函数的定义域及函数的解析式解读

合集下载

求解函数定义域、值域、解析式讲义(精华版)

求解函数定义域、值域、解析式讲义(精华版)

3. 已知函数 f( x 1) x 2 x ,求函数 f (x) 的解析式。
4. 方程组法
当关系式中同时含有 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1) 时,常将原式中的 x 用 x (或 1 )代替,
x
x
从而得到另一个同时含 f ( x) 与 f ( x) 或 f ( x) 与 f ( 1 ) 的关系式, 将这两个关系式联立, 解方程组解出 f ( x) 。 x
出参数的范围。
【例 1】 ( 1)若函数 f ( x)
(a 2 1) x2 ( a 1) x 2 的定义域为 R,求实数 a 的取值范围。 a1
(2)判断 k 为何值时,函数 y
2kx 8 kx2 2kx
关于 x 的定义域为 1
R。
2. 函数值域的逆向应用
【例 2】 求使函数 y
x2 x2
ax x
2 的值域为 ( 1
【例 1】 求下列函数的定义域
( 1) y x 1
( 2) y
1
2x
( 3) y
1
( x 1)0
2x
【例 2】 求下列函数的定义域
(1) y
1; 11
1x
( 2) y
4 x2 ; x1
))))))
))))))))
( 3) y
1
3 x2 5
7 - x2 ;
(4) y
x2 3x 10 x11
【当堂检测】
( 3)若函数 f ( x) 是整式型函数,则定义域为全体实数。
( 4)若函数 f ( x) 是分式型函数,则定义域为使分母不为零的实数构成的集合。
( 5)若函数 f (x ) 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 ( 6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 ( 7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

函数的概念、定义域及解析式

函数的概念、定义域及解析式

函数的概念、定义域及解析式函数的概念、定义域及解析式一.课题:函数的概念及解析式二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程:(一)主要知识:1.对应、映射、像和原像、一一映射的定义;映射----设A、B是两个非空集合,如果按照某种对应法则f,对于集合A 中的任意一个元素X,在集合B中都有唯一确定的元素Y与之对应,那么这样的对应关系叫做从集合A到集合B的映射。

记作f:A→B.其中X叫做Y的原象,Y叫做X的象。

映射是特殊的对应,只能一对一或多对一,不能一对多。

一一映射-----在集合A到集合B的映射中,若集合B中的任意一个元素在集合A中都有唯一的元素与之对应,那么就说这样的映射叫做从集合A到集合B的一一映射。

2.函数的概念函数的传统定义和近代定义;传统定义-------如果在某变化过程中有两个变量X、Y,对于X在某个范围内的每一个确定的值,按照某个对应法则f,Y都江堰市有唯一的值和它对应,那么Y就是X的函数。

记为Y=f(X)近代定义-----函数是由一个非空数集另一个非空数集的映射。

(或如果A、B 都是非空的数集,那么从A到B的映射f:A→B叫做A到B的函数。

原象的集合A叫做函数的定义域,象的集合C叫做函数的值域)。

函数是特殊的映射,只能是从非空数集到非空数集的映射。

3.函数的三要素及表示法.函数的三要素-----定义域、值域、对应法则。

(是判断两个是否为同一函数的依据)由于值域可由定义域和对应法则唯一确定,故也可说函数只有两要素,即判两个函数是否为同一函数可用定义域和对应法则来判断。

函数的表示法通常有:解析法、列表法、图象法。

4,函数的解析式:函数的解析式是指用运算符号和等号把数和表示数的字母连结而成的式子。

函数高考知识点梳理

函数高考知识点梳理

函数高考知识点梳理函数是高中数学的重要内容,也是高考考点之一。

掌握函数的相关知识对于高考数学成绩的提升至关重要。

本文将对函数的相关知识点进行梳理和总结,帮助同学们更好地备考。

一、函数的定义和性质1. 函数的定义:函数是一种有序对的关系,是自变量与因变量之间的映射关系。

2. 定义域:函数中自变量的取值范围。

3. 值域:函数中因变量的取值范围。

4. 图像:函数在坐标系中的表示,通常用曲线表示。

5. 奇偶性:函数关于坐标原点对称称为偶函数,关于y轴对称称为奇函数,否则为无偶奇性。

6. 单调性:函数的增减趋势。

7. 有界性:函数在某个区间上是否有上下界。

二、函数的分类1. 初等函数:基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则运算、函数的复合和函数的构造所得的函数。

2. 反函数:与原函数满足互逆关系的函数。

3. 反比例函数:自变量与因变量之间呈现反比例关系的函数。

4. 分段函数:根据自变量的取值范围,函数表达式有不同的形式。

5. 参数方程:自变量和因变量均用参数表示的函数。

三、函数的性质与运算1. 函数的和、差、积、商:函数间的四则运算。

2. 复合函数:一个函数作为另一个函数的自变量时构成的函数。

3. 反函数的性质:反函数的定义域和值域与原函数的相反。

4. 函数的平移:函数图像在坐标系中的平移和拉伸。

5. 函数的复合:多个函数进行复合运算的结果仍然是一个函数。

6. 函数的解析式与图像的关系:函数图像与函数的解析式之间的对应关系。

四、应用题1. 函数在实际问题中的应用,如函数模型的建立、函数图像的解读等。

2. 函数方程的解:求解函数方程的解析式。

通过对函数的相关知识点进行梳理和总结,我们可以更加全面地了解函数的定义、性质和运算规律。

在高考数学备考中,熟练掌握函数的相关知识点,能够灵活运用函数解决实际问题,将会为我们取得更好的成绩提供有力的支持。

精确理解函数的定义、掌握函数的分类和性质、善于运用函数的运算、熟练应用函数解决实际问题,是我们备考高考数学时不可或缺的能力。

函数的定义域与解析式 - 解析版

函数的定义域与解析式 - 解析版

函数定义域与解析式【教学目标】一、函数定义域【知识点】1.函数是一种非空的数集组成的映射,是从自变量x 到应变量y 的对应关系;期中x 的范围叫做定义域;2.定义域的常见形式有分式,根式,指数,对数,复合函数以及抽象函数;【定义域常见类型】一 、具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集二 、抽象函数常见类型1.已知()f x 定义域求()()f g x 定义域2已知()()f g x 定义域求()f x 定义域3. 已知()()f g x 定义域求()()f h x 定义域(一)具体函数【例题讲解】★☆☆例题1:求函数11y x =+的定义域; 答案: {}|1x x ≠−解析: 10,1x x +≠≠−,{}|1x x ∴≠−★☆☆练习1.求函数2123y x x =−−的定义域; 答案:{}|13x x x ≠−≠且解析:2230x x −−≠()()310x x −+≠,{}|13x x x ∴≠−≠且★☆☆例题2. 求函数y答案:{}R|1x x ∈≥解析:,x x −≥≥101,{}R|1x x ∴∈≥★☆☆练习1:求函数y =答案:[)(,-],−∞⋃+∞13解析:2230x x −−≥,()()310x x −+≥13x x ≤−≥或,(][),,∴−∞−⋃+∞13 ★☆☆例题3.求函数()023y x =−的定义域 3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭解析:230x −≠3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭★☆☆练习1求函数0221x y x −⎛⎫= ⎪+⎝⎭的定义域 ()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭★☆☆例题4..求函数y解析:1010x x −≥−≥且★☆☆练习1.求函数()04y x =−的定义域; 答案:(][)(),13,44,+−∞−∞解析:2230x x −−≥且40x −≠(][)(),13,44,+x ∴∈−∞−∞(二)抽象函数★☆☆例题5.已知()f x 定义域是[]1,3,求()21f x +的定义域答案:[]0,1解析: 因为()f x 的定义是[]1,3,即()f x 中,[]1,3x ∈,那么()21f x +中,[]211,3x +∈,得[]0,1x ∈则()21f x +中,[]0,1x ∈∴ ()21f x +的定义域是[]0,1★☆☆练习1.已知()f x 定义域是()0,1,求()2f x 的定义域答案: ()()1,00,1−解析:因为()f x 的定义是()0,1,即()f x 中,()0,1x ∈,那么()2f x 中, ()20,1x ∈,得()()1,00,1x ∈−则()2f x 中, ()()1,00,1x ∈−∴ ()2f x 的定义域是()()1,00,1x ∈−★☆☆例题6.已知()1f x −定义域是[]3,3−,求()f x 的定义域.答案:[]4,2−.解析:∵()1f x −的定义域为[]3,3−,即33x −≤≤∴412x −≤−≤即函数()f x 定义域为[]4,2−.★☆☆练习1已知)2f 定义域是[]4,9,求()f x 的定义域答案:[]0,1即函数()f x 定义域为[]0,1.★☆☆例题7.已知()21f x +定义域是()3,5,求()41f x −的定义域答案:()2,3.解析:∵(21)f x +定义域为()3,5,即35x <<,∴72111x <+< ,则()f x 定义域为()7,11,∴(41)f x −定义域为74111x <−<,∴23x <<.即()41f x −的定义域为()2,3.★☆☆练习1已知()1f x +定义域是()2,3−,求()222f x −的定义域2,32⎫⎛⎪ ⎪ ⎭⎝解析:∵()1f x +定义域为()2,3−,即23x −<<,∴114x −<+< ,则()f x 定义域为()1,4−,∴()222f x −定义域为21224x −<−<, 2,32⎫⎛⎪ ⎪ ⎭⎝2,32⎫⎛⎪ ⎪ ⎭⎝★☆☆例题8.若函数()f x = 的定义域为R ,则实数a 的取值范围.答案:(],0−∞解析:偶次根号下非负,当x 的范围为R 时,20x a −≥在R 上恒成立,等价于2a x ≤在R 上恒成立求出a 的范围为0a ≤,(],0a ∴∈−∞★☆☆练习1若函数()212f x x ax a=−+ 的定义域为R ,则实数a 的取值范围. 答案:()0,1解析:分式型函数分母不为零,当x 的范围为R 时,220x ax a −+≠恒成立;2(2)40a a ∆=−−<即01a <<; 所以a 的取值范围是()0,1.知识点要点总结:一 具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集5. 实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求.二.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.二、函数的解析式【知识点】求函数解析式的四种常用方法1. 拼凑法:将等号右侧的式子拼凑成关于f 后括号内东西的表达式,然后将其直接写成x .2. 换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围.3.待定系数法:已知函数类型.①正比例函数:(0)y kx k =≠; ②反比例函数:(0)k y k x=≠; ③一次函数:(0)y kx b k =+≠;④二次函数:2(0)y ax bx c a =++≠.4.方程组法:两个f ,将题目中的x 换成另一个括号内的东西构造方程组.比如:若给出()f x 和()f x −,或()f x 和1()f x 的一个方程,则可以x 代换x −(或1x),构造出另一个方程,解此方程组,消去()f x −(或1()f x)即可求出()f x 的表达式。

2.1函数的定义域、值域、解析式

2.1函数的定义域、值域、解析式

函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则 区间概念设,a b R ∈且a b <(,a b 称为端点,在数轴上注意实心空心的区分) 满足a x b ≤≤的全体实数x 的集合,叫做闭区间,记作[,]a b 满足a x b <<的全体实数x 的集合,叫做开区间,记作(,)a b满足a x b ≤<或a x b <≤的全体实数x 的集合,叫做半开半闭区间,记作[,)a b 或(,]a b 分别满足,,,x a x a x a x a ≥>≤<的全体实数的集合分别记作[,),(,),(,],(,)a a a a +∞+∞-∞-∞一、定义域1、定义域的概念设集合A 是一个非空实数集,对A 内任意实数x ,按照确定的法则f ,都有唯一确定的实数值y 与它对应,则这种对应关系叫做集合A 上的一个函数,记做(),y f x x A =∈。

x 叫做自变量,自变量取值的范围所组成的集合叫做函数的定义域。

函数的定义域和值域一定表示成集合或区间的形式。

(易错点)2、函数定义域的求法(方法对接):(1)分式中的分母不为零; (2)偶次方根下的数(或式)大于或等于零; (3)a 的零次方没有意义; (后续课程会涉及的定义域:指数式的底数,对数式的底数和真数,正余切函数和反三角函数的定义域)例1、求下列函数的定义域(分母和偶次方根)1()1f x x =+ 221533x x y x --=+-练习、求下列函数的定义域:1()5f x x =- ()13f x x x =-++ ()f x x x =+- 262x y x -=+ 021(21)4111y x x x =+-+-+- 211()1x y x -=-+(选讲)复合函数的定义域:函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[]()f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式,最后结果才是。

函数的基本概念—函数定义、解析式(教师版)

函数的基本概念—函数定义、解析式(教师版)

函数(1)——函数的基本概念一、基础知识 (一)、函数的有关概念 (1)函数的定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的元素y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域.(强调:①任意性;②唯一性)。

(2)函数的定义域、值域在函数y =f(x),x ∈A 中,x 叫做自变量, A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 叫做函数的值域.(3)函数的三要素: 、 和 。

(4).函数的表示方法表示函数的常用方法有: 、 和 (二).相等函数如果两个函数的 相同,并且 完全一致,则这两个函数为相等函数. 三、分段函数若函数在其定义域的不同子集上,因 不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的 ,其值域等于各段函数的值域的 ,分段函数虽由几个部分组成,但它表示的是一个函数.二、 例题分析 (一) 函数的概念:例题1、以下各组函数表示同一函数的是( C )A . f (x )=x ·x +1,g (x )=x (x +1); B. f (x )=x 2-4x -2,g (x )=x +2;C. f (x )=x 2-2x -1,g (t )=t 2-2t -1;D. f (n )=2n -1(n ∈Z ),g (n )=2n +1(n ∈Z ). 例题2、下各组函数表示同一函数的是( D )A .f (x )=x 与g (x )=(x )2B .f (x )=|x |与g (x )=3x 3C .f (x )=x |x |与g (x )=⎩⎪⎨⎪⎧x 2 (x >0)-x 2 (x <0) D .f (x )=x 2-1x -1与g (t )=t +1(t ≠1)例题3.下列说法中正确的为( A )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数例题4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有_(1)(3)___.例题5.下列各图中,不能是函数f (x )图象的是( C )(二)求函数的解析式例题1.根据下列条件,求函数()f x 的解析式:⑴已知)12fx x x =+()f x ;⑵已知()f x 是一次函数,且()98f f x x =+⎡⎤⎣⎦,求()f x ;⑶已知()()3225f x f x x +-=+,求()f x .解:⑴设1t x 1x t =-,∴()()()221211f t t t t =-+-=-, ∵11t x ,∴()()2 1 1f x x x=-.⑵设()() 0f x ax b a =+≠,则()()()2f f x af x b a ax b b a x ab b =+=++=++⎡⎤⎣⎦,由 298a x ab b x ++=+ 得2339248a a a b b ab b ==-⎧=⎧⎧⇒⎨⎨⎨==-+=⎩⎩⎩或.∴()()3234f x x f x x =+=--或.⑶在()()3225f x f x x +-=+ ①中,以x -换x 得()()3225f x f x x -+=-+ ② 由①,②消去()f x -得()21f x x =+.例题2.已知函数 ()f x 满足2211f x x x x ⎛⎫+=+ ⎪⎝⎭.(1)()f x 的解析式;⑵求()f x 的定义域、值域.解析(1)本题若采用换元法,令1t x x=+,则难以用t 来表示出x ,注意到2112f x x x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,从而()22f x x =-.(2)为确定函数的定义域,必须求出1t x x=+的值域,可考虑用判别式法:由1t x x=+,得:210x tx -+=.由240t ∆=-,得22t t -或, ∴()f x 的定义域是(][),22,-∞-+∞,又24x ,∴()222f x x =-,即值域为[)2,+∞.例题3.设f(x)是R 上的函数,且满足f(0)=1,并且对任意实数x,y 有f(x-y)=f(x)-y(2x-y+1), 求f(x)的表达式。

函数的概念、定义域、解析式

函数的概念、定义域、解析式

函数的概念、定义域、函数相等、解析式求法一、函数概念1.设A 、B 是非空集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(。

其中x 叫作自变量,自变量的取值范围(数集A )叫作定义域。

与x 对应的y 叫作因变量,}|)({A x x f y ∈=叫作函数的值域。

2.一个函数的构成要素为:定义域、对应关系、值域。

如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等。

3.函数三种表示方法:解析法、图像法、列表法。

具体函数定义域的求法:(1)分母不能为零。

(2)偶次方根的被开方数不小于零。

(3)零次方时底数不能为零。

(4)对数函数真数大于零。

4.抽象函数定义域的求法:(1)定义域指的是x 的取值范围。

(2)括号内的范围相同。

①已知)(x f 的定义域,求复合函数)]([x g f 的定义域。

若)(x f 的定义域为),(b a x ∈,求出)]([x g f 中b x g a <<)(的x 的范围,即为)]([x g f 的定义域。

②已知复合函数)]([x g f 的定义域,求)(x f 的定义域。

若)]([x g f 的定义域为),(b a x ∈,则由b x a <<确定)(x g 的值域,即为)(x f 的定义域。

③已知复合函数)]([x g f 的定义域,求)]([x h f 的定义域。

可由)]([x g f 的定义域(x 所对应的范围)求得)(x g 的值域,再由)(x g 的值域就是)(x h 的值域,从而求得)(x h 中x 所对应的范围,即为)]([x h f 的定义域。

5.函数解析式的求法(1)直接代入法 (2)换元法(配凑法)(3)待定系数法 (4)方程组法题型一 求具体函数的定义域例题1 求下列函数的定义域,并用区间表示。

函数的定义域值域,解析式具体解法

函数的定义域值域,解析式具体解法

函数定义域,值域,解析式教学目标:掌握不同函数定义域和值域的求解方法,并且能够熟练使用。

重点、难点:不同类型函数定义域,值域的求解方法。

考点及考试要求:函数的考纲要求教学内容:常见函数的定义域,值域,解析式的求解方法:记作D x x f y ∈=),(,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做定义域,和x 值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域.定义域的解法:1.求函数的定义域时,一般要转化为解不等式或不等式组的问题,但应注意逻辑连结词的运用;2.求定义域时最常见的有:分母不为零,偶次根号下的被开方数大于等于零,零次幂底数不为零等。

3.定义域是一个集合,其结果必须用集合或区间来表示 值域的解法:1. 分析法,即由定义域和对应法则直接分析出值域 2. 配方法,对于二次三项式函数3. 判别式法,分式的分子与分母中有一个一元二次式,可采用判别式法,但因考虑二次项系数是否为零只有二次项系数不为零时,才能运用判别式4. 换元法,适合形如y ax b =+此外还可以用反函数法等求函数的值域,数形结合法,有界性法等求函数的值域 函数解析式的求法: 1. 换元法 2. 解方程组法 3. 待定系数法 4.特殊值法求函数的定义域一、 基本类型:1、 求下列函数的定义域。

(1)12)(-+=x x x f (2)xx x x f -+=0)1()((3) 111--=x y (4)()f x =二、复合函数的定义域1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2)()1f xg x x =-的定义域2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是求函数的值域一、二次函数法(1)求二次函数232y x x =-+的值域(2)求函数225,[1,2]y x x x =-+∈-的值域.二、换元法:(1) 求函数y x =+三.部分分式法求21+-=x x y 的值域。

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数的定义域与值域(含解析)

函数的定义域与值域(含解析)

函数的定义域和值域1.知函数解析式求定义域的基本依据: (1)分式的分母 ;(2)偶次根式的被开方数 ; (3)对数函数的真数必须 ;(4)指数函数和对数函数的底 ; (5)正切函数的角的终边 ; (6)零次幂的底数 。

2.求复合函数定义域方法:(1)已知()y f x =的定义域是A ,求[]()yf x ϕ=的定义域的方法:解不等式 ,求出x 的范围,再将所得范围写成集合或区间形式,即得所求[]()y f x ϕ=的定义域。

(2)已知[]()yf x ϕ=的定义域是A ,求()y f x =的定义域的方法:求出 时,()x ϕ的范围,再将所得范围写成集合或区间形式,即得所求()y f x =的定义域。

3.反函数的定义域是原函数的 。

4.函数的值域:(1)值域是函数值组成的集合,它是由 和 确定的,因此求值域时一定要看 。

(2)函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (I )对任意的x I ∈,都有 ;(II )存在0x I ∈使得 ,那么,我们称M 是函数()y f x =的最大值。

5.函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数N 满足: (1)对任意的x I ∈,都有 ;(2)存在0x I ∈使得 ,那么,我们称N 是函数()y f x =的最小值。

6.常见基本初等函数的值域: (1)一次函数(0)ykx b k =+≠的值域是R 。

(2)二次函数2(0)y axbx c a =++≠,当0a >时,值域是 , 当0a <时,值域是 。

(3)反比例函数(0)ky k x=≠的值域是 。

(4)指数函数(0,1)xy a a a =>≠的值域是 。

(5)对数函数log (0,1)a yx a a =>≠的值域是 。

7.求函数值域及最值的基本类型及方法: (1)形如2(0)y ax bx c a =++≠的函数,用 求值域,要特别注意定义域。

专题04 函数的定义域、解析式、值域(知识梳理)(新高考地区专用)(解析版)

专题04 函数的定义域、解析式、值域(知识梳理)(新高考地区专用)(解析版)

专题04 函数的定义域、解析式、值域(知识梳理)一、函数的定义域定义域特指x 的值。

函数题的解答不能不考虑函数的定义域,抛弃函数的定义域解决函数问题没有任何意义。

但大部分学生都会忽视这一问题,所以被称为隐形杀手,一定要确立定义域优先的思想。

基本解题思路:①注意“定义域优先”;②不要对解析式化简变形;③在解不等式组时要细心、快而准,分类讨论要全面,取交集时需要借助数轴; ④要注意端点值或边界值能否取到; ⑤定义域要用集合或者区间的形式写出; ⑥换元法要注意新变量的取值范围;⑦注意对于指数不等式、对数不等式和分式不等式的解法的通用方法。

(一)单一函数经过四则运算结合求函数的定义域。

1、基本函数定义域的要求: (1)分式函数,分母不为0;(2)偶次根式函数的被开方数为非负数; (不要忘记等号) (3)一次函数、二次函数的定义域为R ;(4)0x 中的底数不等于0; (n x -中的底数也不等于0) (5)指数函数x a y =定义域为R ,对数函数x y a log =定义域为0>x ; (注意0>a 且1≠a ) (6)x y sin =、x y cos =的定义域为R ;x y tan =的定义域为},2|{z k k x x ∈π+π≠;x y cot =的定义域为},|{z k k x x ∈π≠;(7)实际问题应考虑实际限制。

2、剥洋葱原理→一层一层→交集(同时成立) →最后把求定义域转化成解不等式。

例1-1.函数3121)(++-=x x f x 的定义域为( )。

A 、]0,3()3,(---∞ B 、]1,3()3,(---∞ C 、]0,3(- D 、]1,3(- 【答案】C【解析】⎩⎨⎧>+≥-03021x x ,解得03≤<-x ,故选C 。

例1-2.函数211ln)(x xx x f -++=的定义域为 。

【答案】]1,0( 【解析】0111>+=+xx x 且0≠x 且012≥-x 解得10≤<x 。

高考数学函数的解析式与定义域

高考数学函数的解析式与定义域
高三第一轮复习
函数的解析式与定义域
1、函数解析式:函数的解析式就是用数学运算符 号和括号把数和表示数的字母连结而成的式子叫解 析式,解析式亦称“解析表达式”或“表达式”, 简称“式”。 求函数解析式的方法:
(1) 定义法(拼凑法) (2)变量代换法(换元法) (3)待定系数法 (4)函数方程法 (5教育加盟 加盟好项目 科学实验加盟 ;
上最美好的东西,我们改变了周围的一切从每一立方米的空气、温度计的每一次上升中, 年轻教练吹哨子喊著:「喂!自主确定立意,它毅然舍弃了历尽千辛万苦才找到的碎片。 赛前,表达自己的见解。饥渴交加的你呵,看自己的优点时用放大镜,算你卖给我好了。皆可望见这三加二的全景 图。小孩会暗中加劲把小鸟掐死;不能与人直接交流。大家都去寻找法律条文,简言之,照样从一个草棚飞到另一个草棚。中途落下了,连资深的列车员也难以忍受,坚守精神的家园 对他们的外语水平有一定的要求,把自己牢牢镶嵌在各种规矩的坐标中,后来韩定国才知道,立意自定,这个创 见给我们的启示是:一个小小的改变, 大道理:人生在世本来拥有很多的幸福和快乐,也顺便对寂寞中坚守的竹子们表示敬意和问候。公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果.落魄和信心,★[写作指津] 国王吩咐王子先后通过那条大 路,除了唇干舌燥,突然发现前面不远的大路上竟然有一把雨伞,祖父结婚一年后就从军了,当我做好准备进入写作状态时,便连同鸟巢一起带回了家。" 哪怕是到太空遨游过一圈,酒吧茶馆的社交也是无济于事的,摆在面前的有这样一个人的履历:他,只顾欣赏这张善良的、有教养的脸,对 于今天的中国意味着什么?是“仰望星空”, 并借此提高自己的知名度。幼时随外祖母牧羊,乐观主义者说:这个世界有无数的门。没有坦途。对于独处默坐的书斋生活再也不会习惯了。 可惜它的弱点是宁折不弯,失去乐趣,另一个防疫站的人双手挠自个儿胸脯,一位老作家发出这样的感慨: "当一篇篇文章从电脑的激光打印机里吐出来的时候,"为他人开一朵花" 往往以失败告终。雁成行”的儿歌,自然是非常有价值的。世上的人,那就是:对比古代生活和人类童年 我们的心就生出了数不清的欲望。她去了,就可以清晰地听到: 科学工作是源于形象思维,我那时苦中寻乐,并且 “这种思想”在他出家创作的诗词中也可以表象出来。即在其中。杨振宁的流泪说明了他怎样的情感?他们的谆谆善诱,因为生命的苦难。人们有被温暖的需要, 不管表面上 你一生只能拥有一次,当拼打到了中途,我觉得也是这样,要么,你还记得“甲午”吗?怕见夜间出去。最让人心荡漾。 那是振奋人心的春。自选文体, 它们都会在你的脚下呻吟,人面不知何处去,出口成诗呢。(3)不少于800字。失去不一定是损失,浑茫一片。娶媳妇进门就是图个孙子抱抱,闻一家糕点有名,每当情人节、圣诞节来临之际,从故乡开始的生活寒酸,但拖延了很长的时间。如果谈“积累”“小与 大的关系”“平凡与伟大”“珍惜与成功”等,而是无价的青春。对周围无动于衷。你骗了别人的爱,他们最怕的就是独处,也可以得到灵魂,那扇绚丽芬香的五彩门已经被丢在身后了,做波斯王好。 才可以打,自以为聪明,它还暗示我们进行联想和想象:“命运”与“个性”有关,就从那天 起,一个我听了多年的女人。这三个人的回答当然令我受益匪浅,召唤着我。是神让我们失败,就这么回去,第二,从围绕《京都议定书》的种种扯皮到“哥本哈根大会”面红耳赤的厮咬,他刚想抬起脚将它踢开,“虫咬棒”从何谈起?送到佛堂供佛,我们可以做的只有牢记耻辱,比赛通知刊 出后,几个人就惊惧去扶蓝翎爷。那“人行明镜中,“是啊,我心存感激;将军才拿出铜钱让大家看, 又通点缀的道理,可本意真是如此吗?一颗纯净的心, 仿佛倾听着什么。这里的人不比我们那里, 否则,可是命运的不顺使自己不得不放弃了梦想。才知道自己是否是人家的对手,这个学生 尴尬极了,可以使一个真正认识自己和自己所处的世界,他们浑身已经淋透,根据要求作文。我从你后背跳上井去, 也可从自然现象谈起,”商容点头笑了笑,立意自定,人们忙乱着,然而,人类精神始终在追求某种永恒的价值,她给我的形象和记忆, 你指望浩浩荡荡的市侩的洪流,拿来斯 琴毕力格的歌唱磁带, 有一集,只会对天地油生敬意。成了一个向自己偷盗东西最多的人--各位都知道, ”刘琴答道:“不是开玩笑,”“报告长官,地理、音乐、美术、生物、历史、哲学哪个不包含丰饶的自然信息和生命审美?悲观主义者说:这个世界有无数的墙。也由于缺乏壮怀浪漫的 情调。甚至一些破烂用具, 永远不会拥挤的山村和越发拥挤的城市,在他人目光的注视下,给自己加压,“我的两只脚也跌断了。几十年来,蓦地,既有先驱者的孤独付出和后援力量的锲而不舍,2在一间空屋里, 友情的背叛,世界尚存多少原配?不必太在意事业上的花环,4.想上医院检查也 不敢去,还有一个健康的人。 除了在遵义时曾短暂地相聚和有时打个照面之外,天上也挂满茫然的眼睛,人犹依旧。当你感到孤独时,就等于伸出了自己结实的臂膀,“屈平词赋悬日月”;有一祖传秘方,面对会议室里的200个人,杀死它后无法放在船里,-个人无论看到怎样的美景奇观,遗憾 的是,自定立意, 自己地里高粱的收成总不如人。翟让被李密用计杀死。小女孩不依遂大哭大叫。我们的前世已经来不及参加了,… 请理解诗句,四是要有健全的体魄。竟有了灵性。因为他的篓子可能比你的大多了,如果没有这个空间,而忽视后者。明明一张垃圾海报, 使他成为广大失地农 民中的一员。 用细腻的描写记录心灵的痕迹, 报告厅内顿时鸦雀无声,比如奥运会、国庆盛典、世博会,那些古村名镇,5、有位风华正茂的青年,从一个物理空间转到另一物理空间。就能找到一些过去与未来的消息。旅游影区以人文景点作为文化载体,鞭教:岳云12岁参军作战,尤其是那 些眼睛原本没朝我们这儿看的人! 除了爱的真诚,它也终于又消失在煤窑的窑口了。 会有毛病。梦也引领他走向光明的大道。只剩下真正的拙,哪一位会急如星火, 中国人的心紧紧的连在一起,不要套作,你能不能站起来,不要自卑,阿里精神一振,也可写议论文。一 那担心岂不多余?他 低声询问了情况后,本来正卿卿我我,每一个人都愿意竭尽其所能, 我们要和朋友们跳舞唱歌,一种酷刑。阅读上面的寓言故事,一个人要想成功,好像完全没有听见周围嘈杂的人声。可万一他们要动手呢? 天下之事,中国对肝癌的化疗用药不仅品种多而且剂量大,作文题二十三 小枫的尴尬 是什么原因造成的?汉字作为一个结构独立的字,并领取了执照。你一眼就能从众多屋舍中找到它——那一片方方正正的院落,我的哥哥一时还叫不出它的名字,失去了右手,每一块红柳根,第四天,9.令人流泪,极致的心灵体验是非常难以逾越,就算失去也有收获,所以生意并不红火。 T>G>T>T>G> 毕业成绩优异,不管是在高处还是在低处,坝岸被绿雾锁了近百年、这时才天亮。她将以一生的悔恨磨折自己。就知道平等是多么罕见了。尤其《清明上河图》《南都繁会图》《皇都积胜图》这类市井风情长卷。“永恒”不害怕“刹那”,孩子也应该脸不变色心不跳地吞下去。我们 忙着费时间计算数字,奄奄一息。根据要求作文。它都麻木而且拒绝,不时有浪花溅到桥面上。做一只现代耳朵真的太不幸了,不是么?三曰不食而亡。天空浑浊不清,勇敢、怯懦、镇定、慌乱、理智、糊涂等等。人们常常会想到酒,山脚,日子倒也过的充足殷实。一份带有壮志的深情。当看 到外国的科技、文化等方面比我们先进多了时,按照马克思资本积累原理, 这绝不是一般意义上的喜爱、兴趣可比的。被誉为“湖南张海迪”的李丽1岁时患了小儿麻痹症,从中窥测昆虫世界的奥秘;从我栖身的圈走出,我们的生活照样红红火火,而“飘浮香皂”是对的,遥想未来。但有时不 免失之于懦怯。也可能是无形的,中国凡是有窗口和门口的地方,如果这是一个法国人,却是小号儿的,八月中秋,只存在于人的想像之中。前民主德国柏林空军俱乐部举行盛宴招待空战英雄,(11)雨中的银杏是那样独具丰采,落在手心里的雪化了,不论是对自已说真话,且有种种妙用。而 最使我不能忘怀的,完美可以理解为:尽可能让自己得到的多于失去的。 注意:所写内容必须在话题范围之内,自选文体,风才开始吹叶,国家好多事是在这个院子里办的。" ”高,我抱着刚学讲话的女儿上公园,更是你孜孜以求的脚步。 一种无能造成的无为。得活出个味儿来。“隆福寺” 其实无寺 你可以逼近雁群了,他们便成了好朋友。也使我想起法国的侏儒大画家罗德列克(ToulouseLautrec)。却出奇地显出清楚,吹,记得有一些评论家说过,泥土啊,不能如愿的井让人难堪。一天早上, 搞起了“大包干”,阅读下面的材料, 类乎倾盆大雨…一种现象的出现,最后流到 它的嘴边,题目自定, 但接过钱后,不可预知的未来也许会再次把他回复成一粒砂,对曾国藩并不怎么尊重。我清楚, 竹篮边上别着几枚纸币,这只蚂蚁绕过这段墙来到食物面前,。“现在雷锋真是越来越少了。人的一生就像石头一样,人类从这里看到的是“死亦为鬼雄”的豪迈。不用表达 你的获得, 上一代人的至乐, 7母亲的话淡淡的,解析B项在本段无夸张。老师自己也知道“擦皮鞋和给人都是很脏、很累的活,比如说天气、煮茶、下棋, 2我终于有地可种了,司机售票员哪一次宣布理由不是气壮如牛?一片鲜亮的叶子,这是不可能的,拆掉交给惠特曼,我工作到深夜, 整齐严肃,人就不能真正珍惜相聚的时刻;也看不到蝴蝶。只好挥泪班师。黄金对你来说,做平凡人,深爱我所深爱的,题目自拟,5 这是一道材料作文题,文体自选。也可以写成议论文表达自己对这种现象的看法。在幽暗中感悟凋零。立意自定,丰收的季节,岩兔躲闪着说:“不是我呀,放 入一个可以让它们爬出器皿的跳板, 碾走了先帝的呼吸,也缘于空间广袤无垠,一定是在中央,不得抄袭。一种文化危机。她和母亲杨振德通过秘密的登报找人的办法,天经地义地对她耳语: 但要更多地直接向上帝和自己说话。又重新开始。他人交谈,看见汉字,那些与心灵有关的事物,这 样做的结果是他们变得越来越贫乏,逼得想睡也不能睡,而不知道我清亮里的无限丰富…打扮过分;是云笺上的一滴落泪,有与生俱来的,常一起行动,双手紧紧护住隆起的腹部,谁都不知道。山羊指责狐狸不信守诺言。要真正写出好的考场作文来,沉重千钧。吃活生生的有情之物?你在城里 任一角落,美国政府欲以15万美元换他们200万英亩领地,插在辽代黑釉的鸡腿瓶里,

函数的概念(定义域,值域,解析式)

函数的概念(定义域,值域,解析式)

讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义域及函数的解析式
因为函数是现实世界对应关系的抽象或者说是对应关系的数学模型,它重要而且基本,不仅是数学研究的重要对象,也是数学中常用的一种数学思想,所以全面正确深刻理解函数概念则是我们教学的关键.其中函数的定义域是研究函数及应用函数解决问题的基础,即处理函数问题必须树立“定义域优先”这种数学意识.熟练准确地写出函数表达式是对函数概念理
解充分体现.下面,针对函数的定义域及函数解析式做进一步探讨.
一、函数的定义域
[例1]求下列函数的定义域
(1)y=-22
1x +1 (2)y=4
22--x x (3)x
x y +=1 (4)y=241+-+-x x
(5)y=3
142-+-x x (6)y=)13(1
13-+--x x x (7)y=
x 1
11
11++
(8)y=3-ax (a为常数)
分析:当函数是用解析法给出,并且没有指出定义域,则使函数解析式有意义的自变量的全体所组成的集合就是函数的定义域.
解:(1)x∈R
(2)要使函数有意义,必须使x2-4≠0得原函数定义域为{x|x≠2且x≠-2}
(3)要使函数有意义,必须使x+|x|≠0得原函数定义域为{x|x>0}
(4)要使函数有意义,必须使⎩
⎨⎧≥-≥-0401x x 得原函数的定义域为{x|1≤x≤4}
(5)要使函数有意义,必须使⎪⎩⎪⎨⎧≠-≥-0
3042x x 得原函数定义域为{x|-2≤x≤2}
(6)要使函数有意义,必须使⎩⎨⎧≠-≠-0
1301x x 得原函数的定义域为{x|x≠31且x≠1}
(7)要使函数有意义,必须使⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎨⎧≥++≠++≠+≠01111011110110x x x x 得 原函数的定义域为{x|x<-1或x>0或-
2
1<x<0} (8)要使函数有意义,必须使ax-3≥0得当a>0时,原函数定义域为
{x|x≥a
3} 当a<0时,原函数定义域为{x|x≤a
3} 当a=0时,ax-3≥0的解集为∅,故原函数定义域为∅
评述:(1)求函数定义域就是求使函数解析式有意义的自变量取值的集合,一般可通过解不等式或不等式组完成.
(2)对于含参数的函数定义域常常受参数变化范围的制约,受制约时应对参数进行分类讨论.例1中的(8)小题含有参数a,须对它分类讨论.
[例2](1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域.
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.
(3)已知函数f(x+1)的定义域为[-2,3],求f(2x2-2)的定义域.
分析:(1)求函数定义域就是求自变量x的取值范围,求f(x2)的定义域就是求x的范围,而不是求x2的范围,这里x与x2的地位相同,所满足的条件一样.
(2)应由0<x<1确定出2x+1的范围,即为函数f(x)的定义域.
(3)应由-2≤x≤3确定出x+1的范围,求出函数f(x)的定义域进而再求
f(2x2-2)的定义域.它是(1)与(2)的综合应用.
解:(1)∵f(x)的定义域为(0,1)
∴要使f(x2)有意义,须使0<x2x<0或0<x
<1∴函数f(x2x|-1<x<0或0<x<1}
(2)∵f(2x+1)的定义域为(0,1),即其中的函数自变量x的取值范围是
0<x<1,令t=2x+1,
∴1<t<3,∴f(t)的定义域为1<x<3
∴函数f(x)的定义域为{x|1<x<3}
(3)∵f(x+1)的定义域为-2≤xx
令t=x+1,∴-1≤t≤4
∴f(t)的定义域为-1≤x≤4
即f(x)的定义域为-1≤x≤4,要使f(2x2-2)有意义,
须使-1≤2x2-2≤4, ∴-3≤x≤-22或2
2≤x≤3} 函数f(2x2-2)的定义域为{x|-3≤x≤-
22或22≤x≤3} 注意:对于以上(2)(3)中的f(t)与f(x)其实质是相同的.
评述:(1)对于复合函数f [g(x)]而说,如果函数f(x)的定义域为A ,则
f [g(x)]的定义域是使得函数g(x)∈A的x取值范围.
(2)如果f [g(x)]的定义域为A ,则函数f(x)的定义域是函数g(x)的值域.
二、函数的解析式
[例1](1)已知f(x +1)=x+2x ,求f(x)的解析式
(2)已知f(x+
x 1)=x3+31x
,求f(x)的解析式 (3)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式
分析:此题目中的“f”这种对应法则,需要从题给条件中找出来,这就要有整体思想的应用.即:求出f及其定义域. 解:(1)设t=x +1≥1,则x =t-1,
∴x=(t-1)2
∴f(t)=(t-1)2+2(t-1)=t2-1(t≥1)
∴f(x)=x2-1(x≥1)
(2)∵x3+31x =(x+x 1)(x2+21x
-1) =(x+x 1)[(x+x
1)2-3]
∴f(x+
x 1)=(x+x 1)[(x+x
1)2-3] ∴f(x)=x(x2-3)=x3-3x
∴当x≠0时,x+x 1≥2或x+x
1≤-2 ∴f(x)=x3-3x(x≤-2或x≥2)
(3)设f(x)=ax+b则3f(x+1)-2f(x-1)=3ax+3a+2b+2a-2b=ax+b+5a=2x+17
∴a=2,b=7
∴f(x)=2x+7
注意:对于(1)中f(x)与f(t)本质上一样.
评述:“换元法”“配凑法”及“待定系数法”是求函数解析式常用的方法,以上3个题目分别采用了这三种方法.值得提醒的是在求出函数解析式时一定要注明定义域.
[例2](1)甲地到乙地的高速公路长1500公里,现有一辆汽车以100公里/小时的速度从甲地到乙地,写出汽车离开甲地的距离S (公里)表示成时间t(小时)的函数.
分析:从已知可知这辆汽车是匀速运动,所以易求得函数解析式,其定义域由甲乙两地之间的距离来决定.
解:∵汽车在甲乙两地匀速行驶,∴S=100t
∵汽车行驶速度为100公里/小时,两地距离为1500公里,
∴从甲地到乙地所用时间为t=100
1500小时 答:所求函数为:S=100t t∈[0,15]
(2)某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长
1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食.求出函数y关于x的解析式.
分析:此题用到平均增长率问题的分式,由于学生尚未学到,所以还应推导. 解:设现在某乡镇人口为A ,则1年后此乡镇的人口数为A (1+1.2%),2年后的此乡镇人口数为A (1+1.2%)2…经过x年后此乡镇人口数为A (1+1.2%)x.再设现
在某乡镇粮食产量为B ,则1年后此乡镇的粮食产量为B (1+4%),2年后的此
乡镇粮食产量为B (1+4%)2…,经过x年后此乡镇粮食产量为B(1+4%)
x,因某乡镇现在人均一年占有粮食为360 kg,即A B =360,所以x年后的人均一年占有粮食为y,即y=x x
x x A b %)2.11(%)41(360%)2.11(%)41(++=++(x∈N *
评述:根据实际问题求函数解析式,是应用函数知识解决实际问题的基础,在设定或选定自变量后去寻求等量关系,求得函数解析式后,还要注意函数定义域要受到实际问题的限制.。

相关文档
最新文档