高中数学新教材解三角形教案

合集下载

高中数学教学备课教案三角函数的应用解三角形和海伦公式

高中数学教学备课教案三角函数的应用解三角形和海伦公式

高中数学教学备课教案三角函数的应用解三角形和海伦公式高中数学教学备课教案一、引言在高中数学课程中,三角函数的应用是一个重要的内容。

本教案将重点介绍如何使用三角函数解三角形以及应用海伦公式求解三角形的面积。

二、解三角形的基本概念1. 边的命名与对应的角:分别用小写字母a、b、c表示三角形的三条边,对应的角用大写字母A、B、C表示,即a对应角A,b对应角B,c对应角C。

2. 定义:已知三角形的三个角度或三个边长,可以利用三角函数关系解三角形。

三、已知两边和夹角的情况在已知两边和夹角的情况下,可以使用余弦定理和正弦定理求解三角形的其他边长和角度。

1. 余弦定理根据余弦定理,已知两边a、b和夹角C,可以求解第三边c:c² = a² + b² - 2abcosC2. 正弦定理根据正弦定理,已知两边a、b和夹角C,可以求解第三边c:sinC = (c / a) = (c / b)四、已知三边的情况在已知三边的情况下,可以利用余弦定理求解三角形的角度。

1. 余弦定理根据余弦定理,已知三边a、b、c,可以求解角A:cosA = (b² + c² - a²) / 2bc2. 求解其他角度利用三角形内角和为180°的性质,可以求解角B和角C。

五、海伦公式与三角形面积的求解海伦公式是用来求解三角形面积的一种方法,其公式如下:面积= √[s(s - a)(s - b)(s - c)]其中,s为三角形的半周长,即s = (a + b + c)/ 2。

六、教学案例下面通过一个教学案例来演示如何应用三角函数解三角形和使用海伦公式求解三角形的面积。

案例:已知三角形的两边分别为a = 5cm,b = 7cm,夹角为C = 60°,求解第三边c、角A和角B以及三角形的面积。

解答:1. 求解第三边c:根据余弦定理,可以计算:c² = a² + b² - 2abcosC= 5² + 7² - 2 × 5 × 7 × cos60°≈ 24.762因此,c ≈ √24.762 ≈ 4.976 cm。

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

高中数学新人教版A版精品教案《解三角形(专题课)重难点教学方法设计》

高中数学新人教版A版精品教案《解三角形(专题课)重难点教学方法设计》

解三角形(专题课)教学设计一、教材分析本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。

本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。

可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。

是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。

二、学情分析学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。

学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。

通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。

三、教学目标知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。

过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。

培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。

让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。

情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。

四、教学重难点重点:正弦定理、余弦定理的内容及基本应用。

难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。

人教版高中数学必修五高一数学必修五《解三角形》教案

人教版高中数学必修五高一数学必修五《解三角形》教案

1.1.3解三角形的进一步讨论(一)教学目标1.知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

(二)教学重、难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。

难点:正、余弦定理与三角形的有关性质的综合运用。

(三)学法与教学用具学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。

教学用具:教学多媒体设备(四)教学设想[创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。

下面进一步来研究这种情形下解三角形的问题。

[探索研究]例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。

(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。

高中数学第一章解三角形教学设计新人教A版必修5

高中数学第一章解三角形教学设计新人教A版必修5

(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。

新高考高中数学解三角形的综合-教案(解析版)

新高考高中数学解三角形的综合-教案(解析版)

学科教师辅导讲义学员编号:年级:高二课时数:学员姓名:辅导科目:数学学科教师:授课主题解三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握正弦定理和余弦定理的基本内容;②能灵活使用正余弦定理结合三角函数基本公式进行变形;③运用正弦定理和余弦定理解决实际问题。

授课日期及时段T(Textbook-Based)——同步课堂一、知识框架二、知识概念体系搭建(一)正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin . 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 变形:①C B A c b a sin :sin :sin ::= ②角化边 C R c BR b A R a sin 2sin 2sin 2===③边化角 Rc C Rb B Ra A 2sin 2sin 2sin ===(二) 余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即 a 2=b 2+c 2-2bc cos A ; ① b 2=c 2+a 2-2ca cos B ; ② c 2=a 2+b 2-2ab cos C .③在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 由此可知余弦定理是勾股定理的推广.由①②③可得cos A =bc a c b 2222-+; cos B =ca b a c 2222-+; cos C =abc b a 2222-+.利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. (3)在∆ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角. (三) 三角形中的公式变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

高一数学教案解三角形5篇

高一数学教案解三角形5篇

高一数学教案解三角形5篇等腰三角形,看似简单平常,实则魅力无穷.许多关键问题三角问题与等腰三角形密切相关,形变解题中若能根据题意恰当构造,则可使一些三角问题别开生面地得以解决,更给人一种形象直观、流畅清晰、解法优美之感.今天在这里整理了一些,我们一起来呢吧!高一数学教案解三角形1[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备] 学生、老师剪下附页2中的图2。

[教学过程] 一、画一画,说一说1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习境况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?二、分一分 1、小组活动;把附页2中的图2中的三角形需要进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分后?2、汇报:进行分类的标准和方法。

可以按角来分,可以按边来分。

二、按角分类: 1、观察观察具体来说三角形有什么共同的特点,从而归纳出来三个角都是锐角的'三角形是锐角三角形。

2、观察共同第三类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形3、观测观察第三类三角形有什么互助的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边,这样三角形的三角形叫等腰三角形,并透露各部分的名称。

2、引导学生发现有的菱形三角形三条边都相等,这样的矩形是等边三角形。

讨论等边三角形是等腰三角形吗?四、填一填:24、25页让学生辨认各种三角形。

五、练一练:第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能重新考虑是一个锐角三角形,必须三个角都是锐角总算是九个锐角三角形。

第2题:在点子图上画作三角形第3题:剪一剪。

六、完成26页实践活动。

[板书设计] 三角形的分类按角分类:按边分类:高一数学教案可解三角形2教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在一般性的三角形中作出中均它们.教学重点:在具体的三角形中作出三角形的低.教学难点:画出钝角三角形的三条高.活动准备:学生预先剪好三种三角形,一副三角板.教学过程:过菱形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:三角形从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的'三条高在正三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出高德帕伦三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于假脉一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的等腰三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在四边形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的中间层.作业:P127 1、2、3高一数学教案可解三角形3《三角形中位线》教案一、教学目标:1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算2.掌握添加辅助线解题的技巧.3.提高中学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法探究式自主学习:以学生的自主探究为主,教职员加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准三、教学内容﹑教材重、难点分析:三角形中位线定理的学习是继学习-平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中所位线定理,最后是利用中位线定理解答例一所给的环境问题.在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.四、教学内容媒体的选择和设计通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。

高中数学教案:三角函数与解三角形

高中数学教案:三角函数与解三角形

高中数学教案:三角函数与解三角形一、引言三角函数是数学中的重要分支,解三角形是数学中的常见问题。

理解三角函数与解三角形对于学生的数学素养的提升至关重要。

本教案将以三角函数与解三角形为主题,设计一节高中数学课,帮助学生掌握相关知识和技能。

二、知识与技能目标1. 理解三角函数的概念和性质;2. 掌握常用三角函数的定义和计算方法;3. 学会利用三角函数解决实际问题;4. 理解解三角形的基本概念和原理;5. 掌握解三角形的常用方法。

三、教学重难点1. 三角函数的定义和性质;2. 解三角形的常用方法。

四、教学过程(一)引入教师可以从生活中的实际问题导入,如测量高楼的高度、计算两岸垂直相距较远的两点之间的距离等。

通过这些问题,引导学生思考如何利用三角函数和解三角形的知识来解决实际问题。

(二)三角函数的定义和性质1. 讲解正弦函数和余弦函数的定义,即直角三角形中的对边与斜边的比值;2. 介绍正弦函数和余弦函数的性质,如周期性、奇偶性等;3. 引导学生计算角度的度数和弧度的换算,并讲解正弦函数和余弦函数的图像特点。

(三)解三角形的基本概念和原理1. 讲解解三角形的基本概念,如角、边、高、中线等;2. 介绍解三角形的原理,即利用已知条件和三角函数的性质来确定未知边和角的关系。

(四)解三角形的常用方法1. 讲解正弦定理和余弦定理的原理和推导过程;2. 引导学生通过实例学会应用正弦定理和余弦定理解决三角形的问题;3. 介绍解直角三角形的特殊方法,如利用三角函数和勾股定理求解。

(五)练习与巩固布置相关练习题,包括计算正弦、余弦的值,解决三角形问题等。

通过练习,巩固学生对于三角函数与解三角形的理解和应用能力。

五、教学辅助手段1. 教学PPT:展示三角函数和解三角形的定义、性质、公式和解题步骤;2. 白板和马克笔:用于引导学生演算题目和解题思路。

六、教学评价与反思本节课教学以生活实际问题为切入点,通过讲解三角函数的定义和性质以及解三角形的基本概念和原理,引导学生掌握三角函数的计算和解决三角形问题的方法。

2021_2022学年新教材高中数学第9章解三角形9.1.2余弦定理学案含解析新人教B版必修第四册2

2021_2022学年新教材高中数学第9章解三角形9.1.2余弦定理学案含解析新人教B版必修第四册2

9.1.2 余弦定理最新课程标准:1.掌握余弦定理及其推论.(重点)2.掌握正、余弦定理的综合应用.(难点)3.能应用余弦定理判断三角形的形状.(易错点)知识点一 余弦定理(1)三角形任何一边的________等于其他两边的________减去这两边与它们________的余弦的积的________,即a 2=______________,b 2=______________,c 2=______________.(2)应用余弦定理我们可以解决两类解三角形问题.①已知三边,求________.②已知________和它们的________,求第三边和其他两个角. 状元随笔 利用余弦定理只能解决以上两类问题吗?[提示] 是.知识点二 余弦定理的变形(1)余弦定理的变形:cos A =________________;cos B =________________;cos C =________________.(2)利用余弦定理的变形判定角:在△ABC 中,c 2=a 2+b 2⇔∠C 为________;c 2>a 2+b 2⇔∠C 为________;c 2<a 2+b 2⇔∠C 为________.[基础自测]1.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为()A.13B .-12C.14D .-142.在△ABC 中,若a =3,c =7,∠C =60°,则b 为()A .5B .8C .5或-8D .-5或83.在△ABC 中,a =1,b =3,c =2,则∠B =________.4.在△ABC 中,若a 2=b 2+bc +c 2,则∠A =________.题型一 已知两边及一角解三角形例1已知△ABC ,根据下列条件解三角形:a =3,b =2,∠B =45°.方法归纳已知两边及一角解三角形有以下两种情况:(1)若已知角是其中一边的对角,有两种解法,一种方法是利用正弦定理先求角,再求边;另一种方法是用余弦定理列出关于另一边的一元二次方程求解.(2)若已知角是两边的夹角,则直接运用余弦定理求出另外一边,然后根据边角关系利用正弦定理求解或者直接利用余弦定理求角.跟踪训练1在△ABC 中,已知a =4,b =6,∠C =120°,则边c =________.题型二 已知三边或三边关系解三角形例2(1)已知△ABC 的三边长为a =23,b =22,c =6+2,求△ABC 的各角度数;(2)已知△ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角.【解】 (1)由余弦定理得:cos A =b 2+c 2-a 22bc =(22)2+(6+2)2-(23)22×22×(6+2)=12, ∴∠A =60°.cos B =a 2+c 2-b 22ac =(23)2+(6+2)2-(22)22×23×(6+2)=22, ∴∠B =45°,∴∠C =180°-∠A -∠B =75°.(2)∵c >a ,c >b ,∴∠C 最大.由余弦定理,得c 2=a 2+b 2-2ab cos C ,即37=9+16-24cos C ,∴cos C =-12, ∵0°<∠C <180°,∴∠C =120°.∴△ABC 的最大内角为120°.方法归纳(1)已知三角形三边求角时,可先利用余弦定理求角,再用正弦定理求解,在用正弦定理求解时,要根据边的大小确定角的大小,防止产生增解或漏解.(2)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边解三角形.跟踪训练2在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则∠A 等于()A .30°B .60°C .120°D .150°题型三 正、余弦定理的综合应用状元随笔1.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a 2=b 2+c 2,则sin 2A =sin 2B +sin 2C 成立吗?反之,说法正确吗?为什么?[提示] 设△ABC 的外接圆半径为R.由正弦定理的变形,将a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b 2+c 2可得sin 2A=sin 2B +sin 2C.反之,将sin A =a 2R ,sin B =b 2R ,sin C =c 2R代入sin 2A =sin 2B +sin 2C 可得a 2=b 2+c 2.因此,这两种说法均正确.2.在△ABC 中,若c 2=a 2+b 2,则∠C =π2成立吗?反之,若∠C =π2,则c 2=a 2+b 2成立吗?为什么?[提示] 因为c 2=a 2+b 2,所以a 2+b 2-c 2=0,由余弦定理的变形cos C =a 2+b 2-c 22ab=0,即cos C =0,所以∠C =π2,反之,若∠C =π2,则cos C =0,即a 2+b 2-c 22ab=0,所以a 2+b 2-c 2=0,即c 2=a 2+b 2.例3在△ABC 中,若(a -c ·cos B )sin B =(b -c ·cos A )·sin A ,判断△ABC 的形状.角边转化.方法归纳(1)方法一是用余弦定理将等式转化为边之间的关系式,方法二是借助于正弦定理,将已知等式转化为角的三角函数关系式.这两种方法是判断三角形形状的常用手段.(2)一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练3在△ABC 中,若2∠B =∠A +∠C ,b 2=ac ,试判断△ABC 的形状为________.教材反思1.本节课的重点是余弦定理及其推论,并能用它们解三角形,难点是在解三角形时,对两个定理的选择.2.本节课要掌握的解题方法:(1)已知三角形的两边与一角,解三角形.(2)已知三边解三角形.(3)利用余弦定理判断三角形的形状.3.本节课的易错点有两处:(1)正弦定理和余弦定理的选择:已知两边及其中一边的对角解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来.比较两种方法,采用余弦定理较简单.(2)利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理的表达形式是边长的平方,通常转化为一元二次方程的形式求解根的问题.9. 余弦定理新知初探·自主学习知识点一(1)平方 平方和 夹角 两倍 b 2+c 2-2bc cos Aa 2+c 2-2ac cos Ba 2+b 2-2ab cos C (2)三角 两边 夹角知识点二(1)b 2+c 2-a 22bc a 2+c 2-b 22ac a 2+b 2-c 22ab(2)直角 钝角 锐角 [基础自测]1.解析:根据正弦定理,a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶3,设a =3k ,b =2k ,c =3k (k >0).则有cos C =9k 2+4k 2-9k 22×3k ×2k=13. 答案:A2.解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,即49=9+b 2-3b ,所以(b -8)(b +5)=0.因为b >0,所以b =8.答案:B3.解析:cos B =c 2+a 2-b 22ac =4+1-34=12,∠B =60°. 答案:60°4.解析:∵a 2=b 2+bc +c 2,∴b 2+c 2-a 2=-bc ,∴cos A =b 2+c 2-a 22bc =-bc 2bc =-12, 又∵0°<∠A <180°,∴∠A =120°.答案:120°课堂探究·素养提升例1【解】 由余弦定理知b 2=a 2+c 2-2ac cos B .∴2=3+c 2-23·22c . 即c 2-6c +1=0,解得c =6+22或c =6-22. 当c =6+22时,由余弦定理,得 cos A =b 2+c 2-a 22bc =2+⎝ ⎛⎭⎪⎫6+222-32×2×6+22=12. ∵0°<∠A <180°,∴∠A =60°,∴∠C =75°.当c =6-22时,由余弦定理,得 cos A =b 2+c 2-a 22bc =2+⎝ ⎛⎭⎪⎫6-222-32×2×6-22=-12. ∵0°<∠A <180°,∴∠A =120°,∠C =15°.故c =6+22,∠A =60°,∠C =75°或c =6-22,∠A =120°,∠C =15°. 跟踪训练1 解析:根据余弦定理c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos 120°=76,c =219.答案:219跟踪训练2 解析:∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴∠A =60°. 答案:B例3【解】 方法一:∵(a -c ·cos B )sin B =(b -c ·cos A )·sin A ,∴由正、余弦定理可得:⎝ ⎛⎭⎪⎫a -c ·a 2+c 2-b 22ac ·b =⎝⎛⎭⎪⎫b -c ·b 2+c 2-a 22bc ·a , 整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2,即(a 2-b 2)(a 2+b 2-c 2)=0,∴a 2+b 2-c 2=0或a 2=b 2.∴a 2+b 2=c 2或a =b .故△ABC 为直角三角形或等腰三角形.方法二:根据正弦定理,原等式可化为:(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A ,即sin C cos B sin B =sin C cos A sin A .∵sin C ≠0,∴sin B cos B =sin A cos A ,∴sin 2B =sin 2A .∴2∠B =2∠A 或2∠B +2∠A =π,即∠A =∠B 或∠A +∠B =π2. 故△ABC 是等腰三角形或直角三角形.跟踪训练3 解析:∵2∠B =∠A +∠C ,又∠A +∠B +∠C =180°,∴∠B =60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 60°=a 2+c 2-ac , ∴a 2+c 2-ac =ac ,从而(a -c )2=0,∴a =c ,可知△ABC 为等边三角形.答案:等边三角形。

高中数学必修5《解三角形应用举例》教案(4)

高中数学必修5《解三角形应用举例》教案(4)

《解三角形应用举例》教案(4)教学目标1.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用;2.通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.3.进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力4.让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验.教学重点难点1.重点:推导三角形的面积公式并解决简单的相关题目.2.难点:利用正弦定理、余弦定理来求证简单的证明题.教法与学法1.教法选择:教学形式采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作交流得出转化问题方法.2.学法指导:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.教学过程一、设置情境,激发学生探索的兴趣三、思维拓展,课堂交流 3AB AC ⋅=.(II )若b c +=,253AB AC ⋅=cos 3,A =bc ∴1sin 2bc A ==)对于5bc =,又5,1b c∴==或1,5b c==,由余弦定理得2222cos20a b c bc A=+-=,25a∴=四、归纳小结,课堂延展教学环节教学过程设计意图师生活动归纳小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.回顾解斜三角形的一般题型,便于学生在复习中更深入的思考,更广泛的研究解三角形.由学生谈体会,师生共同归纳总结.巩固创新课堂延展1 .△ABC中,a=2bcosC,则此三角形一定是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案:A2.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)答案:当AB分别在OA、OB上离O点既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.学生课下通过练习,巩固正余弦定理的理解.1.教材地位分析解三角形应用举例(4)是在学习了正弦定理、余弦定理的基础上安排的一节应用举例课程,是在学习了测量距离、高度、角度问题后,有了解三角形方法的初步体验,本节主要介绍了正弦定理和余弦定理在计算三角形面积、判断三角形形状、证明恒等式中的应用.本节课是解三角形应用举例第四阶段,为前面学习测量距离、高度、角度问题做了总结,是前面问题的进一步深化.2.学生现实状况分析通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法.但学生对正弦定理和余弦定理应用范围、应注意的问题缺乏清晰的概念.因此,本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.。

人教版高中数学必修5《解三角形》教案

人教版高中数学必修5《解三角形》教案

高中数学必修5 《解三角形》知识点:1、 正弦定理:在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,R 为ABC ∆的外接圆的半径,则有2sin sin sin Ca b c R ===A B . 2、 正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sinC c R =; ②sin 2a RA =,sin 2b RB =,sinC 2c R =; ③::sin :sin :sinC a b c =A B ; ④sin sin sin C sin sin sin Ca b c a b c ++===A +B +A B . 3、 三角形面积公式:111sin sin C sin 222ABC S bc ab ac ∆=A ==B . 4、 余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cosC c a b ab =+-.5、 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos C 2a b c ab+-=. 6、 设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =o ; ②若222a b c +>,则90C <o; ③若222a b c +<,则90C >o .正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.主要有以下五大命题热点: 一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高、角平分线、中线)及周长等基本问题.例1 ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( ) A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πBC .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 例2 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值.二、判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状. 例3 在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形三、 解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.例4 在ABC ∆中,若120A ∠=o,5AB =,7BC =,则ABC ∆的面积S =_________ 四、求值问题例5 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+ 和321+=b c ,求A ∠和B tan 的值.五、正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际生活中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

苏教版高中高三数学必修5《解三角形》教案及教学反思

苏教版高中高三数学必修5《解三角形》教案及教学反思

苏教版高中高三数学必修5《解三角形》教案及教学反思一、教学背景《解三角形》是高中数学必修5中的重要章节,这一章的重点是如何通过已知角度或边求解三角形的其他未知角度和边长。

在这一章中,学生需要掌握三角函数的基本概念和运用,特别是正弦、余弦和正切,同时还需要掌握三角函数的运算法则和三角三边的关系。

本节课程旨在帮助学生深刻理解三角函数的概念和应用,掌握几何意义和图形意义,同时加强学生的数学思维和推理能力。

二、教学目标1.理解三角函数的基本概念,特别是正弦、余弦和正切。

2.掌握三角函数的运算法则和三角三边的关系。

3.能够运用所学的知识,解决实际问题。

4.提高学生的数学思维和推理能力。

三、教学内容1. 三角函数的基本概念正弦、余弦和正切•正弦函数:$\\sin A = \\frac{a}{c}$•余弦函数:$\\cos A = \\frac{b}{c}$•正切函数:$\\tan A = \\frac{a}{b}$其中,a、b、c分别表示三角形的三条边,A表示对应的内角。

2. 三角函数的运算法则和三角三边的关系三角函数的运算法则•$\\sin (A \\pm B) = \\sin A \\cos B \\pm \\cos A \\sin B$•$\\cos (A \\pm B) = \\cos A \\cos B \\mp \\sin A \\sin B$•$\\tan (A \\pm B) = \\frac{\\tan A \\pm \\tan B}{1 \\mp \\tan A \\tan B}$三角三边的关系•正弦定理:$\\frac{a}{\\sin A} =\\frac{b}{\\sin B} = \\frac{c}{\\sin C} = 2R$•余弦定理:$a^2 = b^2 + c^2 - 2bc \\cos A$•正切定理:$\\tan \\frac{A}{2} = \\frac{r}{s - a}$其中,R表示三角形外接圆半径,r表示三角形内切圆半径,s表示三角形半周长。

新人教A版必修5高中数学第一章解三角形学案

新人教A版必修5高中数学第一章解三角形学案

高中数学 第一章 解三角形学案新人教A 版必修5学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.学法重难点测量距离的实际应用一:知识链接(本课时的主要知识展示)问题1:正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形; ②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角; ②知道两边及这两边的夹角解三角形.问题2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.二:试一试(课前演练)练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变.则斜坡长变为___ .新课探究探究1 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小 及△ABC 最短边的长.探究2 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30, 相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往 B 处救援(角度精确到1)?探究3 在∆ABC 中,设tan 2,tan A c b B b-= 求A 的值.※ 模仿练习 练1. 练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,北 20 10 A B • •C 30°60°B C 北海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是: =()()()abcR p p a p b p c --- ( 内切圆半径 ()()()S p a p b p c r p p---==) 当堂检测A 级:1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ). A .9 B .18 C .93 D .1832.在△ABC 中,若222c a b ab =++,则∠C =( ).A . 60°B . 90°C .150°D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ).A .0个B .1个C .2个D .不确定的B 级:4. 在△ABC 中,32a =,23b =,1cos 3C =,求ABC S ∆;5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,求A 。

高中数学第9章解三角形9.1.1正弦定理教案第四册

高中数学第9章解三角形9.1.1正弦定理教案第四册

解三角形9。

1正弦定理与余弦定理9。

1.1正弦定理学习目标核心素养1.掌握正弦定理的内容及其证明方法.(重点)2.理解正弦定理及其变形的结构形式,并能用正弦定理解决三角形度量和边角转化问题,会判三角形的形状.(难点)3.能根据正弦定理确定三角形解的个数.(难点、易错点)1。

借助正弦定理的推导,提升数学抽象、逻辑推理的素养.2.通过正弦定理的应用的学习,培养数学运算、直观想象的素养。

关于正弦定理的发现历史,一般认为是中世纪阿拉伯数学家、天文学家阿布瓦法(940~998)提出并证明了球面三角形的正弦定理,而平面三角形的正弦定理的证明最先是纳绥尔丁-图西(1201~1274)给出的.我国清代数学家梅文鼎(1633~1721)在他的著作《平三角举要》中也给出了证明,而且还给出了正弦定理的完整形式.思考:三角形中的边与其所对的角的正弦值之间具有什么关系?1.三角形的面积公式(1)S=错误!a·h a=错误!b·h b=错误!c·h c(h a,h b,h c分别表示a,b,c 边上的高).(2)S=错误!ab sin C=错误!bc sin A=错误!ac sin B.(3)S=错误!(a+b+c)·r(r为内切圆半径).2.正弦定理3.解三角形(1)一般地,我们把三角形的3个角与3条边都称为三角形的元素.(2)已知三角形的若干元素求其他元素一般称为解三角形.思考:利用正弦定理解三角形需要哪些条件?[提示]需要两角和一边或两边和其中一边的对角.[拓展]1.正弦定理的常用变形式在△ABC中,若内角A,B,C所对的边长分别为a,b,c,其外接圆半径为R。

则(1)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A;(2)sin A∶sin B∶sin C=a∶b∶c;(3)错误!=错误!=错误!=错误!=2R;(证明见类型4[探究问题])(4)a=2R sin A,b=2R sin B,c=2R sin C;(可以实现边到角的转化)(5)sin A=错误!,sin B=错误!,sin C=错误!.(可以实现角到边的转化)2.三角形中边角的不等关系(1)若A>B>C,可得a>b>c,则sin A>sin B>sin C;(2)若sin A>sin B>sin C,可得a>b>c,则A>B>C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。

高中数学新教材解三角形教案3一:说教材平面对量的数量积是两向量之间的乘法,而平面对量的坐标表示把向量之间的运算转化为数之间的运算。

本节内容是在平面对量的坐标表示以及平面对量的数量积及其运算律的基础上,介绍了平面对量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。

为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。

本节内容也是全章重要内容之一。

二:说学习目标和要求通过本节的学习,要让学生掌握(1):平面对量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法在教学过程中,我主要采纳了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互沟通来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习爱好,增强课堂上和学生的沟通,从而达到及时发现问题,解决问题的目的。

通过精讲多练,充分调动学生自主学习的乐观性。

如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五:说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面对量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1) 模的计算公式(2)平面两点间的距离公式。

相关文档
最新文档