第三章立讲义体的投影
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z s'
作图:
s′
s"
c' S
s"
a' b'
A X
C
a"
O (c")
a′
c′ a"
b′
(c")
b"
a
c
B
b"
s
a
sc
b
(a) 直观图
b
Y
图3-3 正三棱锥的投影
(b) 投影
2. 棱锥表面上点的投影
已知棱面SAB上点M的正面投影m‘和棱面SAC上点N的
水平投影n,求作M、N两点的其余投影。
s'
m
a' b'
平面体的投影特征:
⑴体的三面投影图之间保持三等关系,适应整体和每一局部。 ⑵体上各组成平面的投影,一般表现为一个封闭的线框,特殊
积聚为一直线。 ⑶投影图上各线框的分界线,表示物体表面发生变化(凹、凸
或转折)
一、 棱柱
直棱柱——顶面和底面是两个全等且相互平行的多边 形(特征面),各侧面为矩形。 正棱柱——顶面和底面为正多边形的直棱柱。
第三章立体的投影
精品jing
概 述: 立体包含基本立体和组合体。柱、锥、球、圆环等
几何体是组成机件的基本体,基本体的组合称组合体,本 章着重研究基本体、切割体和相贯体的形体特征,立体的 投影与作图方法,在立体表面上作点、作线的方法与三视 图的画法。
§3-1 平面立体
§3-2 回转体
§3-3 切割体的投影
图3-8 圆柱的投影
作圆柱投影图
圆柱的投影特性: • 回转轴线用点划线表示; • 水平投影积聚为一圆; • 正面投影和侧面投影均
为矩形。
图3-8 圆柱的投影
2.圆柱面上取点 已知圆柱面上M点和N点的正面投影,求水平投影和侧面
投影。
分析:点在圆柱面上,利 用水平投影积聚性,可以 求出点M和点N的水平投 影。
1)在平面立体的每一投影中,其外形轮廓线都是 可见的。
2)在平面立体的每一投影中,外形轮廓线内的直 线的可见性,相交时可利用交叉两直线的重影点来 判别。
3)在平面立体的每一投影中,外形轮廓线内,若 多条棱线交于一点,且交点可见,则这些棱线均可 见,否则均不可见。
4)在平面立体的每一投影中,外形轮廓线内,两 可见表面相交,其交线为可见。两不可见表面的交 线为不可见。
§3-4 相贯体的投影
§3-1 平面立体
平面立体——由若干个平面围成的实体。
工程上常用的平面立体是棱柱(主要是直棱柱)和棱锥 (棱台)。
棱柱
棱锥
棱台
图3-1 平面立体
•平面立体侧表面的交线称为棱线。 •若平面立体所有棱线互相平行,称为棱柱。 •若平面立体所有棱线交于一点,称为棱锥。
•绘制平面立体的投影,即是绘制平面立体上所有 平面的投影,也就是绘制平面立体上各平面间的交 线(棱线)和各顶点(棱线的交点)的投影。
二、 棱锥
棱锥——底面是多边形,各侧面为若干具有公共顶点 的三角形。 正棱锥——底面为正多边形,各侧面是全等的等腰三角 形的棱锥。
1. 棱锥的投影
S
A
C
B
1. 棱锥的投影
分析:正三棱锥由底面和三个侧棱面组成。正三棱锥的底面为水平面,在 俯视图中反映实形。后侧棱面为侧垂面,在左视图中积聚为一斜线。左 、右侧棱面是一般位置平面,在三个投影面上的投影为类似形。
A X
a
Z
采用平面上取点法
c' S
作图方法1 s"
s'
(n ) m
M
C O
B
m
a" (c")
b"
sc
m
b
(a) 直观图
a' b'
c'
a
ห้องสมุดไป่ตู้
n
s
c
m
b
(b) 投影
s"
n m
a"(c") b"
2. 棱锥表面上点的投影
已知棱面SAB上点M的正面投影m'和棱面SAC上点N
的水平投影n。求作M、N两点的其余投影。
圆柱立体分析:当圆柱的轴线 是铅垂线时,圆柱面上的所 有素线都是铅垂线,顶面和 底面为水平面。
图3-7 圆柱的形成
1.圆柱的投影
转向轮 廓素线
圆柱的投影分析: • 顶面、底面的水平投影重
合为一圆,正面投影和侧 面投影分别重影为两直线; • 圆柱面的水平投影积聚为 一圆,正面投影和侧面投 影分别画出转向轮廓素线 的投影。
作图:
(m' )
n'
m" (n")
正棱锥台——由正棱锥截得的棱台。
四棱锥台的投影
(a) 直观图
(b) 投影 图3-4 四棱锥台的投影
小结
1.平面立体投影的作图可归结为绘制平面(立 体表面)和(棱)线投影的作图。
2.在立体表面上取点、取线的方法与在平 面上取点、取线的方法相同。
——如果点或直线在特殊位置平面内,则作图 时,可充分利用平面投影有积聚性的特点,由 一个投影求出其另外两个投影;
1. 棱柱的投影
1. 棱柱的投影 分析:正六棱柱由顶面、底面和六个侧棱面组成。正六棱
柱的顶面、底面为水平面,在俯视图中反映实形。
作图:
(a) 直观图 图3-2 正六棱柱的投影
(b) 投影图
2. 棱柱表面上点的投影
由于棱柱的表面都是平面,所以在棱柱的表面上取 点与在平面上取点的方法相同。
A
B
M
D
C
Z
作图方法2
注意: 分清直线所在表面,求
s'
出与所有棱线的交点。
m
c' S
s"
a' b'
s'
s"
m
m
M
m
A X
C a" O (c")
B
b"
a
sc
m
b
(a) 直观图
a' b'
c' a"(c") b"
as
c
m
b
(b) 投影
3. 棱锥台
棱锥台——由平行于棱底的平面截去锥顶一部分形 成的立体,顶面与底面是相互平行的相似多边形,各侧 面为等腰梯形。
(a) 直观图
已知六棱柱ABCD侧表面上点M的V面投影m″, 求该点的H面投影m和W面投影m″。
a′ b′
m
m
d′
c′
A
B
M
D
C
(a) 直观图
a(d) m b(c)
(b) 投影图
点的可见性判别: 若点所在平面的投
影可见,点的投影可 见;若平面的投影积 聚成直线,点的投影 也可见。
平面立体投影可见性的判别规律
——如果点或直线在一般位置平面内,则需过 已知点的一个投影作辅助线,求出其它投影。
§3-2 回转体
回转体-----由回转面或回转面和平面围成的立体
母线
(a)
(b)
图3-5 回转体和回转面的形成
轴线
•一动线绕一定线回转一周后形成的曲面称为回转面。
•形成回转面的定线称为轴线,动线称为母线,母线在 回转面上任意位置称为素线。
•工程上常见的回转体有圆柱、圆锥、球、圆环等。
(a) 圆柱
(b) 圆锥
(c) 圆球
图3-6 常见的回转体
(d) 圆环
• 绘制回转体的投影,即是绘制回转体的回转面和 平面的投影,也就是绘制回转体的轮廓线、尖顶 的投影以及转向轮廓线。
一、圆柱-----由圆柱面、顶面、底面围成
圆柱面---一直线绕与它平行 的轴线回转而成。