函数的解析式和定义域(复习题及答案)[2]
高三数学解析式试题答案及解析
高三数学解析式试题答案及解析1.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.【答案】-x(x+1)【解析】当-1≤x≤0时,0≤x+1≤1,由已知f(x)=f(x+1)=-x(x+1).2.定义域为R的函数满足,且当时,,则当时,的最小值为()A.B.C.D.【答案】A【解析】设,则,则,又,∴,∴当时,取到最小值为.【考点】1、函数的解析式;2、二次函数的最值.3.运货卡车以每小时x千米的匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油()升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.【答案】(Ⅰ);(Ⅱ) km/h时,最低费用的值为.【解析】(Ⅰ)行车总费用包括两部分:一部分是油耗;另一部分是司机工资,首先表示出行车时间为,故司机工资为(元),耗油为(元),故行车总费用为二部分的和;(Ⅱ),由基本不等式可求最小值,注意等号成立的条件(时取等号),如果等号取不到,可考虑利用对号函数的图象,通过单调性求最值.试题解析:(Ⅰ)设所用时间为,.所以,这次行车总费用y关于x的表达式是(或,)(Ⅱ)仅当,即时,上述不等式中等号成立答:当km/h时,这次行车的总费用最低,最低费用的值为26元【考点】1、函数的解析式;2、基本不等式.4.已知若则等于()A.B.C.D.【答案】D.【解析】.【考点】函数的解析式.5.若定义在R上的函数满足,且当时,,函数,则函数在区间内的零点个数为()A.9B.7C.5D.4【答案】C【解析】∵,∴,当时,,,∴,∴,通过画图找两个图像的交点个数,即零点个数.【考点】1.求函数解析式;2.分段函数图像.6.若,则的表达式为()A.B.C.D.【答案】C【解析】设,则,所以,所以,选D.【考点】求函数的解析式.7.已知函数,则满足方程的所有的的值为;【答案】0或3【解析】试题分析若,则或,解得a=3或a="0."【考点】1.分段函数;2.对数方程和指数方程.8.对于函数,如果存在锐角使得的图象绕坐标原点逆时针旋转角,所得曲线仍是一函数,则称函数具备角的旋转性,下列函数具有角的旋转性的是A.B.C.D.【答案】C【解析】若函数f (x )逆时针旋转角后所得曲线仍是一函数,则函数f (x )的图象与任一斜率为1的直线y=x+b 均不能有两个以上的交点 A 中函数与直线y=x 有两个交点,不满足要求; B 中函数y=lnx 与直线y=x-1有两个交点,不满足要求; C 中函数与直线y=x+b 均有且只有一个交点,满足要求;D 中函数y=x 2与直线y=x 有两个交点,不满足要求;故选C. 【考点】旋转变换点评:本题考查的知识点是函数的定义,其中根据函数的定义分析出函数f (x )的图象与任一斜率为1的直线y=x+b 均不能有两个以上的交点,是解答本题的关键.9. 已知函数在点处的切线方程为 (1)求函数的解析式;(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c 的最小值.【答案】(1) f(x)=x 3-3x. (2) c 的最小值为4. 【解析】(1)f′(x)=3ax 2+2bx -3. 根据题意,得即解得所以f(x)=x 3-3x.(2)令f′(x)=0,即3x 2-3=0,得x =±1.(-2,-,f(1)=-2,所以当x ∈[-2,2]时,f(x)max =2,f(x)min =-2. ( 需列表格或者说明单调性,否则扣2分)则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4, 所以c≥4.即c 的最小值为4.【考点】本题主要考查导数的几何意义,应用导数研究函数的单调性、最值,待定系数法。
高中数学函数的定义定义域值域解析式求法
课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
显然,值域是集合B 的子集。
(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。
(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。
(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。
符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。
必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)
函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。
(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。
例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。
函数定义域及值域经典类型总结练习题含答案
<一>求函数定义域、值域方法和典型题归纳一、根底知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
那么称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系〔f 〕,②集合A 的取值围。
由这两个条件就决定了f(x)的取值围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:〔1〕自变量放在一起构成的集合,成为定义域。
〔2〕数学表示:注意一定是用集合表示的围才能是定义域,特殊的一个个的数时用“列举法〞;一般表示围时用集合的“描述法〞或“区间〞来表示。
4.值域:是由定义域和对应关系〔f 〕共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域围的函数值的围。
〔1〕明白值域是在定义域A 求出函数值构成的集合:{y|y=f(x),x ∈A}。
〔2〕明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域〔一〕求函数定义域的情形和方法总结1函数解析式时:只需要使得函数表达式中的所有式子有意义。
〔1〕常见情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0〔非负数〕。
③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.〔0<底数<1;底数>1〕 ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.〔2()log (1)x f x x =-〕注:〔1〕出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
高三数学 高考知识点 函数的定义域复习题
高三数学 高考知识点 函数的定义域复习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合 , ,则 为( ) A. B. C. D.2.若函数 的定义域为 ,则实数 的取值范围是( ) A. B. C. 或 D. 或 3.函数的定义域是( )A. B. C. D.4.已知集合{}|A x y ==, {}| B x x a =≥,若A B A ⋂=,则实数a 的取值范围是( )A. (],3-∞-B. (),3-∞-C. (],0-∞D. [)3,+∞ 5.函数的定义域为( )A. B. C. D. 6.函数的定义域为( )A.B.C.D.7.函数()()lg 1f x x =+的定义域为( )A. ()(]1,00,1-⋃B. (]1,1-C. (]4,1--D. ()(]4,00,1-⋃ 8.若函数y =f (x )的定义域是[0,2],则函数g (x )=的定义域是 ( )A. [0,1]B. [0,1)C. [0,1)∪(1,4]D. (0,1)9.若函数 的定义域为 ,则实数 的取值范围是( ) A. B. C. D.10.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A. (-1,1)B.C. (-1,0)D.二、填空题11.函数 的定义域为________. 12.函数 的定义域为_____________. 13.函数的定义域为__________.14.已知函数 的定义域为 ,则函数 的定义域为__________.三、解答题15合B .(1)若4B ∈,求实数a 的取值范围; (2)求满足B A ⊆的实数a 的取值范围. 16.已知函数是奇函数.(1)求a 的值和函数f(x)的定义域; (2)解不等式f(-m 2+2m -1)+f(m 2+3)<0.17.已知二次函数 ,且满足 . (1)求函数 的解析式;(2)若函数 的定义域为 ,求 的值域. 18.已知函数()()()22log 1log 1f x x x =--+. (1)求函数()f x 的定义域; (2)判断()f x 的奇偶性;(3)方程()1f x x =+是否有实根?如果有实根0x ,的区间(),a b ,使()0,x a b ∈;如果没有,请说明理由(注:区间(),a b 的长度b a -)19.已知 是定义在 上的增函数,且满足 , . (1)求 的值,(2)求不等式 的解集.20.(1)已知函数f(x)的定义域是[1,5],求函数f(x 2+1)的定义域. (2)已知函数f(2x 2-1)的定义域是[1,5],求f(x)的定义域.参考答案1.C【解析】分析:通过解二次不等式求得集合A ,利用根式函数的定义域求得集合B ,然后再根据交集运算求 .详解:由题意得 , ∴ . 故选C .点睛:本题考查交集运算、二次不等式的解法和根式函数的定义域,主要考查学生的转化能力和计算求解能力. 2.B【解析】分析:先根据真数大于零得 >0恒成立,再根据二次型系数是否为零讨论,最后结合二次函数图像得实数 的取值范围.详解:因为函数 的定义域为 ,所以 >0恒成立, 因为 成立,所以若 ,则由 得 ,因此 , 选B.点睛:研究形如 恒成立问题,注意先讨论 的情况,再研究 时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 3.D【解析】分析:根据偶次根式下被开方数非负以及分母不为零列方程组,解方程组得定义域. 详解:因为 ,所以所以定义域为 , 选D.点睛:求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等. 4.A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A. 5.A【解析】分析:根据函数的解析式,列出函数满足的条件,即可求解函数的定义域. 详解:由函数 ,可得函数满足 ,解得 ,即函数的定义域为 ,故选A.点睛:本题主要考查了函数的定义域,其中根据函数的解析式列出函数有意义满足的条件是解答的关键,着重考查了推理与运算能力. 6.D【解析】要使函数有意义,需满足,解得 ,即函数的定义域为,故选D. 7.A【解析】 由题意,函数()f x =满足2340{10 11x x x x --+≥+>+≠ ,解得11x -<≤且0x ≠,所以函数()f x 的定义域为()(]1,00,1-⋃,故选A. 8.D【解析】∵f (x )的定义域为[0,2],∴要使f (2x )有意义,必有0≤2x ≤2,∴0≤x ≤1,∴要使g (x )有意义,应有∴0<x <1,故选D .9.B【解析】分析:由题意知 > 在 上恒成立,因二次项的系数是参数,所以分 和 两种情况,再利用二次函数的性质即开口方向和判别式的符号,列出式子求解,最后求并集即可.详解:∵函数 的定义域为 , ∴ > 在 上恒成立,①当 时,有 > 在 上恒成立,故符合条件; ②当 时,由 > =< ,解得 < < , 综上,实数 的取值范围是 . 故选B.点睛:本题的考点是对数函数的定义域,考查了含有参数的不等式恒成立问题,由于含有参数需要进行分类讨论,易漏二次项系数为零这种情况,当二次项系数不为零时利用二次函数的性质列出等价条件求解. 10.B【解析】解析:对于()211210f x x <<+,-+ ,即函数()21f x +11.[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 详解:要使函数 有意义,则 ,解得 ,即函数 的定义域为 . 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题. 12.【解析】由题意,根据对数函数的概念及其定义域可得, ,即 ,由指数函数 与 的图象可知,如图所示,当 时, 恒成立,所以正确答案为 , .13.【解析】分析:由题得,解不等式组即得函数的定义域.详解:由题得,解之得 故答案为: . 点睛:(1)本题主要考查函数定义域的求法,意在考查学生对这些知识的掌握水平.(2)求函数的定义域时,考虑问题要全面,不要遗漏,本题不要遗漏了 14.[-1,2]【解析】分析:要求函数 的定义域,需求函数 中 的范围。
高考数学重难点第9讲 函数的定义域、解析式与值域8大题型(原卷版及答案)新高考用)(全国通用)
重难点第9讲函数定义域、解析式与值域8大题型——每天30分钟7天掌握函数定义域、解析式与值域8大题型【命题趋势】函数的定义域、解析式与值域问题是高考数学的必考内容。
函数问题定义域优先,在解答函数问题时切记要先考虑定义域;函数解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题;基本不等式及“耐克函数”、“瘦腰函数”模型;数列的最大项、最小项;向量与复数的四则运算及模的最值;向量与复数的几何意义的最值;解析几何的函数性研究问题等;都需要转化为求最值问题。
在复习过程中,在熟练掌握基本的解题方法的同时,要多加训练综合性题目。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、求函数的定义域的依据函数的定义域是指使函数有意义的自变量的取值范围1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥(21,)n k k N *=+∈其中中.3、零次幂的底数不能为零,即0x 中0x ≠.4、如果函数是一些简单函数通过四则运算复合而成的,那么它的定义域是各个简单简单函数定义域的交集。
【注意】定义域用集合或区间表示,若用区间表示熟记,不能用“或”连接,而应用并集符号“∪”连接。
二、抽象函数及定义域求法1、已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;2、已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.3、已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域.三、函数解析式的四种求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含有待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。
§2.2 函数的定义域、值域及函数的解析式
(3)常见基本初等函数的定义域
①分式函数中分母不等于零. ②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为___. R ④y=ax (a>0且a≠1),y=sin x, y=cos x,定义域均为__. R { x | x R且x k π , k Z} π ⑤y=tan x的定义域为________________________. 2 0的定义域为_________________. ⑥函数f(x)=x {x|x∈R且x≠0}
R
{ y | y R且y 0}
④y=ax (a>0且a≠1) ⑤y=logax (a>0且a≠1) ⑥y=sin x, y=cos x ⑦ y=tan x 主页
(0, ) R [1, 1] R
要点梳理
忆一忆知识要点
3.函数解析式的求法
(1)换元法:若已知f(g(x))的表达式,求f(x)的解析式, 通常是令g(x)=t,从中解出x= (t),再将g(x)、x代入已知 解析式求得f(t)的解析式,即得函数f(x)的解析式,这种方 法叫做换元法,需注意新设变量“t”的范围. (2)待定系数法:若已知函数类型,可设出所求函数的 解析式,然后利用已知条件列方程(组),再求系数. (3)消去法:若所给解析式中含有f(x), f ( 1 ) 或 f(x), f(-x) x 等形式,可构造另一个方程,通过解方程组得到f(x). (4)配凑法或赋值法:依据题目特征,能够由一般到特 殊或由特殊到一般寻求普遍规律,求出解析式.
对称性
函数的 基本性质 奇偶性 周期性 最值 函数常见的 几种变换 基本初等 函数 复合函数 抽象函数 函数与方程 函数的应用 常见函数模型
函 数
平移变换、对称变换、翻折变换、伸缩变换. 正(反)比例函数; 一次(二次)函数; 幂、指、对函数;
高中数学函数专题复习题
7.已知二次函数 f (x) ax 2 bx c(a, b, c R)满足 f ( 1) 0, f (1) 1, 且对任意实数 x
都有 f ( x) x 0, 求 f (x) 的解析式 .
8. a>0,当 x [ 1,1] 时,函数 f (x)
x2 ax b 的最小值是- 1,最大值是 1. 求
A. 在区间( -1 ,0)上单调递减
B. 在区间( 0, 1)上单调递减
C. 在区间( -2 ,0)上单调递减
D在区间( 0, 2)上单调递减
6.设函数 f (x) ax 1 在区间 ( 2, ) 上是单调递增函数,那么 a 的取值范围是( ) x2
A. 0 a 1 B . a 1
2
2
C . a<-1 或 a>1 D . a>- 2
8.已知 f ( x) 与 g( x) 的定义域都是 { x|x ∈R,且 x≠±1} ,若 f ( x) 是偶函数, g( x) 是奇函 数,
1
且 f ( x)+ g( x)=
,则 f ( x)=
1x
,g( x)=
.
9.已知定义域为(-∞, 0)∪( 0,+∞)的函数 f ( x) 是偶函数,并且在(-∞,
5.已知函数 y
x 3,y x4
x 2 9 的值域分别是集合 P、 Q,则( x2 7 x 12
)
A. p Q
6.若函数 y 3
A. (0, ] 4
B. P=Q
mx 1
mx2
的定义域为
4mx 3
3 B. (0, )
4
C. P Q
D.以上答案都不对
R,则实数 m的取值范围是(
高中函数定义域、值域经典习题及答案
高中函数定义域、值域经典习题及答案1、求函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$首先要注意分母不能为0,所以$x\neq-3$和$x\neq1$。
又因为分式中有$x-1$的项,所以还要满足$x\neq1$。
所以函数的定义域为$x\in(-\infty,-3)\cup(-3,1)\cup(1,+\infty)$。
⑵ $y=1-\frac{1}{x+1}$分母不能为0,所以$x\neq-1$。
所以函数的定义域为$x\in(-\infty,-1)\cup(-1,+\infty)$。
⑶ $y=\frac{1}{1+\frac{1}{x-1}}+\frac{2x-1}{2-x^2}$分母不能为0,所以$x\neq1$。
分式中有$x-1$的项,所以还要满足$x\neq1$。
分母不能为0,所以$x\neq\pm\sqrt{2}$。
所以函数的定义域为$x\in(-\infty,-\sqrt{2})\cup(-\sqrt{2},1)\cup(1,\sqrt{2})\cup(\sqrt{2},+\infty)$。
2、设函数$f(x)$的定义域为$[0,1]$,则函数$f(x+2)$的定义域为$[2,3]$;函数$f(2x)$的定义域为$[0,\frac{1}{2}]$。
3、若函数$f(x+1)$的定义域为$[-2,3]$,则函数$f(2x-1)$的定义域为$[-\frac{5}{2},2]$;函数$f(-2)$的定义域为$[-3,-1]$。
4、知函数$f(x)$的定义域为$[-1,1]$,且函数$F(x)=f(x+m)-f(x-m)$的定义域存在,求实数$m$的取值范围。
由于$F(x)$的定义域存在,所以$f(x+m)$和$f(x-m)$的定义域都存在,即$x+m\in[-1,1]$,$x-m\in[-1,1]$。
解得$-1-m\leq x\leq1-m$,$m-1\leq x\leq m+1$。
高中数学函数的定义域测试题(含答案)
高中数学函数的定义域测试题(含答案)高二数学函数的定义域与值域、单调性与奇偶性苏教版【本讲教育信息】一. 教学内容:函数的定义域与值域、单调性与奇偶性二. 教学目标:理解函数的性质,能够运用函数的性质解决问题。
三. 教学重点:函数性质的运用.四. 教学难点:函数性质的理解。
[学习过程]一、知识归纳:1. 求函数的解析式(1)求函数解析式的常用方法:①换元法(注意新元的取值范围)②待定系数法(已知函数类型如:一次、二次函数、反比例函数等)③整体代换(配凑法)④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。
(3)理解轨迹思想在求对称曲线中的应用。
2. 求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3. 求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4. 求函数的单调性(1)定义法:(2)导数法:(3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;③互为反函数的两个函数在各自定义域上有______的单调性;(5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。
【考点】函数的概念,函数的奇偶性。
点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。
4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。
在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。
【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。
期末复习卷——函数定义域、值域、解析式
嘉兴一中2012学年高一数学期末复习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚知识梳理: 【考试说明】1.了解函数、映射的概念,会求一些简单的函数定义域和值域. 2.理解函数的三种表示法:解析法、图象法和列表法. 3.了解简单的分段函数,并能简单应用. 【概念梳理】函数定义:一般地,我们有:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值, 叫做函数的值域(range ).、 与 统称为函数的三要素.映射定义:一般地,我们有:设A 、B 是非空的集合,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个映射(mapping ).区间的概念:设,a b 是两个实数,而且.a b <我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为 (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为 (3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为这里的实数a 与b 都叫做相应区间的端点,其中实数a 叫做区间的左端点,实数b 叫做区间的右端点,b a -叫做区间的长度. 区间意义与使用规则:区间是集合的另外一种表示方法,在用区间表示集合时应注意区的使用规则: (1)区间的左端点必须小于其右端点;(2)区间中的元素都表示数轴上的点,可以用数字表示出来; (3)任何区间均可在数轴上表示出来;(4)以“-∞”或“+∞”为区间的一端点时,这一端必须是小括号.函数的表示方法: 、 、分段函数: 已知函数定义域被分成有限个区间,若在各个区间上表示对应规则的数学表达式一样,但单独定义各个区间公共端点处的函数值;或者在各个区间上表示对应规则的数学表达式不完全一样,则称这样的函数为分段函数. 分段函数是一个函数,而不是几个函数;分段函数的解析式不能写成几个不同的方程,而应将几种不同的表达式用一个左大括号括起来,并分别注明各部分的自变量的取值情况. 【题型与方法】1.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):定义域是自变量x 的取值范围,它是函数的一个不可缺少的组成部分,定义域不同而解析式相同的函数,应看作是两个不同的函数.如果没有特别说明,函数的定义域就是指能使这个式子有意义的所有实数x 的集合.在实际问题中,还必须考虑自变量所代表的具体的量的允许取值范围问题.忽视函数的定义域,我们将“寸步难行”,由此,我们也往往将函数的定义域称之为函数的“灵魂”.函数的定义域,就是使给出的解析式有意义的自变量的取值集合,具体来说有以下几种情况:(1)若()f x 是整式,则其定义域为全体实数集R ;(2)若()f x 是分式,则其定义域是使分母不为零的全体实数组成的集合;(3)若()f x 是偶次根式,则其定义域是使被开方数非负(即不小于零)的实数的取值集合; (4)如果函数是由一些基本初等函数通过四则运算结合而成的,那么它的定义域是各基本初等函数定义域的交集; (5)复合函数定义域求法:①若()f x 定义域为[,]a b ,复合函数[()]f g x 定义域由()a g x b ≤≤解出; ②若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域. (6)由实际问题列出的函数式的定义域问题,由自变量的实际意义给出.(7)分段函数定义域是各段函数定义域的并集,对数函数底数大于零不等1,真数大于零. 2.相等函数的判断:两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数),而与表示自变量和函数值的字母无关. 3.求函数值域的常用方法函数的值域是由其对应法则和定义域共同决定的.具体方法: (1)直接法:利用常见函数的值域来求一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为 ,值域为 ; 二次函数)0()(2≠++=a c bx ax x f 的定义域为 , 当a >0时,值域为 ;当a <0时,值域为 .(2)配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;(3)分式转化法(或改为“分离常数法”),如求函数3243x y x +=-的值域(4)换元法(特别注意新元的范围):通过变量代换转化为能求值域的函数,化归思想;如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.(5)判别式法(可转化为双钩函数形式)如求函数22122+-+=x x x y 的值域 (6)单调性法(7)数形结合:根据函数的几何图形,利用数型结合的方法来求值域. (8)分段函数的值域是各段函数值域的并集. 3.求函数解析式的常用方法⑴待定系数法(已知所求函数的类型);⑵代换(配凑)法;⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组; (4)已知函数的奇偶性和部分解析式,求函数的完整解析式;(5)赋值法(抽象函数)基础练习:1.下列对应关系是集合P 上的函数是有 .(1)*,PZ Q N ==,对应关系:f “对集合P 中的元素取绝对值与集合Q 中的元素相对应”; (2){1,1,2,2},{1,4}P Q =--=,对应关系::f x →2,,y x x P y Q =∈∈;(3){P=三角形},{|0}Q x x =>,对应关系:f “对P 中三角形求面积与集合Q 中元素对应.” 2.下列说法中正确的有 .A.()y f x =与()y f t =表示同一个函数 B. ()y f x =与(1)y f x =+不可能是同一函数 C.()1f x =与0()f x x =表示同一函数 D.定义域和值域都相同的两个函数是同一个函数3. (1)函数y =16-4x 的值域是 .(2)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是 .4.函数lg 3y x =-____________5. 设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且()1()1f xg x x +=-,则()f x =____________,()g x = . 典型例题例1.(1)已知f (x )=e(x ∈R),则f (e 2)等于( )A .e 2B .e C. eD .不确定(2) 如下图(1)(2)(3)(4)四个图象各表示两个变量,x y 的对应关系,其中表示y 是x 的函数关系的有 .(3)函数)2()21()1(22)(2≥<<--≤⎪⎩⎪⎨⎧+=x x x x x x x f ,则3()____2f -=,若21)(<a f ,则实数a 的取值范围是____ 例2.(1)若3311()f x x xx +=+,则()f x = .(2)若2(1)lg f x x+=,则()f x = . (3)若()f x 满足12()()3f x f x x+=,则()f x = .(4)已知二次函数()f x 同时满足条件:①(1)(1)f x f x +=-; ②()f x 的最大值为15;③()0f x =的两根的立方和等于17.求函数()f x 的解析式.例3. (1)求函数f (x )=12-|x |+x 2-1+(x -4)0的定义域. (2)若函数y =f (x )的定义域是[0,4],求函数g (x )=f (12x )x -1的定义域.例4.求下列函数的值域:⑴函数22211xx y +-= ⑵函数3log 3log 2x y x =++ ⑶xx y +-=112⑷y x =嘉兴一中2012学年高一数学期末练习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚班级:___________ 姓名:__________ 学号:____________一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴ 3)5)(3()(+-+=x x x x f ,5)(-=x x g ;⑵ 11)(-+=x x x f ,)1)(1()(-+=x x x g ;⑶ x x f =)(,2)(x x g =; ⑷0)(x x f =,xx x g =)(; ⑸ 2)52()(-=x x f ,52)(-=x x gA. ⑴、⑵B. ⑵、⑶ C . ⑷ D. ⑶、⑸ 2.函数2()lg(31)f x x =+的定义域是( )A. 1(,)3-∞-B.11(,)33- C .1(,1)3- D.1(,)3-+∞3.若函数[)[]⎪⎩⎪⎨⎧∈-∈=1,0,40,1,41)(x x x f x x)(,则=)3(log 4f ( ) A.31 B. 3 C. 41D. 4 4.如果函数|)|1()1()(x x x f -⋅+=的图象在x 轴上方,那么此函数的定义域为( )A. ()1,1- B. ()(),11,-∞-⋃+∞ C . ()(),11,1-∞-⋃- D. ()()1,11,-⋃+∞ 5.函数}3,2,1{}3,2,1{:→f 满足)())((x f x f f =,则这样的函数个数共有( )A. 1个B.4个 C .8个 D.10个 6.函数344)(23++-=ax ax x x f 的定义域为R ,那么实数a 的取值范围是( )A. (-∞,+∞)B. (0,43) C .(-43,+∞) D.)43,0[ 7.设函数2()272f x x x =-+-,对于实数(03)m m <<,若()f x 的定义域和值域分别为[,3]m 和[1,3],则m 的值为( )A. 1B.5/2 C .611 D.8118.函数()31log f x x =+的定义域是(]1,9,则函数()()()22g x f x f x =+的值域是( ) A .(]2,14 B.[)2,-+∞ C .(]2,7 D.[]2,79.设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+ ∞,,∞B .(][)10--+ ∞,,∞C .[)0+,∞D .[)1+,∞ 二、填空题10.若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数,x y ,总有2()()(21),f x f x y x y y+=+++则()f x = . 11.如果函数f (x )=ax -1的定义域为[-21,+)∞,那么实数a 的取值范围是 .12.已知定义在R 上的函数()f x 是奇函数,当0x >时,()(1)1f x x x =-+,则()f x = 13.函数xax y 213-+=的值域为()(),22,-∞-⋃-+∞,则实数a = .14.函数x a a x y -+-=的定义域为 .15.函数)(x f =x 2+x +21的定义域是[n ,n +1](n 是自然数),则此函数值域中的整数的个数为 .16.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 三、解答题17.对定义域分别是f D 、g D 的函数()y f x =、()y g x =,规定:函数()()()()()f g f g f gf xg x x D x Dh x f x x D x D g x x D x D ⎧⋅∈∈⎪=∈∉⎨⎪∉∈⎩当且当且当且.(1)若函数1()1f x x =-,2()g x x =,写出函数()h x 的解析式;(2)求问题(1)中函数()h x 的值域.18.求函数3512+-+=x x x y 的值域(至少两种方法).19.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且ϕ(31)=16,ϕ(1)=8. (1)求ϕ(x)的解析式,并指出定义域;(2)求ϕ(x)的值域.20.已知函数()2x f x ax b=+(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x 的不等式()()12k x k f x x+-<-.21.已知二次函数()2f x ax bx =+ (),0a b a ≠是常数,且满足条件:f (2)=0,且方程f (x )=x 有两个相等实根. (1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.答案:任意,唯一,函数值的集合{f (x )| x ∈A },定义域、值域与对应关系[],;a b (,);a b [,),(,].a b a b解析法、图象法、列表法 {x |x ≠0},{y |y ≠0}; Rab ac y y 4)4(|2-≥,{ ab ac y y 4)4(|2-≤}. 基础练习:1.【研析】由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,从而知只有(2)正确.2.【研析】A 两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.(]0,3 3.()9,02,4⎛⎤-⋃+∞ ⎥⎝⎦4.[)()()0,22,33,4⋃⋃ 5.221,11xx x -- 典型例题 例1 (1)B(2)【研析】由函数定义可知,任意作一条直线x a =,则与函数的图象至多有一个交点,对于本题而言,当11a -≤≤时,直线x a =与函数的图象仅有一个交点,当1a >或1a <-时,直线x a =与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).(3)12,3(,)(2-∞- 例2 【研析】(1)∵3331111()()3()f x x x x xx x x+=+=+-+, 又1(,2][2,)x x+∈-∞-+∞ ∴3()3f x x x =-(2x ≥或2x ≤-)(2)令21t x +=(1t >),则21x t =-, ∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-(3)12()()3f x f x x+= ①,把①中的x 换成1x,得132()()ff x x x += ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-(4) 【研析】从所给条件知()f x 的图象关于1x =对称,且最大值为15,故设二次函数的顶点式,利用韦达定理得到关于系数a 的方程.依条件可设2()(1)15(0)f x a x a =-+<,即2()215f x ax ax a =-++,令()0f x =即22150ax ax a -++=,并设12,x x 为该方程的两个根,由韦达定理知:12122151x x x x a +=⎧⎪⎨⋅=+⎪⎩,从而3333121212121590()3()232(1)2.x x x x x x x x a a +=+-⋅+=-⨯⨯+=-90217a∴-=,故 6.a =- 所以函数()f x 的解析式为2()6129.f x x x =-++例3 (1) 解:(1)要使f (x )有意义, 则只需⎩⎪⎨⎪⎧2-|x |≠0,x 2-1≥0,x -4≠0,即⎩⎪⎨⎪⎧x ≠±2,x ≥1或x ≤-1,x ≠4,∴x ≥1且x ≠2且x ≠4或x ≤-1且x ≠-2.故函数的定义域为{x |x <-2或-2<x ≤-1或1≤x <2或2<x <4或x >4}. (2)由⎩⎪⎨⎪⎧0≤12x ≤4,x -1≠0,得⎩⎪⎨⎪⎧0≤x ≤8,x ≠1,∴0≤x ≤8且x ≠1.故定义域为[0,1)∪(1,8]. 例4 (1)1,12⎛⎤-⎥⎝⎦ (2) (][),04,-∞⋃+∞ (3) 110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭(4) 5,4⎡⎫-+∞⎪⎢⎣⎭练习卷:1-9:CCBCD DCCC10. ()21, 0421,0x f x x x x=⎧⎪=⎨++≠⎪⎩11.-212. ()221,00, 01,0x x x f x x x x x ⎧+->⎪==⎨⎪-++>⎩13.4 14. {}a 15.2n+1 16. ]310,2[ 17. 解:(1)⎪⎩⎪⎨⎧=+∞⋃-∞∈-=11),1()1,(1)(2x x x x x h(2)当.21111)(,12+-+-=-=≠x x x x x h x 时若,4)(,1≥>x h x 则其中等号当x =2时成立,若,4)(,1≤<x h x 则其中等号当x =0时成立,∴函数),4[}1{]0,()(+∞⋃⋃-∞的值域x h 18. (]1,1,13⎡⎫-∞-⋃-+∞⎪⎢⎣⎭19. 解析: (1)设f(x)=ax ,g(x)=x b ,a 、b 为比例常数,则ϕ(x)=f(x)+g(x)=ax +xb由⎪⎩⎪⎨⎧=+=+⎪⎩⎪⎨⎧==8163318)1(,16)31(b a b a 得ϕϕ,解得⎩⎨⎧==53b a ∴ϕ(x)=3x +x 5,其定义域为(-∞,0)∪(0,+∞) (2)由y =3x +x5, 得3x 2-yx +5=0(x ≠0)∵x ∈R 且x ≠0, ∴Δ=y 2-60≥0,∴y ≥215或y ≤-215[来源:学&科&网] ∴ϕ(x) 的值域为(-∞,-215]∪[215,+∞)20.解析:(1)将得(2)不等式即为即[来源:][来源:学#科#网Z#X#X#K]①当②当③.21. 解:(1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.① 由f (2)=0,得4a +2b =0②由①、②得,a =-12,b =1,故f (x )=-12x 2+x .(2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12,则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1,∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎨⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0.又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0..故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].。
高一数学求函数解析式定义域与值域的常用方法(含答案)
高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析
函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。
考点04函数的定义域和值域、解析式和分段函数(教师版) 新课标
2013年新课标数学40个考点总动员 考点04 函数的定义域和值域、解析式和分段函数(教师版)热点一 函数的定义域和值域1.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( ) A .y=1sin xB .y=1nxxC .y=xe xD .sin xx2.(2012年高考(山东文))函数1()ln(1)f x x =+ ( )A .[2,0)(0,2]-B .(1,0)(0,2]-C .[2,2]-D .(1,2]-【答案】B【解析】要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.3.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______. 【答案】5【解析】22log ,24,1log 2,1 2.t x x x t =≤≤∴≤≤∴≤≤ 令因对号函数4y t t=+在区间[1,2]上单调递减,故当1t =时函数取得最大值为5.4.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.5.(2012年高考(四川文))函数()f x =的定义域是____________.(用区间表示)【答案】(21-,∞)【解析】由12>0x -,得1(-)2x ∈∞,.6.(2012年高考(广东文))(函数)函数y =的定义域为__________.热点二 函数的解析式7.(2012年高考(安徽理))下列函数中,不满足(2)2()f x f x =的是 ( )A .()f x x =B .()f x x x =-C .()f x x =+1D .()f x x =-【解析】C【解析】()f x kx =与()f x k x =均满足:(2)2()f x f x =得:,,A B D 满足条件 ,故C 不满足.8.(2012年高考(上海理))已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g , 则=-)1(g _______ .热点三 分段函数9.(2012年高考(江西理))若函数21(1)()lg (1)x x f x x x ⎧+≤=⎨>⎩,则((10))f f =( )A.lg101B.2C.1D.0 【答案】B【解析】本题考查分段函数的求值.因为101>,所以()10lg101f ==.所以2((10))(1)112f f f ==+=.10.(2012年高考(福建理))设函数1,()0,D x ⎧⎪=⎨⎪⎩x x 为有理数为无理数,则下列结论错误的是( )A .()D x 的值域为{}0,1B .()D x 是偶函数C .()D x 不是周期函数D .()D x 不是单调函数11.(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____【考点剖析】一.明确要求1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用.3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查. 二.命题方向三.规律总结 一个方法求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域. 两个防范(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性.【基础练习】1.(教材习题改编)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+ f (-1)=2,则a =( )A .-3B .±3C .-1D .±1【答案】C【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.2.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________.【答案】{x |x ≥4且x ≠5}【解析】由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0∴x ≥4且x ≠5.3.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________.4.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________. 【答案】8【解析】由已知得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.∴f (x )=x 2-4x +3.∴f (-1)=(-1)2-4×(-1)+3=8.5. (人教A 版教材习题改编)函数f (x )=log 2(3x+1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞)【答案】A【解析】 ∵3x+1>1,∴f (x )=log 2(3x+1)>log 21=0.6.(经典习题)函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.【名校模拟】 一.扎实基础1. (2012海淀区高三年级第二学期期末练习文)函数21,12y x x =-+-?的值域是(A )(3,0]- (B ) (3,1]- (C )[0,1] (D )[1,5) 【答案】B【解析】212,(4,0],(3,1].xx y -?\-?\?2. (唐山市2011—2012学年度高三年级第一次模拟考试文)函数2l o g (12y x =+的定义域为(A ) (-1, 2) (B ) (0, 2] (C ) (0, 2) (D ) (-1, 2]3.(湖北省八校2012届高三第一次联考理)函数3()33x f x =-的值域为 ( ) A .(,1)-∞-B .(1,0)(0,)-+∞C .(1,)-+∞D .(,1)(0,)-∞-+∞4. (浙江省2012届重点中学协作体高三第二学期高考仿真试题理)设3,10,()[(5),10,x x f x f f x x -≥⎧=⎨+<⎩则(6)f 的值为A .5B .6C .7D .8【答案】C【解析】()()()()(6)11813107f f f f f f f =====⎡⎤⎡⎤⎣⎦⎣⎦.5. (长春市实验中学2012届高三模拟考试(文))若函数⎩⎨⎧≥<<-=)2()20(ln 1)(2x x x x x f ,且2)(=x f ,则x 的值为e A . 2.B 1.-e C 1.-e D 或2【答案】C【解析】本题考查函数的定义和对分段函数的解析式的理解。
第三章 第一单元 第二节函数的解析式与定义域
第三章
函数
第一单元 函数的概念与性质
第二节 函数的解析式与定义域
高考总复习.文科.数学
课前自主学案
高考总复习.文科.数学
知识梳理
1.函数的表示方法 解析法、列表法和图象法 表示函数的方法,常用的有 ________________________三 种;
(1)解析法:就是把两个变量的函数关系, _____________, 用一个等式表示 这个等式叫做函数的解析表达式,简称解析式.
______________
解析:由 1 x 0 解得-1<x<1,于是f(x)的定义域是(-1,1),固 1 x x 1 应有-1< <1且-1< <1,解得-2<x<-1或1<x<2。 2 x 答案:2, 1) (1, 2) (
高考总复习.文科.数学
3.(2009年福建卷)下列函数中,与函数y 是( A C )
故所求定义域是(1,9)
高考总复习.文科.数学
点评:要求给出解析式的函数的定义域,其定义域就是使解析 式有意义的自变量的取值集合,于是可转化为解不等式或不等 式组,因此同学们要熟练掌握如下几种情况:①含有分式的:
分母不等于0;②有偶次根式的:被开方式大于等于0;③含有
对数式的:真数大于0,底数大于0且不等于1;④指数式中,若 指数为0,则底数不等于0;⑤要熟练基本初等函数的定义域.
(2)列表法:就是_______________________的函数关系. 列出表格来表示两个变量 (3)图象法:就是用_______________________的关系. 函数图象表示两个变量之间
高考总复习.文科.数学
高三数学函数的定义域与值域试题答案及解析
高三数学函数的定义域与值域试题答案及解析1.函数的定义域为()A.B.C.D.【答案】C【解析】由题意得:解得或,所以选C.【考点】函数定义域2.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【答案】C【解析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选C.点评:本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.3.定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.(1)分别判断函数与是否存在长距与短距,若存在,请求出;(2)求证:指数函数的短距小于1;(3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?【答案】(1)短距为,长距不存在,短距为,长距为5;(2)证明见解析;(3).【解析】本题属于新定义概念,问题的实质是求函数图象上的点到原点的距离的最大值和最小值(如有的话),正面讨论时我们把距离表示为的函数.(1)对,(当且仅当时等号成立),因此存在短距为,不存在长距,对,,,即有最大值也有最小值,因此短距和长距都有;(2)对函数,,由于,因此短距不大于1,令,则有,故当时,存在使得,当时,存在使得,即证;(3)记,按题意条件,则有不等式对恒成立,这类不等式恒成立求参数取值范围问题,我们可采取分离参数法,转化为求函数的最值,按分别讨论,由此可求得的范围.(1)设(当且仅当取得等号)+2分短距为,长距不存在。
+4分(2)设 +6分+8分短距为,长距为5。
+9分(3)设函数的短距不小于2即对于始终成立:+10分当时:对于始终成立 +12分当时:取即可知显然不成立 +13分当时:对于始终成立 +15分综上 +16分【考点】新定义概念,函数的最大值与最小值,不等式恒成立问题.4.下列函数中,与函数的值域相同的函数为()A..B..C..D..【答案】B【解析】函数的值域为R,而,只有,所以选B.【考点】函数值域5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.7.已知函数是奇函数,则函数的定义域为【答案】【解析】本题定义域不确定,不要用奇函数的必要条件来求参数,而就根据奇函数的定义有,即,化简得恒成立,所以,则.由,解得.【考点】奇函数的定义与函数的定义域.8.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>19.若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.【答案】[0,1)【解析】由得0≤x<1,即定义域是[0,1).10.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是________.【答案】∪(2,+∞)【解析】由题意f(x)==下面分段求值域,再取并集.11.设函数的定义域为,值域为,则=()A.B.C.D.【答案】D【解析】的定义域是,值域是,所以.【考点】函数的定义域与值域.12.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.13.函数f(x)=e x sin x在区间上的值域为 ().【答案】A=【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)minf(0)=0,f(x)=f=.max14.函数y=的定义域是 ( ).A.[-,-1)∪(1,]B.(-,-1)∪(1,)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)【答案】A【解析】∵⇔⇔⇔⇔-≤x<-1或1<x≤.∴y=的定义域为[-,-1)∪(1,].15.下列函数在定义域内为奇函数,且有最小值的是A.B.C.D.【答案】D【解析】,且【考点】函数的奇偶性和值域.16.函数的定义域为.【答案】【解析】由对数的真数为正知,两边取自然对数得,因为,所以,或由指数函数的图象可知,所以函数的定义域为.【考点】指数函数和对数函数的性质.17.函数()A.B.C.D.【答案】C【解析】由题意得,即,所以函数的定义域为,所以正确答案为C.【考点】对数函数的定义域18.函数的定义域是_____________.【答案】【解析】函数的定义域是使函数式有意义的自变量的集合,求定义域时要注意基本初等函数的定义域.【考点】函数的定义域.19.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.20.函数的定义域是()A.B.C.D.【答案】D.【解析】由,得原函数的定义域为.【考点】函数的定义域.21.已知函数,定义域为,则函数的定义域为_______.【答案】【解析】由题意,解得,故的定义域为.【考点】1.抽象函数的定义域.22.函数的定义域为 .【答案】(0,]【解析】由且得:.【考点】函数定义域的求法23.某同学为研究函数(0≤x≤1)的性质,构造了两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是 __ __.【答案】;【解析】由图易知当点P从C点移动到B点的过程中时,AP+PF=f(x)先减小后增大,根据两点间直线最短的原理,当AP与PF在一条直线上时,即点P位于BC中点时,f(x)最小.所以易知时,;时,.所以是函数f(x)的极值点.且为极小值点.易知;又,所以.所以函数f(x)的值域是.【考点】函数的极值、函数的值域24.下列函数中,既是奇函数又在定义域上单调递增的是()A.B.C.D.【答案】C【解析】函数在定义域上是增函数,不是奇函数;函数在定义域上是减函数;函数,在定义域上既是奇函数又是增函数;函数在定义域上不具有单调性. 故选C.【考点】函数的定义域,函数,,,的奇偶性、单调性.25.函数y=的定义域是( )A.B.C.D.【答案】D.【解析】由得,故选D.【考点】函数的定义域.26.函数的定义域为()A.B.C.D.【答案】 B【解析】由,得,所以选B.【考点】函数的定义域.27.已知函数,则________.【答案】【解析】,.【考点】分段函数求值,考查学生的基本运算能力.28.已知函数,且.(1)求实数的值;(2)解不等式.【答案】(1) ;(2)【解析】(1)首先判断出的范围,带入相应的函数解析式即可求出值;(2)根据(1)问中的值先分段求出的范围后再求并集即可.试题解析:(1)∵,∴,由得,解得 .(2) 由得:当时解得;当时解得,故的解集为 .【考点】1.分段函数;2.解不等式组.29.已知函数的值域为,则的取值范围是.【答案】【解析】函数,令,解得显然当时;当时,所以.【考点】二次函数的值域.30.符号表示不超过的最大整数,例如,,定义函数,给出下列四个命题:(1)函数的定义域为,值域为;(2)方程有无数个解;(3)函数是周期函数;(4)函数是增函数.其中正确命题的个数有()A.1B.2C.3D.4【答案】B【解析】函数的定义域是,值域是,所以①错;②,③正确;当时,;当时,,所以不是增函数,所以④错.【考点】1.考查信息题的分析问题解决问题的能力;2.函数的定义域、值域、单调性、周期性.31.对于任意实数,表示不超过的最大整数,如.定义在上的函数,若,则中所有元素的和为()A.65B.63C.58D.55【答案】C【解析】当时:,当时:,同理可得:时:;时:;时:;时:;时:;时:;时:,所以中所有元素的和为.【考点】1.取整函数;2.函数的值域.32.设函数的图像在处取得极值4.(1)求函数的单调区间;(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.【答案】(1)递增区间是和,递减区间是;(2)不存在.【解析】(1)求导,利用极值点的坐标列出方程组,解出,确定函数解析式,再求导,求单调区间;(2)先假设存在“正保值区间”,通过已知条件验证是否符合题意,排除不符合题意得情况.试题解析:(1), 1分依题意则有:,即解得 v 3分∴.令,由解得或,v 5分所以函数的递增区间是和,递减区间是 6分(2)设函数的“正保值区间”是,因为,故极值点不在区间上;①若极值点在区间,此时,在此区间上的最大值是4,不可能等于;故在区间上没有极值点; 8分②若在上单调递增,即或,则,即,解得或不符合要求; 10分③若在上单调减,即1<s<t<3,则,两式相减并除得:,①两式相除可得,即,整理并除以得:,②由①、②可得,即是方程的两根,即存在,不合要求. 12分综上可得不存在满足条件的s、t,即函数不存在“正保值区间”。
高中数学函数经典复习题(含答案)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的解析式和定义域【考点指津】1.掌握函数的三种表示方法,会求简单函数的解析式.函数的表示方法通常有:解析法、列表法、图象法,三者各具特点.解析式中包括分段函数,它由一个或多个式子构成,是一个函数;通过函数的图象能够直观地反映出函数的一些性质,因此要掌握函数的图象,并熟悉一些基本初等函数(正比例函数、反比例函数、一次函数、二次函数等)的图象特征.2.会求简单函数的定义域.定义域是构成函数的重要要素之一,一切函数问题的研究都离不开函数的定义域,要熟练掌握求函数定义域的原则和方法.当一个函数可以用解析式表示时,函数的定义域就是使其解析式有意义的自变量的取值集合.在实际问题中,还应注意实际意义的制约. 【知识在线】1.已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .2.下列函数:①y =2x +5;②y =xx 2+1;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 ( ) A .1 B .2 C .3 D .43.已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .4.若f (x -1)=2x +5,则f (x 2) = ( ) A .2x 2+3 B .2x 2+7 C .x 2+3 D .x 2+7 5.已知函数f (x ) = lgxx-+11的定义域为A ,函数g (x )=lg(1+x ) – lg(1-x )的定义域为B ,则下述关于A 、B 关系不正确的为 ( ) A .A ⊇B B .A ∪B =B C .A ∩B =B D .B ⊂≠A 【讲练平台】例1 求函数xx x x x x f +-++-=02)1(65)(的定义域.分析 根据有关条件列出不等式组,再求出不等式组的解集即为所求函数的定义域. 解 由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-0010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3. 故函数的定义域是),3[]2,1()1,0(+∞ .点评 (1)求以解析式给出的函数定义域时,应遵循以下几条原则:①分式的分母不为零;②偶次根号下被开方数非负;③在a °中底数a ≠0;④若f (x )是由几个部分构成的,则应采用交集法;⑤实际问题结合变量的实际意义来确定,等等;(2)求不等式组的解集,通常借助数轴的直观性;(3)函数的定义域一般应用集合或区间形式表示,在用区间表示时,要弄清区间端点的归属,正确使用开区间和闭区间符号,需特别注意的是,“∞”不是一个确定的数,而是一个变化趋势,只能用开区间;(4)必须把所有的限制条件都列出来,特别是在0)1(-x 中,x -1≠0,不能遗漏.例2 若函数 y =lg(x 2+ax +1)的定义域为R ,求实数a 的取值范围.分析 由函数 y =lg(x 2+ax +1)的定义域为R 知:x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1为二次函数,函数值恒正,故可利用“△”法求解.解 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2,它便是所求的a 的取值范围.点评(1)“△”法可判断一元二次函数值恒正、恒负或非正、非负;(2)必须注意所用△的值是大于零、小于零、还是不大于零、不小于零.如下面的问题:关于x 的不等式x 2+ax +1<0的解集为∅,试求实数a 的取值范围.问题便等价于x 2+ax +1≥0的解集为R ,从而有△≤0,解得 –2≤a ≤2.变题1 已知函数 y =lg(x 2+ax +1)的值域为R ,求a 的取值范围. 提示:利用△≥0⇒ a ≥2或a ≤-2.变题2 已知函数 y =lg(ax 2+ax +1)的定义域为R ,求a 的取值范围. 提示:分a >0与a =0的两种情况求解,其答案为0≤a <4.思考:变题1、变题2及原题,它们的区别何在?例3 《中华人民共和国个人所得税法》第十四条中有下表:个人所得税税率表一(工资、薪金所得适用)表中“全月应纳税所得额”是从月工资、薪金收入中减去1000元后的余额.例如某人月工资、薪金收入1220元,减除1000元,应纳税所得额就是220元,应缴纳个人所得税11元.(1)请写出月工资、薪金的个人所得y 关于收入额x (0<x ≤3000)的函数表达式; (2)一公司职员某月缴纳个人所得税75元,问他该月工资、薪金的收入多少?分析 先读懂题意,正确理解“全月应纳税所得额”等的意义,然后利用分段函数法列出个人所得y 关于收入额x 的函数关系式,利用该关系式继续求解其它的问题.解 (1)当0<x ≤1000时,y =x ;当1000<x ≤1500时,扣税: (x -1000) ·5%,从而所得为y =x - (x -1000) ·5% = 0.95x +50;当1500<x ≤3000时,扣税: (x -1500)·10%+500 ·5% = 0.1x -125,从而所得为y = x -(0.1x -125) =0.9x +125.故 y = ⎩⎪⎨⎪⎧x , (0<x ≤1000),0.95x +50,(1000<x ≤1500),0.9x +125,(1500<x ≤3000).(2)显然,该职员的工资、薪金x 满足1500<x ≤3000,故由0.1x -125=75,解得 x =2000.答:该职员的该月工资、薪金收入为2000元.点评 (1)函数的表示法有:解析法、列表法、图象法;而解析式中包含一类重要的函数——分段函数:对应于自变量x 的不同取值范围,对应关系也不同.分段函数不管x 被分成了几段,它仍是一个函数,而不是几个函数,它由几个部分构成了一个函数;(2)写函数解析式时,不要忘了写上函数的定义域;对于实际问题,还不要忘了问题的实际意义.变题 在原题的条件下,若设某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于 ( D )A .500~600元B .900~1200元C .1200~1500元D .1500~1800元 例4 (1)设f (x )是一次函数,且f [f (x )]=4x +3,求f (x ). (2)设x x x f 2)1(+=+,求f (x +1). (3)若f (x )满足f (x )+2f (x1)=x ,求f (x ).分析 (1)已知了函数f (x )的类型,可采用待定系数法;(2)视(1+x )为整体,采用换元法或配方法可求得f (x )的解析式,再用(x +1)整体代换f (x )中的x ,即可求出f (x +1)的解析式;(3)注意到x 与x1互为倒数,可通过倒数代换联立方程组解出f (x ). 解 (1)设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a ,∴ f (x )=2x +1或f (x )= -2x -3.(2)解法一 ∵1)1()1(2-+=+x x f ,∴ f (x )=x 2-1 (x ≥1), ∴ f (x +1)= (x +1)2-1 = x 2+2x (x ≥0).解法二 令t =1+x ,则x = t -1,∴f (t )= (t -1)2+2(t -1)= t 2-1. 又t =1+x ≥1,∴ f (x )=x 2-1 (x ≥1),从而f (x +1)= x 2+2x (x ≥0).(3)在f (x )+2f (x 1)=x ①中,用x 1代换x 得 f (x 1)+2 f (x )= x1 ②, 联立①、②解得 )0(32)(2≠-=x xx x f .点评 (1)正确理解函数的概念,是求抽象函数解析式的关键;(2)求抽象函数的解析式常用配凑法(如题(2)的解法一)、换元法(如题(2)的解法二)、待定系数法(如题(1)的解答)以及取倒相消法(如题(3)的解答)等;(3)在用换元法或配凑法求解析式时,应注意中间变量的取值范围,以确定函数f (x )的定义域.在题(2)中,由f (x )的定义域是{x ∣x ≥1},则在f (x +1)中必须x +1≥1,即x ≥0,从而f (x +1)的定义域是{x ∣x ≥0}. 【知能集成】 1.求函数的解析式的方法通常有待定系数法、配方法、换元法,有时还要用到方程的思想. 2.求函数的定义域,主要涉及以下几个方面:①分式的分母不为零;②对数函数的真数都必须大于零,底数必须大于零且不为1;③偶次方根的被开方数非负;④零次幂的底数不为零,等. 对于实际问题,还应注意变量的实际意义或物理意义.复合函数的定义域是使各部分都有意义的自变量取值范围的交集.【训练反馈】 1.函数23)(x x x f -=的定义域为 ( )A .[0,32] B .[0,3] C .[-3,0] D .(0,3)2.若f [g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 ( ) A .3x B .3 C .9(3x +1) +1 D .3(9x +3) +13.已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= ( )A .1B .3C .15D .304.若函数f (x )满足f (xy )= f (x )+ f (y ),且f (2)=m ,f (3)=n ,则f (72)= ( ) A .6mn B . m 3+n 2 C .2m +3n D .3m +2n 5.函数y =f (x )的图象如题图所示,则f (x )的解析式为( ) A .122+-x x B .1||22+-x xC .|x 2 – 1|D .x 2 – 2x +16.若函数f (x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f (x )-f (-x )的定义域是( ) A .[a ,b ] B .[-b ,-a ] C .[-b ,b ] D .[a ,-a ]7.若f (2x +3)的定义域是{x |-4≤x <5=,则函数f (2x -3)的定义域是 . 8.求函数y =)233(log 12x x -+的定义域.9.动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 移动一周回到A 点,设x 表示点P 的行程,y 表示线段P A 的长,试求y 关于x 的函数式.10.若函数f (x ) = 3x -5kx 2+4kx +3的定义域为R ,求实数k 的取值范围.11.已知函数f (x ) =xax+b(a ,b 为常数,且a ≠0)满足f (2)=1,f (x )=x 只有惟一实数解,试求函数y =f (x )的解析式及f [f (-3)]的值.12.定义在(0,+∞)上的函数f (x )满足:①f (2)=1;②f (xy )=f (x )+f (y ),其中x 、y 为任意正实数; ③任意正实数x 、y 满足x >y 时,f (x )>f (y ). 试回答下列问题: (1)求f (1)、f (4);(2)试判断函数f (x )为单调性;(3)如果f (x )+f (x -3)≤2,试求x 的取值范围.函数的解析式和定义域参考答案:【知识在线】1.π+1 2.D 3. - 4 4. B 5.D 【训练反馈】1.B 2.A 3.C 4.D 5.B 6.D 7. {x |-1≤x <8} 8.(0,5] 9. y =⎪⎪⎩⎪⎪⎨⎧≤-≤+-≤+-≤≤.43,4,32,106,21,22,10,22x x x x x x x x x x 10.提示:若k =0,则函数的定义域为R ;若k ≠0,则对任意x ∈R ,kx 2+4kx +3≠0,从而,△<0,解得0<k <34.从而所求k 的取值范围为{k |0≤k <34}. 11.提示:f (x ) =x 只有惟一实数解,即xax+b = x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且ax 0+b ≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1. 12.(1)f (1) =0,f (4)=2;(2)增函数;(3)3<x ≤4.。