精品课件-工程流体力学-第3章 流体运动的基本方程(10)
合集下载
流体力学第三章课件
第三章 流体运动的基本概念和基本方程
的函数。 流体质点的其它物理量也都是 a,b,c,t 的函数。例如流体 质点( 质点(a,b,c)的温度可表为 )的温度可表为T(a,b,c,t) 二、欧拉法(空间点法,流场法) 欧拉法(空间点法,流场法) 欧拉法只着眼于流体经过流场( 欧拉法只着眼于流体经过流场(即充满运动流体质点 的空间)中各空间点时的运动情况, 的空间)中各空间点时的运动情况,而不过问这些运动情 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 然后通过综合流场中所有被研究空间点上各质点的运动要 即表征流体运动状态的物理量如速度、加速度、压强、 素(即表征流体运动状态的物理量如速度、加速度、压强、 密度等)及其变化规律,来获得整个流场的运动特征。 密度等)及其变化规律,来获得整个流场的运动特征。 在固定空间点看到的是不同流体质点的运动变化, 在固定空间点看到的是不同流体质点的运动变化,无 法像拉格朗日方法那样直接记录同一质点的时间历程。 法像拉格朗日方法那样直接记录同一质点的时间历程。
ρ = ρ ( x, y , z , t , )
T = T ( x, y , z , t ) 加速度应该是速度的全导数。注意上速度表达式中x 加速度应该是速度的全导数。注意上速度表达式中 ,y,z 是流体质点在t时刻的运动坐标 时刻的运动坐标, 是流体质点在 时刻的运动坐标,对同一质点来说它们不是独 立变量,而是时间变量t的函数 因此, 的函数。 立变量,而是时间变量 的函数。因此,根据复合函数求导法 则,并考虑到 dx dy dz =u x , =u y , =u z dt dt dt
一个速度场 8
第三章 流体运动的基本概念和基本方程
一个布满了某种物理量的空间称为场。除速度场之外, 一个布满了某种物理量的空间称为场。除速度场之外, 还有压强场。在高速流动时, 还有压强场。在高速流动时,气流的密度和温度也随流动有 变化,那就还有一个密度场和温度场。 变化,那就还有一个密度场和温度场。这都包括在流场的概 念之内。 念之内。 p = p ( x, y, z , t ),
工程流体力学课件3
四、过流断面,流量, 断面平均流速
与流束中所有流线垂直的横截面称为过流断面 (过水断面)。 元流的过流断面面积为 dA, 总流的为 A。 单位时间内通过元流或总流过流 断面的流体量称为流量。 QV m3/s ,L/s Qm kg/s
曲 面 平 面
若流体量以体积来度量:体积流量 若流体量以质量来度量:质量流量
重、难点
1.连续性方程、伯努利方程和动量方程。 2.应用三大方程联立求解工程实际问题。
第一节 描述流体运动的两种方法
• 静止流体(不论
p
• 运动理想流体
P= - pn
理想或实际流体) p
P= - pn
p :动压强 p :静压强
定义
流体的动压强
1 p ( p xx p yy p zz ) 3
G cos gdAdh cos gdAdz
对n-n, Fn 0
z
0
0
( p dp)dA pdA gdAdz 0
整理并积分,得
p z C g
z1 z2
p1
C1 C2
p2
z1
p1
z2
p2
• 非均匀流
是 否 接 近 均 匀 流 ?
流场 —— 充满运动流体的空间称为流场
描述流体运动的方法 拉格朗日法:跟踪 着眼于流体质点,跟 踪质点并描述其运动历程 欧拉法:布哨 着眼于空间点,研究质点 流经空间各固定点的运动特性
一、拉格朗日法:研究对象为流场中的各流体质 点,也即研究流场中每个流体质点的运动参数随 时间 t 的变化规律。
z
注:流体质点不能穿越流面两侧或流管 面内外流动。
流体运动学(课件)
由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
《工程流体力学 》课件
1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3
工程流体力学(3)PPT课件
授课:XXX
14
工程上可将问题简化:
2021/3/9
授课:XXX
15
将翼展z方向看成无限长,三维问题简化
成二维处理。
2021/3/9
授课:XXX
16
§2 流线和流管
一、迹线
定义:流体质点运动的轨迹线。
2021/3/9
授课:XXX
17
二、流线
定义:
是表示某一瞬时流体各点流动趋势
的曲线,曲线上任一点的切线方向与该 点的流速方向重合。
1.边界随流团一起运动,其形状、大小随 时间变化。
2.边界上无质量交换, 即无流入也无流出。
系统
V
3.在系统边界上,受到 外界作用在系统边界上 的力。
系统边界
2021/3/9
授课:XXX
4
二、欧拉法 以流体质点流经流场中各空间点的
运动即以流场作为描述对象,研究流动 的方法。
它不直接追究质点的运动过程, 而是以充满运动液体质点的空间——流 场为对象。研究各时刻质点在流场中的 变化规律。
质点
du u u x u y u z dt t x t y t z t
导数:
2021/3/9
u t
u u v x 授课:XXX
u y
wu z
ax
8
同理
axd du t u tu u xv u yw u z
ayd dv t v tu v xv y vw v z
azd dw t w tu w xv w yw w z
dNNuNvNwN dt t x y z
N可是矢量也可是标量。
N ——当地变化率(局部变化率)
t
uNvNwN ——迁移变化率
工程流体力学-第三章
三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
流体动力学基础(工程流体力学).ppt课件
dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程
工程流体力学--第三章--流体动力学基础
当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
化(增加或减少),则管道中每一点上流体质点的速
2021/3/7
10
图 3-1 中间有收缩形的变截面管道内的流动
2021/3/7
11
度将相应发生变化(增大或减少),从而产生了当地加速 度。
应该注意,流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点,流体质点不断流过空间
点,空间点上的速度指流体质点正好流过此空间点时的速
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
段微小距离时的速度变化率,于是可按复合函数的求导法
则,分别将式(3-4)中三个速度分量对时间取全导数,
并将式(3-7)代入,即可得流体质点在某一时刻经过某
空间点时的三个加速度分量
2021/3/7
8
ax
u t
u
u x
v
u y
w
u z
ay
v t
u
v x
v
v y
w
v z
(3-8)
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
化(增加或减少),则管道中每一点上流体质点的速
2021/3/7
10
图 3-1 中间有收缩形的变截面管道内的流动
2021/3/7
11
度将相应发生变化(增大或减少),从而产生了当地加速 度。
应该注意,流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点,流体质点不断流过空间
点,空间点上的速度指流体质点正好流过此空间点时的速
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
段微小距离时的速度变化率,于是可按复合函数的求导法
则,分别将式(3-4)中三个速度分量对时间取全导数,
并将式(3-7)代入,即可得流体质点在某一时刻经过某
空间点时的三个加速度分量
2021/3/7
8
ax
u t
u
u x
v
u y
w
u z
ay
v t
u
v x
v
v y
w
v z
(3-8)
大学课程《工程流体力学》PPT课件:第三章
§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z
Ⅲ
Ⅱ’
Ⅰ
y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az
水力学 第3章 流体力学基本方程PPT课件
积分得:
p u2 gzppρt精选版 2 cons. t
19
例1:已知:u = x+t,v = -y+t, w = 0。
求t=0时,经过点A(-1,-1)的流线方程。
解:t=0时,u=x, v=-y, w=0;代入流线微分方程, 有:
dx dy x y
ln xln yC 1
xyc
流线过点(-1,-1) ∴ C =1
流线方p程 pt精选为 版 x: y 1
这里:
Vuivjwk
aaxiay jazk
2.欧拉法:
以流场作为研究对象,研究各流场空间点上流体质 点的各运动要素随时间与空间的变化的分布规律。
流场:运动流体所占据的空间。
在欧拉法中,是以速度场来描述流体运动的,流体质点的运
动速度(即速度函数)是定义ppt在精选空版 间点上的,它们是空间点坐
标(x, y, z)的函数:
因为: V // ds
因此,两矢量的分量对应成比例:
ppt精选版
dx dy dz
u vw 15
四.流管、流束、元流、总流:
1.流管:
在流场中任意绘一条非流线的封 闭曲线,在该曲线上的每一点作流 线,这些流线所围成的管状面称为 流管。
由于流管的“管壁”是由流线构成的,因而流体质点的 速度总是与“管壁”相切,不会有流体质点穿过“管壁”流 入或者流出流管。流管内的流体就像是在一个真实的管子里 流动一样:从一端流入,从另一端流出。
二.恒定流与非恒定流:
1.恒定流(定常流动):
流场中各点处的所有流动参数均不随时间而变化的流动。
特征 u : v w 0 , p0 等。
t t t
t
2.非恒定流(非定常流动):
工程流体力学 第3章 流体运动基本概念和基本方程PPT课件
η表示单位质量流体所具有的该种物理量。 N dV
V
t时刻流体系统所具有的某种物理量N对时间的变化率为
d dN td dtVd V lt i0m (V' d )V t tt(Vd )V t
V :系统在t时刻的体积;
VVIIVIII
V’ :系统在t+δt时刻的体积。 完整编辑ppt
VVIIIII
25
工程流体力学
第三章 流体动力学基础
(Fundamental of Fluid Dynamics)
流体力学基本方程
连
动伯
续动量 努能
性量矩 利量
方方方 方方
程程程 程程
完整编辑ppt
1
第一节 流体运动的描述方法
一 Euler法(欧拉法 ) 基本思想:考察空间每一点上的物理量及其变化。
独立变量:空间点坐标 (x, y, z) 和时间参数 t
1 和 2 分别表示两个截面上的平均流速,并将截面取为有效截面:
11A122A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流 量等于常数。
对于不可压缩流体: A A 1 1 完整2编辑2ppt
29
第七节 动量方程 动量矩方程
——用于工程实际中求解流体与固体之间的作用力和力矩
d (v) dt t
随当 迁 体地 移 导导 导 数数 数
压强的质点导数
dppvp
dt t
密度的质点导数
dv
dt t
完整编辑ppt
5
二 Lagrange法(拉格朗日法)
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化规律。 独立变量:(a,b,c,t)——区分流体质点的标志
V
t时刻流体系统所具有的某种物理量N对时间的变化率为
d dN td dtVd V lt i0m (V' d )V t tt(Vd )V t
V :系统在t时刻的体积;
VVIIVIII
V’ :系统在t+δt时刻的体积。 完整编辑ppt
VVIIIII
25
工程流体力学
第三章 流体动力学基础
(Fundamental of Fluid Dynamics)
流体力学基本方程
连
动伯
续动量 努能
性量矩 利量
方方方 方方
程程程 程程
完整编辑ppt
1
第一节 流体运动的描述方法
一 Euler法(欧拉法 ) 基本思想:考察空间每一点上的物理量及其变化。
独立变量:空间点坐标 (x, y, z) 和时间参数 t
1 和 2 分别表示两个截面上的平均流速,并将截面取为有效截面:
11A122A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流 量等于常数。
对于不可压缩流体: A A 1 1 完整2编辑2ppt
29
第七节 动量方程 动量矩方程
——用于工程实际中求解流体与固体之间的作用力和力矩
d (v) dt t
随当 迁 体地 移 导导 导 数数 数
压强的质点导数
dppvp
dt t
密度的质点导数
dv
dt t
完整编辑ppt
5
二 Lagrange法(拉格朗日法)
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化规律。 独立变量:(a,b,c,t)——区分流体质点的标志
《水力学》课件——第三章 流体力学基本方程
解 由式
dx dy ux uy
得
dx dy xt yt
积分后得到:
ln x t ln y t ln c
y x
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
三.流管, 流束与总流
流管 --- 由流线组成的管状曲面。 流束 --- 流管内的流体。 总流 ------多个流束的集合。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
t --- 时间变量。
质点位置是 t 的函数,对 t 求导可得速度和加速度:
u
x t
速度:
v y t
例
x
u u(x,t)
二元流动- 流动参数与两个坐标变量有关。
z B
M
M
s
B
y
u u(s, z,t)
三元流动(空间流动) -- 流动参数与三个坐标变量有关。
3-3 连续性方程
一 微分形式的连续方程 流入的流体-流出的流体 =微元体内流体的增加
z
uy
u y y
dy 2
z
uy
y
x
uy
u y y
dy 2
1
不可压
u1dA1 u2dA2 dQ u1dA1 u2dA2 const.
对于总流
dQ A
A u1dA1
A u2dA2
Q A1v1 A2v2.
2
u2
dA2
2
第3章 流体运动的基本方程(10)
(3-11)
3.1.2.描述流场的基本概念
平均流速������,如图3-8所示。平均流速的物理意义是:假想过流 断面上各点的速度相等,而按平均流速流过的流量与实际上以不同 的速度流过的流量正好相等,所以有
������ = ������������ = ������������������
������
第3章 流体运动的基本方程
课程安排:理论10学时,实验2学时 学习要求: 1.掌握流体运动的基本概念,尤其是:欧拉法与拉格朗日法,定常 流与非定常流,一元流动,平均速度与流量,系统与控制体的概念; 2.掌握流体一元流动连续性方程; 3.理想流体的运动微分方程,总流的伯努利方程的建立及其应用。 4.掌握动量和动量矩方程; 5.了解空间欧拉运动方程,掌握平面势流模型及平面势流的应用。
本章作业: 3-2,3-3,3-4,3-11,3-13,3-16,3-21
第3章 流体运动的基本方程
3.1描述流体运动的几个基本概念 3.2 连续性方程 3.3理想流体的运动微分方程 3.4总流的伯努利方程及其应用 3.5伯努利方程的扩展 3.6 动量和动量矩方程 3.10欧拉运动方程与平面势流
第3章 流体运动的基本方程
微元流管:断面无限小的流管称为微元流管。微元流管断面上 各点的运动参数(如速度、压力等)可认为相等。
3.1.2.描述流场的基本概念
总流:无数微元流管的总和称为总流,如实际工程中的管道流动和 明渠水流都是总流。
根据总流的边界情况把总流分为三类: (1)有压流动。总流的全部边界受固体边界的约束,即流体充满 管道,如有压水管道中的流动。 (2)无压流动。总流的边界一部分受固体边界的约束,另一部分 与气体接触,形成自由液面,如明渠中的水流。 (3)射流。总流的全部边界均无固体边界的约束,如喷嘴出口后 的流动。
工程流体力学 第3章 流体流动的基本方程
3.1 描述流体运动的两种方法
流体质点—流场中取出的极小体积的流体微团; 几何尺寸不计,作为一个点,具有一定的物理量; 速度、加速度、压强和密度…,流体微团。
流场中的流体是连续介质,在任何时候每一个空间点都有 一个相应的流体质点占据它的位置。 无数个流体质点在流场内的运动规律——流体运动学 引起运动的原因,各种力之间的关系——流体动力学
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
注意: 空间点本身不具有密度、速度等物理参数,某一时刻占 据该空间点的流体质点具有这些物理参数。 流体的任意物理量可以表示为:
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
两种方法的差别
某一运动的流体质点的各种物理量(如密度、速度等)随 时间的变化——拉格朗日法 在空间固定点上流体的各种物理量(如速度、压力等)随 时间的变化——欧拉法
第3章 流体流动的基本方程
补充
(欧拉方法)定常流和非定常流
在任何固定的空间点观察质点的运动: 流体质点的流动参数不随时间变化的流动——定常流 流体质点的流动参数随时间变化的流动——非定常流