半导体器件-总结复习
半导体器件物理复习(PN结)
![半导体器件物理复习(PN结)](https://img.taocdn.com/s3/m/38419959d0d233d4b04e69a3.png)
1、PN结(突变结和线性缓变结)的杂质分布、空间
电荷区,电场分布(泊松方程求解)
2、平衡载流子浓度和非平衡载流子浓度(分布)
3、 Fermi 能级,准Fermi 能级,平衡PN结能带图, 非平衡PN结能带图
4、推导pn结的接触电势差
5、非平衡PN结载流子的注入和抽取,过剩载流子的 产生与复合
6、推导理想二极管的电流~电压关系,并讨论pn结的 单向导电性和温度特性。
lipn结结11pn结突变结和线性缓变结的杂质分布空间电荷区电场分布泊松方程求解22平衡载流子浓度和非平衡载流子浓度分布3fermi能级准fermi能级平衡pn结能带图非平衡pn结能带图44推导pn结的接触电势差55非平衡pn结载流子的注入和抽取过剩载流子的产生与复合66推导理想二极管的电流电压关系并讨论pn结的单向导电性和温度特性
开关速度?
半导体器件物理
© Dr. B. Li
7、PN结大注入效应。比较pn结自建电场和大注入自
建电场的异同点。
半导体器件物理
© Dr. B. Li
8 分析PN结偏离理想情况的原因
9 势垒电容与扩散电容的产生机制 10 三种pn结击穿机构 11 雪崩击穿的条件?讨论影响雪崩击穿电压的条件。 12 PN结的交流等效电路? 13 PN结的开关特性,贮存时间的影响因素。如何提高
半导体集成电路复习
![半导体集成电路复习](https://img.taocdn.com/s3/m/5def9e9de53a580217fcfe0a.png)
填空,判断,简答,计算一、填空题1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。
1.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。
2.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111 )。
3.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。
4.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。
5.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。
6.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。
7.化学气相淀积是通过(气体混合)的化学反应在硅片表面淀积一层(固体膜)的工艺。
硅片表面及其邻近的区域被(加热)来向反应系统提供附加的能量。
8.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铝),即将取代它的金属材料是(铜)。
9.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。
10.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。
11.光刻包括两种基本的工艺类型:负性光刻和(正性光刻),两者的主要区别是所用光刻胶的种类不同,前者是(负性光刻胶),后者是(正性光刻胶)。
12.刻蚀是用(化学方法)或(物理方法)有选择地从硅片表面去除不需要材料的工艺过程,其基本目标是(在涂胶的硅片上正确地复制掩膜图形)。
13.集成电路制造中掺杂类工艺有(热扩散掺杂)和(离子注入)两种,其中(离子注入)是最重要的掺杂方法。
14.杂质在硅晶体中的扩散机制主要有两种,分别是(间隙式扩散机制)扩散和(替代式扩散机制)扩散。
半导体物理和半导体器件学习总结1
![半导体物理和半导体器件学习总结1](https://img.taocdn.com/s3/m/fe202ce24bfe04a1b0717fd5360cba1aa8118c2a.png)
半导体物理和半导体器件学习总结1最近看了⼀遍半导体物理和半导体器件物理,准备总结⼀下。
涉及的内容和概念⾮常多,需要写好多篇,并配合图⽚和思维导图。
同时复习以前做过的习题、ppt、整理出的考研题等等。
但其实想要系统的理解其原理,还需要⼀些量⼦、电磁场、热⼒学、固体物理的知识,才能完整的掌握。
当然这些课我学的也不好,准备复习⼀下。
所以这⾥超纲或者不解的部分,我会做出记号,等明⽩之后再来解答。
1. 半导体物理基础和能带理论2. 载流⼦统计分布3. PN结原理4. ⾦半接触和MIS结构1. PN结原理2. 双极型晶体管3. MOS原理以上即为整理的⽬录,本次先从第⼀章,半导体物理基础和能带理论开始。
⼀、半导体物理基础和能带理论1、能带论①:⽤单电⼦近似法研究晶体中电⼦状态的理论称为能带论单电⼦近似法只知道密度泛函理论,虽然具体的推导也不太会,但⼤概意思了解⼀点。
这部分可能还要看看固体物理课本。
2、⾦刚⽯型结构:sp3杂化轨道这部分确实不太懂,好像是量⼦⼒学⾥⾯的内容,还要再复习⼀下②3、分⼦结构:四族主要是⾦刚⽯型结构三五族主要是闪锌矿型结构晶向、晶⾯之类的概念就不看了,具体研究遇到再说。
4、原⼦的能级和晶体的能带能级分⽴的原⼦形成晶体后,各个原⼦的电⼦壳层会有⼀定的交叠,外层交叠多,内层少,所以会产⽣电⼦共有化运动,越外层越显著。
同时能级分裂形成能带。
形成晶体的原⼦数N很⼤时,会形成明显的能带,叫做允带,允带之间是禁带。
但能带不⼀定与能级⼀⼀对应,例如硅、锗,它们都有四个价电⼦,两个s电⼦、两个p电⼦,组成晶体后,由于轨道杂化,形成上下两个能带,分别可以容纳4N个电⼦,于是形成满的价带和空的导带。
这部分还是不是很明⽩,可能还需要复习量⼦和近代物理才⾏。
③5、布⾥渊区与能带单电⼦近似的概念:晶体中的某⼀个电⼦是在周期性排列且固定不动的原⼦核的势场,以及⼤量电⼦的平均势场中运动,这个势场也是周期性变化的,周期与晶格周期相同。
半导体物理复习归纳
![半导体物理复习归纳](https://img.taocdn.com/s3/m/4885278d915f804d2b16c1e8.png)
半导体物理复习归纳————————————————————————————————作者: ————————————————————————————————日期:一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。
由相同原子构成的复式格子。
2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。
由共价键结合,有一定离子键。
由不同原子构成的复式格子。
3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。
是共价化合物,但具有离子性,且离子性占优。
4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。
5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。
6、脱离共价键所需的最低能量就是禁带宽度。
价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。
7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。
能带越窄,二次微商越小,有效质量越大。
8、测量有效质量的方法回旋共振。
当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。
测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。
为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。
9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。
这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。
10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。
半导体器件复习题
![半导体器件复习题](https://img.taocdn.com/s3/m/f38d3fdee43a580216fc700abb68a98271feaca1.png)
半导体器件复习题一、半导体基础知识1、什么是半导体?半导体是一种导电性能介于导体和绝缘体之间的材料。
常见的半导体材料有硅(Si)、锗(Ge)等。
其导电能力会随着温度、光照、掺入杂质等因素的变化而发生显著改变。
2、半导体中的载流子半导体中有两种主要的载流子:自由电子和空穴。
在本征半导体中,自由电子和空穴的数量相等。
3、本征半导体与杂质半导体本征半导体是指纯净的、没有杂质的半导体。
而杂质半导体则是通过掺入一定量的杂质元素来改变其导电性能。
杂质半导体分为 N 型半导体和 P 型半导体。
N 型半导体中多数载流子为自由电子,P 型半导体中多数载流子为空穴。
二、PN 结1、 PN 结的形成当 P 型半导体和 N 型半导体接触时,在交界面处会形成一个特殊的区域,即 PN 结。
这是由于扩散运动和漂移运动达到动态平衡的结果。
2、 PN 结的单向导电性PN 结正偏时,电流容易通过;PN 结反偏时,电流难以通过。
这就是 PN 结的单向导电性,是半导体器件工作的重要基础。
3、 PN 结的电容效应PN 结存在势垒电容和扩散电容。
势垒电容是由于空间电荷区的宽度随外加电压变化而产生的;扩散电容则是由扩散区内电荷的积累和释放引起的。
三、二极管1、二极管的结构和类型二极管由一个 PN 结加上电极和封装构成。
常见的二极管类型有普通二极管、整流二极管、稳压二极管、发光二极管等。
2、二极管的伏安特性二极管的电流与电压之间的关系称为伏安特性。
其正向特性曲线存在一个开启电压,反向特性在一定的反向电压范围内电流很小,当反向电压超过一定值时会发生反向击穿。
3、二极管的主要参数包括最大整流电流、最高反向工作电压、反向电流等。
四、三极管1、三极管的结构和类型三极管有 NPN 型和 PNP 型两种。
它由三个掺杂区域组成,分别是发射区、基区和集电区。
2、三极管的电流放大作用三极管的基极电流微小的变化能引起集电极电流较大的变化,这就是三极管的电流放大作用。
半导体器件物理复习题答案
![半导体器件物理复习题答案](https://img.taocdn.com/s3/m/6d4762d403d276a20029bd64783e0912a2167c98.png)
半导体器件物理复习题答案一、选择题1. 半导体材料中,导电性介于导体和绝缘体之间的是:A. 导体B. 绝缘体C. 半导体D. 超导体答案:C2. PN结形成后,其空间电荷区的电场方向是:A. 由N区指向P区B. 由P区指向N区C. 垂直于PN结界面D. 与PN结界面平行答案:B3. 在室温下,硅的本征载流子浓度大约是:A. \(10^{10}\) cm\(^{-3}\)B. \(10^{12}\) cm\(^{-3}\)C. \(10^{14}\) cm\(^{-3}\)D. \(10^{16}\) cm\(^{-3}\)答案:D二、简答题1. 解释什么是PN结,并简述其工作原理。
答案:PN结是由P型半导体和N型半导体接触形成的结构。
P型半导体中空穴是多数载流子,N型半导体中电子是多数载流子。
当P型和N型半导体接触时,由于扩散作用,空穴和电子会向对方区域扩散,形成空间电荷区。
在空间电荷区,由于电荷的分离,产生一个内建电场,这个电场的方向是从N区指向P区。
这个内建电场会阻止进一步的扩散,最终达到动态平衡,形成PN结。
2. 描述半导体中的扩散和漂移两种载流子运动方式。
答案:扩散是指由于浓度梯度引起的载流子从高浓度区域向低浓度区域的运动。
漂移则是指在外加电场作用下,载流子受到电场力的作用而产生的定向运动。
扩散和漂移共同决定了半导体中的电流流动。
三、计算题1. 假设一个PN结的内建电势差为0.7V,求其空间电荷区的宽度。
答案:设PN结的空间电荷区宽度为W,内建电势差为Vbi,则有:\[ V_{bi} = \frac{qN_{A}N_{D}}{2\varepsilon}W \] 其中,q是电子电荷量,\( N_{A} \)和\( N_{D} \)分别是P型和N型半导体中的掺杂浓度,\( \varepsilon \)是半导体的介电常数。
通过这个公式可以计算出空间电荷区的宽度W。
四、论述题1. 论述半导体器件中的载流子注入效应及其对器件性能的影响。
(整理)第4章常用半导体器件-练习复习题
![(整理)第4章常用半导体器件-练习复习题](https://img.taocdn.com/s3/m/471422db69dc5022abea005c.png)
第4章:常用半导体器件-复习要点基本概念:了解半导体基本知识和PN结的形成及其单向导电性;掌握二极管的伏安特性以及单向导电性特点,理解二极管的主要参数及意义,掌握二极管电路符号;理解硅稳压管的结构和主要参数,掌握稳压管的电路符号;了解三极管的基本结构和电流放大作用,理解三极管的特性曲线及工作在放大区、饱和区和截止区特点,理解三极管的主要参数,掌握NPN型和PNP型三极管的电路符号。
分析依据和方法:二极管承受正向电压(正偏)二极管导通,承受反向电压(反偏)二极管截止。
稳压管在限流电阻作用下承受反向击穿电流时,稳压管两端电压稳定不变(施加反向电压大于稳定电压,否者,稳压管反向截止);若稳压管承受正向电压,稳压管导通(与二极管相同)。
理想二极管和理想稳压管:作理想化处理即正向导通电压为零,反向截止电阻无穷大。
三极管工作在放大区:发射结承受正偏电压;集电结承受反偏电压;三极管工作在饱和区:发射结承受正偏电压;集电结承受正偏电压;三极管工作在截止区:发射结承受反偏电压;集电结承受反偏电压;难点:含二极管和稳压管电路分析,三极管三种工作状态判断以及三极管类型、极性和材料的判断。
一、填空题1.本征半导体中价电子挣脱共价键的束缚成为自由电子,留下一个空位称为空穴,它们分别带负电和正电,称为载流子。
2.在本征半导体中掺微量的五价元素,就称为N型半导体,其多数载流子是自由电子,少数载流子是空穴,它主要依靠多数载流子导电。
3.在本征半导体中掺微量的三价元素,就称为P型半导体,其多数载流子是空穴,少数载流子是自由电子,它主要依靠多数载流子导电。
4.PN结加正向电压时,有较大的电流通过,其电阻较小,加反向电压时处于截止状态,这就是PN结的单向导电性。
5.在半导体二极管中,与P区相连的电极称为正极或阳极,与N区相连的电极称为负极或阴极。
6.晶体管工作在截止区的条件是:发射结反向偏置,集电结反向偏置。
7.晶体管工作在放大区的条件是:发射结正向偏置,集电结反向偏置。
常用半导体器件复习题
![常用半导体器件复习题](https://img.taocdn.com/s3/m/9084b847d15abe23482f4da6.png)
第1章常用半导体器件一、判断题(正确打“√”,错误打“×”,每题1分)1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。
()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。
()3.本征半导体就是纯净的晶体结构的半导体。
()4.PN结在无光照、无外加电压时,结电流为零。
()5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。
()6.晶体三极管的β值,在任何电路中都是越大越好。
( )7.模拟电路是对模拟信号进行处理的电路。
( )8.稳压二极管正常工作时,应为正向导体状态。
( )9.发光二极管不论外加正向电压或反向电压均可发光。
( )10.光电二极管外加合适的正向电压时,可以正常发光。
( )一、判断题答案:(每题1分)1.√;2.×;3.√;4.√;5.×;6.×;7.√;8.×;9.×;10.×。
二、填空题(每题1分)1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。
2.由于浓度不同而产生的电荷运动称为。
3.晶体二极管的核心部件是一个,它具有单向导电性。
4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。
5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。
6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。
7.PN结加正向电压时,空间电荷区将。
8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流范围内表现出稳压特性,且能保证其正常可靠地工作。
9.晶体三极管三个电极的电流IE 、IB、IC的关系为:。
10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。
二、填空题答案:(每题1分)1.空穴2.扩散运动3.PN结4.导通5.反向6.发射机e7.变薄8.反向9.IE =IB+IC10.材料三、单项选择题(将正确的答案题号及内容一起填入横线上,每题1分)1.在本征半导体中加入元素可形成N型半导体,加入三价元素可形成P型半导体。
半导体器件复习课件
![半导体器件复习课件](https://img.taocdn.com/s3/m/7e4f611a814d2b160b4e767f5acfa1c7aa0082fc.png)
键作用,可以实现高速、大容量的信息传输。
新能源系统中的半导体器件
能量转换的关键
例如,太阳能电池板利用光伏效应将太阳能转换为电能 。
在新能源系统中,半导体器件主要用于实现能量的转换 和利用。
击穿特性
当反向电压增大到一定程度时,会发生雪崩击穿或齐纳击穿,电 流急剧增大。
03
常见半导体器件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
二极管
总结词
二极管是一种具有单向导电性的半导体器件,它只允许电流在一个方向上流动。
详细描述
二极管由一个PN结(P型和N型半导体的交界面)构成,具有正向导通、反向截 止的特性。常见的二极管有硅二极管和锗二极管,它们在电子电路中广泛应用于 整流、检波、开关等作用。
半导体器件复习课件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 半导体器件基础 • 半导体器件的工作原理 • 常见半导体器件 • 半导体器件的应用 • 半导体器件的发展趋势与挑战
目录
CONTENTS
01
半导体器件基础
BIG DATA EMPOWERS TO CREATE A NEW
阈值调控技术
通过优化阈值电压降低静态功耗,实现低功耗运 行。
半导体器件在物联网时代的角色与挑战
物联网对半导体器件的需求
01
物联网时代需要大量低功耗、高性能、高可靠的半导体器件。
可靠性挑战
02
பைடு நூலகம்
物联网设备通常需要在恶劣环境下工作,对半导体器件的可靠
半导体材料(复习资料)
![半导体材料(复习资料)](https://img.taocdn.com/s3/m/cfbc1e37a66e58fafab069dc5022aaea998f413c.png)
半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。
第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。
二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。
硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。
但锗的迁移率比硅大,它可做低压大电流和高频器件。
2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。
这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。
(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。
注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。
2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。
化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。
两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。
半导体复习提纲
![半导体复习提纲](https://img.taocdn.com/s3/m/5b453fc905a1b0717fd5360cba1aa81144318fb0.png)
第一章半导体中的电子(diànzǐ)状态1半导体的三种(sān zhǒnɡ)结构:金刚石型(硅和锗)闪锌矿型(Ⅲ-Ⅴ族化合物半导体材料(cáiliào)以及部分Ⅱ-Ⅵ族化合物如GaAs, InP, AlAs ,纤矿型(Ⅱ-Ⅵ族二元化合物半导体ZnS、ZnSe、CdS、CdSe).结晶学原胞是立方(lìfāng)对称的晶胞。
2电子(diànzǐ)共有化运动:当原子相互接近形成晶体时,不同原子的内外各电子壳层出现交叠,电子可由一个原子转移到相邻的原子,因此,电子可以在整个晶体中运动,称为电子的共有化运动。
由于内外壳层交叠程度很不相同,所以,只有最外层电子的共有化运动才显著。
3有效质量:将晶体中电子的加速度与外加的作用力联系起来,并且包含了晶体中的内力作用效果。
有效质量的物理意义:把晶体周期性势场的作用概括到电子的有效质量中去,使得在引入有效质量之后,就可把运动复杂的晶体电子看作为简单的自由电子。
有效质量的正负与位置有关。
大小由共有化运动的强弱有关。
引入有效质量的用处:使讨论晶体电子运动时,问题变得很简单,否则几乎不可能。
4回旋共振就是当半导体中的载流子在一定的恒定磁场和高频电场同时作用下会发生抗磁共振的现象。
该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。
(母的)要样品纯度更高,在低温。
5直接带隙半导体材料:导带最小值(导带底)和满带最大值相应于相同的波矢k0间接带隙半导体材料:导带最小值(导带底)和满带最大值在k空间中不同位置 . 硅、锗与砷化镓的区别:硅锗为间接带隙半导体;砷化镓是直接带隙半导体。
砷化镓的禁带宽度大,E。
-1.43eV,宽于硅,更宽于锗,因此砷化镓半导体器件能在远高于硅半导体器件工作温度、更高于锗半导体器件工作温度的450℃下正常工作;其pn结的反向电压高,反向饱和电流低,适用于制作大功率半导体器件;能够引入深能级的杂质,制成体电阻率比锗和硅高出三个数量级以上的集成电路衬底。
半导体器件物理复习(施敏)
![半导体器件物理复习(施敏)](https://img.taocdn.com/s3/m/ab8c573c443610661ed9ad51f01dc281e53a5691.png)
半导体器件物理复习(施敏)第⼀章1、费⽶能级和准费⽶能级费⽶能级:不是⼀个真正的能级,是衡量能级被电⼦占据的⼏率的⼤⼩的⼀个标准,具有决定整个系统能量以及载流⼦分布的重要作⽤。
准费⽶能级:是在⾮平衡状态下的费⽶能级,对于⾮平衡半导体,导带和价带间的电⼦跃迁失去了热平衡,不存在统⼀费⽶能级。
就导带和价带中的电⼦讲,各⾃基本上处于平衡态,之间处于不平衡状态,分布函数对各⾃仍然是适应的,引⼊导带和价带费⽶能级,为局部费⽶能级,称为“准费⽶能级”。
2、简并半导体和⾮简并半导体简并半导体:费⽶能级接近导带底(或价带顶),甚⾄会进⼊导带(或价带),不能⽤玻尔兹曼分布,只能⽤费⽶分布⾮简并半导体:半导体中掺⼊⼀定量的杂质时,使费⽶能级位于导带和价带之间3、空间电荷效应当注⼊到空间电荷区中的载流⼦浓度⼤于平衡载流⼦浓度和掺杂浓度时,则注⼊的载流⼦决定整个空间电荷和电场分布,这就是空间电荷效应。
在轻掺杂半导体中,电离杂质浓度⼩,更容易出现空间电荷效应,发⽣在耗尽区外。
4、异质结指的是两种不同的半导体材料组成的结。
5、量⼦阱和多量⼦阱量⼦阱:由两个异质结或三层材料形成,中间有最低的E C和最⾼的E V,对电⼦和空⽳都形成势阱,可在⼆维系统中限制电⼦和空⽳当量⼦阱由厚势垒层彼此隔开时,它们之间没有联系,这种系统叫做多量⼦阱6、超晶格如果势垒层很薄,相邻阱之间的耦合很强,原来分⽴的能级扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这种结构称为超晶格。
7、量⼦阱与超晶格的不同点a.跨越势垒空间的能级是连续的b.分⽴的能级展宽为微带另⼀种形成量⼦阱和超晶格的⽅法是区域掺杂变化第⼆章1、空间电荷区的形成机制当这两块半导体结合形成p-n结时,由于存在载流⼦浓度差,导致了空⽳从p区到n 区,电⼦从n区到p区的扩散运动。
对于p 区,空⽳离开后,留下了不可动的带负电的电离受主,这些电离受主,没有正电荷与之保持电中性,所以在p-n结附近p 区⼀侧出现了⼀个负电荷区。
半导体复习总结
![半导体复习总结](https://img.taocdn.com/s3/m/8610e02b6bd97f192279e94f.png)
ED
)
k0T
n0为导带中电子浓度
n0
NC
exp(
EC EF k0T
)
所以:N A
NC
exp(
EC EF k0T
)
1
ND exp( EF
ED
)
k0T
在弱电离范围内,上式右端分母中的1可以忽略不计,则
N
A
NC
exp(
EC EF k0T
)
ND
exp(
EF ED k0T
)
在极弱电离
的情况下,激发到导带
第三章
例题 3 1.有一 n 型半导体,除施主杂质浓度 ND 外,还含有少量的受主,其浓度为 NA,求弱电 离情况下电子浓度的表达式
当有受主存在时,从施主激发出来的电子,有一部分要填充受主能级E A, 电中性条件为:
NA
n0
N
D
其中N
为电
D
离施主浓度
N
D
N D [1
f
(ED )
ND 1 exp( EF
求总迁移率。
2 1500 cm2 /Vs
,只存
霍尔效应
T=300K 时,硅霍尔器件的参数如图 2 所示,
d 5103cm W 5102 cm L 0.50cm
测得: I x 0.50mA
试确定:
Vx 1.25V
1. 霍尔电压
2. 导电类型
3. 多数载流子浓度
4. 多数载流子迁移率
Bz 6.510 2T
20(. 1)EC EF 0.026 k0T,发生弱减并
n0
2Nc
F1 (1)
2
2 2.81019 3.14
(完整版)常用半导体器件选择复习题
![(完整版)常用半导体器件选择复习题](https://img.taocdn.com/s3/m/764c7e65998fcc22bcd10df8.png)
第4章常用半导体器件-选择复习题1.半导体的特性不包括。
A. 遗传性B.光敏性C.掺杂性D. 热敏性2.半导体中少数载流子在内电场作用下有规则的运动称为。
A.漂移运动B. 扩散运动C.有序运动D.同步运动3.N型半导体中的多数载流子是。
A.自由电子B.电子C.空穴D.光子4.P型半导体中的多数载流子是。
A.空穴B.电子C. 自由电子D.光子5.本征半导体中掺微量三价元素后成为半导体。
A.P型B.N型C.复合型D.导电型6.本征半导体中掺微量五价元素后成为半导体。
A. N型B. P型C.复合型D.导电型7.在PN结中由于浓度的差异,空穴和电子都要从浓度高的地方向浓度低的地方运动,这就是。
A.扩散运动B.漂移运动C.有序运动D.同步运动8.将一个PN结两端各加一条引线,再封装起来,就成为一只。
A.二极管B. 三极管C.电子管D.晶闸管9.当外电场与内电场方向相同时,阻挡层,电子不容易通过。
A.变厚B.变薄C. 消失D.变为导流层10.当外电场与内电场方向相反时,阻挡层,电子容易通过。
A.变薄B. 变厚C. 消失D.变为导流层11.PN结的基本特性是。
A.单向导电性B. 半导性C.电流放大性D.绝缘性12.晶体三极管内部结构可以分为三个区,以下那个区不属于三极管的结构。
A.截止区B. 发射区C.基区D.集电区13.稳压二极管一般要串进行工作,以限制过大的电流。
A 电阻 B电容 C电感 D电源14.下图电路中,设硅二极管管的正向压降为0V,则Y= 。
A.0V B.3V C.10V D.1.5V15.下图电路中,设硅二极管管的正向压降为0V,则Y= 。
A.0V B.3V C.10V D.1.5V16.下图电路中,设硅二极管管的正向压降为0V,则Y= 。
A. 3V B.0 V C.10V D.1.5V17.下图电路中,设硅二极管管的正向压降为0V,则Y= 。
A.0V B.3V C.10V D.1.5V18.下图电路中,设硅二极管管的正向压降为0V,则Y= 。
《半导体器件物理基础》复习要点V2.1Final
![《半导体器件物理基础》复习要点V2.1Final](https://img.taocdn.com/s3/m/509f7e06cc17552707220866.png)
《半导体器件物理基础》复习要点授课教师:李洪涛编辑:徐驰第一章PN结载流子:N型半导体中电子是多数载流子,空穴是少数载流子;P型半导体中空穴是多数载流子,电子是少数载流子。
pn结:指半导体中p区和n区的交界面及两侧很薄的过渡区,由p区和n区共格相连而构成。
多子的扩散运动使空间电荷区变宽,少子的漂移运动使空间电荷区变窄,最终达到动态平衡,I扩=I漂,空间电荷区的宽度达到稳定,即形成PN结。
突变结:由合金法、分子束外延法制得的pn结,在p区和n区内杂质分布均匀,而在交界面处杂质类型突变。
缓变结:由扩散法制得的p-n结,扩散杂质浓度由表面向内部沿扩散方向逐渐减小,交界面处杂质浓度是渐变的。
施主杂质浓度空间电荷区:PN结的内部由于正负电荷的相互吸引,使过剩电荷分布在交界面两侧一定的区域内。
电离施主与电离受主都固定在晶格结点上,因此称为“空间电荷区”。
空间电荷区电子浓度公式:n=n i exp((E f-E i)/KT)载流子在pn结区附近的分布:空间电荷区载流子浓度分布则如下图所示:用线性轴则如下图:结区电场、电位分布:耗尽区单位体积带电量相同。
势垒区内电场强度正比于Q1Q2/r2, 中心处电场最强。
所以就有了如下的电场强度分布和电位分布。
耗尽近似:空间电荷区只存在未被中和的带点离子,而不存在自由载流子,或者说自由载流子浓度已减小到耗尽程度,因此PN结又称为“耗尽层”。
耗尽区因无载流子,可忽略扩散和漂移的运动。
pn结能带图:接触电位差V D:pn结的内建电势差,大小等于空间电荷区靠近p区侧边界处电位与靠近n 区处电位之差。
n、p区掺杂浓度越大(或结区杂质浓度梯度越大)、材料禁带宽度越宽,温度越低,接触电势差越大。
PIN结构:在P区与N区中间加入一层本征半导体构造的晶体二极管。
高低结:n+-n或者p+-p结构的结。
同样有扩散和漂移的平衡,结区也有电场,但结区的载流子浓度介于两侧的浓度之间。
没有单向导电性。
半导体物理与器件复习资料
![半导体物理与器件复习资料](https://img.taocdn.com/s3/m/21af5496f021dd36a32d7375a417866fb84ac0e4.png)
半导体物理与器件复习资料非平衡载流子寿命公式:本征载流子浓度公式:本征半导体:晶体中不含有杂质原子的材料半导体功函数:指真空电子能级E 0与半导体的费米能级E f 之差电子>(<)空穴为n(p)型半导体,掺入的是施主(受主)杂质原子。
Pn 结击穿的的两种机制:齐纳效应和雪崩效应载流子的迁移率扩散系数爱因斯坦关系式两种扩散机制:晶格扩散,电离杂质扩散迁移率受掺杂浓度和温度的影响金属导电是由于自由电子;半导体则是因为自由电子和空穴;绝缘体没有自由移动的带电粒子,其不导电。
空间电荷区:冶金结两侧由于n 区内施主电离和p 区内受主电离而形成的带净正电与负电的区域。
存储时间:当pn 结二极管由正偏变为反偏是,空间电荷区边缘的过剩少子浓度由稳定值变为零所用的时间。
费米能级:是指绝对零度时,电子填充最高能级的能量位置。
准费米能级:在非平衡状度下,由于导带和介质在总体上处于非平衡,不能用统一的费米能级来描述电子和空穴按能级分布的问题,但由于导带中的电子和价带中的空穴按能量在各自能带中处于准平衡分布,可以有各自的费米能级成为准费米能级。
肖特基接触:指金属与半导体接触时,在界面处的能带弯曲,形成肖特基势垒,该势垒导放大的界面电阻值。
非本征半导体:将掺入了定量的特定杂质原子,从而将热平衡状态电子和空穴浓度不同于本征载流子浓度的材料定义为非本征半导体。
简并半导体:电子或空穴的浓度大于有效状态密度,费米能级位于导带中(n 型)或价带中(p 型)的半导体。
直接带隙半导体:导带边和价带边处于k 空间相同点的半导体。
电子有效质量:并不代表真正的质量,而是代表能带中电子受外力时,外力与加速度的一个比例常熟。
雪崩击穿:由空间电荷区内电子或空穴与原子电子碰撞而产生电子--空穴对时,创建较大反偏pn 结电流的过程1、什么是单边突变结?为什么pn 结低掺杂一侧的空间电荷区较宽?①冶金结一侧的掺杂浓度大于另一侧的掺杂浓度的pn 结;②由于pn 结空间电荷区p 区的受主离子所带负电荷与N 区的施主离子所带正电荷的量是相等的,而这两种带点离子不能自由移动的,所以空间电荷区内的低掺杂一侧,其带点离子的浓度相对较低,为了与高掺杂一侧的带电离子的数量进行匹配,只有增加低掺杂一侧的宽度。
半导体器件基础总复习
![半导体器件基础总复习](https://img.taocdn.com/s3/m/8136e4bd69dc5022aaea00dc.png)
双极型晶体管部分晶体管由两个 pn 结: 发射结和集电结将晶体管划分为三个区: 发射区、基区及集电区。
相应的三个电极称为发射极、基极和集电极,并用 E ,B 和 C ( 或 e ,b 和 c ) 表示。
晶体管有两种基本结构: pnp 管和 npn 管。
双极型 NPN 晶体管制造过程: 1、在 N 型衬底中扩散 P 型杂质;2、在 P 型扩散区中再扩散 N 型杂质;3、在磷氧化层上开出基区和发射区接触孔;4、蒸发金属;5、光刻金属,引出及区、发射区引线;6、制备集电极电极7、切片、封装发射效率 nEpEpEnE nEE nE J J J J J J J +=+==11γpepb nb b ne pe L n D W p D 0011+=γ可见提高 N e / N b ,降低 R □e / R □b 可提高发射效率,使γ 接近于 1。
基区输运系数 nE rB nE nC J J J J -==1*β 2*211⎪⎪⎭⎫ ⎝⎛-=nb b L W β集电区倍增因子222*211C pC nC i n q ρμμα+= 两种类型晶体管均可适用npn 晶体管共基电流放大系数 2221peb pe b b e L WL W --=ρρα共射电流放大系数22211peb pe b b e L WL W +=-=ρραβ 基区自建电场 晶体管的反向电流和击穿电压 穿通电压 U PT晶体管的基极电阻 晶体管的截止频率 f α、 f β 特征频率 f T 最高振荡频率 f m 超相移因子 高频优值 M 晶体管的大注入效应 基区电导调制效应 大注入自建电场 有效基区扩展效应 发射极电流集边效应 基区自建电场这一电场称为缓变基区的自建电场,也称内建电场,用 E b 表示。
穿通电压 U PT随着集电结反向电压的增加,集电结势垒区向两边扩展,基区有效宽度 W beff 减小。
若在集电结发生雪崩击穿前 W beff 就减小到零,即发射区与集电区之间已无中性基区,这种现象称为基区穿通,对应的电压称穿通电压。
半导体光电子器件复习总结
![半导体光电子器件复习总结](https://img.taocdn.com/s3/m/d3dfd05c77232f60ddcca1c1.png)
半导体光电子器件课程梳理Chap 1 绪论1. 半导体激光器的发展➢第一发展阶段——同质结构注入型激光器(二十世纪60年代初)特点:对注入的载流子和光场没有限制,阈值电流密度高,只能在液氮和脉冲状态下工作➢第二发展阶段——单异质结注入型激光器(二十世纪60年代末)特点:利用异质结提供的势垒把注入电子限制在GaAS P-n结的结区内,降低阈值电流密度➢第三发展阶段——双异质结注入型激光器(二十世纪70年代初)特点:1)窄带隙的有源区两侧的宽带隙材料对注入的载流子有限制作用;2)有源区为高折射率材料,两侧包层是低折射率材料,形成的光波导能够将光场的大部分限制在有源区内,从而减小阈值电流密度。
➢第四发展阶段——量子阱激光器(二十世纪80年代初)半导体物理研究的深入及晶体外延生长技术的发展(包括分子外延MBE,金属有机化学气相沉积MOCVD和化学束外延CBE),使得量子阱半导体激光器研制成功。
2. 半导体激光器的特点•小而轻、转换效率高、省电、寿命长;•制造工艺与电子器件和集成电路工艺兼容,便于实现单片光电集成;•半导体激光器的激射功率和频率可直接调制;•激射波长范围宽。
3. 半导体激光器的应用光通讯、光存储、固体激光器的泵浦源、激光器武器、3D显示4. LEDs 的应用交通指示、照明、背光源、屏幕显示、投影仪光源、汽车、医疗、闪光灯、栽培、防伪。
Chap 2 异质结半导体异质结的定义:由两种基本物理参数不同的半导体单晶材料形成的晶体界面(过渡层)。
1.异质结的能带图(1)pN异质结的能带图φ-功函数,χ-电子亲和势尖峰的位置与pN结两边的掺杂浓度有关:p区掺杂比N区多时,尖峰位于势垒的顶端,称为高势垒尖峰;p区掺杂比N区少时,尖峰位于势垒的根部,称为低势垒尖峰(2)nN同型异质结的能带图2. 异质结的参数平衡态下内建电场强度耗尽区内电中性条件内建电势差内建电势差分配比故(由于带边的不连续,内建电势差不再代表势垒的总高度了。
半导体器件物理复习重点
![半导体器件物理复习重点](https://img.taocdn.com/s3/m/0f37103b80eb6294dc886c08.png)
第一章 PN 结1.1 PN 结是怎么形成的?1.2 PN 结的能带图(平衡和偏压)* 1.3 内建电势差计算1.4 空间电荷区的宽度计算n d p a x N x N =1.5 PN 结电容的计算第二章 PN 结二极管2.1 理想PN 结模型是什么?2.2 少数载流子分布(边界条件和双极输运方程的应用)2.3 理想PN 结电流⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=1exp kT eV J J a s⎪⎪⎭⎫ ⎝⎛+=+=002011p p d n n a inp n pn p s D N D N en L n eD L p eD J ττ2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)?2.5 产生-复合电流的计算2.6 PN 结的两种击穿机制有什么不同? 第三章 双极晶体管3.1 双极晶体管的工作原理是什么?3.2 双极晶体管有几种工作模式,哪种是放大模式? 3.3双极晶体管的少子分布(图示)3.4双极晶体管的电流成分(图示),它们是怎样形成的?3.5 低频共基极电流增益的公式总结EB E B E B E E B B E B B B E E x x D D N NL x L x L D n L D p ⋅⋅+≈⋅+=11)/tanh()/tanh(1100γ2)/(2111)/cosh(1B B B B T L x L x +≈≈α⎪⎭⎫ ⎝⎛-+≈kT eV J J BE s r 2exp 1100δ δγααT =ααβ-=13.6 等效电路模型(Ebers-Moll 模型和Hybrid-Pi 模型)(画图和简述)3.7双极晶体管的截止频率受哪些因素影响? 3.8 双极晶体管的击穿有哪两种机制?第四章 MOS 场效应晶体管基础4.1 MOS 结构怎么使半导体产生从堆积、耗尽到反型的变化?4.2 MOS 结构的平衡能带图(表面势、功函数和亲和能)及平衡能带关系ms s OX V φφ-=+004.3 栅压的计算(非平衡能带关系)m s s O X G V V φφ++=4.4 平带电压的计算4.5 阈值电压的计算dT a SD x eN Q =(max)'214⎪⎪⎭⎫ ⎝⎛=a p f s dT eN x φε⎪⎪⎭⎫ ⎝⎛=i a th pf n N V ln φ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-=p f g m mse E φχφφ2oxoxox t C ε=dT d SD x eN Q =(max)'214⎪⎪⎭⎫⎝⎛=d n f s dTeN x φε⎪⎪⎭⎫ ⎝⎛=i dth nf nN V ln φ ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=n f g m mse E φχφφ2ox oxox t C ε=4.6 MOS 电容的计算 总的电容公式aths D eN V Lε= ap f s dTeN x φε4=4.7 MOSFET 的工作原理是什么? 4.8 电流-电压关系(计算) N 沟道:T G S DS V V sat V -=)(P 沟道:T SG SD V V sat V +=)(4.9 MOSFET 的跨导计算4.10 MOSFET 的等效电路(简化等效电路) 4.11 MOSFET 的截止频率主要取决于什么因素?第五章 光器件5.1电子-空穴对的产生率:νανh x I x g )()('= 5.2 PN 结太阳能电池的电流⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=1exp kT eV I I I s L5.3光电导计算p L p n p n G e p e τμμδμμσ)()(+=+=∆5.4 光电导增益5.5 光电二极管的光电流)(n p L L L L W eG J ++=5.6 PIN二极管怎么提高光电探测效率?5.7发光二极管的内量子效率主要取决于哪些因素?5.8 PN结二极管激光器怎样实现粒子数反转(借助于能带图说明)第六章MOS场效应晶体管:概念的深入6.1 MOSFET按比例缩小理论(恒定电场缩小),哪些参数缩小,哪些参数增大?6.2 结型场效应晶体管的工作原理是什么?它有什么特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章
➢基本概念 M-S结的两个效应 整流触(整流结) 欧姆接触(非整流结)肖特基势垒高度 肖特 基效应(镜象力使势垒降低的效应) ➢问题解释 • 肖特基势垒二极管和PN结二极管之间的比 较。 • 画出加偏压肖特基势垒能带图,说明肖特 基势垒二极管的整流特性。
➢为什么金属与重掺杂半导体接触可以形成 欧姆接触?
➢问题解释 利用热平衡费米能级恒定的观点分析PN结空
间电荷区的形成。
从载流子扩散与漂移的角度分析PN结空间电 荷区的形成。
根据载流子扩散与漂移的观点分析PN结的单 向导电性。
写出边界条件公式(2-2-11),(2-2-12), 说明PN结的正向注入和反向抽取作用。
第3章
➢基本概念 发射极注射效率 基区输运因子 共基极直流
流子耗尽 ○载流子反型 沟道电荷 ○表 面电容 沟道电导 阈值电压 线性导纳 跨 导
➢问解释题 MOS结构存在哪些氧化层电荷和界面陷阱电荷?
简述它们的基本属性。
写出实际阈值电压的表达式并说明各项的物 理意义。
第5章
➢基本概念 场效应 单极器件(unipolar devices) 沟道
夹断 夹断电压 内夹断电压 漏极导纳 跨 导 栅极总电容 截止频率 沟道长度调制效 应 ➢问题解释 与JFET相比MESFET有哪些特点? 什么是增强型和耗尽型JFET?
第6章
➢基本概念 理想MOS结构的基本假设 ○载流子积累 ○载
半导体器件
复习
第2章
➢ 基本概念 PN结 同质结 异质结 ○同型结 ○异型结 ○高
低结 金属-半导体结突变结 线性缓变结 单边 突变结 空间电荷区 中性区 耗尽区 耗尽近似 势垒区 少子扩散区 扩散近似 正向注入 反向 抽取 正偏复合电流 反偏产生电流 隧道电流 产生隧道电流的条件 隧道二极管的主要特点 过渡电容(耗尽层电容) 扩散电容 等效电路 反向瞬变 电荷贮存 贮存电荷 隧道击穿 雪崩 击穿 临界电场 雪崩倍增因子 雪崩击穿判据
电流增益 共发射极电流增益 共基极截止 频率 共发射极截止频率 增益带宽乘积 电流集聚效应 基区宽度调变效应(Early 效应) 基区渡越时间 科尔克(Kirk)效 应 输入导纳 跨导 根梅尔(Gummel)数 穿通击穿
➢问题解释 BJT的四种工作模式及工作条件 写出BJT的少子边界条件 定性及半定量说明BJT的开关作用。