新版浙教版浙江省数学中考复习题选择填空限时练五
推荐精品浙江省中考数学复习题选择填空限时练一新版浙教版
选择填空限时练(一)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.-2的相反数是( )A. B.-2 C.2 D.-2.如图X1-1,下面几何体的俯视图是( )图X1-1图X1-23.[2018·绍兴]绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为 ( )A.1.16×109B.1.16×108C.1.16×107D.0.116×1094.把不等式组的解表示在数轴上,下列选项正确的是( )图X1-35.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( )A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°6.从某市8所学校中抽取共1000名学生进行800米跑达标抽样检测,结果显示该市成绩达标的学生人数超过半数,达标率达到52.5%.如图X1-4①、②反映的是本次抽样中的具体数据.根据数据信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中,高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( )图X1-4A.0个B.1个C.2个D.3个7.如图X1-5,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )图X1-5A.4B.6C.8D.108.已知关于x的方程ax+b=0(a≠0)的解为x=-2,点(1,3)是抛物线y=ax2+bx+c(a≠0)上的一个点,则下列四个点中一定在该抛物线上的是( )图X1-6A.(2,3)B.(0,3)C.(-1,3)D.(-3,3)9.如图X1-6,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于点M,PN⊥y轴于点N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )图X1-710.如图X1-8,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )图X1-8A.2B.3C. D.二、填空题(每小题4分,共24分)11.一组数据2,3,3,5,7的中位数是,方差是.12.如图X1-9是一个斜体的“土”字,AB∥CD,已知∠1=75°,则∠2= °.图X1-913.为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天睡眠时间的众数是小时,中位数是小时.14.如图X1-10,将弧长为6π的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是.图X1-1015.如图X1-11,已知点B,D在反比例函数y=(a>0)的图象上,点A,C在反比例函数y=(b<0)的图象上,AB∥CD∥x 轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD间的距离为1,则a-b的值是.图X1-1116.如图X1-12,点A(2,0),以OA为半径在第一象限内作圆弧AB,使∠AOB=60°,点C为弧AB的中点,D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,若点E落在半径OA上,则点E的坐标为;若点E落在半径OB上,则点E的坐标为.图X1-12 |加加练|1.计算:+20170-(-)-1+3tan30°+.2.解方程:+=3.3.先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=.参考答案1.C2.A3.B4.B5.B6.C7.C8.D9.B10.A11.312.10513.8814.315.1216.(2-2,0)(-1,3-)加加练1.解:原式=2-+1-(-3)+3×+2=6+2.2.解:去分母得x+(-2)=3(x-1),∴2x=1,∴x=.经检验,x=是原方程的解,∴原方程的解为x=.3.解:原式=2b2+a2-b2-(a2-2ab+b2)=a2+b2-a2+2ab-b2=2ab.∵a=-3,b=,∴原式=2×(-3)×=-3.。
浙江省中考数学复习题选择填空限时练三新版浙教版
选择填空限时练(三)[限时:40分钟 满分:54分]、 选择题(每小题 3分,共30分)1.-5 的绝对值等于( )A.5B.-51 1JC.52.下列几何体中,俯视图为三角形的是( )△多6 AABCD图 X3-13.事件:在只装有2个红球和8个黑球的袋子里,摸出一个白球是A. 可能事件C.不可能事件 4.下列运算正确的是( )2、36B.随机事件D.必然事件A. (2a ) =6a2 23 2 5B. -a b • 3ab =-3a bb aC. + =-1D.5.在一次中学生田径运动会上,参加男子跳高的20名运动员的成绩如下表成绩/米 1.551.601.65 1.70 1.751.80人数 4 3 5 6 1 1则这些运动员成绩的众数为( )A.1.55 米B.1.65 米C.1.70 米D.1.80 米6.已知点(-2,y i),(3,y 2)在一次函数y=2x-3的图象上,则y i,y 2,0的大小关系是()为a ,则COS a的值为()A. y i<y2<0B. y i<0<y2C. y2<0<y iD.0<y i<y27.如图X3-2, 一架长2.5米的梯子AB斜靠在墙上已知梯子底端B到墙角C的距离为 1.5米,设梯子与地面所夹的锐角A#B.'8.我们知道方程组D3'的解是t x=亠1尸:1,现给出另一个方程组(3(2x + 3)+4(y-2) = 5, 何肚+巧+ 5(厂2) = &它的解是()图X3-23C.49.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板” •如图X3-3是一个七巧板迷宫,它恰好拼成了一个正方形 ABCD,其中E,P 分别是AD,CD 的中点,一只蚂蚁从点A 处沿图中实线爬行到出口点P 处.若AB=2,则它爬行的最短路程为()图 X3-3B. 1+ ■C. 210. 如图X3-4,在?ABCD 中 , / DAB=60 ,AB=10,AD=6,。
2024年浙江省中考数学模拟练习试卷(原卷版)
2024年浙江省中考数学模拟练习试卷(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b =3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710×4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .198. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A .B .5C .D .二、填空题:本题共6小题,每小题3分,共18分。
浙江初三中考数学专题复习练习题
浙江初三中考数学专题复习练习题本文为浙江初三中考数学专题复习练习题,共收录了一些常见的数学题目,供同学们进行复习练习。
希望同学们能够认真思考并解答这些题目,提高自己的数学水平。
一、选择题1. 设 a>0,若 a 的平方根等于 a,则 a 的值是:A. 0B. 1C. 2D. 32. 已知 2x + 5 = 13,求 x 的值。
A. 2B. 4C. 6D. 83. 如果直线 y = kx + 1 的斜率为 2,那么 k 的值是多少?A. -1/2B. 1/2C. 2D. -24. 若正方形的周长为 16 cm,则它的面积是多少?A. 4 cm²B. 8 cm²C. 16 cm²D. 64 cm²5. 若 a:b = 2:3,b:c = 4:5,则 a:c = ?A. 3:5B. 5:4C. 8:9D. 16:15二、填空题1. 已知两个数的和为 12,差为 4,那么这两个数分别是____和____。
2. 已知三角形 ABC,角 BAC 的度数为 x°,角 CBA 的度数为 2x°,则角 ABC 的度数为____°。
3. 若 a:b = 3:5,且 b = 15,则 a 的值为____。
4. 若 (x+2)(x-3) = 0,则 x 的值为____或____。
5. 若正方形的边长为 a cm,则它的对角线长为____cm。
三、解答题1. 解方程组:{ 2x + 3y = 7{ 4x - 5y = -12. 根据已知条件,填写下表:| a | b | c ||-------|-------|-------|| 2 | ? | 8 ||-------|-------|-------|| 10 | ? | 5 ||-------|-------|-------|3. 已知直角三角形的斜边长为 5 cm,一条直角边长为 3 cm,求另一条直角边长。
浙江省中考数学复习题选择填空限时练二新版浙教版
选择填空限时练(二)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A.3.9×104B.3.94×104C.39.4×103D.4.0×1042.下列运算正确的是( )A.(-3)2=-9B.(-1)2015×1=-1C.-5+3=8D.-|-2|=23.下列图形中是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆4.不等式3x<2(x+2)的解是( )A.x>2B.x<2C.x>4D.x<45.已知一组数据0,-1,1,2,3,则这组数据的方差为( )A.0B.1 D.26.在Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为( )A.10B.3C.4D.57.在☉O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为( )A.30°B.45°C.60°D.90°8.已知点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是( )A.AB2=AC2+BC2B.BC2=AC·BA9.如图X2-1,D是等边三角形ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F 分别在AC和BC上,则CE∶CF= ( )图X2-110.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0-x1)(x0-x2)<0.其中正确的是( ) A.①③④ B.①②④C.①②③D.②③二、填空题(每小题4分,共24分)11.请写出一个解为x=1的一元一次方程: .12.计算:2tan60°+(20-1= .13.二次函数y=x2+4x+5(-3≤x≤0)的最大值是,最小值是.14.当1<a<2时,+|1-a|= .15.如图X2-2,已知点A1,A2,…,A n均在直线y=x-1上,点B1,B2,…,B n均在双曲线,并且满足:A1B1⊥x轴,B1A2⊥y 轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=-1,则a3= ,a2015= .图X2-216.如图X2-3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是.图X2-3参考答案1.B2.B3.A4.D5.D6.D7.D8.C9.A10.B11.x-1=0(答案不唯一)12.113.5 114.115216 1。
2024-2025学年浙教版中考数学模拟试卷及答案
2024-2025学年浙教版中考数学模拟试卷一、单选题(每题3分)1. 题目: 解方程组:1.(2x +3y =12)2.(x −y =1)答案:(x =3,y =2)2. 题目: 解二次方程:(x 2−5x +6=0)答案:(x =2)或(x =3)3. 题目: 解方程组:1.(3x −4y =16)2.(2x +y =10)答案:(x =5611),(y =−211)4. 题目: 解二次方程:(4x 2−9=0)答案:(x =−32)或(x =32)5. 题目: 解三次方程:(x 3−2x 2−x +2=0)答案:(x =−1),(x =1), 或(x =2)二、多选题(每题4分)题目1 (4分):下列哪些选项是代数式的正确表述?(A)3x + 4y - z (B) 5 * 6 + 2 / x (C) 2x^2 - 3x + 4 (D) a / b + c答案: (A), (C)题目2 (4分):下面哪一组线性方程有唯一解?(A)x + y = 3; x - y = 1 (B) 2x + 3y = 5; 4x + 6y = 10 (C) x + y = 2; 2x + 2y = 4 (D) 3x - 2y = 1;6x - 4y = 2答案: (A)题目3 (4分):在等腰三角形ABC中,AB=AC,角B和角C的度数可能是什么?(A)50°和 50° (B) 45°和 45° (C) 60°和 60° (D) 70°和 70°答案: (A), (B), (C), (D)题目4 (4分):抛掷一枚公平的骰子两次,得到两个点数之和为7的概率是多少?(A)1/6 (B) 1/9 (C) 1/12 (D) 1/18答案: (A)题目5 (4分):下列哪些变换可以保持图形的形状和大小不变?(A) 平移 (B) 旋转 (C) 缩放 (D) 反射答案: (A), (B), (D)请仔细审题并作答,祝你考试顺利!三、填空题(每题3分)1. 计算:((23)2−4×6),答案:402. 解方程:(2x +3=7),求 x 的值,答案:23. 若 a:b = 3:4,且 b = 12,求 a 的值,答案:94. 一个正方形的周长是 20 厘米,求它的面积,答案:25 平方厘米5. 在直角三角形中,一条直角边长为 3 厘米,另一条直角边长为 4 厘米,求斜边长,答案:5 厘米四、解答题(每题8分)题目1已知函数(f (x )=2x 2−3x +4),求函数的最小值及对应的(x )值。
新版浙教版浙江省数学中考复习题选择填空限时练二
选择填空限时练(二)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A.3.9×104B.3.94×104C.39.4×103D.4.0×1042.下列运算正确的是( )A.(-3)2=-9B.(-1)2015×1=-1C.-5+3=8D.-|-2|=23.下列图形中是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆4.不等式3x<2(x+2)的解是( )A.x>2B.x<2C.x>4D.x<45.已知一组数据0,-1,1,2,3,则这组数据的方差为( )A.0B.1C.D.26.在Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为( )A.10B.3C.4D.57.在☉O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为( )A.30°B.45°C.60°D.90°8.已知点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是( )A.AB2=AC2+BC2B.BC2=AC·BAC.=D.=9.如图X2-1,D是等边三角形ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F 分别在AC和BC上,则CE∶CF= ( )图X2-1A. B. C. D.10.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0-x1)(x0-x2)<0.其中正确的是( )A.①③④B.①②④C.①②③D.②③二、填空题(每小题4分,共24分)11.请写出一个解为x=1的一元一次方程: .12.计算:2tan60°+(2-)0-()-1= .13.二次函数y=x2+4x+5(-3≤x≤0)的最大值是,最小值是.14.当1<a<2时,代数式+|1-a|= .15.如图X2-2,已知点A1,A2,…,A n均在直线y=x-1上,点B1,B2,…,B n均在双曲线y=-上,并且满足:A1B1⊥x轴,B1A2⊥y 轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=-1,则a3= ,a2015= .图X2-216.如图X2-3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是.图X2-3参考答案1.B2.B3.A4.D5.D6.D7.D8.C9.A10.B11.x-1=0(答案不唯一)12.2-113.5 114.115.216.-1。
浙教版初三数学上册练习题
浙教版初三数学上册练习题在初三学习过程中,数学是一门重要的学科。
为了巩固所学知识并提高解题能力,练习题在学习中发挥着重要的作用。
以下是浙教版初三数学上册的一些练习题,希望能对同学们的学习有所帮助。
一、单项选择题
1. 设a、b、c为实数,且abc ≠ 0,则下列选项中不等式成立的是:
A. a < b < c
B. ab < ac < bc
C. c < b < a
D. bc < ac < ab
2. 下列函数中,是偶函数的是:
A. f(x) = x^3 + x
B. f(x) = |x|
C. f(x) = x^2 - 2
D. f(x) = 1/x
二、填空题
1. 表示-5在数轴上的点对应的坐标是_________。
2. 已知直线y = -2x + 3与x轴交于点A,与y轴交于点B,则点A 的坐标为_________。
三、解答题
1. 甲、乙两人同时往东方向出发,甲的速度为6km/h,乙的速度是
甲的2倍。
若甲、乙的出发地相距80km,多长时间后两人相距100km?
2. 一张长方形桌子一边长6米,一边长8米。
如果要贴一张边长为30cm的正方形贴纸,需要多少个贴纸?
以上只是浙教版初三数学上册的一些练习题,通过这些练习题的完成,同学们可以巩固和运用所学的知识。
希望同学们能够认真对待,
积极解答。
祝大家学业进步!。
浙江省中考数学复习题选择填空限时练(打包9套,Word版,含答案)(已纠错)
选择填空限时练(一)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.-2的相反数是( )A. B.-2 C.2 D.-2.如图X1-1,下面几何体的俯视图是( )图X1-1图X1-23.[2018·绍兴]绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为 ( )A.1.16×109B.1.16×108C.1.16×107D.0.116×1094.把不等式组的解表示在数轴上,下列选项正确的是( )图X1-35.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( )A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°6.从某市8所学校中抽取共1000名学生进行800米跑达标抽样检测,结果显示该市成绩达标的学生人数超过半数,达标率达到52.5%.如图X1-4①、②反映的是本次抽样中的具体数据. 根据数据信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中,高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( )图X1-4A.0个B.1个C.2个D.3个7.如图X1-5,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )图X1-5A.4B.6C.8D.108.已知关于x的方程ax+b=0(a≠0)的解为x=-2,点(1,3)是抛物线y=ax2+bx+c(a≠0)上的一个点,则下列四个点中一定在该抛物线上的是 ( )图X1-6A.(2,3)B.(0,3)C.(-1,3)D.(-3,3)9.如图X1-6,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM ⊥x轴于点M,PN⊥y轴于点N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )图X1-710.如图X1-8,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为 ( )图X1-8A.2B.3C. D.二、填空题(每小题4分,共24分)11.一组数据2,3,3,5,7的中位数是,方差是.12.如图X1-9是一个斜体的“土”字,AB∥CD,已知∠1=75°,则∠2= °.图X1-913.为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:名同学每天睡眠时间的众数是小时中位数是小时14.如图X1-10,将弧长为6π的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB 重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是.图X1-1015.如图X1-11,已知点B,D在反比例函数y=(a>0)的图象上,点A,C在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD间的距离为1,则a-b的值是.图X1-1116.如图X1-12,点A(2,0),以OA为半径在第一象限内作圆弧AB,使∠AOB=60°,点C为弧AB 的中点,D为半径OA上一动点(不与点O,A重合),点A关于直线CD的对称点为E,若点E落在半径OA上,则点E的坐标为;若点E落在半径OB上,则点E的坐标为.图X1-12|加加练|1.计算:+20170-(-)-1+3tan30°+.2.解方程:+=3.3.先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=.参考答案1.C2.A3.B4.B5.B6.C7.C8.D9.B10.A11.312.10513.8814.315.1216.(2-2,0)(-1,3-)加加练1.解:原式=2-+1-(-3)+3×+2=6+2.2.解:去分母得x+(-2)=3(x-1),∴2x=1,∴x=.经检验,x=是原方程的解,∴原方程的解为x=.3.解:原式=2b2+a2-b2-(a2-2ab+b2)=a2+b2-a2+2ab-b2=2ab.∵a=-3,b=,∴原式=2×(-3)×=-3.选择填空限时练(二)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A.3.9×104B.3.94×104C.39.4×103D.4.0×1042.下列运算正确的是( )A.(-3)2=-9B.(-1)2015×1=-1C.-5+3=8D.-|-2|=23.下列图形中是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆4.不等式3x<2(x+2)的解是( )A.x>2B.x<2C.x>4D.x<45.已知一组数据0,-1,1,2,3,则这组数据的方差为( )A.0B.1C.D.26.在Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为( )A.10B.3C.4D.57.在☉O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为( )A.30°B.45°C.60°D.90°8.已知点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是( )A.AB2=AC2+BC2B.BC2=AC·BAC.=D.=9.如图X2-1,D是等边三角形ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE∶CF= ( )图X2-1A. B. C. D.10.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0-x1)(x0-x2)<0.其中正确的是( )A.①③④B.①②④C.①②③D.②③二、填空题(每小题4分,共24分)11.请写出一个解为x=1的一元一次方程: .12.计算:2tan60°+(2-)0-()-1= .13.二次函数y=x2+4x+5(-3≤x≤0)的最大值是,最小值是.14.当1<a<2时,代数式+|1-a|= .15.如图X2-2,已知点A1,A2,…,A n均在直线y=x-1上,点B1,B2,…,B n均在双曲线y=-上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=-1,则a3= ,a2015= .图X2-216.如图X2-3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是.图X2-3参考答案1.B2.B3.A4.D5.D6.D7.D8.C9.A10.B11.x-1=0(答案不唯一)12.2-113.5 114.115.216.-1选择填空限时练(三)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.-5的绝对值等于( )A.5B.-5C. D.-2.下列几何体中,俯视图为三角形的是( )图X3-13.事件:在只装有2个红球和8个黑球的袋子里,摸出一个白球是( )A.可能事件B.随机事件C.不可能事件D.必然事件4.下列运算正确的是( )A.(2a2)3=6a6B.-a2b2·3ab3=-3a2b5C.+=-1D.·=-15.在一次中学生田径运动会上,参加男子跳高的20名运动员的成绩如下表:A.1.55米B.1.65米C.1.70米D.1.80米6.已知点(-2,y1),(3,y2)在一次函数y=2x-3的图象上,则y1,y2,0的大小关系是( )A.y1<y2<0B.y1<0<y2C.y2<0<y1D.0<y1<y27.如图X3-2,一架长2.5米的梯子AB斜靠在墙上,已知梯子底端B到墙角C的距离为1.5米,设梯子与地面所夹的锐角为α,则cosα的值为( )图X3-2A. B. C. D.8.我们知道方程组的解是现给出另一个方程组它的解是( )A. B.C. D.9.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图X3-3是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中E,P分别是AD,CD的中点,一只蚂蚁从点A处沿图中实线爬行到出口点P处.若AB=2,则它爬行的最短路程为( )图X3-3A. B.1+C.2D.310.如图X3-4,在▱ABCD中,∠DAB=60°,AB=10,AD=6,☉O分别切边AB,AD于点E,F,且圆心O 恰好落在DE上.现将☉O沿AB方向滚动到与边BC相切(点O在▱ABCD的内部),则圆心O移动的路径长为( )图X3-4A.4B.6C.7-D.10-2二、填空题(每小题4分,共24分)11.分解因式:ab+ac= .12.小红同学5月份各项消费情况的扇形统计图如图X3-5,其中小红在学习用品上支出100元,则在午餐上支出元.图X3-513.如图X3-6,在☉O中,C为优弧AB上一点,若∠ACB=40°,则∠AOB= 度.图X3-614.甲、乙两工程队分别承接了250米,150米的道路铺设任务,已知乙比甲每天多铺设5米,甲完成铺设任务的时间是乙的2倍.设甲每天铺设x米,则根据题意可列出方程: .15.如图X3-7,点A在第一象限,作AB⊥x轴,垂足为点B,反比例函数y=的图象经过AB的中点C,过点A作AD∥x轴,交该函数图象于点D.E是AC的中点,连结OE,将△OBE沿直线OE对折到△OB'E,使OB'恰好经过点D,若B'D=AE=1,则k的值是.图X3-716.如图X3-8,矩形ABCD和正方形EFGH的中心重合,AB=12,BC=16,EF=,分别延长FE,GF,HG和EH交AB,BC,CD,AD于点I,J,K,L.若tan∠ALE=3,则AI的长为,四边形AIEL的面积为.图X3-8 |加加练|1.计算:(-2018)0+-9×.2.化简:(a+2)(a-2)-a(a+1).3.化简:+.参考答案1.A2.C3.C4.C5.C6.B7.A8.D9.B[解析] ∵正方形ABCD,E,P分别是AD,CD的中点,AB=2,∴AE=DE=DP=1,∠D=90°,∴EP==,∴蚂蚁从点A沿图中实线爬到出口点P处,爬行的最短路程为AE+EP=1+.故选B.10.B[解析] 连结OA,OF.∵AB,AD分别与☉O相切于点E,F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°.在Rt△ADE中,AD=6,∠ADE=30°,∴AE=AD=3,∴OE=AE·=.∵AD∥BC,∠DAB=60°,∴∠ABC=120°.设当运动停止时,☉O与BC,AB分别相切于点M,N,连结ON,OM,OB.则∠BON=30°,且ON=,∴BN=ON·tan 30°=1,EN=AB-AE-BN=10-3-1=6.∴圆心O移动的路径长为6.11.a(b+c)12.20013.8014.=15.12[解析] 如图,过D作DF⊥OB于F,设B'E与AD交于点G.∵AB⊥x轴,AD∥x轴,∴四边形ABFD是矩形,由折叠可得,∠B'=90°=∠A.又∵B'D=AE=1,∠DGB'=∠EGA,∴△DB'G≌△EAG,∴DG=EG,B'G=AG,∴AD=B'E=BE.又∵E是AC的中点,C是AB的中点,∴AE=CE=1,AC=BC=2,∴BE=3=AD,AB=4=DF.设C(a,2),则D(a-3,4).∵反比例函数y=的图象经过点C,D,∴2a=4(a-3),解得a=6,∴C(6,2),∴k=6×2=12.16.5[解析] 如图,过点E作EM⊥AB于点M,过点F作FN⊥AB于点N,过点E作EA1⊥AD于点A1,交FN于Q,过点G作GA2⊥AD,过点H作HP⊥A1E于P,∵tan∠1=3,∴tan∠2=3.又∵EF=,∴EQ=1,QF=3.∵矩形ABCD与正方形EFGH的中心重合,∴AA1=A2D=6,A1A2=4=PQ.同理得AN=8,NB=4,EM=6.易证△IME∽△EQF,∴=,∴IM=2,∴IB=7,∴AI=5.∴A1E=7,∴A1L=,∴四边形AIEL的面积为+=×(5+7)×6+×7×=.加加练1.解:原式=1+2-9×=2.2.解:原式=a2-4-a2-a=-4-a.3.解:原式===a.选择填空限时练(四)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.下列四个数:-1,0,,3.14,其中为无理数的是( )A.-1B.0C.D.3.142.下列计算正确的是( )A.x3+x4=x7B.x3-x4=x-1C.x3·x4=x7D.x3÷x4=x3.如图X4-1所示的支架的主视图是 ( )图X4-1图X4-24.如图X4-3,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )图X4-3A. B.C. D.5.如图X4-4,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于( )图X4-4A.130°B.140°C.150°D.160°6.若a-b=2ab,则-的值为 ( )A.-2B.-C.D.27.若将直尺的0 cm刻度线与半径为5 cm的量角器的0°线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图X4-5),则直尺上的10 cm刻度线对应量角器上的度数约为( )图X4-5A.90°B.115°C.125°D.180°8.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:A.47,49B.48,49C.47.5,49D.48,509.如图X4-6,在矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C'处;作∠BPC'的平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的大致图象是 ( )图X4-6图X4-710.如图X4-8,已知在平面直角坐标系中,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点,直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E.设直线l1,l2,l3围成的三角形的面积为S1,直线l2,l3,l4围成的三角形的面积为S2,且S2=S1,则∠BOA的度数为( )图X4-8A.15°B.30°C.15°或30°D.15°或75°二、填空题(每小题4分,共24分)11.分解因式:a2-4b2= .12.二次根式中,x的取值范围是.13.如图X4-9,把正三角形ABC的外接圆对折,使点A落在的中点F处,若BC=6,则折痕在△ABC内的部分DE的长为.图X4-914.如图X4-10,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.图X4-1015.如图X4-11,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;若P(m,2)在第3段抛物线C3上,则m= .图X4-1116.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中较大的数,如max{2,4}=4.按照这个规定,方程max{x,-x}=的解为.|加加练|1.计算:(-)2+|-4|×2-1-(-1)0.2.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.图X4-123.化简:+.参考答案1.C2.C3.D4.A5.C6.A7.B8.B9.D10.D11.(a+2b)(a-2b)12.x≤13.414.15.7或816.x=1+或x=-1加加练1.解:原式=3+4×-1=3+2-1=4.2.解:去括号,得3x-1≥2x-2.移项、合并同类项,得x≥-1.把不等式的解集在数轴上表示出来,如图:3.原式=+=+=.选择填空限时练(五)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.下列四个实数,2,0,-1,其中负数是( )A. B.2 C.0 D.-12.下列计算,结果等于a4的是( )A.a+3aB.a5-aC.(a2)2D.a8÷a23.如图X5-1所示,该圆柱体的左视图是( )图X5-1图X5-24.如图X5-3,△ABC内接于☉O,∠A=68°,则∠OBC等于( )图X5-3A.22°B.26°C.32°D.34°5.某校数学兴趣小组在一次数学课外活动中,随机抽查了该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表:A.38分B.38.5分C.39分D.39.5分6.用配方法解一元二次方程x2-6x-10=0,变形正确的是 ( )A.(x-3)2=19B.(x+3)2=19C.(x-3)2=1D.(x+3)2=17.不等式组的解集是( )A.x≥2B.1<x<2C.1<x≤2D.x≤28.已知点(-1,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y19.如图X5-4,AB是半圆O的直径,半径OC⊥AB于点O,点D是的中点,连结CD,AD,OD,给出以下四个结论:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是( )图X5-4A.①③B.②④C.①④D.①②③10.如图X5-5,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,AE,FG分别交射线CD于点P,H,连结AH.若P是CH的中点,则△APH的周长为 ( )图X5-5A.15B.18C.20D.24二、填空题(每小题4分,共24分)11.分解因式:a2-4a= .12.一个布袋里装有10个只有颜色不同的球,其中红球有m个,从布袋中随机摸出一个球记下颜色后放回、搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值为.13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000元降到3600元.已知5月份降低的百分率是4月份降低的百分率的2倍,设4月份降低的百分率为x,根据题意可列方程: .14.如图X5-6,用一个半径为60 cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为cm.图X5-615.如图X5-7,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE.若∠B=30°,则∠CDE= °.图X5-716.如图X5-8,直角坐标系xOy中,直线y=-x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=-的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则CD的长为.图X5-8|加加练|1.计算:(-2)0-()2+|-1|.2.解不等式组:3.解方程:-1=.参考答案1.D2.C3.C4.A5.C6.A7.C8.B9.C10.C11.a(a-4)12.313.5000(1-x)(1-2x)=360014.2515.4516.5加加练1.解:原式=1-6+1=-4.2.解:解不等式①,得x>-3,解不等式②,得x<5,∴不等式组的解是-3<x<5.3.解:原方程可化为2-(x-2)=3x,解得x=1.经检验,x=1是原方程的解.所以原方程的解是x=1.选择填空限时练(六)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.下列四个数中,是正整数的是 ( )A.-1B.0C. D.12.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是( )A.6.8×109元B.6.8×108元C.6.8×107元D.68×107元3.下列事件中,必然事件是 ( )A.今年夏季的雨量一定多B.下雨天每个人都打着伞C.二月份有30天D.我国冬季的平均气温比夏季的平均气温低4.如图X6-1,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )图X6-1A.30°B.45°C.90°D.135°5.一次函数y=2x-2的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是( )图X6-2A.1个B.2个C.3个D.4个7.对于反比例函数y=,下列说法不正确的是( )A.点(-3,-1)在它的图象上B.它的图象在第一,三象限C.y随x的增大而减小D.当x>1时,y<38.如图X6-3,在菱形ABCD中,对角线AC,BD相交于点O,E为BC的中点,则下列式子一定成立的是( )图X6-3A.AC=2OEB.BC=2OEC.AD=OED.OB=OE9.如图X6-4,将长为2,宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n ≠( )图X6-4A.2B.3C.4D.510.小阳在如图X6-5①的扇形舞台上沿O➝M➝N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图X6-5②,则这个固定位置可能是图X6-5①中的( )图X6-5A.点QB.点PC.点MD.点N二、填空题(每小题4分,共24分)11.使代数式有意义的x的取值范围是.12.东山茶厂有甲、乙、丙三台包装机,同时分装质量为200克的茶叶.从它们各自分装的茶叶中分别随机抽取了15盒,测得它们的实际质量的方差如下表:, 包装机包装的茶叶质量最稳定13.如图X6-6,l1是反比例函数y=在第一象限内的图象,且过点A(2,1),l2与l1关于x轴对称,那么图象l2的函数解析式为(x>0).图X6-614.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是.15.已知在平面直角坐标系内,以点P(1,2)为圆心,r为半径画圆,☉P与坐标轴恰好有三个交点,那么r的取值是.16.在平面直角坐标系xOy中,抛物线y=-x2+2mx-m2-m+1交y轴于点A,顶点为D,对称轴与x 轴交于点H.(1)顶点D的坐标为(用含m的代数式表示);(2)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,那么m的值为.|加加练|1.计算:3-2-2cos60°+(12-2006)0-|-|.2.先化简,再求值:(1-)÷,其中x请从-2,-1,0,1,2中选一个恰当的数.参考答案1.D2.B3.D4.C5.B6.C7.C8.B9.A10.B11.x≥-112.丙13.y=-14.615.或216.(1)(m,1-m)(2)m=-1或m=-2加加练1.解:原式=-2×+1-=-.2.解:原式=÷=·=x+2.∵x≠0,1,-2,∴x可取-1或2.当x=2时,原式=2+2=4.(或当x=-1时,原式=-1+2=1)选择填空限时练(七)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.计算(-6)+5的结果是( )A.-11B.11C.-1D.12.函数y=中,自变量x的取值范围是( )A.x≠2B.x≥2C.x>2D.x≥-23.在以下“绿色食品”“节能减排”“循环回收”“质量安全”四个标志中,是轴对称图形的是( )图X7-14.如图X7-2是由4个相同的正方体搭成的几何体,则其俯视图是( )图X7-2图X7-35.一个不透明的布袋中有2个白球,3个黑球,除颜色外其他都相同,从中随机摸出一个球,恰好为黑球的概率是( )A. B. C. D.6.如图X7-4,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于( )图X7-4A.8B.10C.12D.187.不等式2(x-1)≥x的解在数轴上表示为( )图X7-58.如图X7-6,已知D,E分别是△ABC的边AB,AC上的点,DE∥BC,且BD=3AD,那么AE∶AC等于( )图X7-6A.2∶3B.1∶2C.1∶3D.1∶49.如图X7-7,已知正方形ABCD的边长为1,分别以顶点A,B,C,D为圆心,1为半径画弧,四条弧交于点E,F,G,H,则图中阴影部分的外围周长为( )图X7-7A.πB.πC.πD.π10.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图X7-8①,②摆放,阴影部分的面积分别为S1和S2,则S1和S2的大小关系是( )图X7-8A.S1=S2B.S1<S2C.S1>S2D.无法确定二、填空题(每小题4分,共24分)11.分解因式:ab-2a= .12.已知一组数据:2,1,-1,0,3,则这组数据的中位数是.13.在同一平面直角坐标系内,将函数y=2x2-3的图象向右平移2个单位,再向下平移1个单位后得到新图象的顶点坐标是.14.如图X7-9,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB'C',连结BB',若∠1=25°,则∠C的度数是.图X7-915.如图X7-10,在平面直角坐标系中,直线y=kx+b与x轴,y轴分别交于点A(4,0),B(0,2),点C为线段AB上任意一点,过点C作CD⊥OA于点D,延长DC至点E使CE=DC,作EF⊥y轴于点F,则四边形ODEF的周长为.图X7-1016.如图X7-11,已知AB,CD是☉O的两条相互垂直的直径,E为半径OB上一点,且BE=3OE,延长CE交☉O于点F,线段AF与DO交于点M,则的值是.图X7-11|加加练|1.计算:-2cos 45°+()-1.2.化简:+.3.求满足不等式组的所有整数解.参考答案1.C2.B3.A4.A5.C6.C7.C8.D9.B10.A11.a(b-2)12.113.(2,-4)14.70°15.816.加加练1.解:原式=2-2×+2=+2.2.解:原式====2.3.解:解x-3(x-2)≤8,得x≥-1,解x-1<3-x,得x<2,所以不等式组的解集为-1≤x<2,其中所有的整数解为-1,0,1.选择填空限时练(八)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.如图X8-1,用圆规比较两条线段A'B'和AB的长短,其中正确的是( )图X8-1A.A'B'>ABB.A'B'=ABC.A'B'<ABD.A'B'≤AB2.如图X8-2,在正方体的一角截去一个小正方体,所得立体图形的主视图是( )图X8-2图X8-33.下列计算正确的是( )A.a-2a=aB.(a2)3=a6C.a2+a3=a5D.a6÷a3=a24.化简的结果是( )A. B.C. D.a+15.若=2,则的值是( )A.3B.-3C. D.6.学生快餐(300 g)营养成分的统计如图X8-4.根据统计图,下列结论错误的是( )图X8-4A.这种快餐中,脂肪有30 gB.这种快餐中,蛋白质含量最多C.表示碳水化合物的扇形的圆心角是144°D.最多的营养成分是最少的8倍7.如图X8-5,数轴上A,B不同两点所表示的数互为相反数,则关于原点位置的说法正确的是( )图X8-5A.可能在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.可能与点A或点B重合8.如图X8-6,圆弧形拱桥的桥顶到水面的距离CD为6 m,桥拱半径OC为4 m,则水面宽AB为( )图X8-6A. mB.2 mC.4 mD.6 m9.如图X8-7,在矩形ABCD中,点E是CD边上的中点,连结AE,取AE中点F,连结FC,FB,若△FCB是等边三角形,则CD∶CF= ( )图X8-7A. B.C.1D.210.如图X8-8,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD 翻折使得B',C'分别落在AB,AC边上(B与B',C与C'分别对应),点D从点B运动至点C,△B'C'D面积的大小变化情况是( )图X8-8A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(每小题4分,共24分)11.请写出一个比-π大的负整数.12.不等式组的解是.13.若一个扇形的圆心角为60°,面积为6π cm2,则这个扇形的半径为cm.14.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图X8-9,在一个路口,一辆长为10 m的大巴车遇红灯后停在距交通信号灯20 m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾x m,若大巴车车顶高于小张的水平视线0.8 m,红灯下沿高于小张的水平视线 3.2 m,若小张能看到整个红灯,则x的最小值为.图X8-915.如图X8-10,在平面直角坐标系中,B(12,4),C(8,0),OA∥BC,OA=BC,过点A作反比例函数y=(k>0),图象交BC于点D,连结OD,则S△OCD= .图X8-1016.在平面直角坐标系中,横坐标与纵坐标都是整数时,我们称这个点为整点,当二次函数y=ax2+bx+c(a≠0)在0≤x≤4,0≤y≤4范围内通过的整点个数大于4时,则a的所有可能值是.图X8-11|加加练|1.计算:20180-2cos 30°+.2.解方程:+=0.3.[2018·沈阳]经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.参考答案1.A2.C3.B4.C5.A6.D7.B8.C9.B10.D11.-3或-2或-112.0<x≤213.614.1015.16-1616.±,±1加加练1.解:20180-2cos 30°+=1-2×+2=1+.2.解:方程化为x+1+3(x-1)=0,∴x=.经检验,x=是原方程的解.∴原方程的解为x=.3.解:依据题意,列表得由表格(或树状图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两人中至少有一人直行的结果有5种:(左转,直行),(直行,左转),(直行,直行),(直行,右转),(右转,直行),∴P(两人中至少有一人直行)=.选择填空限时练(九)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.在-2,0,,1这四个数中,最大的数是( )A.-2B.0C.D.12.如图X9-1是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )图X9-1图X9-23.抽样调查某公司员工的年收入数据(单位:万元),结果如下表:A.5万元B.6万元C.6.85万元D.7.85万元4.C919大型客机是中国具有自主知识产权的干线民用飞机,其零部件总数超过100万个,将100万用科学记数法表示为( )A.1×106B.100×104C.1×107D.0.1×1085.如图X9-3,AB是☉O的弦,OC⊥AB,交☉O于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )图X9-3A.40°B.50°C.70°D.80°6.不等式的解x≤2在数轴上表示为 ( )图X9-47.如图X9-5,在△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△COB等于( )图X9-5A.1∶2B.1∶3C.1∶4D.2∶38.小明进行两次定点投篮练习,第一次a投b中(a≥b),第二次c投d中(c≥d),用新运算“ 描述小明两次定点投篮总体命中率,则下列算式合理的是( )A.=B.=C.=D.=9.如图X9-6,抛物线y1=-(x+2)2-1与y2=a(x-4)2+3交于第四象限点A(1,-4),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论正确的是 ( )图X9-6A.AB<ACB.当x>1时,y1>y2C.△ACE是等边三角形D.△ABD是等腰三角形10.如图X9-7,菱形ABCD中,∠ABC=60°,边长为3,P是对角线BD上的一个动点,则BP+PC的最小值是( )图X9-7A. B.C.3D.+二、填空题(每小题4分,共24分)11.分解因式:2m2-8= .12.如图X9-8,把一张长方形纸带沿着直线GF折叠,若∠CGF=30°,则∠1的度数是.图X9-813.某城市为了了解本市男女青少年平均身高发育情况,随机调查了6岁~18岁男女青少年各100人,制作成如图X9-9所示的不同年龄平均身高统计图,从图中可知,该城市的男性青少年的身高高于同年龄女性的年龄段大概是.图X9-914.如图X9-10,P是边长为a的等边三角形ABC内任意一点,过点P分别作三角形三边的垂线PD,PE,PF,垂足分别点为D,E,F,则图中阴影部分图形的面积总和为(用含a的式子表示) .图X9-1015.如图X9-11,正方形ABCD的边长为4,在这个正方形内作等边三角形EFG,使它们的中心重合,则△EFG的顶点到正方形ABCD的顶点的最短距离是.图X9-1116.下面是一种算法:输入任意一个数x,都是“先乘2,再减去3”,进行第1次这样的运算,结果为y1,再对y1实施同样的运算,称为第2次运算,结果为y2,这样持续进行,要使第n次运算结果为0,即y n=0,则最初输入的数应该是.(用含有n的代数式表示)|加加练|1.化简:÷(-1).2.[2018·成都 ]为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图X9-12,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式.(2)广场上甲、乙两种花卉种植面积共1200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少费用为多少元?图X9-12参考答案1.D2.D3.B4.A5.D6.B7.C8.C9.D10.B[解析] 如图,过点P作PM⊥AB于点M,过点C作CH⊥AB于点H.∵四边形ABCD是菱形,∠ABC=60°,∴∠PBM=∠ABC=30°,∴PM=PB,∴PB+PC=PC+PM.根据垂线段最短可知,CP+PM的最小值为CH的长.在Rt△CBH中,CH=BC·sin 60°=,∴PB+PC的最小值为.故选B.11.2(m+2)(m-2)12.60°13.6~10岁和14~18岁14.15.4-216.加加练1.解:原式=÷=·=.2.解:(1)当0≤x≤300时,设函数关系式为y=k1x,过(300,39000),则39000=300k1,解得k1=130.∴当0≤x≤300时,y=130x;当x>300时,设函数关系式为y=k2x+b,过(300,39000)和(500,55000)两点,∴解得∴y=80x+15000.综上y=(2)设甲种花卉的种植面积为a m2,则乙种花卉的种植面积为(1200-a) m2.根据题意得解得200≤a≤800.当200≤a≤300时,总费用W1=130a+100(1200-a)=30a+120000,当a=200时,总费用最少为W min=30×200+120000=126000(元);当300<a≤800时,总费用W2=80a+15000+100(1200-a)=-20a+135000,当a=800时,总费用最少为W min=-20×800+135000=119000(元).∵119000<126000,∴当a=800时,总费用最少,为119000元,此时1200-a=400.答:当甲、乙两种花卉种植面积分别为800 m2和400 m2时,种植总费用最少,最少费用为119000元.。
浙江省中考数学复习题选择填空限时练三新版浙教版
选择填空限时练 ( 三)[ 限时 :40 分钟满分:54分]一、选择题 (每题 3 分, 共 30 分)的绝对值等于()C.2. 以下几何体中 , 俯视图为三角形的是()图 X3-13. 事件 : 在只装有 2 个红球和8 个黑球的袋子里, 摸出一个白球是()A. 可能事件B. 随机事件C. 不行能事件D.必定事件4. 以下运算正确的选项是()A.(2a 2) 3 =6a6B.-a 2b2· 3ab3=-3a 2b5C.+=-1D.·=-15. 在一次中学生田径运动会上, 参加男子跳高的20 名运动员的成绩以下表:成绩/米人数 4 3 5 6 1 1 则这些运动员成绩的众数为()A.1.55 米米C.1.70 米D.1.80 米6. 已知点 (-2,y1),(3,y2)在一次函数y=2x-3 的图象上 , 则 y1,y 2,0 的大小关系是()A.y 1<y2<0B.y 1<0<y22 <0<y D.0<y <y21 17.如图 X3-2, 一架长 2.5 米的梯子 AB斜靠在墙上 , 已知梯子底端 B 到墙角 C 的距离为 1.5 米 , 设梯子与地面所夹的锐角为α, 则 cosα的值为 ()图 X3-2A. B. C. D.8. 我们知道方程组的解是现给出另一个方程组它的解是()A. B.C. D.9. 七巧板是我们先人的一项优秀创建, 被誉为“东方魔板” . 如图 X3-3 是一个七巧板迷宫, 它恰巧拼成了一个正方形ABCD, 此中 E,P 分别是 AD,CD的中点 , 一只蚂蚁从点 A 处沿图中实线爬行到出口点P处 . 若 AB=2,则它爬行的最短行程为()图 X3-3A. B.1+10. 如图 X3-4, 在?ABCD中 , ∠DAB=60°,AB=10,AD=6,☉ O分别切边 AB,AD于点 E,F, 且圆心 O恰巧落在DE上 . 现将☉ O沿AB方向转动到与边BC相切 ( 点 O在?ABCD的内部 ), 则圆心 O挪动的路径长为()图 X3-4二、填空题 ( 每题 4分,共 24 分)11. 分解因式 :ab+ac=.12. 小红同学 5 月份各项花费状况的扇形统计图如图X3-5, 此中小红在学惯用品上支出100 元 , 则在午饭上支出元 .图 X3-513. 如图 X3-6, 在☉ O中 ,C 为优弧 AB 上一点 , 若∠ ACB=40°, 则∠ AOB=度.图 X3-614. 甲、乙两工程队分别承接了250 米 ,150 米的道路铺设任务, 已知乙比甲每日多铺设 5 米, 甲达成铺设任务的时间是乙的 2 倍. 设甲每日铺设x 米 , 则依据题意可列出方程:.15.如图 X3-7, 点 A 在第一象限 , 作 AB⊥ x 交该函数图象于点 D.E 是 AC的中点 , 连接轴 , 垂足为点 B, 反比率函数 y= 的图象经过 AB的中点 C, 过点OE,将△ OBE沿直线 OE对折到△ OB'E, 使 OB'恰巧经过点 D,若A 作 AD∥ x 轴,B'D=AE=1,则 k的值是.图 X3-716. 如图 X3-8, 矩形 ABCD和正方形EFGH的中心重合 ,AB=12,BC=16,EF=, 分别延伸 FE,GF,HG和 EH交 AB,BC,CD,AD于点 I,J,K,L.若tan∠ ALE=3,则AI的长为, 四边形 AIEL 的面积为.浙江省中考数学复习题选择填空限时练三新版浙教版图 X3-8|加加练 |1. 计算 :(-2018)0+- 9×.2. 化简 :(a+2)(a-2)-a(a+1).浙江省中考数学复习题选择填空限时练三新版浙教版3.化简:+.参照答案1.A2.C3.C4.C5.C6.B7.A8.D9. B [ 分析 ]∵正方形ABCD,E, P分别是 AD, CD的中点, AB=2,∴AE=DE=DP=1,∠ D=90°,∴EP==,∴蚂蚁从点A沿图中实线爬到出口点P 处,爬行的最短行程为AE+EP=1+ . 应选B.10. B [ 分析 ]连接OA,OF.∵ AB, AD分别与☉ O相切于点 E, F,∴OE⊥AB, OF⊥ AD,∴∠ OAE=∠ OAD=30° .在 Rt△ADE中 , AD=6, ∠ADE=30°,∴AE= AD=3,∴OE=AE· = .∵AD∥BC,∠ DAB=60°,∴∠ ABC=120° .设当运动停止时, ☉O与BC, AB分别相切于点M, N,连接 ON, OM,OB.则∠ BON=30°,且 ON= ,∴BN=ON·tan 30° =1, EN=AB-AE-BN=10- 3- 1=6.11.a ( b+c) 12. 200 13. 80 14.=15. 12 [ 分析 ]如图,过D作DF⊥OB于F,设B'E与AD交于点G.∵AB⊥x 轴, AD∥ x 轴,∴四边形 ABFD是矩形,由折叠可得 , ∠B'= 90°=∠A.又∵ B'D=AE=1,∠ DGB'=∠EGA,∴△ DB'G≌△ EAG,∴DG=EG,B'G=AG,∴AD=B'E=BE.又∵ E是 AC的中点, C是 AB的中点,∴AE=CE=1, AC=BC=2,∴BE=3=AD, AB=4=DF.设 C( a,2),则 D( a- 3,4) .∵反比率函数y= 的图象经过点C, D,∴2a=4( a- 3),解得 a=6,∴ C(6,2),∴k=6×2=12.16. 5 [ 分析 ] 如图 , 过点E作EM⊥AB于点M, 过点F作FN⊥AB于点N, 过点E作EA1⊥AD于点A1, 交FN于Q, 过点G作GA2⊥ AD,过点 H作 HP⊥A1E 于 P,∵tan ∠ 1=3, ∴ tan ∠ 2=3.又∵ EF=, ∴EQ=1, QF=3.∵矩形 ABCD与正方形 EFGH的中心重合,∴AA1=A2 D=6, A1A2=4=PQ.同理得 AN=8, NB=4, EM=6.易证△ IME∽△ EQF,∴=,∴IM=2,∴ IB=7,∴ AI=5. ∴ A1E=7,∴A1L= ,∴四边形 AIEL 的面积为+= ×(5 +7)×6+ ×7× =.加加练1.解: 原式=1+2- 9× =2.2.解 : 原式=a2- 4-a2-a=- 4-a.3.解 : 原式===a.。
2024年浙江省中考数学试题(Word版)
2024年浙江省中考数学试题考试时间:120分钟,满分:120分一、选择题(本大题有10小题,每题3分,共30分) 1. 以下四个城市中某天中午 12 时气温最低的城市是( )A .北京B .济南C .太原D .郑州 2. 5个相同正方体搭成的几何体主视图为( )A .B .C .D .3. 2024 年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .20.137×109B .0.20137×108C .2.0137×109D .2.0137×108 4. 下列式子运算正确的是( )A .x 3+x 2=x 5B .x 3·x 2=x 6C .(x 3)2=x 9D .x 6÷x 2=x 45. 某班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( )A .7B .8C .9D .106. 如图,在平面直角坐标系中,△ABC 与△A ′B ′C ′是位似图形,位似中位为点O .若点A (-3,1)的对应点为A ′(-6,2),则点B (-2,4)的对应点B ′的坐标为( )A .(-4,8)B .(8,-4)C .(-8,4)D .(4,-8) 7. 不等式组()211326⎧⎪⎨⎪⎩-≥->-x x 的解集在数轴上表示为( )A .B .C .D .8. 如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE =4,BE =3,则DE =( ) A .5 B .26 C .17 D .49. 反比例函数y =4x的图象上有P (t ,y 1),Q (t +4,y 2)两点.下列正确的选项是( )A .当t <-4时,y 2<y 1<0B .当-4<t <0时,y 2<y 1<0C .当-4<t <0时,0<y 1<y 2D .当t >0时,0<y 1<y 2 10.如图,在□ABCD 中,AC ,BD 相交于点O ,AC =2,BD =23.过点A 作AE ⊥BC 的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A .x +yB .x -yC .xyD .x 2+y 2 二、填空题(本大题有6小题,每题3分,共18分) 11.因式分解:a 2-7a = . 12.若211=-x ,则x = . 13.如图,AB 是⊙O 的直径,AC 与⊙O 相切,A 为切点,连接BC .已知∠ACB =50º,则∠B 的度数为 . 14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是 .15.如图,D ,E 分别是△ABC 的边AB ,AC 的中点,连接BE ,DE .若∠AED =∠BEC ,DE =2,北京 济南 太原 郑州 0℃-1℃-2℃3℃主视方向OxA'A B 'B C'C y DA F BGCEHDA OB CE AOB CAD E16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53=AC BD .线段AB 与A ′B ′关于过点O 的直线l 对称,点B 的对应点B ′在线段OC 上,A ′B ′交CD 于点E ,则△B ′CE 与四边形OB ′ED 的面积比为 .三、解答题(本大题8小题,第17~21题每题8分,第22、23题每题10分,第24题12分,共72分)17.计算:11854⎛⎫⎪⎝⎭--+-.18.解方程组: 254310⎧⎨⎩-=+=-x y x y .19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan ∠ACB =1.(1)求BC 的长. (2)求sin ∠DAE 的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况, 随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息. 解答下列问题:(1)本次调查中最喜爱“AI 应用”的学生中更关注“辅助学习”有多少人?(2)某校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写. 问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是( )(A )科普讲座 (B )科幻电影 (C )AI 应用 (D )科学魔术 如果问题1选择C .请继续回答问题2. 问题2:你更关注的AI 应用是( )(E )辅助学习 (F )虚拟体验 (G )智能生活 (H )其他问题1答题情况条形统计图C 类中问题2答题情况扇形统计图G25%F30%E40%H5%ADBCEA 'B 'lD CAB E A21.尺规作图问题:如图1,点E是□ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小孙:如图2,以C为圆心,CB为半径作弧,交BC于点F,连接AF,则AF∥CE.小童:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小孙:小童,你的作法有问题.小童:哦,……我明白了!(1)证明:AF∥CE.(2)指出小童作法中存在的问题.22.小孙和小童在跑步机上慢跑锻炼.小孙先跑,10分钟后小童才开始跑,小童跑步时中间休息了两次.跑步机C档比B档快40米/分、B档比A档快40米/分.小孙与小童的跑步相关信息如表所示,跑步累计里程s(米)与小孙跑步时间t(分)的函数关系如图所示.(1)求A,B,C 各档速度(单位:米分).(2)求小童两次休息时间的总和(单位:分).(3)小童第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.23.已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(-2,5),对称轴为直线x=-12.(1)求二次函数的表达式.(2)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值.(3)当-2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为94,求n的取值范围.时间里程分段速度档跑步里程小孙16:00~16:50 不分段A档4000米小童16:10~16:50 第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米小孙小童()t分()s米4600504000a1800103000DCABE1图FDCABE图224.如图,在圆内接四边形ABCD中,AD<AC,∠ADC<BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60º,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.。
2024年浙江省中考数学模拟练习试卷(解析版)
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
初三中考数学浙江版 选择填空限时训练(五)
选择填空限时训练(五)(限时30分钟满分54分) 一、选择题(本题共10小题,每小题3分,共30分)1.2016的倒数是( )A.2016 B.-2016 C.12016D.-120162.某地区轨道交通3号线于2015年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米,32.83千米用科学记数法表示为( )A.3.283×104米B.32.83×104米C.3.283×105米D.3.283×103米3.下列运算中,正确的是( )A.2x+3y=5xyB.a3-a2=aC.a-(a-b)=-bD.(a-1)(a+2)=a2+a-24.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )图X5-15.下列说法正确的是( )A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解某市学校“阳光体育”活动开展情况,必须采用普查的方法6.小兵制作了一个正方体玩具,其展开图如图X5-2所示,正方体中与“全”字所在的面正对的面上标的字是( )图X 5-2A .文B .明C .城D .国7.如果一个正比例函数的图象经过不同象限的两点A (2,m )、B (n ,3),那么一定有( ) A .m >0,n >0 B .m >0,n <0 C .m <0,n <0 D .m <0,n >08.如图X 5-3,在平行四边形ABCD 中,AB =3 cm ,AD =6 cm ,∠ADC 的平分线DE 交BC 于点E ,交AC 于点F ,CG ⊥DE ,垂足为G ,DG =323 cm ,则EF 的长为( )图X 5-3A.3 cm B .2 cm C .1 cm D.233 cm9.如图X 5-4,用四个螺丝将四根不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )图X 5-4A .6B .7C .8D .910.已知二次函数y =x 2-2x -3,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为d 1、d 2.设d =d 1+d 2,下列结论中:①d 没有最大值;②d 没有最小值;③-1<x <3时,d 随x 的增大而增大;④满足d =5的点P 有四个.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共24分) 11.若根式x -1有意义,则x 的取值范围是________.12.如图X 5-5,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=________.图X 5-513.袋子中装有3个红球、5个黄球、2个白球,这些球除颜色外形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________.14.如图X 5-6,在△ABC 中,∠CAB =60°,AB =4,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.图X 5-615.如图X 5-7,点A 在双曲线y =kx第一象限的图象上,AB ⊥y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.图X5-716.如图X 5-8,点P (t ,0)(t >0)是x 轴正半轴上的一点,AB ︵是以原点为圆心,半径为1的圆的14,且A (-1,0),B (0,1),点M 是AB ︵上的一个动点,连结PM ,作直角三角形MPM 1(M 1在第一象限),并使得∠MPM 1=90°,∠PMM 1=60°,我们称点M 1为点M 的对应点.图X 5-8(1)设点A 和点B 的对应点为A 1和B 1,当t =1时,A 1的坐标为________;B 1的坐标为________. (2)当P 是x 轴正半轴上的任意一点时,点M 从点A 运动至点B ,则M 1的运动路径长为________.加 加 练(1)计算:(13)-1-|-2|+16-(3+1)0; (2)化简:ab +c a +b +a 2-ca +b.参考答案1.C 2.A 3.D 4.A 5.C 6.B 7.C 8.A 9.D 10.B 11.x ≥1 12.28° 13.31014.4 15.16316.(1)A 1(1,23) B 1(1+3,3) (2)32π加加练解:(1)原式=3-2+4-1=4. (2)原式=ab +c +a 2-ca +b=a (b +a )a +b=a.。
初三数学全册浙教版试卷
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()。
A. √2B. πC. -3/5D. 0.1010010001…2. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为()。
A. 1B. 2C. 3D. 43. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠B的度数为()。
A. 40°B. 50°C. 60°D. 70°4. 下列关于二元一次方程组的解法,正确的是()。
A. 用代入法解二元一次方程组时,可以将其中一个方程中的未知数表示为另一个方程中的未知数。
B. 用消元法解二元一次方程组时,可以将其中一个方程中的未知数消去。
C. 上述两种方法都可以。
D. 上述两种方法都不正确。
5. 已知一元二次方程x² - 5x + 6 = 0,则方程的解为()。
A. x = 2 或 x = 3B. x = 2 或 x = -3C. x = -2 或 x = 3D. x = -2 或 x = -36. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()。
A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)7. 若等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10的值为()。
A. 27B. 30C. 33D. 368. 下列函数中,是反比例函数的是()。
A. y = x²B. y = 2x + 3C. y = 3/xD. y = 2x³9. 已知圆的半径为r,则圆的直径为()。
A. 2rB. r/2C. r²D. √r10. 在三角形ABC中,若AB = AC,且∠B = 45°,则∠C的度数为()。
A. 45°B. 90°C. 135°D. 180°二、填空题(每题5分,共50分)11. 若a > b,则a - b的符号为()。
浙江省中考数学复习题选择填空限时练五新版浙教版
选择填空限时练(五)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.下列四个实数,2,0,-1,其中负数是( )A. B.2 C.0 D.-12.下列计算,结果等于a4的是( )A.a+3aB.a5-aC.(a2)2D.a8÷a23.如图X5-1所示,该圆柱体的左视图是( )图X5-1图X5-24.如图X5-3,△ABC内接于☉O,∠A=68°,则∠OBC等于( )图X5-3A.22°B.26°C.32°D.34°5.某校数学兴趣小组在一次数学课外活动中,随机抽查了该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表:表中表示成绩的数据中,中位数是( )A.38分B.38.5分C.39分D.39.5分6.用配方法解一元二次方程x2-6x-10=0,变形正确的是 ( )A.(x-3)2=19B.(x+3)2=19C.(x-3)2=1D.(x+3)2=17.不等式组的解集是( )A.x≥2B.1<x<2C.1<x≤2D.x≤28.已知点(-1,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y19.如图X5-4,AB是半圆O的直径,半径OC⊥AB于点O,点D是的中点,连结CD,AD,OD,给出以下四个结论:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是( )图X5-4A.①③B.②④C.①④D.①②③10.如图X5-5,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,AE,FG分别交射线CD于点P,H,连结AH.若P是CH的中点,则△APH的周长为 ( )图X5-5A.15B.18C.20D.24二、填空题(每小题4分,共24分)11.分解因式:a2-4a= .12.一个布袋里装有10个只有颜色不同的球,其中红球有m个,从布袋中随机摸出一个球记下颜色后放回、搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值为.13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000元降到3600元.已知5月份降低的百分率是4月份降低的百分率的2倍,设4月份降低的百分率为x,根据题意可列方程: .14.如图X5-6,用一个半径为60 cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为cm.图X5-615.如图X5-7,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE.若∠B=30°,则∠CDE= °.图X5-716.如图X5-8,直角坐标系xOy中,直线y=-x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=-的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则CD的长为.图X5-8|加加练|1.计算:(-2)0-()2+|-1|.2.解不等式组:3.解方程:-1=.参考答案1.D2.C3.C4.A5.C6.A7.C8.B9.C10.C11.a(a-4)12.313.5000(1-x)(1-2x)=360014.2515.4516.5加加练1.解:原式=1-6+1=-4.2.解:解不等式①,得x>-3,解不等式②,得x<5,∴不等式组的解是-3<x<5.3.解:原方程可化为2-(x-2)=3x,解得x=1.经检验,x=1是原方程的解.所以原方程的解是x=1.。
浙江省中考数学复习题中档解答组合限时练五新版浙教版
中档解答组合限时练(五)[限时:25分钟满分:28分]18.(6分)如图J5-1,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.图J5 -119.(6分)如图J5-2,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位长度,CD,EF间的距离是3个单位长度,格点O在CD上(网格线的交点叫格点).请分别在图①,②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB 上,点Q在EF上,且它们不全等.图J5-220.(8分)随着道路交通的不断完善,某市旅游业快速发展.该市旅游景区有A,B,C,D,E等著名景点,市旅游部门统计绘制出2017年“五·一”长假期间旅游情况统计图(不完整)如图J5-3,根据相关信息解答下列问题:图J5-3(1)2017年“五·一”期间,该市旅游景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)在等可能性的情况下,甲、乙两个旅游团在A,B,D三个景点中选择去同一个景点的概率是多少?请用画树状图或列表法加以说明.21.(8分)如图J5-4,钝角三角形ABC中是边AB上一点,以O为圆心,OB为半径作☉O,交边AB于点D,交边BC于点E,过点E作☉O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求☉O的半径.图J5-4参考答案18.解:(1)证明:∵∠1+∠2=180°-∠EBD,∠1+∠AEB=180°-∠A,∠A=∠EBD, ∴∠2=∠AEB.∵AE=BC,∠A=∠C,∴△ABE≌△CDB.(2)∵△ABE≌△CDB,∴EB=BD,∠1=∠CDB,∴∠BDE=∠BED.∵∠CDB=60°,∠AEB=50°,∴∠1=60°,∠2=50°,∴∠DBE=70°,∴∠55°.19.解:如图:20.解:(1)50108°(2)21.解:(1)证明:如图,连结OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC.∵EF是☉O的切线,∴OE⊥EF,∴EF⊥AC.(2)如图,连结DE.∵DF∥BC,又∵AB=AC,∴BD=CF.∵BD为☉O的直径,∴∠BED=90°.设☉O的半径为r,在Rt△BDE中,BE=BD·cos B=2r×cos30°,∴CE=BC-BE=在Rt△CEF中,CF=CE·cos C=)×cos30°=3,∴2r=3,∴☉O。
浙江省中考数学复习题选择填空限时练二新版浙教版
选择填空限时练(二)[限时:40分钟满分:54分]一、选择题(每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A.3.9×104B.3.94×104C.39.4×103D.4.0×1042.下列运算正确的是( )A.(-3)2=-9B.(-1)2015×1=-1C.-5+3=8D.-|-2|=23.下列图形中是轴对称图形但不是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.圆4.不等式3x<2(x+2)的解是( )A.x>2B.x<2C.x>4D.x<45.已知一组数据0,-1,1,2,3,则这组数据的方差为( )A.0B.1C.D.26.在Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为( )A.10B.3C.4D.57.在☉O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为( )A.30°B.45°C.60°D.90°8.已知点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是( )A.AB2=AC2+BC2B.BC2=AC·BAC.=D.=9.如图X2-1,D是等边三角形ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F 分别在AC和BC上,则CE∶CF= ( )图X2-1A. B. C. D.10.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2-4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2;④a(x0-x1)(x0-x2)<0.其中正确的是( ) A.①③④ B.①②④C.①②③D.②③二、填空题(每小题4分,共24分)11.请写出一个解为x=1的一元一次方程: .12.计算:2tan60°+(2-)0-()-1= .13.二次函数y=x2+4x+5(-3≤x≤0)的最大值是,最小值是.14.当1<a<2时,代数式+|1-a|= .15.如图X2-2,已知点A1,A2,…,A n均在直线y=x-1上,点B1,B2,…,B n均在双曲线y=-上,并且满足:A1B1⊥x轴,B1A2⊥y 轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=-1,则a3= ,a2015= .图X2-216.如图X2-3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是.图X2-3参考答案1.B2.B3.A4.D5.D6.D7.D8.C9.A10.B11.x-1=0(答案不唯一)12.2-113.5 114.115.216.-1。
浙江省数学中考试题与参考答案(2025年)
2025年浙江省数学中考自测试题与参考答案一、选择题(本大题有10小题,每小题3分,共30分)1、已知点A(3, -4)和点B(-2, 5),求线段AB的长度。
A.(√74)B.(√65)C.(√89)D. 10答案: A.(√74)解析: 线段AB的长度可以通过两点之间的距离公式计算得出,即[AB=√(x2−x1)2+(y2−y1)2]代入点A(3, -4)和点B(-2, 5)的坐标值,[AB=√(−2−3)2+(5+4)2=√(−5)2+(9)2=√25+81=√106=√74]让我们通过计算来验证这个答案。
计算得出线段AB的实际长度约为10.295630140987,这与选项化简后的(√74)相对应,因此正确答案是 A.(√74)。
2、若一个正方形的周长为32厘米,求该正方形的面积。
A. 64平方厘米B. 128平方厘米C. 256平方厘米D. 512平方厘米答案: A. 64平方厘米解析: 一个正方形的周长等于其四边之和。
设正方形的边长为(a),则周长(P=4a)。
由此可知[4a=32]解得[a=8]正方形的面积(S)可以通过边长的平方得到,即[S=a2][S=82=64]所以正方形的面积为64平方厘米。
我们也可以计算验证一下。
计算得出正方形的面积确实为64平方厘米,因此正确答案是 A. 64平方厘米。
这与我们的解析结果一致。
3、若(a)和(b)是互为相反数,则下列哪个等式恒成立?A.(a+b=0)B.(a−b=0)C.(a⋅b=1)D.(a/b=1)答案:A解析:两个数互为相反数意味着它们的和为0。
例如,如果(a)是一个数,那么它的相反数(b)就是(−a),所以(a+(−a)=0)。
因此选项 A 正确。
4、在平面直角坐标系中,点(P(3,−4))到原点(O(0,0))的距离是多少?A. 5B. 7C. 9D. 12答案:A解析:点到原点的距离可以通过勾股定理计算得出。
设点(P(x,y)),则它到原点(O(0,0))的距离(d)可以通过公式(d=√x2+y2)来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择填空限时练(五)
[限时:40分钟满分:54分]
一、选择题(每小题3分,共30分)
1.下列四个实数,2,0,-1,其中负数是( )
A. B.2 C.0 D.-1
2.下列计算,结果等于a4的是( )
A.a+3a
B.a5-a
C.(a2)2
D.a8÷a2
3.如图X5-1所示,该圆柱体的左视图是( )
图X5-1
图X5-2
4.如图X5-3,△ABC内接于☉O,∠A=68°,则∠OBC等于( )
图X5-3
A.22°
B.26°
C.32°
D.34°
5.某校数学兴趣小组在一次数学课外活动中,随机抽查了该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表:
A.38分
B.38.5分
C.39分
D.39.5分
6.用配方法解一元二次方程x2-6x-10=0,变形正确的是 ( )
A.(x-3)2=19
B.(x+3)2=19
C.(x-3)2=1
D.(x+3)2=1
7.不等式组的解集是( )
A.x≥2
B.1<x<2
C.1<x≤2
D.x≤2
8.已知点(-1,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
9.如图X5-4,AB是半圆O的直径,半径OC⊥AB于点O,点D是的中点,连结CD,AD,OD,给出以下四个结论:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是( )
图X5-4
A.①③
B.②④
C.①④
D.①②③
10.如图X5-5,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,AE,FG分别交射线CD于点P,H,连结AH.若P是CH的中点,则△APH的周长为 ( )
图X5-5
A.15
B.18
C.20
D.24
二、填空题(每小题4分,共24分)
11.分解因式:a2-4a= .
12.一个布袋里装有10个只有颜色不同的球,其中红球有m个,从布袋中随机摸出一个球记下颜色后放回、搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值为.
13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000元降到3600元.已知5月份降低的百分率是4月份降低的百分率的2倍,设4月份降低的百分率为x,根据题意可列方程: .
14.如图X5-6,用一个半径为60 cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为cm.
图X5-6
15.如图X5-7,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE.若∠B=30°,则∠CDE= °.
图X5-7
16.如图X5-8,直角坐标系xOy中,直线y=-x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=-的图象于点C,D(点C
在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若=,则CD的长为.
图X5-8 |加加练|
1.计算:(-2)0-()2+|-1|.
2.解不等式组:
3.解方程:-1=.
参考答案
1.D
2.C
3.C
4.A
5.C
6.A
7.C
8.B
9.C10.C
11.a(a-4)12.313.5000(1-x)(1-2x)=3600
14.2515.4516.5
加加练
1.解:原式=1-6+1=-4.
2.解:解不等式①,得x>-3,
解不等式②,得x<5,
∴不等式组的解是-3<x<5.
3.解:原方程可化为2-(x-2)=3x,解得x=1.经检验,x=1是原方程的解.所以原方程的解是x=1.。