优品课件之鲁教版八年级数学上册全册知识点汇总
2017八年级数学上册全册知识点归纳整理(鲁教版)
2017八年级数学上册全册知识点归纳整理(鲁教版)2017八年级数学上册全册知识点归纳整理(鲁教版)第一章生活中的轴对称1.1轴对称现象1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。
这条直线叫对称轴。
(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径(×)直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);②角的对称轴是它的角平分线(×)角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);③正方形的对角线是正方形的对称轴(×)对角线也是线段而不是直线。
2.轴对称:(1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。
注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
鲁教版八年级数学上册全套ppt课件
针对性练习 (1) 13.8×0.125+86.2×1/8
解:原式=13.8×0.125+86.2×0.125
=0.125×(13.8+86.2) =0.125×100 =12.5
(2)已知a+b=5,ab=3,求a2b+ab2的值.
解: a2b+ab2 =ab(a+b)=3 × 5=15
小
结
1、什么叫因式分解?
1.2 提公因式法
讨 论
问题1:630能被哪些数整除?说说
你是怎样想的?
问题2:a=101,b=99时,求a2 – b2 的值。
ma mb mc
相同因式m
这个多项式有什么特点?
多项式中各项都含有的相同因式,叫做这个多项式的 公因式。
例: 找 3 x 2 – 6 xy 的公因式。
系数:最大 公约数。
=(2m+2n+m-n)(2m+2n-m+n)
=(3m+n)(m+3n)
9x2-y2 = (3x)2-y2=(3x+y)(3x-y)
判断下列各式能否用平方 差公式分解因式: 2 2 ( ) (1) a +4b 2 2 ( ) (2) -x -4y ( ) (3) x-4y2 ( ) (4) -4+0.09m2
具备什么特征的多项式是平方差式?
答:一个多项式如果是由两项组成,两部 分是两个式子(或数)的平方,并且这两项 的符号为异号.
理解定义
因式分解的定义:
把一个多项式化成几个整式的积的 形式,这种变形叫做因式分解.因式分解 也可称为分解因式.
想一想: 因式分解与整式乘法有什么联系?
八年级数学上册重要知识点整理(4-7单元鲁教版)
八年级数学上册重要知识点整理(4-7单元鲁教版)第四章概率的初步认识4.1可能性的大小游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A发生的概率P=事件A可能发生的结果数/所有等可能结果的总数①必然事件发生的概率为1,记作P=1;②不可能事件的概率为0,记作P(不可能事件)=0;③如果A为不确定事件,那么P(A)在0和1之间。
第五章平面直角坐标系5.1确定位置引例:电影票、角、教室座位、经纬度在平面上确定物体的位置一般需要两个数据a和 b 记作(a,b),a表示:排、行、经度、角度……b表示:号、列、纬度、距离……生活中还有哪些确定位置的其他方法?如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?多层电影院确定座位位置用两个数据够用吗?必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。
”区域定位法:绘出所在区域代号如B3,D5等。
排球比赛队员场上的位置等。
准确定位需几个独立数据?已知在某列或某行上,只需一个数据定位;在一个平面内确定物体位置,需两个数据;在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点,第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。
这样的有序实数对叫做点的坐标。
规律1:⑴点P(x,y)在第一象限←→x>0,y>0;点P(x,y)在第二象限←→x<0,y>0;点P(x,y)在第三象限←→x<0,y<0;点P(x,y)在第四象限←→x>0,y<0。
鲁教版八年级数学上册全套PPT课件
2、分解因式 (1)14a3b-21a2b2c
(2)2m(m+n)+6n(m+n)
3、已知x-y=3,x+y=7,求x(x-y)-y(y-x)的值
34
1.3 公式法(1)
35
温故知新
1)(x 5)(x 5) _x_2___2_5_
2)(3x y)(3x y) _9_x_2___y2
项写成平方的
42 (5x) 2 形式;找出a、b
=(4+5x)(4-5x) 第二步,利用
a2-b2=(a-b)(a+b) 分解因式
42
(2)4a2 1 b2 9
第一步,将两 项写成平方的 形式;找出a、b
(2a)2 (1 b)2 第二步,利用
3
1
a2-b2=(a-b)(a+b)
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘 法,由a3-a得到a(a+1)(a-1)的变形是把一个
多项式化成几个整式的积的形式. 你还能再举一些类似的例子加以说明吗?
7
理解定义
因式分解的定义:
把一个多项式化成几个整式的积的 形式,这种变形叫做因式分解.因式分解 也可称为分解因式.
想一想: 因式分解与整式乘法有什么联系?
16
解:根据题意可得,
2 R 2r 10
2 (R r) 10 R r 10
2
R–r
所以,铁丝与赤道之间均匀的间隙为 10 米.
2
17
本节小结
1. 把一个多项式化成几个整式乘积的形式,这种 变形叫做把这个多项式分解因式;
2. 分解因式与整式乘法是互逆过程; 3. 分解因式的结果要以积的形式表示; 4. 分解后的每个因式必须是整式,次数都低于原
鲁教版初二数学知识点
鲁教版初二数学知识点初二数学知识点整理四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
AC=BD矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图线段的重心就是线段的中点。
平行四边形的重心是它的两条对角线的交点。
三角形的三条中线交于疑点,这一点就是三角形的重心。
宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
鲁教版八年级上册数学知识点
鲁教版八年级上册数学知识点
鲁教版八年级上册数学知识点包括:
1.实数及其运算:包括整数、有理数、小数、分数等的概念和运算规律。
2.代数式和方程:包括代数式的定义和性质,一元一次方程和一次方程组的解法等。
3.一次函数:包括函数的概念和性质,一次函数的图象及其性质,一次函数的运算和变换等。
4.平面图形:包括平面图形的基本概念,正方形、长方形、平行四边形、菱形、梯形等的性质和计算等。
5.一次不等式:包括一元一次不等式的解法,一元一次不等式组的解法等。
6.数据分析:包括统计图表的制作和分析,数据的平均数、中位数、众数等的计算等。
7.几何基础:包括线段、射线、角、三角形、四边形等基本概念和性质,以及它们的一些计算和证明方法。
8.平面向量:包括向量的概念和性质,向量的运算,向量的平移、旋转和反演等。
鲁教版数学八年级上册全册课件(五四制)
数 学 全册优质课件
因式分解
探究思考
993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1 =99×(992-1) =99×9800 =99×100×98 所以,993-99能被100整除。
你是怎么想的? 与同伴交流。
在这里,解决问题的关键是把一个数式化成了 几个数的积的形式。你能尝试把ɑ2-ɑ化成几个整 式的乘积的形式吗?与同伴交流(提示:把ɑ看成 一个数)
做一做
计算下列各式: 3x2-3x (1)3x(x-1)= _______ m2-16 (3)(m+4)(m-4)= _______ y2-6y+9 (4)(y-3)2= _________ 根据左面的算式填空:
3x(x-1) (1)3x2-3x=_________
(m+4)(m-4) (3)m2-16=____________
议一议
(1)多项式2x2+6x3中各项的公因式是什么? (2)你能尝试将多项式2x2+6x3因式分解吗? 与同伴进行交流。 多项式2x2+6x3中各项的公因式是2x2 将公因式提出:2x2+6x3=2x2(1+3x)
结论
(1)各项系数是整数,系数的最大公约数是公因式
的系数; (2)各项都含有的字母的最低次幂的积是公因式的 字母部分; (3)公因式的系数与公因式字母部分的积是这个多 项式的公因式。
这个式子的 各项有相同 的因数吗?
如图:两个长和宽分别为a和m,b和m 的长方形,合并成一个较大的长方形,求 这个新长方形的面积?
ma+ma=m(a+b)
认真观察等式两边各有什么特点?
鲁教版初二年级数学上知识点汇总
21D CB A D CBA 鲁教版初二上数学知识点梳理第一章 三角形⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.⒉ 三角形的分类:(1)按边分类:(2)按角分类:⒊ 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;三角形 等腰三角形 不等边三角形底边和腰不相等的等腰三角形 等边三角形三角形 直角三象形斜三角形锐角三角形钝角三角形_C_B _AD CBA ②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.4.三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(三角形的内角和定理)(2) 直角三角形的两个锐角互余.6.三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性. 7.三角形全等:全等形:能够完全重合的图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.图5 图6 图7 图8对应顶点、对应边、对应角:把两个全等的三角形重合到一起.重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.全等三角形的性质:全等三角形的对应边相等、对应角相等.三角形全等的判定方法:1. 三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).2. 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).3. 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).4. 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”). 三角形全等的应用:测距离第二章轴对称轴对称现象1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。
优品课件之鲁教版八年级数学上册全册知识点汇总
鲁教版八年级数学上册全册知识点汇总鲁教版八年级数学上册全册知识点汇总第一章生活中的轴对称1.1轴对称现象1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。
这条直线叫对称轴。
(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径( × ) 直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);②角的对称轴是它的角平分线( × ) 角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);③正方形的对角线是正方形的对称轴( × ) 对角线也是线段而不是直线。
2.轴对称: (1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。
注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等; 如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
八年级数学上册重要知识点整理(4-7单元鲁教版)
八年级数学上册重要知识点整理(4-7单元鲁教版)第四章概率的初步认识4.1可能性的大小游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A发生的概率P=事件A可能发生的结果数/所有等可能结果的总数①必然事件发生的概率为1,记作P=1;②不可能事件的概率为0,记作P(不可能事件)=0;③如果A为不确定事件,那么P(A)在0和1之间。
第五章平面直角坐标系5.1确定位置引例:电影票、角、教室座位、经纬度在平面上确定物体的位置一般需要两个数据a和 b 记作(a,b),a表示:排、行、经度、角度……b表示:号、列、纬度、距离……生活中还有哪些确定位置的其他方法?如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?多层电影院确定座位位置用两个数据够用吗?必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。
”区域定位法:绘出所在区域代号如B3,D5等。
排球比赛队员场上的位置等。
准确定位需几个独立数据?已知在某列或某行上,只需一个数据定位;在一个平面内确定物体位置,需两个数据;在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点,第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。
这样的有序实数对叫做点的坐标。
规律1:⑴点P(x,y)在第一象限←→x>0,y>0;点P(x,y)在第二象限←→x<0,y>0;点P(x,y)在第三象限←→x<0,y<0;点P(x,y)在第四象限←→x>0,y<0。
[推荐精选]XX八年级数学上册全册知识学习总结要点归纳整理(鲁教版)
XX八年级数学上册全册知识点归纳整理(鲁教版)本资料为woRD文档,请点击下载地址下载全文下载地址第一章生活中的轴对称.1轴对称现象.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。
这条直线叫对称轴。
轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径直径是线段,而对称轴是直线;②角的对称轴是它的角平分线角平分线是射线而不是直线;③正方形的对角线是正方形的对称轴对角线也是线段而不是直线。
2.轴对称:对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
轴对称图形与轴对称的关系:①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
.2简单的轴对称图形有两边相等的三角形叫等腰三角形。
.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。
注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离相等。
4.中垂线定理概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;定理:垂直平分线上的任一点到线段两端点的距离相等。
5.30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。
.3探索轴对称的性质.对应点所连的线段被对称轴垂直平分;2.轴对称图形对应线段相等,对应角相等。
.4利用轴对称设计图案.画点A关于直线L的对应点A´:1、过点A作对称轴L的垂线,垂足为B2、延长AB至A´,使得BA´=AB3、点A´就是点A关于直线L的对应点2.画线段AB关于L的对应线段A´B´:1、过点A作对称轴L的垂线AA´,使cA=cA´2、过点A作对称轴L的垂线BB´,使DB=DB´3、连接A´B´,A´B´即是关于直线L的对应线段。
八级数学上册知识点整理归纳(第四、五章鲁教版)【推荐下载】
八级数学上册知识点整理归纳(第四、五章鲁教版)2017八年级数学上册知识点整理归纳(第四、五章鲁教版)第四章概率的初步认识4.1可能性的大小游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算一般地,在试验中,如果各种结果发生的可能性都相同,那幺一个事件A发生的概率P(A)=事件A可能发生的结果数/所有等可能结果的总数①必然事件发生的概率为1,记作P(必然事件)=1;②不可能事件的概率为0,记作P(不可能事件)=0;③如果A为不确定事件,那幺P(A)在0和1之间。
第五章平面直角坐标系5.1确定位置引例:电影票、角、教室座位、经纬度在平面上确定物体的位置一般需要两个数据a 和b 记作(a ,b),a表示:排、行、经度、角度……b表示:号、列、纬度、距离……生活中还有哪些确定位置的其他方法?(1)如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?(2)多层电影院确定座位位置用两个数据够用吗?必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
(3)确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。
”(4)区域定位法:绘出所在区域代号如B3,D5等。
排球比赛队员场上的位置等。
准确定位需几个独立数据?(1)已知在某列或某行上,只需一个数据定位;(2)在一个平面内确定物体位置,需两个数据;(3)在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系1.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点(0,0),第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版八年级数学上册全册知识点汇总鲁教版八年级数学上册全册知识点汇总第一章生活中的轴对称1.1轴对称现象1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。
这条直线叫对称轴。
(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径( × ) 直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);②角的对称轴是它的角平分线( × ) 角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);③正方形的对角线是正方形的对称轴( × ) 对角线也是线段而不是直线。
2.轴对称: (1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。
注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等; 如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
5. 30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。
1.3探索轴对称的性质1.对应点所连的线段被对称轴垂直平分;2.轴对称图形对应线段相等,对应角相等。
1.4利用轴对称设计图案1.画点A关于直线L的对应点A´: 1、过点A作对称轴L的垂线,垂足为B2、延长AB至A´,使得B A´=AB3、点A´就是点A关于直线L的对应点2.画线段AB关于L的对应线段A´B´: 1、过点A作对称轴L的垂线A A´,使CA=C A´2、过点A作对称轴L的垂线B B´,使DB=DB´3、连接A´B´,A´B´即是关于直线L的对应线段。
第二章勾股定理2.1探索勾股定理勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 +b2=c2 ,即直角三角形两直角边的平方和等于斜边的平方。
(一个直角三角形,以它的两直角边为边长所作的两正方形面积之和等于以它的斜边为边长所作的正方形的面积)注意:电视机有多少英寸,指的是电视屏幕对角线的长度。
2.2勾股数1.勾股定理的逆定理:若三角形的三边长a,b,c满足a2 +b2=c2,则该三角形是直角三角形。
在∆ABC中, a,b,c为三边长,其中 c为最大边,若a2 +b2=c2,则∆ABC为直角三角形;若a2 +b2>c2 ,则∆ABC为锐角三角形;若a2 +b2<c2 ,则∆ABC为钝角三角形。
2.勾股数:满足a2 +b2=c2 的三个正整数(即能构成一个直角三角形三边的一组正整数),称为勾股数(勾股数是正整数)。
规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数(即同乘以或除以同一个正数),仍能够成直角三角形。
一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。
常用勾股数:3,4,5(三四五) 9,12,15(3,4,5的三倍) 5,12,13(5.12记一生)8,15,17(八月十五在一起) 6,8,10(3,4,5的两倍) 7,24,25(企鹅是二百五)勾股数须知:连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10第三章实数3.1无理数有理数总可以用有限小数或无限循环小数表示。
反过来,任何有限小数或无限循环小数也都是有理数。
1.无理数的概念:无限不循环小数叫做无理数(两个条件:①无限②不循环)。
练习:下列说法正确的是()(A)无限小数是无理数;(B)带根号的数是无理数;(C)无理数是开方开不尽的数;(D)无理数包括正无理数和负无理数2.无理数: (1)特定意义的数,如∏;(2)特定结构的数;如2.02002000200002…(3)带有根号的数,但根号下的数字开不尽方,如3.分类:正无理数和负无理数。
3.2平方根1.定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫做二次方根)。
2.表示方法: 正数a有两个平方根,一个是a的算术平方根[转载]鲁教版初二数学知识点(上);另一个是-[转载]鲁教版初二数学知识点(上),它们是一对互为相反数,合起来是3.开平方:求一个数a的平方根的运算,叫做开平方(其中,a叫被开方数,且a为非负数)。
开平方与乘方是互为逆运算。
判断:(1) 2是4的平方根()(2) -2是4的平方根()(3)4的平方根是2 ()(4)4的算术平方根是-2 ()(5)17的平方根是[转载]鲁教版初二数学知识点(上)()(6)-16的平方根是-4 ()小结: 一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。
3.3立方根1.定义: 如果一个数x的立方等于a,即x3=a, 那么这个数x叫做a 的立方根(三次方根)。
2.性质: 正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3.开立方: 求一个数a的立方根的运算,叫做开立方(其中,a叫被开方数)。
4.平方根与立方根的联系与区别:(1)联系:①0的平方根、立方根都有一个是0;②平方根、立方根都是开方的结果。
(2)区别:①定义不同;②个数不同;③表示方法不同;④被开方数的取值范围不同。
3.4方根的估算1.估算无理数的方法是(1)通过平方运算,采用“夹逼法”,确定真值所在范围;(2)根据问题中误差允许的范围,在真值的范围内取出近似值。
2.“精确到”与“误差小于”意义不同。
如精确到1m是四舍五入到个位,答案惟一;误差小于1m,答案在真值左右1m都符合题意,答案不惟一。
在本章中误差小于1m就是估算到个位,误差小于10m就是估算到十位。
3.5用计算器开方3.6实数知识回顾:1、统称有理数;2、叫做无理数;3、有理数分为小数和小数;4、有理数包括�p零�p 。
1.实数:有理数和无理数统称为实数(正实数,0和负实数)。
2.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.每一个实数都可以用数轴上的点来表示,反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
例:a是一个实数,它的相反数是________,绝对值是________。
如果a≠0,那么它的倒数是________。
第四章概率的初步认识4.1可能性的大小游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A发生的概率P(A)=事件A可能发生的结果数/所有等可能结果的总数①必然事件发生的概率为1,记作P(必然事件)=1;②不可能事件的概率为0,记作P(不可能事件)=0;③如果A为不确定事件,那么P(A)在0和1之间。
第五章平面直角坐标系5.1确定位置引例:电影票、角、教室座位、经纬度在平面上确定物体的位置一般需要两个数据a 和b 记作(a ,b),a表示:排、行、经度、角度……b表示:号、列、纬度、距离……生活中还有哪些确定位置的其他方法?(1)如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?(2)多层电影院确定座位位置用两个数据够用吗?必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
(3)确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。
”(4)区域定位法:绘出所在区域代号如B3,D5等。
排球比赛队员场上的位置等。
准确定位需几个独立数据?(1)已知在某列或某行上,只需一个数据定位;(2)在一个平面内确定物体位置,需两个数据;(3)在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系1.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点(0,0),第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。
这样的有序实数对叫做点的坐标。
规律1:⑴点P(x,y)在第一象限←→x>0,y>0;点P(x,y)在第二象限←→x<0,y>0;点P(x,y)在第三象限←→x<0,y<0;点P(x,y)在第四象限←→x>0,y<0。
⑵x轴上的点的纵坐标为0,表示为(x,0),y轴上的点的横坐标为0,表示为(0,y)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到原点的距离是。
例:到x轴的距离为2,到,y轴的距离为3的点有________个,它们是________。
规律2:⑴关于x轴对称的点的横坐标相同,纵坐标互为相反数;⑵关于y轴对称的点的纵坐标相同,横坐标互为相反数;⑶关于原点对称的点的横坐标、纵坐标都互为相反数。
⑷平行于x轴的直线上的点,其纵坐标相同,两点间的距离= ;⑸平行于y轴的直线上的点,其横坐标相同,两点间的距离= ;⑹一、三象限的角平分线上的点横坐标等于纵坐标,可记作:(m,m);⑺二、四象限的角平分线上的点横坐标与纵坐标互为相反数,可记作:(m,-m)。
点拨:同一点在不同的平面直角坐标系中,其坐标不同;根据实际需要,可以建适当的平面直角坐标系。
第六章一次函数6.1函数常量:在变化过程中,保持不变取值的量叫常量。
变量:在变化过程中,可以不断变化取值的量叫变量。
函数:一般地,设在一个变化的过程中有两个变量x和y。
如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们称y是x的函数。