第三章 体的投影
第三章 体的投影及视图表达
第三章投影基础及组合体的视图表达投影方法中心投影法平行投影法直角投影法(正投影法)斜角投影法3·1·1投影的形成及常用的投影方法投影大小与物体和投影面之间的距离无关。
度量性较好!工程图样一般都采用正投影法绘制。
投射线互相平行且垂直于投影面投射线互相平行且倾斜于投影面投影特性直角(正)投影法斜角投影法平行投影法3.2基本形体的三视图5.1 基本平面立体的投影5.2 基本曲面立体的投影返回首页1. 视图的概念视图——体的投影主视图——体的正面投影俯视图——体的水平投影左视图——体的侧面投影2. 三视图之间的度量关系长高宽宽三个视图的联系:主视俯视长对正,主视左视高对齐,俯视左视宽相等。
5.1.3 三面投影与三视图常见的基本几何体曲面基本体平面基本体基本体4 基本体的形成及其三视图s”s’∙圆锥体的组成底面——圆圆锥面——母线绕轴线旋转而成锥顶∙圆锥体的三视图∙轮廓线与曲面的可见性∙圆锥面上取点●k’●k”●ks●2. 圆锥体3.3 组合体的三视图3.3.1 组合体三视图的基本问题1. 组合体的基本形式及投影特点对于一个组合体重点要分析以下几个问题:a.组合体的组成——有哪些基本体组成b. 这些基本体的大小和位置c. 基本体之间的连接形式2. 组合体的画图•形体分析法:根据组合体的形状,将其分解成若干部分,弄清各部分的形状和它们的相对位置及连接形式,分别画出各部分的投影,最后综合起来。
4. 组合体的尺寸标注方法组合体的大小不以图形的大小确定,而是以标注尺寸为准,根据国家标准规定的方法进行组合体尺寸标注。
3.3.1 组合体的组成方式3.3.1.1 组合体的概念组合体——由平面体和曲面体组成的物体3.3.1.2 组合体的组成方式⒈组合组合的形式包括:表面平齐组合表面不平齐组合同轴组合非对称组合对称组合⒉相交⒊截切(a) 平齐(c) 不平齐(b)前面平齐后面不平齐虚线实线无线3.3.1.3 形体之间的表面过渡关系⒈平齐⒉相切无线无线无线●⒊相交有线有线3.2.1 画图步骤及要领∙对组合体进行形体分解——分块∙按照各块的主次和相对位置关系,逐个画出它们的投影。
机械制图(第二版)课件第3章 基本形体的投影规律
第3章 基本形体的投影规律
3.1.2 棱锥 棱锥是由几个三角形的侧棱面和一个多边形的底面围成
的。各侧棱面为共顶点的三角形。 图3-2所示为一正三棱锥,底面为等边三角形,三个侧
面为全等的等腰三角形。底面放置成水平位置,并使棱锥左 右对称(后棱面垂直于W面)。
第3章 基本形体的投影规律
1.投影分析和画法 因为底面ABC为水平面,所以其水平投影abc反映实形, 正面投影和侧面投影均积聚为水平线段。棱面SAB和SBC为 一般位置平面,三面投影均为缩小的类似三角形。因该两棱 面左、右对称,故侧面投影重合。棱面SAC为侧垂面,所以 侧面投影sa(c′)积聚为斜线段,水平投影和侧面投影为缩小 的类似三角形,如图3-2(b)所示。 作图时,先画出各投影的对称线,然后画底面的水平投 影和另两面投影,再画顶点的各面投影并连接各点即可。
第3章 基本形体的投影规律
3.2.2 圆锥 圆锥是由圆锥面和底圆平面围成的。 图3-5为轴线处于铅垂线位置时的圆锥直观图及投影图。
第3章 基本形体的投影规律
图3-5 圆锥的投影
第3章 基本形体的投影规律
1.投影分析和画法 圆锥的底圆平面为水平面,其水平投影为圆,且反映实 形;其正面投影和侧面投影均积聚为直线段,长度等于底圆 的直径。 圆锥面的三个投影均无积聚性。圆锥面的水平投影为圆, 且与底圆平面的水平投影重合,整个圆锥面的水平投影都可 见;圆锥面的正面投影应画出该圆锥面正视转向轮廓线的正 面投影。圆锥面上最左、最右两条素线SA、SB是正视时可 见(前半个圆锥面)与不可见(后半个圆锥面)的分界线,是正 视转向轮廓线。其正面投影s′a′、s′b′必须画出;其水平投影 与圆的水平中心线重合,省略不画;其侧面投影s″a″、s″b″ 与圆锥轴线的侧面投影重合,也省略不画。
第三章立体的投影
截断面
截平面
截交线
截交线与截断面
12
截交线的性质:
• 截交线是一个由直线组成的封闭的平面多边形,其 形状取决于平面体的形状及截平面相对平面体的截
切位置。 •平面立体的截交线是一个多边形,它的顶点是平 面立体的棱线或底边与截平面的交点。截交线的每 条边是截平面与棱面的交线。
• 共有性:截交线既属于截平面,又属于立体表面。 求截交线的实质是求两平面的交线
s
1 素线法
m 2 纬圆法
31
例 BAC位于圆锥体表面,已知V投影,求H、W投影
s'
a' d' (e')
b'(c')
c
e
sa
bd
s"
(a")
e"
d"
c"
b"
分析
BAC不通过锥顶, 故为曲线
作图
①找特殊点 ②求H、W面投影 ③光滑连接曲线
32
圆球
O
球面
形成
圆绕其直径旋转 而成
O 轴线 圆球表面无直线!
作业
3-2(1)(2)
36
3.2.2 平面与曲面立体相交
一、曲面立体截切的基本形式
截交线
截平面
截平面
截交线
37
截交线的性质:
• 截交线是截平面与回转体表面的共有线。 • 截交线的形状取决于回转体表面的形状及
截平面与回转体轴线的相对位置。 • 截交线都是封闭的平面图形。
38
二、求平面与曲面立体的截交线的一般步骤
线后再取局部。
19
20
例:求六棱柱被截切后的水平投影和侧面投影
工程制图-第三章基本立体的投影
本章是这门课程的一个难点,教师为了自身业务的提高,要试做一定数目的练习,这对于讲课、辅导答疑、画好黑板图等都有很大的帮助,下面是教师在教学过程中的部分练习,虽然不要求学生掌握到这种难度,但教师要能绘制这种图样。
在讲解本章内容时可作为参考案例。
教师绘制的作业(三棱住切割)教师绘制的作业(长方体切割)教师绘制的作业(五棱柱切割)教师绘制的作业(长方体切割)教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业学生作业学生作业学生作业学生作业学生作业学生作业返回第一讲基本立体的投影1.知识要点(1)平面基本立体的投影(2)圆柱体的投影(3)圆锥体的投影(4)球体的投影2.教学设计本讲的内容不多,表面上容易,实际上同学掌握起来比较难,所以教学上要注意直观教学和空间想象能力培养的关系,明确教学目的。
虽然在上一章介绍了平面立体三视图的画法,在本章开始时还要进一步归纳平面基本体的投影,及其与平面相交时交线的画法,这是一个难点,要逐步掌握。
通过对圆柱体、圆锥体和球体在三面投影体系中投影的研究,进一步巩固三视图的投影规律,通过研究曲面上点、线的投影,暗示线面分析法的思想方法。
在介绍基本曲面立体的投影时,要紧紧抓住转向轮廓线的概念和投影,这对于接下来的截交线和相贯线的学习也是非常重要的,在讲圆柱截交线时,利用动画、模型、虚拟现实等多媒体技术介绍基本概念和作图方法。
把粗实线圆规铅心的修理、圆规的使用放在这里介绍,目的是分散难点,学生有了绘制粗实线直线的经验,学习绘制粗实线圆弧就容易些。
3.课前准备准备教具、熟悉教学内容和要使用的教学课件,课前最好将要布置的作业试做一遍,对学生作业中的问题作到心中有数。
第3章立体的投影
第3章立体的投影电子教案:3.1 基本立体的投影基本立体可分为平面立体和曲面立体。
表面均为平面的基本立体称为平面立体。
常见的有棱柱、棱锥,如图3-1所示。
表面由曲面和平面或完全由曲面组成的基本立体称为曲面立体。
最常见的曲面立体是回转体,包括圆柱、圆锥、球、圆环等,如图3-2所示。
将基本体放在三投影面体系中进行投射时,为了画图、读图的方便,通常将其“放平,摆正”。
放平——就是让基本体的底面处于平行面位置。
摆正——是在放平的基础上,让其余各面尽可能处于平行面或垂直面位置。
在以后画组合体视图或零件图时也要遵循这个原则。
图3-1 平面立体图3-2曲面立体3.1.1 平面立体的投影及其表面取点在投影图上表示平面立体就是把组成立体的平面和棱线表示出来,然后判别其可见性,把看得见的棱线投影画成实线,看不见的棱线投影画成虚线。
1.棱柱(1) 棱柱的投影常见的棱柱有正四棱柱和正六棱柱,图3-3(a)所示一正六棱柱,由六个相同的矩形棱面和上下底面(正六边形)所围成。
将其放平摆正后,上、下底面为水平面,其水平投影反映实形,另外两面投影积聚为直线。
正六棱柱的六个棱面中,前后两个面是正平面,正面投影反映实形;其余四个棱面均为铅垂面。
如图3-3(b)所示,作图过程如图3-4所示。
(a)(b)图3-3正六棱柱的投影及表面取点图3-4 正六棱柱的画图方法和步骤棱柱的投影特性是:在与棱线垂直的投影面上的投影为一多边形,它反映棱柱上、下底面的实形;另两个投影都是由粗实线或虚线组成的矩形线框,它反映棱面的实形或类似形。
(2) 在棱柱表面上取点在棱柱表面上取点,其原理和方法与在平面内取点相同。
该例中正六棱柱的各个表面都处于特殊位置,因此在其表面上取点均可利用平面投影积聚性的原理作图,并判别其可见性,如图3-3(b)所示。
2.棱锥(1) 投影分析和画法常见的棱锥有正三棱锥和正四棱锥,图3-5(a)所示为一正三棱锥,锥顶为S,其底面为等边△ABC,是水平面。
工程制图课件——第3章 立体的投影
1′ 3′ a
⑵ 圆柱体的三视图
2′ 4′
⑶ 轮圆廓柱线面素的线俯的视投图影积分聚析成与一曲
⑷个 两 示圆个。圆面,方柱的在 向面可另 的上见两 轮取性个 廓点的视素判图线断上的分投别影以表
1(2)
a3(4)
O A
O1 A1 1″ 3″ a
2″ 4″
利用投影 的积聚性
已知圆柱表面上的点M及N正面投影m′和n′,求它们 的其余两投影。
• 平面与立体表面的交线,称为截交线; 当平面切割立体时,由截交线围成的平 面图形,称为断面。 • 用平面与立体相交,截去体的一部分—截切。
• 用以截切立体的平面——截平面。
五棱柱被切割后的三面投影
例1:求四棱锥被截切后的俯视图和左视图。
1 (4)2 3
4● ●1 ● 2 ● 3
ⅣⅠ
Ⅱ Ⅲ
4
●
3
三视图
(2)正面与侧面投影 是以轴线为对称线的、 大 小完全相同的矩形。
投影特性
圆
圆 锥
底 成下 看面 是底 成圆围 由圆面 是锥成 一柱围 由是。 直由成 一由圆 母圆。 直圆锥 线柱圆 母锥面面柱 线A面可和A面BB绕和看上可绕、
⑴ 棱柱的组成
由两个底面和若干侧棱面
组成。侧棱面与侧棱面的交线
叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图
⑶ 棱在柱图示面位上置取时点,六棱柱
的点两的底可面见为性水规平定面:,在俯视 图中反若映由点实于所形棱在。柱的前的平后表面两面的侧都投棱 面影是是可正平见平面,面,点,所的其以投余在影四棱也个柱可侧的见棱; 面若是表平铅面面垂上的面取投,点影它与积们在聚的平成水面直平上线投, 影点都取的积点投聚的影成方也直法可线相见,同。与。六边形 的边重合。
第三章-立体投影
☆ 将各点光滑地连接起来,并判断截交线的可 见性。
特殊点
一、平面与圆柱相交
1.平面与圆柱相交所得截交线形状 2.例题
1. 平面与圆柱相交所得截交线形状
两平行直线
圆
椭圆
2. 例题
[例题1] 求圆柱截交线
1'
2'(3')
1" 3"
S
s"
d" a"
C (b") c"
b
c
Y
3. 圆锥面的(转向)轮廓线和可见性
4. 圆锥表面上取点
2'
2"
(3')
(3")
3 2
5.圆锥表面上取线
2' 5' 3' 4' 1'
435 2 1
(2")
(5")
3"
4"
1"
三、圆球
1.圆球的形成:圆(母线)围绕直径回转而成。
主视轮廓圆
Z
回转轴
平行V面
由两个底面和几个侧 面组成。侧面与侧面 的交线叫侧棱,侧棱 相互平行。
2. 棱柱的投影
侧面投影 水平投影
在图示位置时,六棱 柱的两底面为水平面, 在水平投影中反映实 形。前后两侧面是正 平面,其余四个侧面 是铅垂面,它们的水 平投影都积聚成直线, 与六边形的边重合。
六棱柱的投影
3. 棱柱表面上取点
4'(5')
5"
6'(7')
8'
工程制图第三章体的投影
H Y
直观图
投影图
5
三棱柱体表面定点
(b ) a
b a
b y
a
解题思路: 利用棱柱表面的 积聚性
y
6
三棱锥的投影
Z
V
s
S
s
a
b
c
W
a
A
C a(c )
a
X O
a
B
c
b
s
H
b
Y
直观图
s
s
b
c a(c )
b
c
s
b
投影图
7
三棱锥体表面定点
s
s
n
(n)
m
m
a1
b
a
n
c c
a (c ) y1 y2
b
y1 y2
n m
b'(d')
d
b
a'
a
d n
a
m b
30
【例】求截平面P与三棱锥的截交线。
s
1 2
3 PV
a' b'
c'
a
1
s3 c
2
b
31
【例】求截平面P与三棱锥的截交线。
s'
3 2
4
a' 1 b'
c'
1
a
2
s
c
3
b 4 PH
注意:同一棱面上的两点才能连接。
32
四棱锥切割体的投影
6
2 (3 )
1
4 (5 )
6
1 7 (8 )
8
(2 )
第三章 工程制图A 立体的投影
二、棱锥
1.棱锥的组成
由一个底面和几个侧 棱面组成。侧棱线交于有 限远的一点——锥顶。
棱锥---底面是多边形,各侧面为 若干具有公共顶点的三角形。 正棱锥----底面为正多边形,各侧面 是全等的等腰三角形的棱锥。
S
棱锥的顶点
棱锥的侧棱
D
棱锥的侧面
E A
C
棱锥的底面
B
• 一个特殊的棱锥:正棱锥 把底面为正多边形,侧面是全等的三角形的棱 锥叫作正棱锥
第二节 曲面立体的投影
回转体——由回转面或回转面和平面围成的立体 母线
轴线
(a)形成
(b)回转体
•一动线绕一定线回转一周后形成的曲面称为回转面。
•形成回转面的动线称为母线,定线称为轴线, 母线在 回转面上的任意位置都称为素线。
O
轴线
母线
顶圆 素线 轴线
赤道圆
O
喉圆
纬圆 底圆
回转面的术语
在投影图上表示回转 体,就是把组成立体的 回转面或平面表示出来, 然后判断可见性。如图 所示。
棱台的分类:由三棱锥、四棱锥、五棱锥… 截得的棱台,分别叫做三棱台,四棱台,五 棱台…
棱台的表示法:棱台用表示上、下底面各顶
点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1
C B1 1
正棱锥台----由正棱锥截得的棱台。 四棱锥台的投影图
(a) 直观图
(b) 投影图
平面立体投影可见性的判别规律
小结
1.平面立体投影的作图可归结为绘制平面 (立体表面)和(棱)线投影的作图。
2.在立体表面上取点、取线的方法与在 平面上取点、取线的方法相同。
——如果点或直线在特殊位置平面内,则 作图时,可充分利用平面投影有积聚性的 特点,由一个投影求出其另外两个投影;
第三章 立体投影 立体表面上的点和线(1)
棱锥的底面为平面多边形。
棱柱的所有棱线汇交于一点(锥顶)。
§3-2 几何体及其表面上的点与线
一、平面立体
2、棱锥
三棱锥分析:它由底面ΔABC和三个相等的棱面ΔSAB,
ΔSBC,ΔSAC所组成。底面为水平面,其水平投影反映实形,
正面和侧面投影积聚为一条直线。
Z
ΔSAC为侧垂面,其侧面
V s'
投影积聚为一条直线,其 它投影为类似图形。
YW
a
c
s
b
YH
一、平面立体
§3-2 几何体及其表面上的点与线
3、平面立体表面点和线的投影
作平面立体表面上的点和线的投影,就是作它的多边 形表面上的点和线的投影,即平面上的点和线的投影。
正棱柱的表面一般为投影面垂直面或投影面平行面, 有积聚性,可利用积聚性求平面上点和直线的投影。
一、平面立体
§3-2 几何体及其表面上的点与线
§3-2 几何体及其表面上的点与线
二、曲面立体
§3-2 几何体及其表面上的点与线
在画曲面立体的投影时,除了画出轮廓线和尖点外,还要画出曲 面投影的转向轮廓线。
曲面立体的转向轮廓线 是切于曲面的诸射线与投影 面交点的集合,也就是这些 投射线所组成的平面或柱面 与曲面的切线的投影,常常 是曲面可见投影与不可见投 影的分界线。
平面立体
曲面立体
§3-2 几何体及其表面上的点与线
一、平面立体
平面立体的表面由平面围成,因此画平面立体的投影, 就是画平面与平面交线的投影。
国家标准规定:
当轮廓线的投影可见时,画粗实线。 当轮廓线的投影不可见时,画虚线。 当粗实线与虚线重合时,画粗实线。
一、平面立体
§3-2 几何体及其表面上的点与线
机械制图第三章 基本体投影
2'
5' 3' 4' 6'
4
PW
1" 2" 5"
4"
6" 3"
y
解题步骤
1、分析两圆柱的相对位置
2、判断相贯线的已知投影 是,由已知求未知投影.
3、求出相贯线上的特殊点.
4、求出一对一般点. 5、顺次光滑地连接各 点,并且判别可见性.
6、加粗可见轮廓线。
y
1
2
PH
5 36
一、辅助平面求点法——柱与孔
5 67 4
32
8
1 10 9
P Q
〔例8 〕 完成组合立体被截切后的投影
1' 4' (5')2' (3')
3" 5"
4" 2" 1"
3 5 1 4 2
2. 求曲面立体截交线的步骤
求曲面立体截交线的步骤:
找若
确定 截切 前基 本体 形状
判断 截平 面数 量及 位置
判断 各截 平面 形状
截平 面为 曲线 图形
1. 球的投影及表面取点
球的投影及表面取点: 辅助平面法。
1'
2'
如何求?
1" 3"
(2")
投投影影 可可见见否否??
1 (2)
2. 作曲面立体投影及表面取点的注意问题
作曲面立体投影及表面取点的注意问题: (1)需要确定各投影面转向轮廓线的位置; (2)分清各条转向轮廓线在三个投影面的投影; (3)选择合适的辅助平面求点的投影。
4''
工程制图第三章习题答案
答案
求圆锥被正垂面截切后的投影。
17页
3-3曲面立体的截交线
第三章 立体的投影
答案
8.
第三章 立体的投影
9.
3-3曲面立体的截交线
答案
求圆锥被正垂面截切后的投影。
17页
第三章 立体的投影
10.
3-3曲面立体的截交线
答案
补全球被正垂面截切后的投影。
17页
中点
长轴等于断面圆的直径
3-1 立体的投影及表面取点和线
答案
第三章 立体的投影
4.
3-1 立体的投影及表面取点和线
答案
画出立体的第三投影并补全点和线的其他两投影
第三章 立体的投影
5.
3-1 立体的投影及表面取点和线
答案
14页
画出立体的第三投影并补全点和线的其他两投影
(c)
b
e
d
a
c'
b'
d'
e'
c"
b"
a'
a"
e"
3-1 立体的投影及表面取点和线
答案
画出立体的第三投影并补全点和线的其他两投影
(d)
第三章 立体的投影
8.
3-1 立体的投影及表面取点和线
答案
只补画各点的水平投影。
14页
第三章 立体的投影
1.
3-2 平面立体的截交线
答案
求具有正方形通孔的六棱柱被正垂面截切后的侧面投影。
15页
第三章 立体的投影
求偏交圆台和球相贯线的投影。
R
R
1.取特殊点
步骤:
第三章基本几何体的投影
第三章 基本几何体的投影通常所说的基本几何体,包括棱柱体、棱锥体、圆柱体、圆锥体、球体和环等。
前两种立体的表面都是平面,称为平面立体;其余四种的表面是回转面或回转面与平面,称为回转体。
本章主要研究这些基本几何体的投影特性及其作图方法。
§3-1 平面立体的投影一、棱柱体的投影图3-1是五棱柱体和它的投影图。
该五棱柱体的顶面和底面均处于水平位置,其水平投影反映实形,正面和侧面投影均积聚成水平直线。
棱柱的五个侧棱面中最后的棱面DEE1D1处于正平面的位置,其正面投影反映实形,是不可见的面,故DD1、EE1两条棱线的正面投影d′d′1、e′e′1画成虚线,该棱面的水平投影和侧面投影积聚成直线。
其余四个侧棱面均为铅垂面,它们的水平投影都积聚成直线,正面投影和侧面投影为比实形小的矩形(类似形)。
图3-1 五棱柱体的投影画图时,一般先画反映底面实形的那个投影(即水平投影),然后再画正面和侧面投影,如图3-1b所示。
在实际生产中所用的图纸都不必画出投影轴,如图3-1c所示,但三个投影必须保持左右、上下、前后的对应关系,即V 、H 两面投影左右对正,V 、W 两面投影上下平齐,H 、W 两面投影前后相等。
二、棱锥体的投影图3-2是正三棱锥体和它的投影图。
该三棱锥体的底面处于水平位置,其水平面投影反映实形,正面和侧面投影积聚成水平直线。
三棱锥的右侧棱面SBC 为正垂面,其正面投影s ′b ′c ′积聚成直线,水平面投影sbc 和侧面投影s ″b ″c ″为类似形。
前棱面SAB 和后棱面SAC 均为一般位置平面,因而,它们的三面投影均为类似形(正面投影两个三角形重合)。
图3-2 正三棱锥体的投影画图时,先画出底面三角形ABC 和锥顶S 的投影,然后顺次连接各棱线SA 、SB 、SC 的同面投影,如图3-2b所示。
通过棱柱和棱锥体的投影分析,可归纳如下几点:1)由于平面立体的棱线是直线,所以画平面立体的投影图就是先画出各棱线交点的投影,然后顺次连线,并注意区分可见性。
第三章基本体的投影
讨论1:圆柱表面切孔后的投影
2
1
圆柱1上用圆柱2穿一孔
例2:补全主视图(两圆柱内外表面都相交)
●
●
●
●
●
●
●
●
●
● ●
● ●
●
●
● ●
● ●
1、 外表面交线
• 两外表面相贯 • 一内表面和一 外表面相 贯
2、 内表面交线
• 两内表面相贯
讨论2:两正交圆柱直径的变化对其相贯线的影响
底面//H面放置
b
底面是水平面,其水平投影abc反映底面实形
已 的 影 表 思 正还辅面知 点 , 面 考面可助投M三 求 的 :内以可线的影棱 另 可 若取作以吗正M不锥 外 见点其?点面可表 两 性法它的投见面 个,
侧棱面SAB、SBC是一般位置面,SAC是侧垂面 投 结影 果。 如何?
课 后 练习 p22, p23
P
2、辅助面截两立体
辅助面
表面都能得到最简单易
L
画的交线,即尽可能使
K
交线的投影为直线或圆。
投影连线原则:
•
空间及投影分析:
在两立体上都处于相邻两
相贯线为一光滑的素封线间闭的的点空,间才曲能线相。连。
点K它 投、的 影L是侧没相面有贯投积线影聚上有 性的积 ,点聚 应性 分投, 别影同可正 求时见位面 出性于。投判两影别立、原体水则可平:见表
a"
a'
基本方法:
面内取点法
a
思考:若A点的正面投影 不可见,结果如何?
注意分析点 所在的面的 投影
2、三棱锥 三棱锥组成分析:
S
A
C
B
高校高等职业教育《建筑工程制图与识图》教学课件 第3章 基本体的投影
§3.3
3.3.1平面体的截交线
截割体的投影
由于平面体是由平面围成,所以平面体的截交线是封闭的平面折线, 即平面多边形。
求平面立体截交线的步骤:
(1)分析 截交线形状及投影形状; (2)求点 利用截平面的积聚性求棱线与截平面的交点; (3)连线 按一定顺序并根据可见性连线。
§3.3 截割体的投影
圆锥与各种平面立体的相贯线; ➢ 用辅助平面法可求: 圆球与各种平面立体的相贯线。
圆环与各种平面立体的相贯线。
§3.4 相贯体的投影
[例题15] 已知圆柱体与四棱柱相贯的俯视图,补全V、W面投影。
易多线 1’
2’
解题步骤:
1’’(2’’)
3’(5’)
4’(6’)
5’’(6’’)
3’’(4’’)
二、圆锥
投影分析和画法 圆锥的底圆平面为水平面,其
水平投影为圆,且反映实形; 正面投影和侧面投影均积聚为
直线段,长度等于底圆的直径。
投影特点: 一个视图为圆,另两个为三角形。
§3.2
二、圆锥
圆锥表面上取点:
回转体的投影
素线法取点
§3.2
二、圆锥
圆锥表面上取点:
回转体的投影
纬圆法取点
四、圆环
圆环的三视图:
回转体的投影
§3.2
四、圆环
圆环表面取点:
已知圆环面上的 点A、B 的一个 投影,求它们的 另一个投影
回转体的投影
§3.2
四、圆环
回转体的投影
圆环表面取曲线:
已知圆环面上的 曲线AD 水平投 影,求正面投影
§3.1 基本体的投影
[例题3] 补全属于基本回转体表面的点和线段的三面投影。
画法几何及机械制图第三章 立体的投影
3-1 平面立体及其表面取点
以若干个多边形平面所围成的立体叫做平面立体。 工程中常见的平面立体是棱柱(主要是直棱柱)及棱锥 (常以棱台的形式出现)。 一、棱柱 1.投影 用前一章的知识,研究平面立体上各个多边形的投 影,即研究各多边形的边及顶点的投影,综合起来,就 是平面立体的投影。2Fra bibliotek图3-1
11
2.四棱台上挖方槽 从图3-7(a)的立体图上观察到,所谓开槽,实质上 是三个平面P、Q、R截切立体的结果。 该题给出四棱台的三面投影及正面投影上给出槽形, 试补作槽的另外两个投影。
12
图3-7
13
3-2 回转体及其表面取点
由曲面或曲面与平面所围成的立体叫做曲面立体, 而本节只论述曲面立体中的回转体,即圆柱、圆锥、圆 球等。
19
图3-10
20
3.表面上取点 (1)辅助素线法 从圆锥面的形成可知,圆锥面可理解成若干直素线 所包围的面,这些素线都通过锥顶。在图3-11的立体图 上,圆锥面上有一点M,它在素线SA上,按线上的点的 作图方法,根据已知的正面投影m′,求出另两投影m及 m″。此法在解决处于转向轮廓线上的点最为方便,见图 3-11的投影图。图中另有一点N,已知其水平投影n,求 另外两投影n′及n″,其作法相同。
17
图3-9
18
二、圆锥 1.形成 圆锥是由一圆锥面和一底平面所围成。圆锥面的形 成,是一条与轴线斜交的直母线绕轴线作圆周运动,回 转的轨迹即是圆锥面。母线在回转过程中的任一位置称 为素线,母线与轴线的夹角α始终不变,α<90°,称为 半锥角,见图3-10(a)。 2.投影分析 图3-10(b)是圆锥的三面投影图。圆锥面和底面的 水平投影重合,中心线的交点是圆锥轴线及锥顶S的投 影。
工程图学基础第3章 立体的投影
1.平面与棱锥相交
图3-14 平面与三棱锥相交
2.平面与棱柱相交
例3-10 画出截切五棱柱的三面投影(图3-15)。 解 五棱柱被正垂面P截切,所得截交线为五边形。正面投影积聚在PV上,截平面与 侧表面CC1B1B,BB1A1A,AA1E1E、EE1D1D的交线的水平投影积聚在各自侧表面的 水平投影上。截平面与顶面ABCDE均垂直于V面,则交线为一正垂线,正面投影积聚 为一点。水平投影反映实长。截交线的侧面投影可由正面投影和水平投影求出。作图 步骤如下(图31)画出五棱柱的投影。 2)根据题目给定条件画出截平面的正面迹线PV。 3)求出截交线的水平投影五边形gfjih和侧面投影五边形g″f″j″i″h″。 4)去掉截切部分多余的轮廓线AF、BG、EJ及顶面上五边形BAEIH的投影,并判别投 影图的可见性。
(1)圆柱
图3-4 圆柱的三面投影
(2)圆锥
3-5 圆锥的三面投影
(3)圆球
图3-6 圆球的三面投影
(4)圆环
图3-7 圆环的三面投影
2.曲面立体表面上的点、线
(1)圆柱表面上的点、线 当圆柱轴线垂直于某一投影面时,圆柱面对其投影有积聚 性,利用积聚性确定属于圆柱表面上的点。 (2)圆锥表面上的点、线 为了确定属于圆锥面上的点,根据圆锥面的性质可过圆锥 顶点作辅助直线,或者过给定点作辅助圆,如图3-10a所示。 (3)圆球表面上的点、线 由于圆球面上不存在直线。
(1)棱锥Байду номын сангаас投影
图3-1 三棱锥的投影
(2)棱柱的投影
图3-2 正五棱柱的投影
2.平面立体投影图的可见性判断
平面立体投影图的可见性判断实质上是判别立 体各棱线投影的可见性。通常采用分析立体表 面可见性的方法解决。判断立体表面可见性时, 应遵循的原则是:共一个棱线的两个表面对某 一投影面投影时,只要其中一个表面可见,则 该棱线的投影可见,如果两个投影均不可见, 则该棱线的投影不可见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆球的投影
2、圆球表面取点和取线
球面上取点
已知M点的水 平投影,求出其它 两个投影。 过m作平行于V 面的正平圆12。 求正平圆的正面 投影。 o 1 m
R 球的投影及表面上的点
m’ 1’
m” o’ o”
在辅助正平圆上 求出m’和m”。
2
第三节
立体的截交线
截平面 截交线
截平面——用以截切物体的平面。 截交线——截平面与物体表面的
c”
m
Y
圆锥的三面投影图
s’
s”
2’ m’ a’
3’ b’ d”
m”
已知圆锥面上M点 的水平投影m,求出 其m’和m”。 以s为中心,以sm c” 为半径画圆,
作出辅助圆的正面 投影2’3’。
a
2 m
s
3 b
求出m’及m”的投影。
圆锥的投影及表面上的点
三、圆球
1、 球的投影
球的三个投影 均为圆,其直径与 球直径相等,但三 个投影面上的圆是 不同的转向轮廓线。
例1、正垂面截切六棱柱,完成截切后的三面投影。
6'(7') 4' (5') 5"
2' (3') 1' 3 5 7 3" 1" 7"
6"
4" 2"
1
6 2 4
完成后的投影图
平面立体的截交线画法
平面立体的截交线画法
例2、作四棱柱被截切后的投影。
B
a' (b') b"• •a" A
b a
分析:四棱柱的上部被一个正垂面和 一个侧平面所截切,因四棱柱的四个 棱面均垂直于水平面,截平面与棱线 的交点均在棱面的投影上。此题还应 作出两截平面的交线AB的投影。
c”
2、圆锥表面取点和取线
如果是圆锥表面轮廓 线上的点,可以直接 作出点的其它两个投 影。
如果在圆锥面上一般 位置的点K,就只能 作辅助线,才能由一 已知投影,求出另外 两个投影。
在圆锥表面上求点,有两种方法:一种是素线法,一 种是辅助圆法。 Z
方法一:素线法
过M点及锥顶S作 一条素线SⅠ,先求 出素线SⅠ的投影, 再求出素线上的M点。 X
1、圆锥投影图 s’ s”
(1) 先绘出圆锥的对 称线、回转轴线。
(2)在水平投影面 上绘出圆锥底圆, 正面投影和侧面投 影积聚为直线。
a’
c’(d’) d
b’
d”
a’(b’)
V
a c
s
b
a’
圆锥的投影
X
(3) 作出 锥顶的正 Z 面投影和 s’ 侧面投影 s” W 并画出正 S 面转向轮 b’ d” c’d’ B (b”) c” 廓线和侧 a” A 面转向轮 C d b 廓线。 c a Y
c’
b”
a (b) d(c) e
X
a' d'
b' c'
D
YH
dc
e
Y
正六棱柱的投影图
六棱柱的投影
3、棱柱表面取点和取线
平面立体由若干平面 构成,在其表面上取 点、取线的方法与在 平面上取点、取线的 方法相同,一般用辅 助线法。对正棱柱的 各个表面都处于特殊 位置,因此在表面上 取点可利用重影性原 理作图。
3、平面与球体相交
球被平面截切,截交线均为圆。由于截平面位置不同,截 交线的投影可能是圆、直线或椭圆。 1)、截平面为平行面
截平面为正平 面,正面投影为截 交线圆的实形。
a"
ld • ••
•
的交点c'd'重影为一点,其
余两面投影根据投影关系
a
•
kc
••
•
• b
求出;截交线的最前点K 和最后点L,正面投影重影 于a'b'的中点。
2、求一般点。
3、光滑连接各点的同面投 影。
完成后的三视图
例 已知顶尖被截切后的正面和侧面投影,求作水平投影。
a' g'h'd'e'• f '• • • • b' (c')
Y
dc
正六棱柱的投影
棱柱有六侧棱面,前后棱面为正平面,它们的 正面投影反映实形,水平投影及侧面投影重影为一 条直线。
Z d'
e'
a" d" e" c"
a'
b'
c'
A
D
E b"
X
a b
B
C e Y
dc
正六棱柱的投影
棱柱的其它四个侧棱面均为铅垂面,其水平投 影均重影为直线。正面投影和侧面投影均为类似形。
a
m
1 c
图3-14 圆锥的投影及表面上的点
方法二:辅助圆法
过M点作一平行与底面 的水平辅助圆,该圆的正 面投影为过m’且平行于 a’b’的直线2’3’,它们 的水平投影为一直径等于 2’3’的圆,m在圆周上, 由此求出m及m”。 X
a
Z
s’
V S
m’
s” W b’
M
a’
c’d’ A d
d”
m”
Ba” (b”) C b c
Z
a'
d'
e'
a" d" e" c"
b'
c'
A
D
E b"
X
a b
B
C e Y
dc
正六棱柱的投影
2、 棱柱的三视图
作投影图时,先画出正六棱柱的水平投影正六边形,再根 据其它投影规律画出其它的两个投影。如图3-2所示。
Z
a’ b’
X
d’
e’
a”
d”
c”
YW
Z e' A B ab E a" d" e" b" C c"
1、平面与圆柱体相交
P
PH
截平面与圆柱轴线 平行截交线为矩形
P
P
Pv Pv
截平面与圆柱轴线
垂直截交线为圆
截平面与圆柱轴线 倾斜截交线为椭圆
例 求斜切圆柱体的投影,已知正面和水平面 的投影,完成侧面投影。
2' c'(d') • d"• 3'(4') • a'(b') • 4"• • b"• 2" •
各侧棱相互平行且相等。
1、 棱柱的组成
由两个底面和几个侧棱 面组成。侧棱面与侧棱面的 交线叫侧棱线,侧棱线相互 平行。
a' d' Z
e' a" d" e" c"
如图,为一正六棱柱,其顶 面、底面均为水平面,它们 的水平投影反映实形,正面 及侧面投影重影为一直线。
b'
c'
A
D
E
b"
X a b
B
C e
• • 1" 3"
2 • •64
• •5 1 3
完成后的投影图
2、平面与圆锥体相交
截平面与锥体的截切位置和轴线倾角不同,截交线的 形状不同。 α Pv Pv
截平面垂直于圆锥轴 线,倾角为θ=90 , 截交线为圆形。
ο
截平面与圆锥轴线
倾斜,倾角θ>α 截交线为椭圆。
Pv
Pv
Pv
截平面与圆锥轴线 倾斜面,倾角θ=α 截交线为抛物线。
s’
V
S
m’
s”
W
d”
m”
b’
M
a’
c’d’ A a d
Ba” (b”) C b c
c”
m
Y
圆锥的三面投影图
s’
s”
已知圆锥表面的 点M的正面投影m’, 求出M点的其它投影。 m”
m’ a’ b’ 1’ c’(d’) d s b d”
过m’s’作圆锥表面 a’(b’)1” c” 上的素线,延长交底 圆为1’。 求出素线的水平投 影s1及侧面投影s”1”。 求出M点的水平投 影和侧面投影。
1' •
• 1"
• c" •3" • a"
4 b• •
•d
1• a• • 3
•2
•c
作图过程:
求特殊点 即找最高、最 低、最左、最右、最前、最 后点可确定出椭圆长短轴的 端点。 求一般点 从正面投影上 选取A、B、C、D四点分别求 出水平面和侧面投影。 光滑地连接各点。
例 已知圆柱截断体的正面和侧面投影,求水平投影。
a
s
2 m c
YH 正三棱锥的三面投影图
第二节 曲面立体的投影
曲面立体是由曲面或曲面和平面所围成。 绘制它们的投影时,由于它们的表面没有明显 的棱线,绘制曲面立体的投影,就是绘制组成 曲面立体的所有曲面或曲面与平面的投影,也 就是绘制曲面立体的轮廓线、转向轮廓线及轴 线的投影。
一、圆柱
圆柱投影特性分析
Байду номын сангаас
完成后的投影图
a' (b')
b"•
•a"
b a
二、曲面立体的截交线
截交线的性质:
截交线是截平面和回转体表面的共有线,截交线上任意点 都是它们的共有点。 截交线是封闭的平面曲线或平面图形。
求截交线的方法和步骤: 分析截平面与投影面的相对位置,截平面与回转体的相对 位置,初步判断截交线的形状及其投影。 求出截交线上的点,首先找特殊点再补充中间点。 补全轮廓线,光滑地连接各点,得截交线的投影。