数学八年级课件

合集下载

新人教版八年级上册数学课件

新人教版八年级上册数学课件

新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。

浙教版数学八年级上册全册课件

浙教版数学八年级上册全册课件
对于任意两个实数a和b,如果a>b,则b<a;如果a=b,则 b=a;如果a<b,则b>a。
04
第四章:平面直角坐标系
平面直角坐标系的定义与性质
定义
平面直角坐标系是由两条互相垂直、原点重合的数轴构成的平面几何图形。
性质
坐标系中的每一点都有唯一的坐标表示,坐标轴上的单位长度具有一致性,坐标 轴的方向是固定的。
欧几里得证明
欧几里得在《几何原本》中给出了勾 股定理的严格证明,利用了相似三角 形的性质和比例关系,证明了勾股定 理的正确性。
勾股定理的应用
实际问题解决
勾股定理在实际生活中有广泛应 用,如建筑、航海、航空等领域 ,可以通过勾股定理计算直角三 角形中的边长,解决实际问题。
数学竞赛题目
勾股定理也是数学竞赛中常见的 知识点,常常出现在代数、几何 等题型中,考察学生运用勾股定
感谢您的观看
THANKS
浙教版数学八年级上册全册 课件
汇报人: 202X-01-05
目 录
• 第一章:轴对称与轴对称图形 • 第二章:勾股定理 • 第三章:实数 • 第四章:平面直角坐标系 • 第五章:一次函数
01
第一章:轴对称与轴对称 图形
轴对称与轴对称图形的定义与性质
轴对称
如果一个平面图形沿着一条直线 折叠后,直线两旁的部分能够互 相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。
轴对称图形的性质
轴对称图形具有对称性,即图形 关于对称轴对称,其对应点连线 与对称轴垂直且等距。
轴对称与轴对称图形的判定与性质应用
判定方法
可以通过观察图形的形状和特点,判 断其是否具有轴对称性。也可以通过 折叠或旋转图形,观察其是否能够完 全重合来判断。

人教版数学八年级上册全套ppt课件(共1200页)

人教版数学八年级上册全套ppt课件(共1200页)

由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等

顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形? A
定义:由不在同一条直线上的三条线段
首尾顺次相接所组成的图形叫作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫作三角形的内角,简称三角
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B

(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.2.1 平方差公式教学课件

(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.2.1 平方差公式教学课件
(1)(a–2)(a+2)(a2 + 4) 解:原式=(a2–4)(a2+4)
=a4–16.
(2) (x–y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2–y2)(x2+y2)(x4+y4)
=(x4–y4)(x4+y4) =x8–y8.
课堂检测
能力提升题
先化简,再求值:(x+1)(x–1)+x2(1–x)+x3, 其中x=2.
1. 公式中的a和b,既可以是具体的数,也可以是单项 式或者多项式;
2. 左边是两个二项式的积,并且有一项完全相同,另 一项互为相反数;
3. 右边是相同项的平方减去相反项的绝对值的平方.
探究新知
(a–b)(a+b)
(1+x)(1–x) (–3+a)(–3–a) (1+a)(–1+a) (0.3x–1)(1+0.3x)
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a

人教版八年级上册数学全册课件

人教版八年级上册数学全册课件

人教版八年级上册数学全册课件第一章有理数1.1 有理数的定义•有理数的概念•有理数的表示方法•有理数的相反数和绝对值1.2 有理数的比较与排序•有理数的大小比较•有理数的大小排序•有理数的绝对值大小比较1.3 有理数的加法与减法•有理数的加法原理•有理数的减法原理•有理数的加法与减法综合运用1.4 有理数的乘法与除法•有理数的乘法原理•有理数的除法原理•有理数的乘法与除法综合运用1.5 有理数的运算与性质•有理数的运算律•有理数的消去律•有理数的分配律第二章方程与不等式2.1 一元一次方程•一元一次方程的解的概念•解一元一次方程的基本步骤•解实际问题中的一元一次方程2.2 一元一次方程的应用•一元一次方程的应用问题•解问题时的方程建立和方程求解2.3 一元一次不等式•一元一次不等式的解的概念•解一元一次不等式的基本步骤•解实际问题中的一元一次不等式2.4 一元一次不等式的应用•一元一次不等式的应用问题•解问题时的不等式建立和不等式求解第三章二次根式3.1 二次根式的概念•二次根式的定义•二次根式的性质•二次根式的化简3.2 二次根式的加法与减法•二次根式的加法原理•二次根式的减法原理•二次根式的加法与减法综合运用3.3 二次根式的乘法与除法•二次根式的乘法原理•二次根式的除法原理•二次根式的乘法与除法综合运用3.4 二次根式的应用•二次根式的应用问题•解问题时的二次根式建立和二次根式计算第四章图形的认识4.1 点、线、面及平面图形•点、线、面的基本概念•平面图形的分类•平面图形的特征4.2 角的认识•角的定义及分类•角的性质•角的计算4.3 三角形的认识•三角形的定义及分类•三角形的性质•三角形的计算4.4 四边形的认识•四边形的定义及分类•四边形的性质•四边形的计算以上是人教版八年级上册数学全册的教学内容概要。

通过学习这些内容,同学们可以全面掌握有理数的概念与运算,解一元一次方程与不等式,以及二次根式的加减乘除等基础知识。

八年级上册数学ppt课件

八年级上册数学ppt课件

分式的混合运算和应用
总结词
掌握分式的混合运算法则,能够正确进 行分式的混合运算,解决实际问题。
VS
详细描述
介绍分式的混合运算法则,包括分式的乘 方、通分、约分等,通过例子演示分式的 混合运算过程,让学生理解分式的混合运 算法则和应用。同时,通过实际问题的解 决,让学生理解分式运算的应用价值。
05
奇偶性
函数的奇偶性是指函数是 否具有奇偶性,即函数图 像是否关于原点对称。
凹凸性
函数的凹凸性是指函数图 像是凹形还是凸形。
02
第二章:一元一次不等式与不 等式组
一元一次不等式的概念与解法
总结词:掌握基础 总结词:掌握解法
详细描述:首先需要了解一元一次不 等式的定义,明确一元一次不等式的 形式及其特点,例如一元一次不等式 的定义域和取值范围等。
详细描述
因式分解是指将一个多项式化为几个整式的积的形式,它是数学中重要的恒等 变形,广泛应用于解方程、求根式值等问题的解决中。
因式分解的方法与技巧
总结词
多种方法,需掌握技巧
详细描述
因式分解的方法有提取公因式法、公式法、分组分解法、十字相乘法等,技巧包括拆项、添项、配方等,需要学 生逐步学习并熟练掌握。
介绍分式的基本性质,包括约分、通 分的定义和操作方法,通过例子演示 约分、通分的操作过程,让学生理解 约分、通分的意义和作用。
分式的加减乘除运算
总结词
掌握分式的加减乘除运算法则,能够正确进行分式的加减乘 除运算。
详细描述
介绍分式的加减乘除运算法则,包括同分母分式加减法、异 分母分式加减法、分式的乘除法等,通过例子演示分式的加 减乘除运算过程,让学生理解分式的加减乘除运算法则和应 用。

八年级上数学课件 PPT

八年级上数学课件 PPT
2022/8/22
三角形得内角与就是 180°
拓展
四边形内角与就是360° 五边形内角与就是? 六边形内角与就是? …… n边形内角与就是?
2022/8/22
例1:已知三角形各角度数之比就是1:3:5,求各角度数。 例2:等腰三角形 一腰上得高与另一腰得夹角为30°,则顶角度数为( )°
A、30 B、60 C、90 D、120 或60 例3:如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且 BE=CF,AD+EC=AB。 (1)求证:△DEF就是等 腰三角形; (2)当∠A=40°时,求∠DEF得度数。
P,作射线OP,由作法得△OCP≌△ODP得根据就是( )
A、SAS B、ASA C、AAS D、SSS
2022/8/22
4、等腰三角形:有两条边相等得三角形,叫做等腰三角形。 相等得两条边叫做腰,另一条边叫做底边,两腰所夹得角叫做顶角,底边
与腰得夹角叫做底角。
等腰三角形得性质 (1)等腰三角形得两个底角相等(简称“等边对等角”) (2)等腰三角形得顶角平分线、底边上得中线、底边上得高相互重合。 (3)等腰三角形就是轴对称图形,底边上得中线(顶角平分线、底边上得高)所 在直线就就是它得对称轴。 (4)等腰三角形两腰上得高、中线分别相等,两底角得平分线也相等。 (5)等腰三角形一腰上得高与底边得夹角就是顶角得一半。 (6)等腰三角形顶角得外角平分线平行于这个三角形得底边。
2022/8/22 ;AC=DF ②AB=DE ;∠B=∠E ;BC=EF ③ ∠ B= ∠ E;BC=EF; ∠ C= ∠ F ④AB=DE;AC=DF; ∠ B= ∠ E
其中,能使△ABC≌△DEF得条件共有( )
A、1组 B、2组 C、3组 D、4组

(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (5)

(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (5)
∵ ∠ACD是△ABC的一个外角.
∴ ∠ACD= ∠A+ ∠B.
B
C
D
巩固练习
1.说出下列图形中∠1和∠2的度数:
A
80 °
60 °
50 °
1
B
(1)
2
C
1
D
∠1=40 °, ∠2=140 °
A
2
32 °(
C
B
(2)
∠1=18 °, ∠2=130 °
探究新知
素养考点 1
利用三角形外角的性质求角的度数
从A前进到C处,然后再折回到B处截住懒羊羊返回羊村的去路,红
太狼则直接在A处拦截懒羊羊,已来自∠BAC=40° , ∠ABC=70°.灰
太狼从C处要转多少度角才能直达B处?
D
C


●70 °●
B
O
40 °

A
探究新知
利用“三角形的内角和为180°”来求∠BCD,你会吗?
D
C


●70 °●
B
O
40 °
三角形的外角
A
C
相邻的内角
D
∠BCD与∠ACB互补.
探究新知
如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,
∠B)有什么关系?
B
不相邻的内角
你能用作平行线的
方法证明此结论吗?
三角形的外角
A
C
D
相邻的内角
∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°,
∴∠A+∠B=∠BCD.
探究新知
人教版 数学 八年级 上册
11.2 与三角形有关的角

(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.3.1 提公因式法教学课件

(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.3.1 提公因式法教学课件
时,提公因式后剩余的项是1.
正解:原式=3x·
x–6y·
x+1·x
=x(3x–6y+1)
注意:某项提出莫漏1.
巩固练习
5. 小华的解法有误吗?
把 – x2+xy–xz分解因式.
解:原式= – x(x+y–z).
错误
提出负号时括号
里的项没变号.
正解:原式= – (x2–xy+xz)
= – x(x–y+z)
最后不是积的运算
② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法

x2+x=x2(1+
1
)
x
每个因式必须是整式
⑥ 2x+4y+6z=2(x+2y+3z)
探究新知
知识点 2
用提公因式法分解因式
问题1: 观察下列多项式,它们有什么共同特点?
解,将其变形为能用a±b和ab表示的式子,然后将a±b,ab的值整
体带入即可.
巩固练习
7. 已知a+b=5,ab=3,求a2b+ab2的值.
解: a2b+ab2 =ab(a+b)
=3 × 5
=15
巩固练习
连 接 中 考
a(a–5)
1. 分解因式:a2–5a=_________

2. 若a+b=4,ab=1,则a2b+ab2= 4 .
整体思想是数学中一种重要而且常用的思想方法.
探究新知
解:(1) 8a3b2 + 12ab3c

(初二数学课件)人教版初中八年级数学上册第11章三角形11.3.1 多边形教学课件

(初二数学课件)人教版初中八年级数学上册第11章三角形11.3.1 多边形教学课件

……
三角形 四边形 五边形 六边形 八边形
多边形
三角形 四边形 五边形 六边形 八边形 n边形
从同一顶点引出
的对角线的条数 0
1
2
3
5 n-3
分割出的三角形
的个数
1
2
3
4
6 n-2
探究新知
11.3 多边形及其内角和/
归纳总结
从n(n≥3)Leabharlann 形的一个顶点可以作出(n-3)条对角线. 将多边形分成(n-2)个三角形.
n(n≥3)边形共有对角线 n(n 3) 条.
2
探究新知
11.3 多边形及其内角和/
素养考点 2 利用多边形的对角线相关公式求边数
例2 过多边形的一个顶点的所有对角线的条数与这些对 角线分该多边形所得三角形的个数的和为21,求这个多 边形的边数.
解:设这个多边形为n边形,则有(n-3)条对角线,所 分得的三角形个数为n-2,
组成的图形叫做三角形.
问题2: 观察画某多边形的过程,类比三角形的概念,你 能说出什么是多边形吗?
在平面内,由一些线段首尾 顺次相接组成的封闭图形叫 做多边形.
探究新知
11.3 多边形及其内角和/
【思考】 比较多边形的定义与三角形的定义,为什 么要强调“在平面内”呢?怎样命名多边形呢?
这是因为三角形中的三个顶点肯定都在同一个平面内, 而四点,五点,甚至更多的点就有可能不在同一个平面内.
H
如图(1)这样,画出多边形的任何一条边所在的直线, 整个多边形都在这条直线的同一侧,那么这个多边形就是凸多 边形.
探究新知
11.3 多边形及其内角和/
素养考点 1 多边形的截角问题
例1 凸六边形纸片剪去一个角后,得到的多边形的边

八年级上册数学课件ppt

八年级上册数学课件ppt

增长率问题
掌握增长率问题的解题方法和思路, 能够根据题意列方程、解方程、整合 答案。
利润问题
掌握利润问题的解题方法和思路,能 够根据题意列方程、解方程、整合答 案。
几何应用题
三角形的应用
四边形的应用
掌握三角形的应用题的解题方法和思路, 能够根据题意进行证明和计算。
掌握四边形的应用题的解题方法和思路, 能够根据题意进行证明和计算。
定义
含有绝对值的方程叫做绝对值方程。
解法
通过去绝对值符号、转化为不含绝对值符号 的方程来求解。
特点
绝对值方程中包含绝对值符号,形式多样。
应用
绝对值方程可以解决一些实际问题,如距离 问题、优化问题等。
02 几何部分
CHAPTER
全等三角形
01
02
03
定义
全等三角形是指能够完全 重合的两个三角形,即它 们的形状相同,大小也相 同。
性质
全等三角形的对应边相等 ,对应角相等。
判定方法
SSS(边边边)、SAS( 边角边)、ASA(角边角 )、AAS(角角边)、HL (斜边直角边)
勾股定理
定义
勾股定理是指在一个直角三角形 中,两条直角边的平方和等于斜
边的平方。
性质
如果一个三角形是直角三角形,那 么它的两条直角边的平方和等于斜 边的平方。
形如$y = ax^2 + bx + c$的函数称为二次函数, 其中$a \neq 0$。
二次函数的图像
二次函数的图像是一个抛物线,其形状和变化趋 势取决于系数$a$、$b$、$c$的值。可以通过图 像法来解决一些实际问题,如最值问题、零点问 题等。
二次函数的性质
二次函数具有一些特殊的性质,如开口方向与二 次项系数$a$的符号有关,顶点坐标为$(\frac{b}{2a},\frac{4ac-b^2}{4a})$等。在求解实 际问题时,需要结合具体的题目条件进行分析。

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2 三角形的外角教学课件

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2 三角形的外角教学课件

∴∠ADB=180°–∠B–∠BAD =180°–36°–34°
B
DC
=110°.
巩固练习
11.1 与三角形有关的线段/
4. 如图,AD,BE,CF 是△ABC 的三条角平分线,则:
∠1 = ∠2 ;
1
∠3 = 2 ∠ABC ;
∠ACB = 2∠4.
A
1
2
12 E F
3
B
3
D
44
C
探究新知
三角形的 重要线段
解得x=4.
探究新知
11.1 与三角形有关的线段/
知识点 2 三角形中线的概念
我们学习了三角形的高,我们已经知道了三 角形的面积公式,你能经过三角形的一个顶点画 一条线段,将这个三角形分为面积相等的两个三 角形吗?
探究新知
11.1 与三角形有关的线段/
三角形的中线的定义
在三角形中,连接一个顶点与它对边的中点的线段叫做 三角形的中线.
巩固练习
11.1 与三角形有关的线段/
2.如图,(1)写出以AE为高的三角形;(2)当BC=8,AE=3, AB=6时,求AB边上的高的长度.
解:(1)△ABE,△ABD,△ABC,
△AED,△AEC,△ADC.
(2)设AB边上的高为x,
∵S△ABC=
1
2 BC·AE=
1
2AB·x
∴BC·AE=AB·x,8×3=6x
3条高,锐角三角 形:形内;钝角 三角形:形外; 直角三角形:直 角顶点
∵ AD是△ABC的BC上
的中线. ∴ BD=CD= 12BC.
3条,交点叫作三 角形的重心.形内
∵AD是△ABC的∠BAC
的平分线 ∴ ∠1=∠2= 12∠BAC

八年级数学等边三角形性质和判定优秀课件

八年级数学等边三角形性质和判定优秀课件

一般三角形
等腰三角形
等边三角形
在等腰三角形中,有一种特殊的情况,就是底与 腰相等,即三角形的三边相等,我们把三条边都 相等的三角形叫作等边三角形.
名 称
图形
定义
性质
判定
A
两腰相等
两边相等



角B 形
有两条边相等
的三角形叫做 等边对等角
等腰三角形 C
三线合一
等角对等边
轴对称图形
讲授新课
一 等边三角形的性质
证明:∵△ABD是等边三角形, ∴∠DAB=60°, ∵∠CAB=30°,∠ACB=90°, ∴∠EBC=180°-90°-30°=60°, ∴∠FAE=∠EBC. ∵E为AB的中点, ∴AE=BE. 又∵ ∠AEF=∠BEC, ∴△AEF≌△BEC〔ASA〕.
6.如图,A、O、D三点共线,△OAB和△OCD是两个全等的等
角形是等腰三角形
等边三角形 三条边都相等的三角形 是等边三角形
三个角都相等的三角形 是等边三角形
小明等认边为三还角有形第的三种判方定法方“法两:条边相等且有一个角是60°的三角 形也是等有边一三个角角形〞是,60你°同的意等吗腰?三角形是等边三角形.
辩一辩:根据条件判断以下三角形是否为等边三角形.
八年级数学上〔RJ〕
第十三章 轴对称
等边三角形
第1课时 等边三角形的性质与判定
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.探索等边三角形的性质和判定.〔重点〕 2.能运用等边三角形的性质和判定进行计算和证
明.〔难点〕
导入新课
问题引入
小明想制作一个三角形的相框,他有四根木条长 度分别为10cm,10cm,10cm,6cm,你能帮他设 计出几种形状的三角形?

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2三角形的内角教学课件

(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2三角形的内角教学课件
人教版 数学 八年级 上册
11.2 与三角形有关的角/
11.2 与三角形有关的角
11.2.1 三角形的内角
第一课时
第二课时
第一课时
11.2 与三角形有关的角/
三角形的内角和
导入新知
11.2 与三角形有关的角/
一天,三类三角形通过对自身的特点,讲出了自己对三角
形内角和的理解,请同学们作为小判官给它们评判一下吧.
例1 如图,在△ABC中, ∠BAC=40 °, ∠B=75 °, AD
是△ABC的角平分线,求∠ADB的度数.
解:由∠BAC=40 °, AD是△ABC的角平分线,得
C
1
∠BAD= 2 ∠BAC=20 °.
D
在△ABD中,
∠ADB=180°–∠B –∠BAD
=180°–75°–20°
=85°.
A
B
探究新知
11.2 与三角形有关的角/
变 式 题 如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,
∠B=70°,求∠EDC,∠BDC的度数.
解:∵∠A=50°,∠B=70°,
∴∠ACB=180°–∠A–∠B=60°.
∵CD是∠ACB的平分线,
1
2
∴∠BCD= ∠ACB=30°.
∵DE∥BC,
我们在小学已经知道,任意一个三角形的内角和等于
180°.与三角形的形状、大小无关.
思考:除了度量以外,你还有什么办法可以验
证三角形的内角和为180°呢?
还可以用拼接的
方法,你知道怎
样操作吗?
折叠
探究新知
11.2 与三角形有关的角/
剪拼
A
1
2
B
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级课件【5篇】一、教学目标1、理解一个数平方根和算术平方根的意义;2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;3、通过本节的训练,提高学生的规律思维力量;4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探究数学神秘的兴趣。

二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区分。

三、教学方法讲练结合四、教学手段幻灯片五、教学过程(一)提问1、已知一正方形面积为50平方米,那么它的边长应为多少?2、已知一个数的平方等于1000,那么这个数是多少?3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。

下面作一个小练习:学生在完成此练习时,最简单消失的错误是丢掉负数解,在教学时应留意订正。

由练习引出平方根的概念。

(二)平方根概念假如一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0。

0081的平方根。

由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:( )2=—4学生思索后,得到结论此题无答案。

反问学生为什么?由于正数、0、负数的平方为非负数。

由此我们可以得到结论,负数是没有平方根的。

下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质1、一个正数有两个平方根,它们互为相反数。

2、0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。

依据这种关系,我们可以通过平方运算来求一个数的平方根。

与其他运算法则不同之处在于只能对非负数进展运算,而且正数的运算结果是两个。

(五)平方根的表示方法一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。

根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。

练习:1、用正确的符号表示以下各数的平方根:①26 ②247 ③0.2 ④3 ⑤解:①26 的平方根是②247的平方根是③0.2的平方根是④3的平方根是⑤的平方根是由学生说出上式的读法。

例1。

以下各数的平方根:(1)81; (2) ; (3) ; (4)0.49解:(1)∵(±9)2=81,∴81的平方根为±9。

即:(2)的平方根是,即(3)的平方根是,即(4)∵(±0。

7)2=0.49,∴0.49的平方根为±0.7。

小结:让学生熟识平方根的概念,把握一个正数的平方根有两个。

六、总结本节课主要学习了平方根的概念、性质,以及表示方法,回去后要认真阅读教科书,稳固所学学问。

七、作业教材P.127练习1、2、3、4。

八、板书设计平方根(一)概念(二)性质(三)开平方(四)表示方法探究活动求平方根近似值的一种方法求一个正数的平方根的近似值,通常是查表。

这里讨论一种笔算求法。

例1。

求的值。

解∵92102,两边平方并整理得∵x1为纯小数。

18x1≈16,解得x1≈0.9,便可依次得到准确度为0.01,0.001,……的近似值,如:两边平方,舍去x2得19.8x2≈—1.01数学八年级课件篇二教学目标:1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:算术平方根的概念。

教学难点:依据算术平方根的概念正确求出非负数的算术平方根。

教学过程一、情境导入请同学们观赏本节导图,并回答下列问题,学校要进行金秋美术作品竞赛,小欧很快乐,他想裁出一块面积为25的正方形画布,画上自己的得意之作参与竞赛,这块正方形画布的边长应取多少?假如这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容。

这节课我们先学习有关算术平方根的概念。

二、导入新课:1、提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?(学生思索并沟通解法) 这个问题相当于在等式扩=25中求出正数x的值。

一般地,假如一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为,读作根号a,a叫做被开方数。

规定:0的算术平方根是0、也就是,在等式=a(x0)中,规定x = 。

2、试一试:你能依据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

3、想一想:以下式子表示什么意思?你能求出它们的值吗?建议:求值时,要根据算术平方根的意义,写出应当满意的关系式,然后根据算术平方根的记法写出对应的值。

例如表示25的算术平方根。

4、例1求以下各数的算术平方根:(1)100;(2)1;(3);(4)0、0001三、练习P69练习1、2四、探究:(课本第69页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓舞学生探究。

问题:这个大正方形的边长应当是多少呢?大正方形的边长是,表示2的算术平方根,它究竟是个多大的数?你能求出它的值吗?建议学生观看图形感受的大小。

小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:1、这节课学习了什么呢?2、算术平方根的详细意义是怎么样的?3、怎样求一个正数的算术平方根六、课外作业:P75习题13、1活动第1、2、3题最新八年级数学课件篇三一、平移:在平面内,将一个图形沿某个方向移动肯定的距离,这样的图形运动称为平移。

1、平移2、平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。

⑶平移不转变图形的大小和外形(只转变图形的位置)。

(4)平移后的图形与原图形全等。

3、简洁的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1、旋转2、旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,外形都不转变(只转变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿一样方向转动了一样的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3、简洁的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成①确定组合图案中的“根本图案”②发觉该图案各组成局部之间的内在联系③探究该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

最新八年级数学课件篇四1、教材分析(1)学问构造(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理。

定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据。

本节内容的难点是定理及逆定理的关系。

垂直平分线定理和其逆定理,题设与结论正好相反。

学生在应用它们的时候,简单混淆,帮忙学生熟悉定理及其逆定理的区分,这是本节的难点。

2、教法建议本节课教学模式主要采纳“学生主体性学习”的教学模式。

提出问题让学生想,设计问题让学生做,错误缘由让学生说,方法与规律让学生归纳。

教师的作用在于组织、点拨、引导,促进学生主动探究,积极思索,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的仆人。

详细说明如下:(1)参加探究发觉,领会学问形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很简单得出“相等”。

然后学生完成证明,找一名学生的证明过程,进展投影总结。

最终,由学生将上述问题,用文字的形式进展归纳,即得线段垂直平分线定理。

这样让学生亲自动手实践,积极参加发觉,激发了学生的熟悉冲突,使学生克制思维和探求的惰性,获得熬炼时机,对定理的产生过程,真正做到心领神会。

(2)采纳“类比”的学习方法,猎取逆定理线段垂直平分线的定理及逆定理的证明都比拟简洁,学生学习一般没有什么困难,这一节的难点仍旧的定理及逆定理的关系,为了很好的突破这一难点,教学时采纳与角的平分线的性质定理和逆定理对比,类比的方法进展教学,使学生进一步熟悉这两个定理的区分和联系。

(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培育学生发觉问题、提出问题的制造性力量。

最新八年级数学课件篇五教学内容分析:⑴学习特别的平行四边形—正方形,它的特别的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与推断,有利于对正方形的讨论。

⑶对本节的学习,连续培育学生分类讨论的思想,并且建立新旧学问的联系,类比的根底上进展归纳,梳理学问,进一步进展学生的推理力量。

学生分析:⑴学生在小学初步熟悉了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观看讨论平行四边形的阅历与学问根底。

⑵学生在上几节已有了推理的经受,但是对于证明,学生的思维力量还不成熟,有待于提高。

教学目标:⑴学问与技能:了解正方形是特别的平行四边形,把握它的性质和判定,会利用性质与判定进展简洁的说理。

⑵过程与方法:通过类比前边的四边形的讨论,探究并归纳正方形的性质与判定。

通过运用提高学生的推理力量。

⑶情感态度与价值观:在学习中体会正方形的完善性,通过活动获得胜利的喜悦与自信。

重点:把握正方形的性质与判定,并进展简洁的推理。

难点:探究正方形的判定,进展学生的推理能教学方法:类比与探究教具预备:可以活动的四边形模型。

教学过程:一:复习稳固,建立联系。

相关文档
最新文档