.故选BCD.。
高中数学:第四章 圆与方程
知识网络
要点归纳
题型研修
题型研修
第四章 圆与方程
例 2 如图所示,在平面直角坐标系 xOy 中,已知圆 C1:(x+ 3)2+(y-1)2=4 和圆 C2:(x-4)2+(y-5)2=4.
(1)若直线 l 过点 A(4,0),且被圆 C1 截得的弦长为 2 3,求 直线 l 的方程;
知识网络
要点归纳
题型研修
题型研修
第四章 圆与方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直 的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截 得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件 的点P的坐标.
解 (1)由于直线 x=4 与圆 C1 不相交, 所以直线 l 的斜率存 在.设直线 l 的方程为 y=k(x-4),圆 C1 的圆心到直线 l 的距离为 d,因为直线 l 被圆 C1 截得的弦长为 2 3,所以 d = 22- 32 = 1. 由 点 到 直 线 的 距 离 公 式 得 d =
知识网络 要点归纳 题型研修
要点归纳
第四章 圆与方程
(3)求圆的方程常用待定系数法,此时要善于根据已知条件 的特征来选择圆的方程.如果已知圆心或半径长,或圆心 到直线的距离,通常可用圆的标准方程;如果已知圆经过 某些点,通常可用圆的一般方程. 2.点与圆的位置关系 (1)点在圆上 ①如果一个点的坐标满足圆的方程,那么该点在圆上. ②如果点到圆心的距离等于半径,那么点在圆上.
题型研修
要点归纳
题型研修
第四章 圆与方程
跟踪演练 1 已知圆经过点 A(2,-1),圆心在直线 2x+y =0 上且与直线 x-y-1=0 相切,求圆的方程.
解 法一 设圆的方程为 x2+y2+Dx+Ey+F=0,
高考数学第51讲 圆的标准方程和一般方程
一、圆的方程的三种形式 (1)圆的标准方程: (x -a )2+(y -b )2=r 2,方程表示圆心为(a ,b ),半径为r 的圆. (2)圆的一般方程:对于方程x 2+y 2+Dx +Ey +F =0 ①当D 2+E 2-4F >0时,表示圆心为 (-D 2,-E 2),半径为12D 2+E 2-4F 的圆; ②当D 2+E 2-4F =0时,表示一个点 (-D 2,-E 2);③当D 2+E 2-4F <0时,它不表示任何图形. (3)以A (x 1,y 1),B (x 2,y 2)为直径的两端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. 二、点与圆的位置关系圆的标准方程(x -a )2+(y -b )2=r 2,圆心A (a ,b ),半径r .若点M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2; 若点M (x 0,y 0)在圆外, 则(x 0-a )2+(y 0-b )2>r 2; 若点M (x 0,y 0)在圆内, 则(x 0-a )2+(y 0-b )2<r 2.三、在求圆的方程时,常用到圆的以下几个性质:①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线.的圆的方程是( )A.(x -1)2+(y -1)2=1B.(x +1)2+(y +1)2=1C.(x +1)2+(y +1)2=2D.(x -1)2+(y -1)2=2 【解析】圆的半径r =2211 =2, ∴圆的方程为(x -1)2+(y -1)2=2.答案D 【拓展练习】1.(2016·浙江文10)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________.半径是________. 【解析】由已知方程表示圆,则a 2=a +2,解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0,化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,半径为5的圆. 2.(2015·江苏文10)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________. 【解析】直线mx -y -2m -1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r =(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x -1)2+y 2=2.(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量.(2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可. 【例2】(2015·广东深圳模拟11)圆心在直线要点 梳 理 用圆的标准方程直接求圆方程 待定系数法求圆方程 考点剖析第51讲 圆的标准方程和一般方程x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为____________. 【解析】设所求圆的标准方程为 (x -a )2+(y -b )2=r 2,由题意得222222(2)(3),(2)(5),230.a b r a b r a b ⎧-+--=⎪--+--=⎨⎪--=⎩解得 21, 2,10.a b r =-⎧⎪=-⎨⎪=⎩故所求圆的方程为(x +1)2+(y +2)2=10. 【拓展练习】3.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2)的圆方程为 。
高考数学知识点:圆的标准方程与一般方程_知识点总结
高考数学知识点:圆的标准方程与一般方程_知识点总结
高考数学知识点:圆的标准方程与一般方程圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。
定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。
圆的一般方程:
圆的一般方程
当>0时,表示圆心在,半径为的圆;
当=0时,表示点;
当<0时,不表示任何图形。
圆的定义的理解:
(1)定位条件:圆心,高考历史;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件
标准方程
一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点。
【高考数学】秒杀圆的方程
第1页共5页
另解:线段 AB 的中点 P' (5 2 , 0 1) ,即 P' ( 3 , 1) . 直线 AB 的斜率 k 1 0 1 .
22
22
2 5 7
所以弦
AB
的垂直平分线的方程为
y
1 2
7(x
3 2
)
,即
7x
y
10
0
.解方程组
x 7
3y 10 0 y 10 0
,得
x y
1 3
,
即圆心 P(1, 3) .圆的半径 r (a 5)2 b2 (1 5)2 (3)2 5 .∴ 圆的标准方程为 (x 1)2 ( y 3)2 25 .
例 5.求与 x 轴相切,圆心在直线 3x y 0 上,且被直线 y x 截得的弦长等于 2 7 的圆的方程.
7
例 4:一个圆经过点 A(5, 0) 与 B(2,1) ,圆心在直线 x 3y 10 0 上,求此圆的方程.
解:设圆心
P(a,
b)
,则
a
3b (a
10 5)2 b
0
2
, (a 2)2 (b 1)2
a 1 解得 b 3 .
圆的半径 r (a 5)2 b2 (1 5)2 (3)2 5 .∴ 圆的标准方程为 (x 1)2 ( y 3)2 25 .
2
2 2
(1)圆的一般方程体现了圆方程的代数特点:x2、y2 项系数相等且不为零 没有 xy 项
(2)当 D2+E2-4F=0 时,方程(*)表示点(- D ,- E );当 D2+E2-4F<0 时,方程(*)不表示任何
2
2
图形
(3)根据条件列出关于 D、E、F 的三元一次方程组,可确定圆的一般方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
1.圆心为点(0,1),半径为 2 的圆的标准方程为( A.(x-1)2+y2=4 C.x2+(y-1)2=4
).B B.x2+(y-1)2=2 D.(x-1)2+y2=2
2.圆(x+2)2+y2=5 关于直线 y=x 对称的圆的方程为()B A.(x-2)2+y2=5 C.(x+2)2+(y+2)2=5 B.x2+(y-2)2=5 D.x2+(y+2)2=2
3.已知圆 C 与直线 x-y=0 及 x-y-4=0 都相切,圆心在直线 x+y=0 上,则圆 C 的方程 为( ).B B.(x-1)2+(y+1)2=2 D.(x+1)2+(y+1)2=2
A.(x+1)2+(y-1)2=2 C.(x-1)2+(y-1)2=2
4.经过点 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上的圆的方程为______________. 2 2 (x-4) +(y-5) =10。 D-8 E-10 F31
*5.(2011· 全国新课标)在平面直角坐标系 xOy 中,曲线 y=x2-6x+1 与坐标轴的交点都在圆 C 上.求圆 C 的方程;(x - 3)² + (y - 1)² = 9
直线与圆的位置Leabharlann 系1. 设直线:Ax+By+C=0(A2+B2≠ 0) 圆:(x-a)2+(y-b)2=r2(r>0) 设 d 为圆心(a,b)到直线的距离,联立方程组, 消元得到一次二元方程,看∆ 2. 求圆的切线方程的方法: 1) 设切点,用切线公式 2) 设有关点,利用向量的数量积等于零 3) 设切线方程,利用∆ 4) 设切线斜率,利用圆心到直线的距离等于半径 弦长:1)几何法:利用半径 r、弦心距 d 和弦长的一半构成直角三角形,结合勾股定理进行 求解. 2)弦长公式:和椭圆的一样 1.求过点 A(2, 4) 向圆 x 2 y 2 4 所引的切线方程. 几何法 相交 相切 相离 d>r d=r d<r 代数法 ∆> 0 ∆= 0 ∆< 0
3x-4y+10=0 或 x=2
2.直线 y=k(x-2)+2 与圆 x2+y2-2x-2y=0 相切,则 k 的值是()B A.1B.-1C.不等于±1
D.不存在
2 2 3..若直线 x y 2 被圆 ( x a) y 4 所截得的弦长为 2 2 ,则实数 a 的值为()D
A. 1 或 3
B. 1 或 3
C. 2 或 6
D. 0 或 4
4. 直线 x 2 y 3 0 与圆 ( x 2) ( y 3) 9 交于 E , F 两点, 则 EOF( O 是原点)
2 2
的面积为()
3 A. 2
3 B. 4
C. 2 5
6 5 D. 5
*5.若直线 y x b 与曲线 y 3 4 x x 2 有公共点,则 b 的取值范围是.[1-2 2 ,3]
圆的方程
圆的方程的求法 1. 待定系数法: 1) 根据题意选择方程的形式--------标准方程(x-a)2+(y-b)2=r2(r>0) 或一般方程 x2+y2+Dx+Ey+F=0。如果已知条件主要涉及圆心和半径,则设标准 方程;如果涉及的是圆上的点,则设一般方程。但已知点的坐标较复杂时,采用一 般式计算过繁,可以采用标准式. 2) 利用已知条件列出关于 a、b、r 或 D、E、F 的方程组 3) 解出 a、b、r 或 D、E、F 2. 几何法:通过研究圆的几何性质,求得圆的基本量(圆心、半径) ,进而求得方程。 注意: 求圆的方程需要三个独立条件, 所以不论设哪一种圆的方程都要列出关于系数的三个