基本不等式的八大应用
应用基本不等式的八种变形技巧

因为 a>0,b>0,a+b=2,所以 2≥2 ab,所以 ab≤1,所以
1 1 1 +11+ ≥4(当且仅当 a=b=1 时取等号),所 ≥ 1 . 所以 b ab a 1 1 以a+1b+1的最小值是
4.
变形后使用基本不等式 设 a>1,b>1,且 ab-(a+b)=1,那么( A.a+b 有最小值 2( 2+1) B.a+b 有最大值( 2+1)2 C.ab 有最大值 2+1 D.ab 有最小值 2( 2+1) )
应用基本不等式的八种变形技巧
基本不等式的一个主要功能就是求两个正变量和与积的 最值,即所谓“和定积最大,积定和最小”.但有的题目需 要利用基本不等式的变形式求最值,有的需要对待求式作适 当变形后才可求最值.常见的变形技巧有以下几种:
加上一个数或减去一个数使和或积为定值 4 函数 f(x)= +x(x<3)的最大值是( x-3 A.-4 C.5 B.1 D.-1 )
1 2 y 法二:因为 + =1,所以 x= . x y y- 2 因为 x>0,y>0,所以 y-2>0. y2-y (y-2)2+3(y-2)+2 y 所以 x+y= + y= = = y- 2 y- 2 y- 2
2 2 y-2+ +3≥3+2 2当y-2=y-2,即y=2+ 2 y- 2
已知 a>0,b>0 且
[点拨]
1 1 a+b=2,求a+1b+1的最小值.
由于待求式是一个积的形式,因此需将多项式展开
后将积的最小值转化为和的最小值.
【解】 3 ab+1,
1 1 1 1 1 1 a+b 由题得 a+1 b+1 =ab+a+b+1=ab+ ab +1=
高中数学《基本不等式》的真正妙用

高中数学《基本不等式》的真正妙用
《基本不等式》是高中数学中的一门基础课程,它是学习数学的
重要工具之一,用于解决复杂的数学问题。
它的定义是“当两个值或
表达式的意义不同时,就可以使用不等式来描述它们之间的差异”。
基本不等式有五种基本形式,分别是等号(=)、大于等号(>)、大于(>)、小于等号(< ),小于(<)。
但无论哪种形式,都能够
提供明确的准确信息,从而帮助我们推导出更复杂的问题。
基本不等式的妙用在于,它可以帮助我们推算出给定条件下可能
出现的情况,因此可以拓展我们对某一特定问题的解决思路。
例如,
可以利用不等式来构建数学模型,建立清晰的统计关系,深入了解数
据分析,从而解决复杂的数学问题。
此外,基本不等式也是非常适用于组合概念和论证概念的工具。
我们可以利用不等式来组织我们的概念,这样便于我们模拟出更复杂
的情况。
同时,也可以将不等式应用于证明某些概念的有效性,从而
使用不等式来测试其有效性。
基本不等式的另一个好处是,它可以用于做出正确的决策。
假设
我们有个问题需要做出决定,那么我们可以使用不等式来比较不同的
选择,从而作出优化的,正确的决策。
总之,《基本不等式》是一门高中数学的重要课程,它是理解和
处理复杂问题的有力工具。
它可以帮助我们推导出更复杂的数学结论,帮助我们组织逻辑思维,方便有效地做出正确的决策,是理解复杂问
题不可或缺的重要工具。
基本不等式应用的

A.有最大值e B.有最大值 e C.有最小值e D.有最小值 e5.若a>0,b>0,且ln(a+b)=0,则1a+1b的最小值是()A.14B.1 C.4 D.86.某商场中秋前30天月饼销售总量f(t)与时间t(0<t≤30)的关系大致满足f(t)=t2+10t+16,则该商场前t天平均售出(如前10天的平均售出为f(10)10)的月饼最少为()A.18 B.27 C.20 D.16知识总结利用基本不等式证明不等式是综合法证明不等式的一种情况,综合法是指从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.内容讲解利用基本不等式求最值1.下列函数中,最小值为4的函数是()A.y=x+4x B.y=sin x+4sin x(0<x<π)C.y=ex+4e-x D.y=log3x+log x812.已知t>0,则函数y=t2-4t+1t的最小值为________.3.设0<x<32,求函数y=4x(3-2x)的最大值.4.(1)设0<x<2,求函数y=x(4-2x)的最大值.(2)x<3,求f(x)=4x-3+x的最大值.(3)已知x>0,y>0,且x+y=1,求3x+4y的最小值.变式:(1)已知a>0,b>0,则1a+1b+2ab的最小值是()A.2B.22C.4 D.5(2)设正数x,y满足log2(x+y+3)=log2x+log2y,则x+y的取值范围是________.知识总结1.在应用基本不等式求最值时,要把握三个方面,即“一正——各项都是正数;二定——和或积为定值;三相等——等号能取得”,这三个方面缺一不可.2.对于求分式型的函数最值题,常采用拆项使分式的分子为常数,有些分式函数可以拆项分成一个整式和一个分式(该分式的分子为常数)的形式,这种方法叫分离常数法.3.为了创造条件使用基本不等式,就需要对式子进行恒等变形,运用基本不等式求最值的焦点在于凑配“和”与“积”,并且在凑配过程中就应考虑到等号成立的条件,另外,可利用二次函数的配方法求最值.注意:利用基本不等式求最值一定不能忽略取等号的条件基本不等式的实际应用知识讲解1.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__________.。
基本不等式实际应用举例

3. 利用基本不等式求最值时,如果无定值,要先配、凑出定 值,再利用基本不等式求解。
4. 形如 y x
a (a 0) 这类函数,当不能利用基本不等式求 x
最值时,可以借助函数单调性求解。
C.
11 3
y
D. 4
略解:
把点(4,6)代入z = ax + by得4a + 6b = 12, 2 3 2 3 2a + 3b 即2a + 3b = 6,而 + = + a b a b 6 13 b a 13 25 = +( + ) + 2 = ,故选A 6 a b 6 6
复习
1. 基本不等式: 如果a≥0,b≥0,那么
a =b (当且仅当________ 时取“=”号).
2ab ab a 2 b2 2.若a 0, b 0, 则 ab , ab 2 2 当且仅当a b时取等号。 (由小到大)
ab ≥ ab . 2
应用基本不等式求最值的条件: ab a b
4840 3025 S =(x + 10)( + 16) = 5000 + 16(x + ) x x 3025 5000 + 16×2 x· = 6760 x 3025 只有x = 即x = 55取" = " x 4840 55 = 88,a = <1 x 88
例3.某种生产设备购买时费用为10万元,每年的设备 管理费共计9千元,这种生产设备的维修费各年为: 第一年2千元,第二年4千元,第三年6千元,依每年2 千元的增量递增。问这种生产设备最多使用多少年报 废最合算(即使用多少年的平均费用最少?)
基本不等式及应用

基本不等式及应用的实际应用情况背景介绍基本不等式是数学中常见的一类不等式,它们可以帮助我们描述和解决各种实际问题,从而在许多领域中发挥着重要作用。
基本不等式包括线性不等式、二次函数不等式和绝对值不等式等。
在实际应用中,我们经常需要根据给定的条件和目标,通过建立和求解基本不等式来得到满足特定条件的解集。
应用过程下面将分别介绍线性不等式、二次函数不等式和绝对值不等式的应用过程及效果。
1. 线性不等式线性不等式是形如ax + b > 0或ax + b < 0的一次方程组,其中a、b为已知系数,x为未知数。
线性不等式在实际应用中广泛存在,例如:a. 生产问题假设某工厂生产两种产品A和B,并且单位时间内生产A产品所需的材料成本为10元,生产B产品所需的材料成本为20元。
如果工厂每天最多能使用500元购买原材料,而单位时间内生产A产品利润为5元,生产B产品利润为8元。
我们需要确定每种产品的最大生产量,以最大化利润。
设A产品的生产量为x,B产品的生产量为y。
根据题目中的条件,我们可以列出以下不等式:10x + 20y ≤ 500 (材料成本限制)5x + 8y ≥ 0 (利润要求)通过求解这个线性不等式组,我们可以得到A和B产品的最大生产量,从而实现最大化利润。
b. 资金问题假设某人有两个银行账户A和B,在一段时间内账户A每天存款增加10元,账户B 每天存款增加15元。
如果初始时两个账户的余额分别为1000元和2000元,并且他希望在一定时间后至少有6000元的总余额。
我们需要确定这个时间段内至少需要存款多少天。
设经过x天后,账户A和B的余额分别为a和b。
根据题目中的条件,我们可以列出以下不等式:a = 1000 + 10xb = 2000 + 15x a + b ≥ 6000通过求解这个线性不等式组,我们可以得到至少需要存款多少天才能达到目标总余额。
2. 二次函数不等式二次函数不等式是形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的二次方程,其中a、b、c为已知系数,x为未知数。
基本不等式及其应用

基本不等式及其应用1.基本不等式:≤(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)+≥2(a,b同号).(3)ab≤2 (a,b∈R).(4)≥2 (a,b∈R).以上不等式等号成立的条件均为a=b.3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值2.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y=x+的最小值是2吗?提示不是.因为函数y=x+的定义域是{x|x≠0},当x<0时,y<0,所以函数y=x+无最小值.1.(2020•上海)下列等式恒成立的是A.B.C.D.【答案】B基本不等式及其应用1.基本不等式:≤(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)+≥2(a,b同号).(3)ab≤2 (a,b∈R).(4)≥2 (a,b∈R).以上不等式等号成立的条件均为a=b.3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值2.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y=x+的最小值是2吗?提示不是.因为函数y=x+的定义域是{x|x≠0},当x<0时,y<0,所以函数y=x+无最小值.1.(2020•上海)下列等式恒成立的是A.B.C.D.【答案】B。
考点24 基本不等式及其应用

考点二十四 基本不等式及其应用知识梳理1.重要不等式:a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.2.基本不等式:ab ≤a +b 2( a ≥0,b ≥0),当且仅当a =b 时取等号. 其中a +b 2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.因此基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们的等比中项.3.基本不等式的几个常见变形(1) a +b ≥2ab (a ,b >0).(2) x +1x ≥2(x >0),b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).4.利用基本不等式求最值的条件:一正二定三相等所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.5.利用基本不等式求最值问题已知x >0,y >0,则(1)和定积最大:若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)积定和最小:若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .典例剖析题型一 基本不等式成立条件问题例1 若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是________.①a 2+b 2>2ab ②a +b ≥2ab ③1a +1b ≥2ab④b a +a b ≥2 答案 ④解析 ∵a 与b 可能相等,∴a 2+b 2≥2ab ,故①不正确;对于②、③,当a <0,b <0时不等式不成立,故②、③不正确;对于④,由于ab >0,∴b a >0,a b >0,a b +b a≥2a b ·b a=2成立(当且仅当a =b 时等号成立).变式训练 下列不等式中一定成立的是________.①x +1x ≥2 ②b a +a b ≥2 ③sin x +1sin x≥2(x ≠k π,k ∈Z ) ④x +1x ≥2(x >0) 答案 ④解析 对于选项①,当x <0时显然不成立;对于选项②,当b a<0时显然不成立; 对选项③,当sin x <0时显然不成立;只有选项④正确.解题要点 在应用基本不等式时,“一正二定三相等”这三者缺一不可.题型二 利用基本不等式求最值例2 (1) 若x >0,则x +2x的最小值是________. (2) 当x >1时,函数y =x +1x -1的最小值是________. 答案 (1) 2 2 (2) 3解析 (1) 由基本不等式可得x +2x≥2x ·2x =22,当且仅当x =2x 即x =2时取等号,故最小值是2 2.(2)y =x +1x -1=x -1+1x -1+1≥2 (x -1)·1x -1+1=3 ⎝⎛⎭⎫当且仅当x -1=1x -1,即x =2时等号成立. 变式训练 (1)当x >1时,x +4x -1的最小值为________; (2)当x ≥4时,x +4x -1的最小值为________. 答案 (1)5 (2)163解析 (1)∵x >1,∴x -1>0.∴x +4x -1=x -1+4x -1+1≥24+1=5. (当且仅当x -1=4x -1.即x =3时“=”号成立)∴x +4x -1的最小值为5. (2)∵x ≥4,∴x -1≥3.∵函数y =x +4x在[3,+∞)上为增函数,∴当x -1=3时,y =(x -1)+4x -1+1有最小值163. 例3 设0<x <2,求函数y =x (4-2x )的最大值解析 ∵0<x <2,∴2-x >0,∴y =x (4-2x )=2·x (2-x )≤2·x +2-x 2=2, 当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x (4-2x )的最大值为 2.变式训练 若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是________.答案 1解析 ∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤(lg a +lg b )24=(lg ab )24=1. 当且仅当a =b =10时取等号.解题要点 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.题型三 利用1的代换求值例4 已知a >0,b >0,a +b =1,则1a +1b的最小值为________. 答案 4解析 ∵a >0,b >0,a +b =1,∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 变式训练 已知x >0,y >0且x +y =1,则8x +2y的最小值为________. 答案 18解析 ∵x >0,y >0,且x +y =1, ∴8x +2y =(8x +2y )(x +y )=10+8y x +2x y≥10+28y x ·2x y=18. 当且仅当8y x =2x y,即x =2y 时等号成立, ∴当x =23,y =13时,8x +2y 有最小值18.解题要点 解决这类条件最值问题通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.当堂练习1.若0<x <32,则y =x (3-2x )的最大值是________. 答案 982.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意得1a +4b =12(1a +4b )(a +b )=12×[5+(b a +4a b )]≥12×(5+2b a ×4a b )=92,当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 3. 已知f (x )=x +1x-2(x <0),则f (x )有________. 答案 最大值为-4解析 ∵x <0,∴-x >0,∴x +1x -2=-(-x +1-x )-2≤-2(-x )·1-x-2=-4, 当且仅当-x =1-x,即x =-1时,等号成立. 4.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =______. 答案 36解析 ∵a >0,x >0,∴f (x )=4x +a x ≥2 4x ·a x=4a ⎝⎛⎭⎫当且仅当4x =a x 即a =4x 2时等号成立, 又x =3时函数取得最小值,∴a =4×9=36.5.若2x +2y =1,则x +y 的取值范围是________.答案 (-∞,-2]解析 ∵1=2x +2y ≥22x ·2y =22x +y ,∴2x +y ≤14,∴x +y ≤-2. 课后作业一、 填空题1.若0<x <1,则当f (x )=x (4-3x )取得最大值时,x 的值为________.答案 23解析 ∵0<x <1,∴f (x )=x (4-3x )=13·3x (4-3x )≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时,取得“=”. 2.已知a >0,b >0,ln(a +b )=0,则ab 的最大值为________.答案 14解析 ∵ln(a +b )=0,∴a +b =1,又a >0,b >0,∴a +b ≥2ab ,∴ab ≤14. 3.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标为________. 答案 (0,2)解析 y =(x +1)2+1x +1=x +1+1x +1≥2, 当x +1=1x +1,即x =0时,y 最小值为2. 4.若x >54,则f (x )=4x +14x -5的最小值为________. 答案 7解析 f (x )=4x +14x -5=4x -5+14x -5+5. ∵x >54,∴4x -5>0,∴4x -5+14x -5≥2. 故f (x )≥2+5=7,等号成立的条件是x =32. 5.已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +b y)>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可.6.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是________. 答案 1解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1. 7.(2015湖南文)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________. 答案 2 2解析 由条件1a +2b=ab 知a ,b 均为正数.因而可利用基本不等式求解. 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎨⎧ 1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.8.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为________.答案 6解析 依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6,当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6.9.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 答案 36解析 因为x >0,a >0,所以f (x )=4x +a x≥24a =4a , 当且仅当4x =a x,即a =4x 2时取等号.由题意可得a =4×32=36. 10. (2014年上海卷)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.答案 2 2解析 x 2+2y 2≥2x 2·2y 2=22·xy =22,当且仅当x 2=2y 2时等号成立.11.已知x >0,y >0,且3x +4y =12,则xy 的最大值为______.答案 3解析 ∵12=3x +4y ≥23x ·4y ,∴xy ≤3.二、解答题12.已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9. 证明 方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +a b)≥5+4=9. ∴(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立). 方法二 (1+1a )(1+1b )=1+1a +1b +1ab .由(1)知,1a +1b +1ab≥8, 故(1+1a )(1+1b )=1+1a +1b +1ab≥9. 13.(2015湖南理节选)设a >0,b >0,且a +b =1a +1b. 证明:a +b ≥2;证明 由a +b =1a +1b =a +b ab,a >0,b >0,得ab =1. 由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.。
高中数学基础之基本不等式及应用

当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600
=
920 3+v+16v00
≤
920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;
+
y2 2x-1
=
[2x-1+1]2 y-1
+
[y-1+1]2 2x-1
≥
42x-1 y-1
+
4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1
+
y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式的八大应用
不等式充斥着整个数学空间.随意浏览一下任意一套
试卷,用不等号连接的式子总是占据着“上风”,这说明了不等式的应用性与重要性,也说明了不等式是永不衰退的高
考热点.面对丰富的不等式内容,哪些知识点的“出镜率”高?又为什么总是它们高?请看:
应用一:最值问题
最值问题是基本不等式的重要应用之一,是不等式应用的核心,也是不等式应用的精华.应用基本不等式求最值时,一定要注意等号会不会成立.有些时候不等式的推导没有问题,但不可能有等号成立的时刻,这时的值是取不到的值,当然,不能作为最值.
例1 设x,y∈R+,且+ =1,求x+y的最小值.
解法一由x+y=( + )(x+y)=(2+ + )≥4,当且仅当= ,结合+ =1,得x=2,y=2时,取得最小值4.
解法二由已知,设= ,=x=1+ ,y=1+ ,
x+y=(1+ )+(1+ )=2+( + )≥4,当且仅当m=n,即x=2,y=2时,取得最小值4.
解法三由+ =1 x+y=xy x+y≤( )2,由x,y∈R+,得x+y≥4,当且仅当x=y=2时,取得最小值4.
点评本题给出了三种方法求解,这三种方法都是基本
方法.涉及的技能是我们必须熟练掌握的基本技能.
例2 已知x,y∈(-1,1),且xy=- ,求u= + 的最小值.
解析由u= + ≥2 =
2 ≥2 =4,或由u= + = =1+ ≥1+ =4.
点评本题很精干,基本不等式的应用也很特别,第一种解法,两次使用到它,幸好两次不等式成立的条件相同;第二种解法转化后再用,两解都具有“活”的特点,欣赏价值较高.
应用二:恒成立问题
恒成立问题是不等式的“特产”,它的求解方法常规是最值转化法,求最值的方法往往有两类,一类是利用基本不等式求最值;另一类是函数求最值.
例3 若常数k>0,对于任意非负实数a,b,都有
a2+b2+kab≥c(a+b)2恒成立,求最大的常数c.
解析(i)当k≥2时,a2+b2+kab≥a2+b2+2ab=(a+b)2,当且仅当ab=0时等号成立.
(ii)当04a2时,在[-1,1]上是否存在一个x值使得|f(x)|>b;
(2)当a,b,c均为整数,且方程f(x)=0在(0,1)内有两根,求证:|a|≥4.
解析(1)由b2>4a2 - >1或- b f(x)>b或f(x)b或f(-1)0或a+c0,f(1)>0,又a,b,c均为整数,得f(0)≥1,f(1)≥1,则f(0)f(1)≥1,∴1≤a2 |a|≥4.
点评本题的综合性较强,它将二次不等式与二次函数
有机地结合在一起.第一问利用二次函数的单调性;第二问利用二次函数的“零点式”、基本不等式等,可以看出,在第
二问求解中,基本不等式起到至关重要的作用.
应用四:证明问题
证明问题是基本不等式的常规题型之一.在对不等式的
证明过程中,有时应用基本不等式进行和与积不等关系的相互转换;有时应用基本不等式的各种变式.
例7 已知a>2时,求证:loga(a-1)2,得loga(a-1)>0且log(a+1)a>0.
又=loga(a-1)?loga(a+1)≤[ ]2=[ ]2 ( )2= ,当且仅当100-3x=80-(20-2x),即x= 时,等号成立.
故在线段AB上取点G(5, ),过G分别作AE,BC的平行线DE交于F、交CD于H,则矩形GHDF的面积最大,其值为.
点评房地产是近年倍受关注的行业,针对房地产的命
题也随之诞生.本题的求解借助直线方程,通过直线方程进行设点,然后利用基本不等式产生问题的结论.
应用六:交汇性问题
不等式的交汇性是人所共知的,可以说,没有不等式不能交汇的.此类题既可以是基础题,也可以是高难度的解答题,君不见:数列中不等式呈强、导数中不等式泛滥、解几中不等式压轴、函数中不等式随处可见.不等式的交汇性是高考命
题的热点,必须引起高度重视.
例10 定长为3的线段AB的两端点在y2=x上移动,AB 的中点为M,求M点到y轴的最短距离.
解析设A(x,x1),B(x,x2),M(x,y),
则x+x=2x,x1+x2=2y,(x-x)2+(x1-x2)2=9
x+x=2x,2x1x2=4y2-2x,(x1-x2)2[(x1+x2)2+1]=9.
由于(x1-x2)2[(x1+x2)2+1]≥2 =6,即4x+1≥6,得x≥,其中等号成立的条件为(x1-x2)2=[(x1+x2)2+1],即4x1x2=-1,也就是4y2-2x=- ,结合x= ,得到y=±,故最短距离为,此时点M的坐标为( ,±).
点评本题是解几问题,但求解中的关键是基本不等式.通过合理的应用基本不等式使条件恰到好处地得到了应用,既方便了求解,也优化了解题过程.
例11 设数列{an}是由正数组成的等比数列,sn为前n 项和,试问:是否存在常数c,使得:[lg(sn-c)+
lg(sn+2-c)]=lg(sn+1-c)成立?证明你的结论.
解析由
snsn+2-s=sn(a1+qsn+1)-sn+1(a1+qsn)=a1(sn-sn+1)=-anan+1m+ 1时,结论同上.
综合可知:当4a2-16b≤1时一定存在整数n,使
|f(n)|≤成立.
点评本题是一道探索性试题,求解过程有两大特点:
第一,对根所在区间进行分类;第二,在每一类中灵活应用基本不等式.抓住这两个特点,就抓住了求解的关键.
关于基本不等式的应用就谈到此,当你掩卷时,有何感想呢?是为了解了基本不等式的试题类型而高兴,还是为见到基本不等式诸多灵活应用而惊讶呢?相信,你一定会有自己的答案.
责任编校徐国坚
注:本文中所涉及到的图表、注解、公式等内容请以PDF 格式阅读原文。