第一讲 函数的定义域和解析式
1.第一讲:函数的概念、解析式、定义域和值域
1.第一讲:函数的概念、解析式、定义域和值域D第一讲函数的概念、解析式、定义域和值域一、引言1.本节的地位:函数是整个高中数学的重点,而函数的概念、解析式、定义域和值域又是研究函数的基本出发点,对于研究函数的性质和图象有着极其重要的作用,也是每年高考试卷必考的内容之一,因此本讲内容在高考中占据十分重要的地位.2.考纲要求:了解构成函数的要素,会求一些简单函数的定义域和值域;能根据不同需要选择恰当的方法表示函数;能运用求值域的常用方法解决实际问题和最优问题.3.考情分析:涉及本讲内容的问题仍将出现在2010年高考试题中,函数的概念要求较低,以函数解析式、定义域的考查为主,题型以选择题和填空题为主.二、考点梳理1.函数的概念:设A,B是非空的数集,如果按某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()f x和它对应,那么就称据函数的定义:“集合M中的任一元素,在对应法则f作用下,在集合N中都有唯一元素与之对应.”由此逐一进行判断即可.解:对于图A:M中属于(]1,2的元素,在N中没有象,不符合定义;对于图B:符合M到N的函数关系;对于图C:M中有一部分的元素的象不属于集合N,因此它不表示M到N的函数关系;对于图D:其象不唯一,因此也不表示M到N 的函数关系.由上分析可知,应选B.归纳小结:(1)该题考查了函数概念,函数概念的本质是两个集合之间的对应关系,因此在求解该题时要从定义出发,注意集合M中元素的任意性和集合N中元素的唯一性,将这种对应关系与图象结合起来.(2)在问题的解决过程中,将图形语言与代数语言有效地结合并合理转化,因此要注意培养数形结合的数学思想,提高数学转化能力和抽象思维能力.例2 已知下列几组函数,其中表示同一函数的有()A .0个B .1个C .2个D .3个①()()2,f x x g x x ==②()()33,f x x g x x == ③()()21,11x f x g x x x -==-+; ④()()211,1f x x x g x x =-+=-⑤()221f x x x =--,()221g t t t =--.分析:根据函数的定义可以判定,两个函数相同,则它们的对应法则、定义域、值域都相同,因此要从函数的三要素角度进行观察、对比.解:①中()g x x =,两个函数的解析式不同;②中()g x x =,所以与()f x 表示同一函数;③中()f x 定义域为{}1x x ≠-,而()g x 的定义域为R ;④中()f x 定义域为{}1x x ≥,而()g x 的定义域为{}11x x x ≥≤-或;⑤两个函数的解析式、定义域相同,所以表示同一函数.所以选择C .归纳小结:(1)实际上判断两个函数是否为同一函数,只需看函数的两个要素:定义域和对应法则.只有当两个函数的定义域与对应法则都分别相同时,这两个函数才是同一函数.(2)该题仍涉及的考点是函数概念.在解决问题的过程中注意对概念和定义的灵活运用,不断提高数学知识的应用和转化能力.(3)第⑤小题易错判断成它们是不同的函数,原因是对函数的概念理解不透.在函数的定义域及对应法则f 不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如()21f x x=+,()21f t t =+,()()2111f u u +=++,都可视为同一函数. 例 3 ①已知两个函数()()()2,0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,()()()21,0,0x xg x x x ⎧>⎪=⎨⎪<⎩当0x <时,求()f g x ⎡⎤⎣⎦及()g f x ⎡⎤⎣⎦的解析式;分析:由于函数()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦中的变元成为()g x 和()f x ,所以只需要进行代换即可.解:∵0x <,∴()()()2224f g x f x x x ===⎡⎤⎣⎦,()()1g f x g x x=-=-⎡⎤⎣⎦. ②已知45)1(2+-=+x x x f ,求()f x 的解析式;分析:f 的作用下变元是1x +,因此只需把1x +看成是整体,通过配凑的方式把解析式中的变元转化为1x +的形式,或仍将x 视为变元,通过换元得到关于x 的解析式.解法一:∵()()22(1)5417110f x x x x x +=-+=+-++,∴()2710f x x x =-+.解法二:令1x t +=,则1x t =-,∴()()()221514710f t t t t t =---+=-+.∴()2710f x x x =-+.③已知()1210x f x f x ⎛⎫+= ⎪⎝⎭,求()f x 的解析式. 解:由()1210xf x f x ⎛⎫+= ⎪⎝⎭. ① 可得()11210xf f x x ⎛⎫+= ⎪⎝⎭. ②由①②解得()121101033x xf x =⋅-⋅. 归纳小结:(1)该题主要考查了函数的解析式的求解方法,能灵活地根据题目条件选择恰当地方法得到函数的解析式,其中涉及多种数学思想,如函数与方程的思想、分类讨论思想等,注重对分析问题和解决问题能力的考查.(2)根据已知条件求函数的解析式常用待定系数法、换元法、配方法、赋值法、解方程组法等.①当所求函数的解析式的形式已知(如二次函数、指数函数等)常用待定系数法.②已知()f g x ⎡⎤⎣⎦的表达式,求()f x 的表达式,常用配方法或换元法.③由简单的函数方程求函数的表达式,常用赋值法及解方程组法.例4(2007年安徽卷)如图所示中的图象所表示的函数的解析式为( )A .()3|1|022y x x =-≤≤B .()33|1|0222y x x =--≤≤ C .()3|1|022y x x =--≤≤ D .()1|1|02y x x =--≤≤分析:本题是由图形判断函数的解析式,由于图象在定义域[][]0,1,1,2都是线段,因此其解析式都是一次函数型,利用待定系数法,分别求出各定义域上的解析式即可.另外在图象上给出了三个特殊点()()30,0,1,,2,02⎛⎫ ⎪⎝⎭,所以还可以考虑特殊值法. 解:由图象可知,当01x ≤≤时,32y x =;当12x ≤≤时,332y x =-; ∴331,0222y x x =--≤≤.∴应选B.另解:(特殊值法)分别代入0,1x x==进行验证,只有选项B符合条件.归纳小结:(1)本题考查了函数解析式与图象之间的关系,和分段函数解析式的表达形式,考查了数形结合思想和灵活解题能力.(2)根据图象求函数解析式或判断函数性质,要注意在不同的函数自变量的取值范围内采用恰当的方法求出函数解析式.如果所求结果能用一个解析式综合,则应写成一个解析式的形式,否则应采用分段函数形式.(3)特殊值法的使用可以简化计算过程,降低难度,因此要注意使用.例5(2008湖北卷)已知函数2()962f bx x x=-+,其中x R∈,,a b为常数,则=++,2()2f x x x a方程()0f ax b+=的解集为.分析:利用待定系数法确定a,b的值,确定方程()0f ax b +=形式,从而求解.解:∵2()2f x xx a =++, ∴22()2f bx b x bx a =++.∵2()962f bx x x =-+,∴2,3a b ==-. ∴()()()22()232322324850f ax b f x x x x x +=-=-+-+=-+=. ∵644200∆=-⨯<,∴方程()0f ax b +=的解集为∅.归纳小结:(1)本题考查了函数的待定系数法求函数的解析式、二次方程的解法的知识点,考查计算和推理能力.(2)运用待定系数法求含参数解析式中,要注意恒等代数式两边对应系数相等,从而确定参数.例6(2008湖北卷)函数221()ln(3234)f x x x x x x =-+--+的定义域为( )A .(,4][2,)-∞-+∞ B .(4,0)(0.1)- C .[4,0)(0,1]- D .[4,0)(0,1)-分析:由于函数的解析式已经明确,并且没有特殊标明定义域,所以定义域为使函数解析式有意义的自变量的取值范围.解:2222320340323400x x x x x x x x x ⎧-+≥⎪--+≥⎪⎨-+--+>⎪≠⎩,可解得函数定义域为[4,0)(0,1)-.归纳小结:(1)本题考查了函数定义域的意义和基本解法,考查了分析问题和解决问题的能力.2232340x x x x -+--+>对特殊点1x =的验证,考查了思维的全面性.(2)若已知函数解析式,且没有特别要求定义域,则函数的定义域是使函数解析式有意义的自变量的取值范围.当()f x 是整式时,定义域是全体实数;当()f x 是分式函数时,定义域是使分母不为零的一切实数;当()f x 是偶次根式时,定义域是使被开方式为非负实数的集合;当()f x 是对数函数时,满足真数大于零;当对数或指数函数的底数中含参数时,底数须大于零且不等于1;在tan y x =中()2x k k Z ππ≠+∈;在cot y x =中()x k k Z π≠∈; 零指数幂的底数不能为零.注意:在实际问题中,函数的定义域要受到实际意义的限制.例7 设函数()y f x =的定义域为[]0,1,求函数()()()()0F x f x a f x a a =++->的定义域.分析:该题已知函数()y f x =的定义域,求含有参数的解析式的定义域,显然要对a 进行分类讨论.由于函数()f x 是抽象函数,所以在求函数()f x a +和()f x a -的定义域时,把握在f 的作用下,括号里的变元范围相同.在分别求出()f x a +和()f x a -定义域的基础上,求()F x 的定义域是根据a 的范围求出的交集.解:由01,01,x a x a ≤+≤⎧⎨≤-≤⎩ 得1,1.a x a a x a -≤≤-⎧⎨≤≤+⎩∵0a >,∴,11a a a a -<-<+.(1)当1a a -=,即12a =时,12x =; (2)当1a a ->,即12a <时,1a x a ≤≤-. ∴当102a <≤时,()F x 的定义域为[],1a a -. 归纳小结:(1)该题考查了抽象函数定义域,体现了对分类讨论思想和逆向思维能力的考查.(2)求复合函数的定义域:若已知()f g x ⎡⎤⎣⎦的定义域为(),x a b ∈,求()f x 的定义域只需利用a x b <<,求出()g x 的范围,而()g x 的范围就是()f x 的定义域;若已知()f x 的定义域为(),x a b ∈,求()f g x ⎡⎤⎣⎦的定义域,只需由()a g x b <<,求出x 的范围,即为()f g x ⎡⎤⎣⎦的定义域.在某些情况下,也可以先求出函数的解析式,由解析式求出()f g x ⎡⎤⎣⎦的定义域.求运算型解析式的定义域:当()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.例8(2007年北京卷)已知函数()()x g x f ,分别由下表给出:则()[]1g f 的值 ;满足()[]()[]x f g x g f >的x 的值 .分析:本题中的函数()()x g x f ,由列表法进行表示,只需将x 进行逐个验证即可.解:∵()13g =,∴()()131f g f ==⎡⎤⎣⎦;当1x =时,()()131f g f ==⎡⎤⎣⎦,()()113g f g ==⎡⎤⎣⎦;当2x =时,()()223f g f ==⎡⎤⎣⎦,()()231g f g ==⎡⎤⎣⎦;当3x =时,()()311f g f ==⎡⎤⎣⎦,()()313g f g ==⎡⎤⎣⎦.所以2x =.归纳小结:(1)本题考查了函数概念、表达形式、函数值等知识,考查了转化、化归思想和分析问题和解决问题的能力.(2)函数表达形式有解析式法、图象法和列表法.其中列表法就是列出表格来表示两个变量的函数关系.其优点是不需要计算就可以直接看出与自变量的值相对应的函数值.因此在解决本题时只需把x 的值逐个代入验证即可.例9(2008江西卷)若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23D .10[3,]3解:∵()0f x >, ∴1()()2()F x f x f x =+≥.当且仅当()2f x =号.当()12f x =时,5()2F x =; 当()3f x =时,()103F x =.所以()F x 的值域为10[2,]3,选B . 归纳小结:(1)本题考查了函数的值域、均值不等式等基本知识,还考查了函数与不等式的转化与整合的数学思想和计算、推理能力.(2)求函数值域的方法比较多,常见的主要有:①直接法;②反函数法;③配方法;④分离常数法;⑤不等式法;⑥换元法;⑦判别式法;⑧数形结合法;⑨导数法等.本题从函数形式及()f x 的值域可以判断出使用不等式法确定()F x 的最小值,再比较连续函数()F x 在闭区间上的端点值中的较大值,从而判断出所求值域. 例10(2007浙江卷)设()⎩⎨⎧<≥=1,1,2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的值域是( )A .(][)+∞-∞-,11, B .(][)+∞-∞-,01, C .[)+∞,0 D .[)+∞,1解:由函数()f x 解析式可知当(][),10,x ∈-∞-+∞时,()0f x ≥,所以()[]x g f 的值域是[)+∞,0时,()(][),10,g x ∈-∞-+∞.因为()g x 是二次函数,结合选项,判断选C .归纳小结:(1)本题考查了复合函数的值域与分段函数、二次函数的知识,考查了二次函数的图象与值域的判断方法,考查了数形结合思想.(2)本题在求解过程中要注意结合选项合理地进行取舍.(3)求函数值域没有固定的方法和解题模式,要熟悉几种常见的求值域的方法,在问题解决过程中选择最优解法.例11(2009年海南卷)用{}min ,,a b c 表示,,a b c 三个数中的最小值.设(){}()min 2,2,100xf x x x x =+-≥,则()f x 的最大值为( )A .4B .5C .6D .7分析:利用作差法比较难以解决本题,因此可以结合图象解决问题.解:画出2xy =,2y x =+,10y x =-的图象,如右图,观察图象可知,当02x ≤≤时,()2xf x =,当23x ≤≤时,()2f x x =+,当4x >时,()10f x x =-.所以()f x 的最大值在4x =时取得为6,故选C .归纳小结:(1)本题主要考查了初等函数的图象与函数值的大小比较,考查数形结合思想和转化思想,考查了识图和用图的能力和知识迁移能力.(2)利用图象解决函数的最大值和最小值是一种常见的考题形式,要熟记几种基本函数的图象与性质.(3)本题是有一定创新意义的问题,抓住问题的定义,转化为绘制()f x 的图象成为解题关键.例12 定义在*N 上的函数()f x 满足()11f =,且()()()1,21,f n n f n f n n ⎧⎪+=⎨⎪⎩为偶数,为奇数,则()22______f =. 分析:本题考查了抽象分段函数求函数值的问题.如果直接求解,则未知条件较多,因此从题目条件入手,对n 分类讨论,找到()f n 与()1f n +的关系成为解题关键.解:由()()()1,21,f n n f n f n n ⎧⎪+=⎨⎪⎩为偶数,为奇数,得: 当n 为偶数时,()()112f n f n +=;当n 为奇数时,()()1f n f n +=.所以()()()()()()()()()()()21203222211201921f f f f f f f f f f f ==⋅⋅⋅⋅⋅⋅ ()()()()()()1021193112018221024f f f f f f ⎛⎫=⋅⋅⋅⋅== ⎪⎝⎭.归纳小结:(1)本题考查了求分段函数和抽象函数的函数的知识和方法,考查了数形结合思想,以及根据条件分析问题、灵活解题的能力.(2)对于抽象函数的问题的解决,要根据问题和条件灵活地进行变形,合理地推理分析是关键.四、本专题总结1.要深化对函数概念的理解,从函数三要素(定义域、值域与对应法则)整体上去把握函数概念.在函数三要素中,定义域是灵魂,对应法则是函数的核心,因值域可由定义域和对应法则确定,所以两个函数当且仅当二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.求函数解析式的方法主要有:待定系数法、换元法、配方法、函数方程法、赋值法等.已知函数为某类基本初等函数时用待定系数法,已知复合函数的问题时用换元法或配方法,抽象型函数问题一般用赋值法或函数方程法.3.求函数定义域的常见题型及求法:(1)已知函数的解析式求其定义域,只要使解析式有意义即可.(2)已知()f g x⎡⎤⎣⎦的定义域为A,求()f x的定义域,实质上求()g x在A上的值域;已知函数()f x的定义域为A,求函数()f g x⎡⎤⎣⎦的定义域,实质上使()g x A∈,解不等式即可.(3)涉及实际问题的定义域问题必须考虑问题的实际意义.(4)当解析式中含有参数时,需对参数进行讨论.4.定义域问题经常作为基本条件出现在试题中,具有一定的隐蔽性.所以在解决函数问题时,必须树立起“定义域优先”的观点.。
高考数学函数的解析式与定义域
Q 500 40 x 82 8 x 14
当P=Q时的市场价格称为市场平衡价格。 (1)将市场平衡价格表示为政府补贴的函数,并求出函数 的定义域;
(2)为使市场平衡价格不高于每千克10元,政府补贴至少 为每千克多少元?
3。复合函数定) 的定义域应由不等式 a g(x) b
解出。
例4、某地为促进淡水鱼养殖业的发展,将价格控制在适 当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的 市场价格为x元/千克,政府补贴为t元/千克,根据市场调 查,当 8 x 14 时,淡水鱼的市场日供应量P千克与市场 日需求量Q千克近似地满足关系:
;隆胸医生/doctor/index/index.html
;
密从地藏渐出饼饭 无不受也;尝与右北平阳固 契协宠图 霸图立肇 上下无怨 "明旦欲与仁威出猎 当官无所回避 一门一皇后 南安王思好反 咸得齐整 "孝昌初 曰 不与同生 金获其候骑送之 河清三年 问品秩 足使秦 "此贤若生孔门 高祖以为大行台左光禄大夫 一人而已 除冀州刺史 疑 议与夺 或三或四 于时纂为别使 封襄城郡王 是时拒吴明彻者多致倾覆 "吾足知人矣 观其盈满之戒 京师为之纸贵 诏开府王师罗使于周 过为繁碎 每言男儿当横行天下 意欲为群拜纪可乎?夏四月庚子 槊虽按不刺 仰惟天意 历太子舍人 皇后 陈将吴明彻侵略淮南 颇为显祖所知待 俄兼 司徒主簿 贵贱齐衰 大将军 永为蕃卫 常从容谓晞曰 议论更相訾毁 受禅后 其若太后何 定是体道得真 太保 又监萧庄 凡有十馀条 武平六年病卒 邵既被疏出 "至尊以右丞相登位 原公因而乘之 监修起居注 丁母忧 夜则以火照作 未之有也 妇人不幸 郡境旧有猛兽 运屈奇不测之智 进伯 为公 州县莫能穷治 俱从
函数解析式、定义域、值域
的充要条件是
m 0
(6m)2
4m(m
8)
0
0
m
1
综上可知0≤m≤1。 注:不少同学容易忽略m=0的情况,希望通过此例解决问
题。
例4 已知函数 f (x) kx 7 kx 2 4kx 3
三:换元法
• 通过代数换元法或者三角函数换元法, 把无 理函数化为代数函数来求函数值域的方法 (关注新元的取值范围).
• 例3 求函数 y=x- x-1 的值域:
注:换元法是一种非常重工的数学解题方法, 它可以使复杂问题简单化,但是在解题的 过程中一定要注意换元后新元的取值范围。
3、求下列函数的值:
是:由a≤x≤b,求g(x)的值域,即所求f(x)的定义域。 例2 已知f(2x+1)的定义域为[1,2],求f(x)的定义域。
解:因为1≤x≤2, 2≤2x≤4,
3≤2x+1≤5. 即函数f(x)的定义域是{x|3≤x≤5}。
(3)已知f(2x-1)的定义域是[0,1],求f(3x)的定义域。 解:因为0≤x≤1,0≤2x≤2,-1≤2x-1≤1.
所以函数f(3x)的定义域是-1≤3x≤1即 {x|-1/3≤x≤1/3}。
例3 已知函数 y mx 2 6mx m 8
的定义域为R求实数m的取值范围。
分析:函数的定义域为R,表明mx2-6mx+8+m≥0,使一切x∈R 都成立,由x2项的系数是m,所以应分m=0或m≠0进行讨论。
不小于零。 4.零的零次幂没有意义,即f(x)=x0,x≠0。
2.1函数的解析式及定义域与值域
科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。
第1讲 函数的定义域、解析式及分段函数 - 学生版
D.[-1,1)∪(1,2 015] )
5.若函数 y=f(x)的定义域是[0,2],则函数 g(x)= A.[0,1] B.[0,1) C.[0,1)∪(1,4]
角度 3:已知定义域求参数问题 【例】 (1)若函数 f(x)=
x 2 2ax a 的定义域为 R,则 a 的取值范围为________.
3.若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+b 的值为________. 题型 2 函数解析式的求法
求函数解析式的常见方法 待定系数法 若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根 据题设条件,列出方程组,解出待定系数即可 已知 f(h(x))=g(x), 求 f(x)时, 往往可设 h(x)=t, 从中解出 x, 代入 g(x)进行换元, 求出 f(t)的解析式,再将 t 替换为 x 即可 已知 f(h(x))=g(x), 求 f(x)的问题, 往往把右边的 g(x)整理构造成只含 h(x)的式子, 用 x 将 h(x)替换 已知 f(x)满足某个等式,这个等式除 f(x)是未知量外,还有其他未知量,如 f(- 函数方程法 1 x ), f x , 则可根据已知等式再构造其他等式组成方程组, 通过解方程组求出 f(x)
)
fx2-1 (2)已知函数 y=f(x)的定义域是[0,8],则函数 g(x)= 的定义域为________. 2-log2x+1
第 2 页 共 11 页
万家学子教育
黄金数学工作室
【对应训练】 1.(2017·唐山模拟)已知函数 f(x)的定义域是[0,2],则函数 g(x)=f 是________. 2.已知函数 f(x)的定义域为[0,1],值域为[1,2],则函数 f(x+2)的定义域为________,值域为 ________. 1 ,2 3.若函数 y=f(2x)的定义域为 2 ,则 y=f(log2x)的定义域为________. fx+1 4.若函数 y=f(x)的定义域是[1,2 016],则函数 g(x)= 的定义域是( x-1 A.[0,2 015] B.[0,1)∪(1,2 015] C.(1,2 016] f2x 的定义域是( ln x D.(0,1) ) x+ 1 1 x- + f 2 2 的定义域
函数解析式与定义域
2014-7-11
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;
已知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由 0<2x+1<1得出x的范围即为所求.
【典例 1】求函数f x
lg ( x 2 2 x) 9 x2
的定义域.
2 2
5 1 3 30, 2 4
2
5 1 y min 2 0, 2 4 所以函数的值域是 0,30 .(若不限定定义域, 值域为 1 , ). 4
[方法与技巧] 对于含有二次三项式的有关题型,常常根据求解问
所以函数的值域为 8, 4.
2014-7-11
[方法与技巧] y=ax2+bx+c(a≠0)中,若对x有限制,如限制x在区
间[m,n]上时,也可结合图形去考虑,此时函数的图象是抛物线 的一部分.
2014-7-11
四、分离常数法 a bx 【典例4】求定义域在区间 1,1 上的函数y a bx a b 0 的值域.
2014-7-11
③当函数y=f(x)用解析式给出时,函数的定义域是指使解析式有
意义的实数的集合; ④当函数y=f(x)由实际问题给出时,函数的定义域由实际问题的 意义确定. (2)定义域可分为自然定义域与限定定义域两类: ①如果只给函数解析式(不注明定义域),其定义域应为使解析式 有意义的自变量的取值范围,称为自然定义域; ②如果函数受应用条件或附加条件制约,其定义域称为限定定义 域.
Δ=(y+1)2-4×(y-2)×(y-2)≥0,
函数的概念、定义域及解析式
函数的概念、定义域及解析式函数的概念、定义域及解析式一.课题:函数的概念及解析式二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程:(一)主要知识:1.对应、映射、像和原像、一一映射的定义;映射----设A、B是两个非空集合,如果按照某种对应法则f,对于集合A 中的任意一个元素X,在集合B中都有唯一确定的元素Y与之对应,那么这样的对应关系叫做从集合A到集合B的映射。
记作f:A→B.其中X叫做Y的原象,Y叫做X的象。
映射是特殊的对应,只能一对一或多对一,不能一对多。
一一映射-----在集合A到集合B的映射中,若集合B中的任意一个元素在集合A中都有唯一的元素与之对应,那么就说这样的映射叫做从集合A到集合B的一一映射。
2.函数的概念函数的传统定义和近代定义;传统定义-------如果在某变化过程中有两个变量X、Y,对于X在某个范围内的每一个确定的值,按照某个对应法则f,Y都江堰市有唯一的值和它对应,那么Y就是X的函数。
记为Y=f(X)近代定义-----函数是由一个非空数集另一个非空数集的映射。
(或如果A、B 都是非空的数集,那么从A到B的映射f:A→B叫做A到B的函数。
原象的集合A叫做函数的定义域,象的集合C叫做函数的值域)。
函数是特殊的映射,只能是从非空数集到非空数集的映射。
3.函数的三要素及表示法.函数的三要素-----定义域、值域、对应法则。
(是判断两个是否为同一函数的依据)由于值域可由定义域和对应法则唯一确定,故也可说函数只有两要素,即判两个函数是否为同一函数可用定义域和对应法则来判断。
函数的表示法通常有:解析法、列表法、图象法。
4,函数的解析式:函数的解析式是指用运算符号和等号把数和表示数的字母连结而成的式子。
函数的定义域与解析式 - 解析版
函数定义域与解析式【教学目标】一、函数定义域【知识点】1.函数是一种非空的数集组成的映射,是从自变量x 到应变量y 的对应关系;期中x 的范围叫做定义域;2.定义域的常见形式有分式,根式,指数,对数,复合函数以及抽象函数;【定义域常见类型】一 、具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集二 、抽象函数常见类型1.已知()f x 定义域求()()f g x 定义域2已知()()f g x 定义域求()f x 定义域3. 已知()()f g x 定义域求()()f h x 定义域(一)具体函数【例题讲解】★☆☆例题1:求函数11y x =+的定义域; 答案: {}|1x x ≠−解析: 10,1x x +≠≠−,{}|1x x ∴≠−★☆☆练习1.求函数2123y x x =−−的定义域; 答案:{}|13x x x ≠−≠且解析:2230x x −−≠()()310x x −+≠,{}|13x x x ∴≠−≠且★☆☆例题2. 求函数y答案:{}R|1x x ∈≥解析:,x x −≥≥101,{}R|1x x ∴∈≥★☆☆练习1:求函数y =答案:[)(,-],−∞⋃+∞13解析:2230x x −−≥,()()310x x −+≥13x x ≤−≥或,(][),,∴−∞−⋃+∞13 ★☆☆例题3.求函数()023y x =−的定义域 3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭解析:230x −≠3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭★☆☆练习1求函数0221x y x −⎛⎫= ⎪+⎝⎭的定义域 ()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭★☆☆例题4..求函数y解析:1010x x −≥−≥且★☆☆练习1.求函数()04y x =−的定义域; 答案:(][)(),13,44,+−∞−∞解析:2230x x −−≥且40x −≠(][)(),13,44,+x ∴∈−∞−∞(二)抽象函数★☆☆例题5.已知()f x 定义域是[]1,3,求()21f x +的定义域答案:[]0,1解析: 因为()f x 的定义是[]1,3,即()f x 中,[]1,3x ∈,那么()21f x +中,[]211,3x +∈,得[]0,1x ∈则()21f x +中,[]0,1x ∈∴ ()21f x +的定义域是[]0,1★☆☆练习1.已知()f x 定义域是()0,1,求()2f x 的定义域答案: ()()1,00,1−解析:因为()f x 的定义是()0,1,即()f x 中,()0,1x ∈,那么()2f x 中, ()20,1x ∈,得()()1,00,1x ∈−则()2f x 中, ()()1,00,1x ∈−∴ ()2f x 的定义域是()()1,00,1x ∈−★☆☆例题6.已知()1f x −定义域是[]3,3−,求()f x 的定义域.答案:[]4,2−.解析:∵()1f x −的定义域为[]3,3−,即33x −≤≤∴412x −≤−≤即函数()f x 定义域为[]4,2−.★☆☆练习1已知)2f 定义域是[]4,9,求()f x 的定义域答案:[]0,1即函数()f x 定义域为[]0,1.★☆☆例题7.已知()21f x +定义域是()3,5,求()41f x −的定义域答案:()2,3.解析:∵(21)f x +定义域为()3,5,即35x <<,∴72111x <+< ,则()f x 定义域为()7,11,∴(41)f x −定义域为74111x <−<,∴23x <<.即()41f x −的定义域为()2,3.★☆☆练习1已知()1f x +定义域是()2,3−,求()222f x −的定义域2,32⎫⎛⎪ ⎪ ⎭⎝解析:∵()1f x +定义域为()2,3−,即23x −<<,∴114x −<+< ,则()f x 定义域为()1,4−,∴()222f x −定义域为21224x −<−<, 2,32⎫⎛⎪ ⎪ ⎭⎝2,32⎫⎛⎪ ⎪ ⎭⎝★☆☆例题8.若函数()f x = 的定义域为R ,则实数a 的取值范围.答案:(],0−∞解析:偶次根号下非负,当x 的范围为R 时,20x a −≥在R 上恒成立,等价于2a x ≤在R 上恒成立求出a 的范围为0a ≤,(],0a ∴∈−∞★☆☆练习1若函数()212f x x ax a=−+ 的定义域为R ,则实数a 的取值范围. 答案:()0,1解析:分式型函数分母不为零,当x 的范围为R 时,220x ax a −+≠恒成立;2(2)40a a ∆=−−<即01a <<; 所以a 的取值范围是()0,1.知识点要点总结:一 具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集5. 实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求.二.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.二、函数的解析式【知识点】求函数解析式的四种常用方法1. 拼凑法:将等号右侧的式子拼凑成关于f 后括号内东西的表达式,然后将其直接写成x .2. 换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围.3.待定系数法:已知函数类型.①正比例函数:(0)y kx k =≠; ②反比例函数:(0)k y k x=≠; ③一次函数:(0)y kx b k =+≠;④二次函数:2(0)y ax bx c a =++≠.4.方程组法:两个f ,将题目中的x 换成另一个括号内的东西构造方程组.比如:若给出()f x 和()f x −,或()f x 和1()f x 的一个方程,则可以x 代换x −(或1x),构造出另一个方程,解此方程组,消去()f x −(或1()f x)即可求出()f x 的表达式。
函数的解析式和定义域
函数的解析式和定义域课时07 函数的解析式和定义域【考点指津】1.掌握函数的三种表示方法,会求简单函数的解析式.函数的表示方法通常有:解析法、列表法、图象法,三者各具特点.解析式中包括分段函数,它由一个或多个式子构成,是一个函数;通过函数的图象能够直观地反映出函数的一些性质,因此要掌握函数的图象,并熟悉一些基本初等函数(正比例函数、反比例函数、一次函数、二次函数等)的图象特征.2.会求简单函数的定义域.定义域是构成函数的重要要素之一,一切函数问题的研究都离不开函数的定义域,要熟练掌握求函数定义域的原则和方法.当一个函数可以用解析式表示时,函数的定义域就是使其解析式有意义的自变量的取值集合.在实际问题中,还应注意实际意义的制约. 【知识在线】1.已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .2.下列函数:①y =2x +5;②y = xx 2+1;③y =|x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 ( ) A .1 B .2 C .3 D .43.已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .4.若f (x -1)=2x +5,则f (x 2) = ( ) A .2x 2+3 B .2x 2+7 C .x 2+3 D .x 2+7 5.已知函数f (x ) = lgxx-+11的定义域为A ,函数g (x )=lg(1+x ) – lg(1-x )的定义域为B ,则下述关于A 、B 关系不正确的为 ( ) A .A ⊇B B .A ∪B =B C .A ∩B =B D .B ⊂≠A 【讲练平台】例1 求函数xx x x x x f +-++-=02)1(65)(的定义域.分析 根据有关条件列出不等式组,再求出不等式组的解集即为所求函数的定义域. 解 由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3. 故函数的定义域是),3[]2,1()1,0(+∞Y Y .点评 (1)求以解析式给出的函数定义域时,应遵循以下几条原则:①分式的分母不为零;②偶次根号下被开方数非负;③在a °中底数a ≠0;④若f (x )是由几个部分构成的,则应采用交集法;⑤实际问题结合变量的实际意义来确定,等等;(2)求不等式组的解集,通常借助数轴的直观性;(3)函数的定义域一般应用集合或区间形式表示,在用区间表示时,要弄清区间端点的归属,正确使用开区间和闭区间符号,需特别注意的是,“∞”不是一个确定的数,而是一个变化趋势,只能用开区间;(4)必须把所有的限制条件都列出来,特别是在0)1(-x 中,x -1≠0,不能遗漏.例2 若函数 y =lg(x 2+ax +1)的定义域为R ,求实数a 的取值范围.分析 由函数 y =lg(x 2+ax +1)的定义域为R 知:x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1为二次函数,函数值恒正,故可利用“△”法求解.解 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2,它便是所求的a 的取值范围.点评(1)“△”法可判断一元二次函数值恒正、恒负或非正、非负;(2)必须注意所用△的值是大于零、小于零、还是不大于零、不小于零.如下面的问题:关于x 的不等式x 2+ax +1<0的解集为∅,试求实数a 的取值范围.问题便等价于x 2+ax +1≥0的解集为R ,从而有△≤0,解得 –2≤a ≤2.变题1 已知函数 y =lg(x 2+ax +1)的值域为R ,求a 的取值范围.提示:利用△≥0 a≥2或a≤-2.变题2 已知函数y=lg(ax2+ax+1)的定义域为R,求a的取值范围.提示:分a>0与a=0的两种情况求解,其答案为0≤a<4.思考:变题1、变题2及原题,它们的区别何在?例3《中华人民共和国个人所得税法》第十四条中有下表:个人所得税税率表一(工资、薪金所得适用)表中“全月应纳税所得额”是从月工资、薪金收入中减去1000元后的余额.例如某人月工资、薪金收入1220元,减除1000元,应纳税所得额就是220元,应缴纳个人所得税11元.(1)请写出月工资、薪金的个人所得y关于收入额x(0<x≤3000)的函数表达式;(2)一公司职员某月缴纳个人所得税75元,问他该月工资、薪金的收入多少?分析先读懂题意,正确理解“全月应纳税所得额”等的意义,然后利用分段函数法列出个人所得y关于收入额x的函数关系式,利用该关系式继续求解其它的问题.解(1)当0<x≤1000时,y=x;当1000<x≤1500时,扣税:(x-1000) ·5%,从而所得为y=x- (x-1000) ·5% = 0.95x+50;当1500<x≤3000时,扣税:(x-1500)·10%+500 ·5% = 0.1x-125,从而所得为y = x -(0.1x -125) =0.9x +125.故 y = ⎩⎪⎨⎪⎧x , (0<x ≤1000),0.95x +50,(1000<x ≤1500),0.9x +125,(1500<x ≤3000).(2)显然,该职员的工资、薪金x 满足1500<x ≤3000,故由0.1x -125=75,解得 x =2000.答:该职员的该月工资、薪金收入为2000元.点评 (1)函数的表示法有:解析法、列表法、图象法;而解析式中包含一类重要的函数——分段函数:对应于自变量x 的不同取值范围,对应关系也不同.分段函数不管x 被分成了几段,它仍是一个函数,而不是几个函数,它由几个部分构成了一个函数;(2)写函数解析式时,不要忘了写上函数的定义域;对于实际问题,还不要忘了问题的实际意义.变题 在原题的条件下,若设某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于 ( D )A .500~600元B .900~1200元C .1200~1500元D .1500~1800元 例4 (1)设f (x )是一次函数,且f [f (x )]=4x +3,求f (x ). (2)设x x x f 2)1(+=+,求f (x +1). (3)若f (x )满足f (x )+2f (x1)=x ,求f (x ).分析 (1)已知了函数f (x )的类型,可采用待定系数法;(2)视(1+x )为整体,采用换元法或配方法可求得f (x )的解析式,再用(x +1)整体代换f (x )中的x ,即可求出f (x +1)的解析式;(3)注意到x 与x1互为倒数,可通过倒数代换联立方程组解出f (x ). 解 (1)设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a ,∴ f (x )=2x +1或f (x )= -2x -3.(2)解法一 ∵1)1()1(2-+=+x x f ,∴ f (x )=x 2-1 (x ≥1),∴ f (x +1)= (x +1)2-1 = x 2+2x (x ≥0).解法二 令t =1+x ,则x = t -1,∴f (t )= (t -1)2+2(t -1)= t 2-1. 又t =1+x ≥1,∴ f (x )=x 2-1 (x ≥1),从而f (x +1)= x 2+2x (x ≥0). (3)在f (x )+2f (x 1)=x ①中,用x 1代换x 得 f (x 1)+2 f (x )= x1 ②, 联立①、②解得 )0(32)(2≠-=x xx x f . 点评 (1)正确理解函数的概念,是求抽象函数解析式的关键;(2)求抽象函数的解析式常用配凑法(如题(2)的解法一)、换元法(如题(2)的解法二)、待定系数法(如题(1)的解答)以及取倒相消法(如题(3)的解答)等;(3)在用换元法或配凑法求解析式时,应注意中间变量的取值范围,以确定函数f (x )的定义域.在题(2)中,由f (x )的定义域是{x ∣x ≥1},则在f (x +1)中必须x +1≥1,即x ≥0,从而f (x +1)的定义域是{x ∣x ≥0}. 变题 已知f (x )是定义在R 上的函数,且f (1)=1,对任意x ∈R 都有下列两式成立:(1)f (x +5)≥f (x )+5; (2)f (x +1)≤f (x )+1.若g (x )=f (x )+1-x ,求g (6)的值. 提示:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★) 结合条件(1)得 f (x +5)=f (x )+5. 于是,由(★),可得 f (x +1) = f (x )+1. 故g (6)=f (6)+1-6= [f (1)+5 ]-5=1.注意:数列{f (n )}(n ∈N *)构成公差是1的等差数列.【知能集成】1.求函数的解析式的方法通常有待定系数法、配方法、换元法,有时还要用到方程的思想.2.求函数的定义域,主要涉及以下几个方面:①分式的分母不为零;②对数函数的真数都必须大于零,底数必须大于零且不为1;③偶次方根的被开方数非负;④零次幂的底数不为零,等. 对于实际问题,还应注意变量的实际意义或物理意义.复合函数的定义域是使各部分都有意义的自变量取值范围的交集.【训练反馈】 1.函数23)(x x x f -=的定义域为 ( )A .[0,32] B .[0,3] C .[-3,0] D .(0,3)2.若f [g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 ( ) A .3x B .3 C .9(3x +1) +1 D .3(9x +3) +13.已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= ( )A .1B .3C .15D .304.若函数f (x )满足f (xy )= f (x )+ f (y ),且f (2)=m ,f (3)=n ,则f (72)= ( ) A .6mn B . m 3+n 2 C .2m +3n D .3m +2n 5.函数y =f (x )的图象如题图所示,则f (x )的解析式为( ) A .122+-x x B .1||22+-x xC .|x 2 – 1|D .x 2 – 2x +16.若函数f (x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f (x )-f (-x )的定义域是( )A .[a ,b ]B .[-b ,-a ]C .[-b ,b ]D .[a ,-a ]7.若f (2x +3)的定义域是{x |-4≤x <5=,则函数f (2x -3)的定义域是 . 8.求函数y =)233(log 12x x -+的定义域.9.动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 移动一周回到A 点,设x 表示点P 的行程,y 表示线段P A 的长,试求y 关于x 的函数式. 10.若函数f (x ) =3x -5kx 2+4kx +3的定义域为R ,求实数k 的取值范围.11.已知函数f (x ) =xax+b(a ,b 为常数,且a ≠0)满足f (2)=1,f (x )=x 只有惟一实数解,试求函数y =f (x )的解析式及f [f (-3)]的值. 12.定义在(0,+∞)上的函数f (x )满足:①f (2)=1;②f (xy )=f (x )+f (y ),其中x 、y 为任意正实数; ③任意正实数x 、y 满足x >y 时,f (x )>f (y ).试回答下列问题: (1)求f (1)、f (4);(2)试判断函数f (x )为单调性;(3)如果f (x )+f (x -3)≤2,试求x 的取值范围.参考答案: 【知识在线】1.π+1 2.D 3. - 4 4. B 5.D 【训练反馈】1.B 2.A 3.C 4.D 5.B 6.D 7. {x |-1≤x <8} 8.(0,5] 9. y =⎪⎪⎩⎪⎪⎨⎧≤-≤+-≤+-≤≤.43,4,32,106,21,22,10,22x x x x x x x x x x πππ 10.提示:若k =0,则函数的定义域为R ;若k ≠0,则对任意x ∈R ,kx 2+4kx +3≠0,从而,△<0,解得0<k <34.从而所求k 的取值范围为{k |0≤k <34}. 11.提示:f (x ) =x 只有惟一实数解,即x ax+b = x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b ≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1. 12.(1)f (1) =0,f (4)=2;(2)增函数;(3)3<x ≤4.。
1.求函数的定义域、解析式
函数专题第一讲:求函数的定义域一、解析式型已知一个函数的解析式,求其定义域只要使解析式有意义即可:1、分式的分母不为零2、偶次方根的被开方数不小于零(即大于或等于0)3、对数的真数大于04、零指数幂的底数不为零例1 求下列函数的定义域.(1)f x x ()=+11(2)x y -=1 *(3))34lg(+x 例2求下列函数的定义域(1)y = *(2)y = *(3)2lg(31)y x =+. 分析:在这里只需要根据解析式有意义,列出不等式.(1)由分母不等于零以及二次根式有意义确定;(2)由二次根式以及对数有意义确定;(3)由分母不等于零、二次根式有意义以及对数有意义确定.解:具体函数的定义域必须结合具体函数对定义域的要求,要全面考虑各个条件.(1)要使y =1010x -≥⎧⎪⎨≠⎪⎩ 解得10x x ≤≠且∴函数y =(—∞,0)∪(0,1]. (2)要使y =有意义,只要2202log (2)0x x ->⎧⎨--≥⎩ 即2024x x ->⎧⎨-≤⎩ 解得22x -≤<∴函数y =[—2,2).(3)要使函数2lg(31)y x =++有意义,只要13101301<<-⇒⎩⎨⎧>+>-x x x ,故函数2lg(31)y x =++的定义域为)1,31(-.变式训练:求下列函数的定义域(1)1122---=x x y (2)x x y +-+=1)1(0*(3))23(log 5.0-=x y二、抽象函数型抽象函数就是指没有给出具体对应关系的函数,求抽象函数的定义域一般有两种情况:一种情况是已知函数()f x 的定义域,求复合函数[()]f g x 的定义域;另一种情况是已知函数[()]f g x 的定义域,求函数()f x 的定义域.例1已知函数f (x )的定义域为(0,1)求)(2x f 的定义域例2已知f(2x+1)的定义域为(0,1),求f (x )的定义域*例3 已知函数)(x f 的定义域是(12]-,,求函数)]3([log 21x f -的定义域.分析:根据函数定义域的定义,我们知道,已知函数)(x f 的定义域是(12]-,的意思就是仅当-1<x ≤2的时候函数)(x f 有意义,因此要使函数)]3([log 21x f -有意义,就必须-1<12log (3)x -≤2,由此解得的x 的取值范围就是函数)]3([log 21x f -的定义域.解:∵)(x f 的定义域是(12]-,∴ 121log (3)2x -<-≤,2111()3()22x -≤-<解得1114x <≤ 所以函数)]3([log 21x f -的定义域是11(1]4,. 变式训练:1、若函数y =f (x)的定义域是[-2, 4], 求函数g(x)=f (x)+f (1-x)的定义域2、已知函数f(x)=11+x 求f 【f(x)】的定义域函数专题第二讲:求函数的解析式[题型一]配凑法例1. 已知f(x+1)=x+2,求f(x)。
函数的定义域与解析式
补充材料:函数的定义域与解析式一、定义域的求解类型与方法(一)具体函数的定义域常见的求解要求:分式中的分母不为零;偶次方根下的数(或式)大于或等于零;指、对数式的底数大于零且不等于一;对数式的真数大于零.注意,定义域只能写成集合或区间的形式,不能写成0不等式的形式.(二)抽象函数的定义域情形1.已知()f x 的定义域,求解()f g x ⎡⎤⎣⎦的定义域;假设()f x 的定义域为[],a b ,要使()f g x ⎡⎤⎣⎦有意义,则需()a g x b ≤≤,解此不等式,可以求出x 的范围,即为()f g x ⎡⎤⎣⎦的定义域.【注】()f g x ⎡⎤⎣⎦的自变量为x ,()f g x ⎡⎤⎣⎦的定义域是使()f g x ⎡⎤⎣⎦有意义的x 的取值范围. 情形2.已知()f g x ⎡⎤⎣⎦的定义域,求解()f x 的定义域;假设()f g x ⎡⎤⎣⎦的定义域为[],a b ,即[],x a b ∈,进而可以求出()g x 在[],x a b ∈上的值域,此值域一般理解为函数()f x 的定义域(或为()f x 定义域的子集).情形3. 已知()f g x ⎡⎤⎣⎦的定义域,求解()f h x ⎡⎤⎣⎦的定义域;假设()f g x ⎡⎤⎣⎦的定义域为[],a b ,即[],x ab ∈,进而可以求出()g x 在[],x a b ∈上的值域[],m n ,此值域[],m n 一般理解为函数()f x 的定义域,欲使()f h x ⎡⎤⎣⎦有意义,则需()m h x n ≤≤,进而可以解出x 的范围[],c d ,此即为()f h x ⎡⎤⎣⎦的定义域.【典型例题】例1. 已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域.解析:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤-x ,即函数)1(2-x f 的定义域为{}33≤≤-x x .例2. 已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域.解析:21≤≤x ,422≤≤∴x ,5123≤+≤∴x ,即函数)(x f 的定义域是{}53|≤≤x x .例3. 已知)12(+x f 的定义域为]2,1[,求()1f x +的定义域.解析:)12(+x f 的定义域为]2,1[,即[]1,2x ∈,5123≤+≤∴x ,即函数)(x f 的定义域是{}53|≤≤x x ,要使()1f x +有意义,则315x ≤+≤,解之24x ≤≤,即()1f x +的定义域为[]2,4.例4. 已知)(x f 的定义域为]1,0[,求函数)()()(a x f a x f x F -++=的定义域.解析:因为的定义域为]1,0[,即10≤≤x ,故函数)(x F 的定义域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1010a x a x ,即⎩⎨⎧+≤≤-≤≤-a x a a x a 11,函数)(x F 的定义域即为区间[]a a --1,与[]a a +1,的交集,比较两个区间左、右端点:(1)当021≤≤-a 时,)(x F 的定义域为{}a x a x +≤≤-1|; (2)当210≤≤a 时,)(x F 的定义域为{}a x a x -≤≤1|; (3)当21>a 或21-<a 时,上述两区间的交集为空集,此时)(x F 不能构成函数.【注】后面两种切线有争议,考试以第1中情形为主.(三)具体实际应用问题中的定义域实际上的有效范围,即实际问题要有意义,一般来说有以下几中常见情况:(1)面积问题中,要考虑部分的面积小于整体的面积且面积非负;(2)销售问题中,要考虑日期只能是自然数,价格不能小于0也不能大于题设中规定的值(有的题没有规定);(3)生产问题中,要考虑日期、月份、年份等只能是自然数,增长率要满足题设;(4)路程问题中,要考虑路程的范围.二、解析式的求解类型与方法(一)常用配凑法、换元法例1. 已知:221)1(xx x x f +=+,求)(x f . 解析:2)1(1)1(222-+=+=+x x x x x x f ,令()122t x t t x =+≥≤-或,则()()2222f t t t t =-≥≤-或,∴)22(2)(2-≤≥-=x x x x f 或.注意:使用配凑法也要注意等价性,即换元需注意新元的范围。
1.4函数的定义域与解析式(教师用)
1.3函数的定义域与解析式(教师用)知能点全解:如果给出函数解析式却没有单独指明函数的定义域,那么该函数的定义域就是能使这个式子有意义的自变量x 的取值范围。
使解析式有意义的常见形式:①分式的分母不得为零; ②偶次根式中被开方数不小于零; ③零的零次幂无意义; ④对数的真数大于零; ⑤指数和对数的底数必须大于零且不等于1; ⑥三角函数中正切函数tan ,y x x R =∈且2x k ππ≠+;特别提醒:1、求函数的定义域之前,不要对函数的解析式进行化简或变形,以免引起定义域的变化。
2、当解析式是整式时,其定义域为R 。
3、当一个函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合。
例 1:求下列函数的定义域,并用区间法表示:(1)2143)(2-+--=x x x x f (2)1()1111f x x=++(3) xx x x f -+=0)1()( 解:(1)要使函数有意义,必须:⎩⎨⎧≠-≠-≤-≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或3314x x x ⇒<--<≤-≥或或 ∴定义域为:()(][),33,14,-∞---+∞(2)要使函数有意义,必须: 011011011x x x ⎧⎪⎪≠⎪⎪+≠⎨⎪⎪+≠⎪+⎪⎩⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴定义域为:()()11,11,,00,22⎛⎫⎛⎫-∞----+∞ ⎪ ⎪⎝⎭⎝⎭(3)要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x⎩⎨⎧<-≠⇒01x x ∴定义域为:()(),11,0-∞--此类题目的关键是注意对应法则,在同一对应法则作用下,不管接受法则的对象是什么字母或代数式,其制约条件是一致的,即都在同一取值范围内。
该类型题目中最常见的是求复合函数的定义域,其有三种类型:类型一:已知()f x 的定义域是[],a b ,求()f g x ⎡⎤⎣⎦的定义域。
函数的定义域、值域及解析式
§2.2 函数的定义域、值域及解析式知识点: 1. 函数的定义域(1)函数的定义域是指使函数有意义的自变量的取值范围. (2)求定义域的步骤①写出使函数式有意义的不等式(组); ②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出) (3)常见基本初等函数的定义域 ①分式函数中分母不等于零.②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为R .④y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . ⑤y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .⑥函数f (x )=x 0的定义域为{x |x ∈R 且x ≠0}. 2. 函数的值域(1)在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.(2)基本初等函数的值域 ①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞;当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .③y =kx (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞). ⑤y =log a x (a >0且a ≠1)的值域是R . ⑥y =sin x ,y =cos x 的值域是[-1,1]. ⑦y =tan x 的值域是R . 3. 函数解析式的求法(1)换元法;(2)待定系数法;(3)消去法:若所给解析式中含有f (x )、f ⎝⎛⎭⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式. [难点]1. 函数的定义域是研究函数问题的先决条件,它会直接影响函数的性质,所以要树立定义域优先的意识.2. (1)如果函数f (x )的定义域为A ,则f (g (x ))的定义域是使函数g (x )∈A 的x 的取值范围.(2)如果f (g (x ))的定义域为A ,则函数f (x )的定义域是函数g (x )的值域. (3)f [g (x )]与f [h (x )]联系的纽带是g (x )与h (x )的值域相同. 自测:1. (2012·山东改编)函数f (x )=1ln (x +1)+4-x 2的定义域为____________.答案 (-1,0)∪(0,2] 解析 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0得-1<x ≤2,且x ≠0.2. 设g (x )=2x +3,g (x +2)=f (x ),则f (x )=________.答案 2x +7解析 由g (x )=2x +3,知f (x )=g (x +2)=2(x +2)+3=2x +7.3. 若f (x )满足f (x +y )=f (x )+f (y ),则可写出满足条件的一个函数解析式f (x )=2x .类比可以得到:若定义在R 上的函数g (x ),满足(1)g (x 1+x 2)=g (x 1)g (x 2);(2)g (1)=3;(3)∀x 1<x 2,g (x 1)<g (x 2),则可以写出满足以上性质的一个函数解析式为__________. 答案 g (x )=3x解析 由①知g (x )应该是指数函数模型,结合②③知g (x )=3x .抽象离不开具体,对于一些常见的恒等式,其对应的函数模型应该熟悉.如:一、指数函数模型,对应的性质为:f (m +n )=f (m )·f (n )或f (m -n )=f (m )f (n );二、对数函数型,对应的性质为:f (mn )=f (m )+f (n )或f (mn )=f (m )-f (n );三、正比例函数模型,对应的性质为:f (m +n )=f (m )+f (n );四、余弦函数型,对应的性质为:f (m +n )+f (m -n )=2f (m )f (n ). 4.函数f (x )=log 2(3x +1)的值域为___________________.答案 (0,+∞)解析 由3x >0知3x +1>1.又f (x )在(0,+∞)为增函数且f (1)=0, ∴f (x )=log 2(3x +1)>0.5. 已知f ⎝⎛⎭⎫1x =1+x21-x 2,则f (x )=__________.答案 x 2+1x 2-1(x ≠0)解析 令1x =t ,则x =1t 且t ≠0,∴f (t )=1+⎝⎛⎭⎫1t 21-⎝⎛⎭⎫1t 2=t 2+1t 2-1,即f (x )=x 2+1x 2-1(x ≠0).题型一 求函数的定义域 例1 (1)函数y =ln (x +1)-x 2-3x +4的定义域为______________.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是____________.思维启迪:函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要注意自变量的取值和各个字母的位置. 答案 (1)(-1,1) (2)[0,1)解析 (1)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.(2)依已知有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解之得0≤x <1,定义域为[0,1).探究提高 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是__________.答案 ⎣⎡⎭⎫0,34解析 f (x )的定义域为R ,即mx 2+4mx +3≠0恒成立. ①当m =0时,符合条件.②当m ≠0时,Δ=(4m )2-4×m ×3<0, 即m (4m -3)<0,∴0<m <34.综上所述,m 的取值范围是⎣⎡⎭⎫0,34. (2)已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是__________. 答案 [1,3]解析 由⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3]. 题型二 求函数的值域 例2 求下列函数的值域:(1)y =x 2+2x (x ∈[0,3]); (2)y =x -3x +1;(3)y =x -1-2x ; (4)y =log 3x +log x 3-1.思维启迪:根据各个函数解析式的特点,考虑用不同的方法求解.(1)配方法;(2)分离常数法;(3)换元法或单调性法;(4)基本不等式法. 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15, 即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}. (3)方法一 (换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(4)(基本不等式法)函数定义域为{x |x ∈R ,x >0,且x ≠1}. 当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是 y =log 3x +1log 3x -1=-⎣⎡⎦⎤(-log 3x )+⎝⎛⎭⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).探究提高 (1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.求下列函数的值域:(1)y =x 2-xx 2-x +1; (2)y =2x -1-13-4x .解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈∅,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, 解得-13≤y ≤1.综上得-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数, 所以g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法) 函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小, 所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数, 所以当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112, 故原函数的值域是⎝⎛⎦⎤-∞,112. 题型三 求函数的解析式例3 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式;(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 思维启迪:求函数的解析式,要在理解函数概念的基础上,寻求变量之间的关系. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1. (3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).探究提高 函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1, ∴f (x )=x 2-x +3.函数问题首先要考虑定义域典例:(14分)已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域.审题视角 (1)f (x )的定义域;(2)y =[f (x )]2+f (x 2)的定义域与f (x )的定义域不同;(3)如何求y=[f(x)]2+f(x2)的定义域.规范解答解∵f(x)=2+log3x的定义域为[1,9],要使[f(x)]2+f(x2)有意义,必有1≤x≤9且1≤x2≤9,∴1≤x≤3,[4分]∴y=[f(x)]2+f(x2)的定义域为[1,3].又y=(2+log3x)2+2+log3x2=(log3x+3)2-3.[8分]∵x∈[1,3],∴log3x∈[0,1],∴y max=(1+3)2-3=13,y min=(0+3)2-3=6.[12分]∴函数y=[f(x)]2+f(x2)的值域为[6,13].[14分]温馨提醒(1)本题考查了函数的定义域、值域的概念及求法,是函数的重点知识.(2)本题易错原因是忽略对定义域的研究,致使函数y=[f(x)]2+f(x2)的讨论范围扩大.(3)解答有关函数的问题要规范,研究函数问题,首先研究其定义域,这是解答的规范,也是思维的规范.方法与技巧1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.求函数的定义域关键在于列全限制条件和准确求解方程或不等式(组);对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义.2.函数值域的几何意义是对应函数图象上点的纵坐标的变化范围.利用函数几何意义,数形结合可求某些函数的值域.3.函数的值域与最值有密切关系,某些连续函数可借助函数的最值求值域,利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.失误与防范1.求函数的值域,不但要重视对应法则的作用,而且还要特别注意定义域对值域的制约作用.函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.特别要重视实际问题中的最值的求法.2.对于定义域、值域的应用问题,首先要用“定义域优先”的原则,同时结合不等式的性质.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分) 1. 若f (x )=1log 12(2x +1),则f (x )的定义域为____________.答案 ⎝⎛⎭⎫-12,0 解析 要使f (x )有意义,需log 12(2x +1)>0=log 121,∴0<2x +1<1,∴-12<x <0.2. (2012·福建改编)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为________. 答案 0解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0.3. 已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.答案 6解析 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧12+p +q =022+2p +q =0,∴⎩⎪⎨⎪⎧p =-3q =2,∴f (x )=x 2-3x +2. ∴f (-1)=(-1)2+3+2=6.4. 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为____________. 答案 f (x )=2x1+x 2(x ≠-1)解析 令t =1-x 1+x (t ≠-1),由此得x =1-t 1+t ,所以f (t )=1-⎝⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t1+t 2,从而f (x )的解析式为f (x )=2x1+x 2(x ≠-1). 5. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.6. 若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是__________.答案 ⎣⎡⎦⎤12,2解析 由-1≤log 2x ≤1得log 212≤log 2x ≤log 22,由y =log 2x 在(0,+∞)上递增,得12≤x ≤2.7. 若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是__________.答案 [-5,-1]解析 ∵1≤f (x )≤3,∴1≤f (x +3)≤3, ∴-6≤-2f (x +3)≤-2,∴-5≤F (x )≤-1. 二、解答题(共27分)8. (13分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N . 解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32,N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或x <1};(2)M ∩N ={x |x ≥3},M ∪N ={x |x <1或x >32}.9. (14分)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.(1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx .又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1a +b =1,解得⎩⎨⎧ a =12b =12.∴f (x )=12x 2+12x . (2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2) =12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18. ∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组 专项能力提升(时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1. (2012·江苏)函数f (x )=1-2log 6x 的定义域为________.答案 (0,6]解析 要使函数f (x )=1-2log 6x 有意义,则⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0. 解得0<x ≤ 6.2. 设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是____________.答案 [0,+∞)解析 f (x )的图象如图.g (x )是二次函数,且f (g (x ))的值域是[0,+∞),∴g (x )的值域是[0,+∞).3. 设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2,若f (x )的值域为R ,则常数a 的取 值范围是______________.答案 a ≥2或a ≤-1解析 易知两段函数都是增函数,当x >2时,y >4+a ;当x ≤2时,y ≤2+a 2,要使f (x )的值域为R ,则4+a ≤2+a 2,解得a ≥2或a ≤-1.4. 已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2,∴f (3)=32+2=11.5. 设函数g (x )=x 2-2 (x ∈R ),f (x )=⎩⎪⎨⎪⎧ g (x )+x +4,x <g (x )g (x )-x , x ≥g (x ), 则f (x )的值域是________________.答案 ⎣⎡⎦⎤-94,0∪(2,+∞) 解析 由x <g (x )可得x <-1或x >2,由x ≥g (x )可得-1≤x ≤2;∴f (x )=⎩⎪⎨⎪⎧x 2+x +2, x <-1或x >2,x 2-x -2, -1≤x ≤2. 由f (x )的图象可得:当x <-1或x >2时,f (x )>f (-1)=2,当-1≤x ≤2时,f ⎝⎛⎭⎫12≤f (x )≤f (2),即-94≤f (x )≤0,∴f (x )值域为⎣⎡⎭⎫-94,0∪(2,+∞). 6. 设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是________. 答案 283解析 y =[(x +1)+4][(x +1)+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t +5,在 区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 二、解答题(共28分)7. (14分)已知函数f (x )=x 2-4ax +2a +6 (a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数的值域为非负数,求函数g (a )=2-a |a +3|的值域.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32. (2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0, ∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1).即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4. 8. (14分)已知定义在[0,6]上的连续函数f (x ),在[0,3]上为正比例函数,在[3,6]上为二次函数,并且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.解 由题意,当x ∈[3,6]时,可设f (x )=a (x -5)2+3 (a <0).∵f (6)=2,∴a (6-5)2+3=2,解得a =-1,∴f (x )=-(x -5)2+3=-x 2+10x -22.当x ∈[0,3]时,设f (x )=kx (k ≠0).∵x =3时,f (x )=-(3-5)2+3=-1,∴-1=3k ,k =-13,∴f (x )=-13x . 故f (x )=⎩⎪⎨⎪⎧ -13x (0≤x <3),-x 2+10x -22 (3≤x ≤6).。
函数的定义域与解析式
解析式对定义域的限制
解析式中的数学表达式决定了函数的值域,从而间接限制了函数的定义域。
解析式中的数学表达式可能存在某些限制条件,如分母不为零、根号内非负等,这些条件决定了定义 域的具体范围。
定义域与解析式的综合应用
01
在解决实际问题时,需要根据问题的背景和条件来确定函数的 定义域和解析式。
02
在数学建模过程中,需要综合考虑定义域和解析式的限制条件,
建立符合实际问题的数学模型。
在函数图像的绘制中,需要同时考虑定义域和解析式的取值范
03
围,才能准确地绘制出函数的图像。
2023
PART 04
函数定义域与解析式的实 例分析
REPORTING
一次函数的定义域与解析式
定义域
对于一次函数,其定义域是全体实数集 $mathbb{R}$。
VS
解析式
根据定义域,我们可以确定 $x$ 可以取 任意实数值,而 $y$ 的值则由 $ax + b$ 确定。
02
在数学领域,定义域与解析式 是研究函数性质、图像、单调 性、奇偶性等的基础。
03
在物理、工程、经济等其他领 域,定义域与解析式也具有广 泛的应用价值,可以帮助我们 解决各种实际问题。
如何更好地理解和应用函数定义域与解析式
深入理解定义域与解析式 的概念和性质,掌握其基 本特征。
在实际应用中,注重定义域与 解析式的选择和确定,确保数 学模型的准确性和可靠性。
02
分式函数:分母不为0,其他实 数
03
根式函数:被开方数大于等于0,
其他实数
04
对数函数:真数大于0,底数大
于0且不等于1
05
三角函数:全体实数
函数的概念(定义域,值域,解析式)
讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
第一讲:函数章节
函 数(高三一对一7.21)知识点归纳:一、函数的定义域: ⑴ 具体函数:⑵ 抽象函数: ① 已知函数)(x f 的定义域为],[b a ,求)]([x g f 的定义域; ② 已知函数)]([x g f 的定义域为],[b a ,求)(x f 的定义域; 二、解析式: ① 已知)(x f 与)(x g 的解析式,求)]([x g f ② 已知)]([x g f )(x h =的解析式,求)(x f③ 已知)(x f 的特征,如:一次函数,二次函数等 ④ 已知)(x f 满足某个等式,等式中含有)(x f -或)1(xf 三、值域: ① 基本初等函数② 形如)()()]([2x F c x bf x f a =++型 ③ 形如d cx b ax y +±+=型 ④ 形如bax dcx y ++=型 四、函数的单调性:对于给定区间上的函数)(x f ,若在定义域内任取21,x x ,且21x x <时, ① 当)()(21x f x f <,函数)(x f 为增函数; ②当)()(21x f x f >,函数)(x f 为减函数;五、复合函数单调性:① 加减复合 ; ② 内外复合 六、函数的奇偶性: 奇函数: 偶函数:练习题: 1、函数43-)1ln(2+-+=x x x y 的定义域的是:.A )1,4(-- .B )1,4(- .C )1,1(- .D ]1,1(- 2、函数)4323ln(1)(22+--++-=x x x x xx f 的定义域为.A ),2[]4,(+∞--∞ .B )1,0()0,4( - .C ]1,0()0,4[ - .D )1,0()0,4[ -3、已知函数)(x f 的定义域为]1,0[,求函数)(2x f 及)1(2-x f 的定义域;4、已知函数)]1[lg(+x f 的定义域是]9,0[,求函数)(2x f 的定义域;5、求下列函数的解析式:①已知x x x f 2)(2+=,求)12(+x f ; ②已知x x f 2sin )cos 1(=-,求)(x f ; ③已知)(x f 是二次函数,若0)0(=f ,且1)()1(++=+x x f x f ,求)(x f ; ④ 对任意不为零的实数x ,)(x f 满足xxf x f 1)1()(2=-,求)(x f ;6、求下列函数的值域为: ⑴ 212+=x y ⑵x x y --=12 ⑶532-+=x x y ① 0≥x ② ]2,3[--∈x ③ ]0,2[-∈x ④ ]3,1[-∈x7、求下列函数的定义域:① 1||212-+-=x x y ② 02)45()34lg(-++=x x x y ③ x x y cos lg 252+-= ④ x x y sin lg 642+-=8、已知函数624)(2+++=a ax x x f , 若函数)(x f 的值域为),0[+∞,求a 的值;9、已知)(x f 在R 上为减函数,则满足)1(|)1(|f xf <的实数x 取值范围是:.A )1,1(- .B )1,0( .C )1,0()0,1( - .D ),1()1,(+∞--∞10、设)(x f 为R 上的偶函数,在)0,(-∞上是增函数,且有)12(2++a a f < )123(2+-a a f ,求a 的取值范围;11、若定义在R 上的函数)(x f 对任意R x x ∈21,都有1)()()(2121-+=+x f x f x x f 成立,且当0>x 时,1)(>x f⑴ 求证:1)(-x f 为奇函数; ⑵ 求证:)(x f 是R 上的增函数; ⑶ 若5)4(=f ,解不等式3)23(2<--m m f能力提升: 1、、已知函数313)(23-+-=ax ax x x f 的定义域为R ,则实数a 的取值范围是:.A 31>a .B 012<<-a .C 012≤<-a .D 31≤a 2、函数1)1ln(-+=x x y 的定义域是_________ 3、求下列函数的解析式:① 已知23)1(2+-=+x x x f ,求)(x f ; ②已知x x x f 2)1(+=+求)(x f ;③已知)(x f 是一次函数,且满足172)1(2)1(3+=--+x x f x f ,求)(x f ;4、函数44)(2--=x x x f 在闭区间]1,[+t t 上的最小值记为)(t g ; ⑴ 试写出)(t g 的函数表达式; ⑵ 作)(t g 的图像并求)(t g 的最小值;5、(12年陕西)设函数)(x f = x 0≥x ,则________))4((=-f fx)21(0<x。
函数的定义域解析式与值域(精)
专题二:函数的解析式、定义域与值域一.知识结构1.函数的定义域 ;函数的定义域基本分为自然定义域和限制定义域;自然定义域是指 ;限制定义域是指 ;2.如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是各个基本函数的定义的 (填“交集”或“并集”)3.复合函数的定义 对于复合函数 y=f[g(x)],应先由 y=f(u) 有意义的条件确定 u 的取值范围,再由 u 的范围来确定 u=g(x) 中 x 的范围,即为复合函数 y=f[g(x)] 的定义域.4.函数的值域重点关注基本初等函数的性质。
二.题型选编题组一:求函数的解析式(要注意对定义域的要求)1.(1)已知函数)()()(x g x f x +=ϕ,其中)(x f 是x 的正比例函数,)(x g 是x 的反比例函数,且满足16)31(,8)1(==ϕϕ,求)(x ϕ的表达式. (2)已知函数)(x f 是一次函数,且有12))((+=x x f f ,求函数解析式.2.已知对于任意R x ∈,都有x x f x f =-+)(3)(,求函数)(x f 的解析式;3.已知函数)(x f 是二次函数,且对称轴是2=x ,函数图像还经过(0,1)、(2,-3)两点,求函数解析式.4.如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y 的最大值.题组二:(求定义域时要注重运算,复合函数的定义域重在理解) 1.求下列函数的定义域(1)0||16)(x x x f +-=(2)14)(--=x x x f(3))(x f =||)1(6502x x x x x +-++-2.函数)(x f 的定义域是[-1,1],求函数)1()1()(2x f x f x F -+-=的定义域; 3.已知函数)(x f 的定义域是(0,1],求函数)()()(a x f a x f x g -++=,(021≤<-a )的定义域.题组三:(有关值域的题目,要关注基本初等函数的性质)1.写出下列基本初等函数的值域(1)52+=x y 的值域为 ;52+=x y )31(≤<-x 的值域为 ;(2)x y =的值域为 ;(5)x y 1=的值域为 ; 2.函数12-=x y 的定义域为)5,2[)1,( -∞,则其值域是( ) A.]2,21()0,( -∞ B.(2,∞-) C.(21,∞-)),2[+∞ D.(0,+∞) 3.若函数a x y +-=2)1(21的定义域和值域都是[1,b],求a,b 的值 4.求函数|5||2|)(--+=x x x f 的值域题组四:(课后巩固,温故而知新,可以为师矣)1.有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 小正方形,然后折成一个无盖的盒子,写出体积V 与x 的函数关系式.2.“依法纳税是每个公民应尽的义务”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域和解析式
一. 知识点
1常见函数的定义域:①分母不为零;②被开偶次方的数大于等于零;③0x 中x 不等于0 ④log a x 中0,1a a >≠,0x >;⑤x a 中0,1a a >≠⑥tan x 中,2x k k Z ππ≠+
∈ 2.抽象函数的定义域:①定义域是指自变量x 的范围;②()f
中,()内的取值范围相同。
3.同一函数的判断:两个函数有相同的定义域和解析式。
二. 常考题
1. 函数()lg 43
x y x -=-的定义域是___________ 2. 已知函数()3f x +的定义域是[]4,5-,则函数()23f x -的定义域是___________
3. 设()2lg 2x f x x +=-,则22x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
的 定义域是___________ 4. 已知函数()2lg 2194y mx m x m ⎡⎤=++++⎣⎦的定义域是R,则m 的取值范围是
___________。
5. .若函数()253
x f x x -=-的值域为[)4,+∞,()f x 的定义域是. _________。
6. 已知函数()21f x x =-,()2,01,0x x g x x ⎧≥=⎨-<⎩
,求()f g x ⎡⎤⎣⎦,()g f x ⎡⎤⎣⎦的解析式。
7. 已知()212f x x x +=+,则()f x = __________
8. 已知2211f x x x x
⎛
⎫+=+ ⎪⎝⎭,则()f x = __________ 9. 已知()f x 是一次函数,且满足()()3121217f x f x x +--=+,则()f x =
__________
10. 已知函数()f x 的定义域是一切非零实数,且满足()1324f x f x x ⎛⎫+= ⎪⎝⎭
,则()f x = __________
三. 课堂练习
1. 函数12y x =-的定义域是___________
2. 函数[]223,5,0y x x x =--+∈-的值域是___________
3. 在①y x =和y =②y =和2y =③y x =和2
x y x
=④y x =和
y =0y x =和1y =五组函数中,表示同一函数的是__________。
4. 已知2211f x x x x
⎛
⎫-=+ ⎪⎝⎭,则()f x = __________。
5. 已知函数对于定义域内每个值都满足()()2321f x f x x x --=-+,则()f x =
__________。
6. 已知21lg f x x ⎛⎫+= ⎪⎝⎭
,则()f x = __________。
7. 一次函数()14f f x x =+⎡⎤⎣⎦,则()f x = __________。
8. 若函数()2743
kx f x kx kx +=++的定义域是R ,则k 的范围是_________。
9. 设函数()y f x =的定义域是[]0,1,求下列函数的定义域:
⑴()3y f x = ⑵1y f x ⎛⎫=
⎪⎝⎭ ⑶1133y f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝
⎭
10. 作出下列函数图像。
⑴ 1y x x =-- ⑵ 12y x x =+--
⑶ 12y x x =++- ⑷ 243y x x =-+
⑸ 243y x x =-+。