沪科版-数学-八年级上册-15.3 等腰三角形第4课时 作业
【基础练习】《等腰三角形》(数学沪科版八上)【含答案】
15.3《等腰三角形》基础练习第1课时《等腰三角形的性质定理及推论》一、选择题1.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A.40°B.70°C.100°D.140°2.若等腰三角形中有两边长分别为2和5,则这个三角形的第三条边长为()A.2或5 B.3 C.4 D.53.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°4.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°5.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.66.若等腰三角形的一个外角等于140°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°7.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°8.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10°B.12.5°C.15°D.20°二、填空题9.等腰三角形的一个底角为50°,则它的顶角的度数为.10.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为cm.11.已知等腰三角形的一个外角为130°,则它的顶角的度数为.12.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B 为度.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题14.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.15.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.第2课时一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50 B.∠A=40°,∠B=60°C.∠A=40°,∠B=70 D.∠A=40°,∠B=80°3.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个4.如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.8 C.9 D.105.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:26.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条 D.8条7.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形8.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有()个.A.8 B.9 C.10 D.11二、填空题9.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.10.如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=时,△AOP为等边三角形.11.如图,在3×3的网格中有A、B两点,任取一个格点E,则满足△EAB是等腰三角形的点E有个.12.在△ABC中,∠A=80°,当∠B=时,△ABC是等腰三角形.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).三、解答题14.如图,BD是△ABC的角平分线,DE∥BC交AB于点E.(1)求证:BE=DE;(2)若AB=BC=10,求DE的长.15.已知:如图,AB=AC,∠ABD=∠ACD,求证:BD=CD.第3课时一、选择题1.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5 D.2.52.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15°B.30°C.45°D.60°3.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9 cm B.8 cm C.7cm D.6cm4.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且AB=6,则EC的长为()A.3 B.4.5 C.1.5 D.7.55.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A.9cm B.8cm C.7cm D.6cm6.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=8,则BD=()A.2 B.3 C.4 D.67.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要()A.450a元B.225a元C.150a元D.300a元8.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=6m,∠A=30°,则DE等于()A.1.5m B.2m C.2.5m D.3m二、填空题9.在Rt△ABC中,∠A=30°,∠B=90°,AC=10,则BC=10.如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作圆弧,交AB 于点D,若CB=4,则BD的长为.11.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D 和点E,若CE=2,则AB的长为12.已知等腰三角形的底角为15°,腰长为8cm,则腰上的高为.13.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于.三、解答题14.如图,在△ABC中,BA=BC,∠B=120°,线段AB的垂直平分线MN交AC于点D,且AD=8cm.求:(1)∠ADG的度数;(2)线段DC的长度.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触礁的危险?请说明理由.参考答案第1课时1.解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角为:(180°﹣40°)÷2=70°,故选:B.2.解:当腰为5时,根据三角形三边关系可知此情况成立,这个三角形的第三条边长为5;当腰长为2时,根据三角形三边关系可知此情况不成立;故选:D.3.解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.4.解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.5.解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.6.解:①若顶角的外角等于140°,那么顶角等于40°,两个底角都等于70°;②若底角的外角等于140°,那么底角等于40°,顶角等于100°.故选:D.7.解:∵∠1=125°,∴∠ADE=180°﹣125°=55°,∵DE∥BC,AB=AC,∴AD=AE,∠C=∠AED,∴∠AED=∠ADE=55°,又∵∠C=∠AED,∴∠C=55°.故选:A.8.解:∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°﹣∠ADE=15°.故选:C.9.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.10.解:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.11.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.12.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.13.解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.14.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.15.(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.第2课时1.解:A、∵1+1=2,∴本组数据不可以构成等腰三角形;故本选项错误;B、∵1+1<3,∴本组数据不可以构成等腰三角形;故本选项错误;C、∵1+2>2,且有两边相等,∴本组数据可以构成等腰三角形;故本选项正确;D、∵2+2<5,∴本组数据不可以构成等腰三角形;故本选项错误;故选:C.2.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选:C.3.解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,△ABC是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.4.解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有6个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:D.5.解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.6.解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.7.解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.8.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选:B.9.解:∵在Rt△ABC中,∠C=90°,∠A=40°,∴当AB=BP1时,∠BAP1=∠BP1A=40°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×40°=20°,当AB=AP4时,∠ABP4=∠AP4B=×(180°﹣40°)=70°,当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°,∴∠APB的度数为:20°、40°、70°、100°.故答案为:20°或40°或70°或100°.10.解:∵AON=60°,∴当OA=OP=a时,△AOP为等边三角形.故答案是:a.11.解:如图,满足△EAB是等腰三角形的点E有5个,故答案为:5.12.解:∵∠A=80°,∴①当∠B=80°时,△ABC是等腰三角形;②当∠B=(180°﹣80°)÷2=50°时,△ABC是等腰三角形;③当∠B=180°﹣80°×2=20°时,△ABC是等腰三角形;故答案为:80°、50°、20°.13.解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②14.(1)证明:∵BD是△ABC的角平分线,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠EBD.∴BE=DE.(2)∵AB=BC,BD是△ABC的角平分线,∴AD=DC.∵DE∥BC,∴,∴.∴DE=5.15.证明:连接BC.∵AB=AC(已知),∴∠1=∠2(等边对等角).又∠ABD=∠ACD(已知),∴∠ABD﹣∠1=∠ACD﹣∠2(等式运算性质).即∠3=∠4.∴BD=DC(等角对等边).第3课时1.解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.2.解:∵在Rt△ABC中,∠C=90°,AB=2BC,即BC=AB,∴∠A=30°,故选:B.3.解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,故选:B.4.解:∵△ABC是等边三角形,∴∠C=60°,AC=AB=BC=6,∵BD平分∠ABC交AC于点D,∴CD=AC=3,∵DE⊥BC,∴∠CDE=30°,∵EC=CD=1.5.故选:C.5.解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选:D.6.解:∴CD是高,∴∠BDC=90°,∵∠ACB=90°,∠A=30°,∴∠B=60°,BC=AB=×8=4,∴∠BCD=30°,∴BD=BC=2,故选:A.7.解:如图,作BH⊥AC于H,则∠ABH=180°﹣∠BAC=30°,在Rt△ABH中,BH=AB=10,所以S△ABC=×10×30=150,所以购买这种草皮至少需要150a元.故选:C.8.解:∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=3,∴DE=1.5.故选:A.9.解:∵∠A=30°,∠B=90°,∴BC=AC=5,故答案为:5.10.解:如图,过C点作BD的垂直平分线交BD于点E,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴∠BCE=∠A=30°,BE=BD,∴BE=2∴BD=2BE=4故答案为:4.11.解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故答案为:4.12.解:如图,过C作CD⊥AB,交BA延长线于D,∵∠B=15°,AB=AC,∴∠DAC=30°,∵CD为AB上的高,AC=8cm,∴CD=AC=4cm.故答案为:4cm.13.解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故答案为4.14.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理),∴∠ADG=90°﹣30°=60°;(2)连接BD.∵AB的垂直平分线DG交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AD=8cm,∴DC=16cm.15.解:(1)过P作PD⊥AB于点D,∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB,∴BP=AB=7(海里).(2)作PD⊥AB于D,∵A处测得小岛P在北偏东75°方向,∴∠PAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠APB=15°,∴AB=PB=7海里,∵∠PBD=30°,∴PD=PB=3.5>3,∴该船继续向东航行,没有触礁的危险.。
沪科版八年级数学上册课时作业15.3.3 等腰三角形的判定
沪科版数学八年级上册课时作业第15章轴对称图形与等腰三角形15.3 等腰三角形第3课时等腰三角形的判定基础达标1. 如图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中等腰三角形的个数是( )A. 1个B. 2个C. 3个D. 4个2. 下列说法中正确的有( )①有两边相等的三角形为等腰三角形;②等腰三角形的两个底角相等;③钝角三角形不可能是等腰三角形;④有一高线和一中线重合的三角形是等腰三角形.A. 4个B. 3个C. 2个D. 1个3.如图所示,△ABC中,∠B、∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5,则DE的长是( )A. 7B. 6C. 5D. 44.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是( )A. 3B. 2C. 3D. 15. 如图,BD为△ABC外角的平分线,若BD∥AC,则△ABC为.6.已知:如图,△ABC中,CD是角平分线且交AB于D,DE∥BC,交AC于E,若DE=3cm,A E=4cm,则AC=cm.7. 如图,AD,BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.巩固提升8.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB于点F,则△AEF是( )A. 等边三角形B. 等腰三角形C. 不等边三角形D. 无法确定9.如图,直角坐标系中,点A(-2,2),B(0,1),点P在x轴上,且△PAB是等腰三角形,则满足条件的点P共有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,△MNP中,∠P=60°,MN=MP,MQ⊥PN,垂足为Q,延长MN到G,取NG=NQ,若Rt△MNQ的周长为12,MQ=a,则△MGQ的周长是( )A. 8+2aB. 8+aC. 12+aD. 6+2a11.如图,在△ABC中,AB=AC,点D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=.12.如图,在△ABC中,AB=4,BC=6,∠B=60°,将三角形ABC沿着射线BC的方向平移2个单位后,得到三角形△A′B′C′,连接A′C,则△A′B′C的周长为.13. 在等边三角形ABC上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.14.如图所示,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE 相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.15.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中一种情形,证明△ABC是等腰三角形.参 考 答 案1. C2. B3. C4. B5. 等腰三角形6. 77. 证明:∵∠OBD =∠ODB ,∴OB =OD .在△AOB 与△COD 中,OA OC AOB COD OB OD ∠⎪⎨⎪⎩∠⎧=,=,=,∴△AOB ≌△COD ,(SAS ) ∴AB =CD . 8. B 9. D 10. C 11. 8cm 12. 12 13.证明:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =CA .又AD =BE =CF.∴BD =CE =AF .在△ADF 与△BED 与△CFE 中,AD BE CF A B C AF BD CE ∠∠∠⎧⎪⎨⎪⎩==,==,==,∴△ADF ≌△BED ≌△CFE .(SAS ) ∴DF =DE =EF ,∴△DEF 是等边三角形. 14.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°.在△ABE 与△CAD 中,AB CA BAE C AE CD ∠∠⎧⎪⎨⎪⎩=,=,=, ∴△ABE ≌△CAD .(SAS )(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BFD=∠ABE+∠BAD=∠CAD+∠B AD=∠BAE=60°.15. 解:(1)①③或②③(2)若选①③,则在△BOE与△COD中,EBO DCOBOE CODBE CD∠∠∠∠⎧⎪⎨⎪⎩=,=,=,∴△BOE≌△COD.(AAS)∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠AC B,∴△ABC是等腰三角形.。
完整版沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案
沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.2、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.63、如图,过边长为2的等边三角形ABC的顶点C作直线l⊥ BC,然后作△ABC 关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+4、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°5、如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA 和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°6、在正方形网格中,∠AOB的位置如图所示,到两边距离相等的点应是( )A.C点B.D点C.E点D.F点7、如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13B.15C.17D.198、已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形9、如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正四边形B.正六边形C.正八边形D.正十边形10、如图,Rt△ABC中,∠ACB =90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB的度数为()A.40°B.30°C.20°D.10°11、如图,在△ABC中,∠A=105º,AC的垂直平分线MN交BC于点E,AB+BE=BC,则∠B的度数是()A.45ºB.50ºC.55ºD.60º12、如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A. B. C. D.13、如图,将矩形ABCD沿对角线AC折叠,使B落在E处,AE交CD于点F,则下列结论中不一定成立的是()A.AD=CEB.AF=CFC.△ADF≌△CEFD.∠DAF=∠CAF14、如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°15、三角形ABC的三条内角平分线为AE,BF,CG,下面的说法中正确的个数有()①△ABC的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则ΔABC最小周长为 ________ 。
沪科版八年级上册数学第15章 轴对称图形与等腰三角形 等腰三角形的性质
8.【中考·黔西南州】如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=________度.
15
【点拨】∵△ABC是等边三角形, ∴∠ACB=60°. ∵CG=CD,∠CGD+∠CDG=∠ACB, ∴∠CDG=∠CGD=30°.
9.如图,在等边三角形ABC中,点D,E分别在边BC,AB上,且BD=AE,AD 与CE交于点F,则∠DFC=________.
(2)求∠ACF的度数.
解:∵在等边三角形ABC中,AD是∠BAC的平分线, ∴∠BAE=30°. ∵△ABE≌△CBF,∴∠BCF=∠BAE=30°. 又∵∠ACB=60°, ∴∠ACF=∠BCF+∠ACB=30°+60°=90°.
15.【2020·绍兴】问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E ,C,作△AEC,使AE=EC.若∠BAE=90°,∠B=45°,求∠DAC的度 数.
结论不一定正确的是( )
A.AD⊥BC
D
B.∠EBC=∠ECB
C.∠ABE=∠ACE
D.AE=BE
7.【2021·合肥庐阳区四十五中月考】如图,点D,E在△ABC的边BC上,AB= AC,AD=AE.求证:BD=CE.
证明:作AF⊥BC,垂足为F, ∵AB=AC,∴BF=CF, ∵AD=AE,∴DF=EF, ∴BF-DF=CF-EF,即BD=CE.
证明:在△ACD中,∵CD=AC,CF是△ACD的中线, ∴CF平分∠ACD,∴∠ACF=∠DCF. ∵CE平分∠ACB,∴∠ACE=∠ECB. ∴∠FCA+∠ACE=∠DCF+∠ECB=90°, ∴CE⊥CF.
13.【芜湖鸠江区校级统考】如图,在等腰三角形ABC中,AB=AC,∠ABC= 35°,E是BC边上一点,且AE=CE,D是C边上的中点,连接AD,AE.
沪科版八年级上册数学第15章 轴对称图形和等腰三角形 含答案
沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°2、如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周3、如图,把一张对边平行的纸条如图折叠,重合部分是 ( )A.等边三角形B.等腰三角形C.直角三角形D.无法确定4、已知等腰三角形的两边分别为5cm、10cm,则第三边长为()A.5cmB.10cmC.5cm或10cmD.12cm5、下面的图形中,是轴对称图形的是()A. B. C. D.6、如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A.4B.6C.8D.167、下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.矩形C.正三角形D.正五边形8、下列图形既是中心对称图形又是轴对称图形的是()A. B. C. D.9、如图,在△ABO中,AB⊥OB,OB=,AB=1,将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标是( )A.(-1,)B.(-1,)或(1,-)C.(-1,-) D.(-1,)或(-,-1)10、在如图1所示的图案中,轴对称的图形有()A.1个B.2个C.3个D.4个11、如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A.甲B.乙C.丙D.丁12、如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120°D.65°13、在平面直角坐标中,已知点A(2,1),O为坐标原点,在y轴上确定点P,使得△AOP为等腰三角形,则符合条件的点P的个数为()A.3B.4C.5D.614、下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形15、等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cmB.7cm,7cmC.4cm,10cm或7cm,7cmD.无法确定二、填空题(共10题,共计30分)16、如图,已知是等边三角形,,,则________.17、如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC=________.18、如图,将半径为6的圆形纸片,分别沿AB、BC折叠,若弧AB和弧BC折后都经过圆心O,则阴影部分的面积是________(结果保留π)19、如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是________.20、如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________.21、如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=________°.22、如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=2,P为AB上一动点,则PD的最小值为________.23、如图,在中,点E是AD边上的一点,CD=CE,将沿CE 翻折得到,若∠B=55°.那么的度数为________.24、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是轴上使得∣PA—PB∣的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP·OQ=________.25、如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.28、已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.29、如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上.求证:DB平分∠ADE.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.</p>参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、B5、A6、C7、B8、C9、B10、C12、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
沪科版八年级上册数学15.3等腰三角形专题训练及答案
15.3 等腰三角形专题一 等腰三角形知识的应用1.如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点.2.如图,已知△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE .求证:EC =ED .专题二 等腰三角形操作题3.在正方形网格图①、图②中各画一个等腰三角形.要求:每个等腰三角形的一个顶点为格点A,其余顶点从格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.4.东风汽车公司冲压汽车零件的废料都是等腰三角形的小钢板,如图1,其中AB=AC ,该冲压厂为了降低汽车零件的成本,变废为宝,把这些废料加工成红星农业机械厂粉碎机上的零件,销售给红星农业机械厂,这些零件的形状都是矩形。
现在要把如图1所示的等腰三角形钢板切割后再焊接成两种不同规格的矩形,每种矩形的面积正好等于该三角形的面积,每次切割次数最多两次(切割的损失忽略不计)。
(1)请你设计两种不同的切割焊接方案,并用简要的文字加以说明; (2)若要把该三角形废料切割后焊接成正方形零件(只切割一次),则该三角形应满足H图①图②E什么条件?专题三等腰三角形探究题5.下面是数学课堂上的一个学习片断,阅读后,请回答下面的问题:学习等腰三角形后,庞老师请同学们讨论这样一个问题上:“已知等腰三角形的两边长分别是7㎝,8㎝,请你求出三角形的周长.”同学们经片刻思考交流后,李刚同学举手说“三角形的周长为22㎝”;王明同学说:“是23㎝”,还有一些同学也提出了不同的看法.......(1)假如你也在课堂上,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)6.已知△ABC为等边三角形,在图①中,点M是线段BC上任意一点,点N线段CA 上任意一点,且BM=CN,直线BN与AM相交于Q点.(1)请猜一猜:图①中∠BQM等于多少度?(2)若M、N两点分别在线段BC、CA的延长线上,其它条件不变,如图②所示,(1)中的结论是否仍然成立?如果成立,请加以证明;如不成立,请说明理由.【知识要点】1.有两边相等的三角形叫做等腰三角形,三边都相等的三角形叫做等边三角形.2.等腰三角形的两底角相等,等边三角形的三个内角相等,每个内角都等于60°,等腰三角形的顶角平分线垂直于底边并且平分底边.3.有两个角相等的三角形是等腰三角形,三个角都相等的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形.4.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.在等腰三角形中,若说边或角时,一般都明确指出是腰还是底边,是顶角还是底角,若题目没说明,要分类讨论.2.等腰三角形的顶角可以是锐角、直角或钝角,而底角只能是锐角.3.等边三角形是特殊的等腰三角形,它不仅具有一般三角形的性质,而且还具有自身特有的性质.【方法技巧】1.在与等腰三角形有关的一些命题的证明中,会遇到一些添加辅助线的问题,其顶角的平分线、底边上的高、底边上中线是常见的辅助线,具体作哪条,要根据具体问题具体分析.2.要说明一个三角形是等边三角形,可以考虑:(1)利用定义证明;(2)证明三个角相等;(3)证明它是等腰三角形并且有一个角是60°.4.平行于等边三角形一边的直线截其它两边或其延长线,得到的三角形仍是等边三角形,解决等边三角形问题时常用这个结果作辅助线.参考答案1.证明:因为三角形ABC 是等边三角形,D 是AC 的中点, 所以∠1=21∠ABC . 又因为CE =CD ,所以∠CDE =∠E . 所以∠ACB =2∠E, 即∠1=∠E .所以BD =BE ,又DM ⊥BC ,垂足为M , 所以M 是BE 的中点.2.证法一:延长BD 到F ,使DF =BC ,连结EF ,如图2.则BE =AE +AB =BD +DF =BF ,故△BEF 为等边三角形,从而可证△BCE ≌△FDE ,所以EC =ED .证法二:过E 作EF ∥AC ,交BD 的延长线于F ,如图2,则△BEF 为等边三角形,以下同证法一.证法三:在AE 上截取EF =BC ,如图3.则AF =CD ,故AC ∥DF ,从而△BDF 是等边三角形,DF =BF =AE ,可证△ACE ≌△FED ,所以EC =ED .证法四:过D 作DF ∥AC 交AE 于F 点,如图3,以下同证法三.证法五:作EF ∥BC 交CA 的延长线于F ,如图4.则△AEF 是等边三角形,从而可证 △CEF ≌△EDB ,所以EC =ED .证法六:作DF ∥AB 交AC 的延长线于F ,连结EF ,如图5.则△CDF 是等边三角形,故AF =AC +CF =BC +CD =BD =AE ,从而∠AEF =∠AFE =30O ,∠DFE =30O,即EF 是等腰△CFD 的顶角平分线,所以EF 垂直平分CD ,由此得EC =ED .证法七:作EF ⊥BD ,垂足为F ,如图6.则∠BEF =30O,BE =2BF ,即AB +AE =2BC +2CF ,从而有BC +2CF =AE =BD =BC +CD ,即CD =2CF ,有CF =DF ,EF 为CD 的垂直平分线,所以有CE =ED .3.以下答案仅供参考4.方案一:如图1(1)所示。
【提高练习】《等腰三角形》(数学沪科版八上)【含答案】
15.3 《等腰三角形》提升练习第 1 课时《等腰三角形的性质定理及推论》一、选择题1.如图,等边三角形ABC与相互平行的直线a,b 订交,若∠ 1=25 °,则∠ 2 的大小为()A.25°B.35°C. 45°D. 55°2.某等腰三角形的三边长分别为x,3, 2x﹣ 1,则该三角形的周长为()A.11B. 11 或 8C. 11 或 8 或 5D.与 x 的取值相关3.如图,等边三角形ABC中, AD⊥ BC,垂足为 D,点 E 在线段 AD 上,∠ EBC=45°,则∠ ACE 等于()A.15°B.30°C. 45°D. 60°4.如图,∠ AOB=60°, OA=OB,动点 C 从点 O 出发,沿射线 OB 方向挪动,以AC为边在右侧作等边△ ACD,连结 BD,则 BD 所在直线与OA 所在直线的地点关系是()A.平行B.订交C.垂直D.平行、订交或垂直P 是三角形内的随意一点,PD∥ AB, PE∥ BC, PF∥ AC,5.如图,△ABC是等边三角形,点12,则PD+PE+PF=()若△ ABC的周长为A.12B.8 C. 4D. 3二、填空题6.如图,在凸四边形ABCD中, AB=BC=BD,∠ ABC=80°,则∠ ADC 等于°.7.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为.8.如图,等腰△ ABC中, AB=AC,∠ BAC=50°,AB 的垂直均分线MN 交 AC 于点 D,则∠ DBC 的度数是.三、解答题9.已知:如图,△ABC 中, AB=AC,点 D 是△ ABC内一点,且 DB=DC,连结 AD 并延伸,交BC 于点 E.(1)依题意补全图;(2)求证: AD⊥ BC.10.如图,在等边△ABC 中,点 D、E 分别在边BC、AC上,且 AE=CD,BE 与 AD 订交于点P,BQ⊥AD 于点 Q.(1)求证:△ ABE≌△ CAD;(2)请问 PQ 与 BP有何关系?并说明原因.第2课时一、选择题1.如图,以点O 为圆心,随意长为半径画弧,与射线OM交于点A,再以点 A 为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C. 60°D. 90°2.如图:在△ABC中,以下条件中能说明△ABC是等边三角形的是()A.AB=AC,∠ B=∠ C B. AD⊥ BC, BD=CDC. BC=AC,∠ B=∠C D. AD⊥ BC,∠ BAD=∠ CAD3.下边给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;( 4)有一个角为 60°的等腰三角形,此中是等边三角形的个数是()A.4 个B.3 个C.2 个D.1 个4.已知:在△ ABC中,∠ A=60°,如要判断△ ABC 是等边三角形,还需增添一个条件.现有下边三种说法:①假如增添条件“AB=AC”,那么△ ABC是等边三角形;②假如增添条件“∠ B=∠ C”,那么△ ABC是等边三角形;③假如增添条件“边AB、BC上的高相等”,那么△ ABC是等边三角形.上陈述法中,正确的有()A.3 个B.2 个C.1 个D.0 个5.如图,在△ ABC中,AB=AC,∠ A=36°,BD,CE是角均分线,则图中的等腰三角形共()有A.8 个B.7 个C.6 个D.5 个二、填空题6.假如 a,b,c 为三角形的三边,且( a﹣b )2+( a﹣ c)2+|b ﹣ c|=0 ,则这个三角形是.7.假如一个三角形的两条角分线又是它的两条高线,则这个三角形是三角形.8.如图,在△ABC 中, BC=8cm, BP、 CP分别是∠ABC 和∠ ACB的均分线,且PD∥ AB, PE ∥ AC,则△ PDE的周长是cm.三、解答题9.如图,在△ ABC 中,AB=AC=2,∠ B=∠ C=40°,点 D 在线段 BC 上运动( D 不与 B、C 重合),连结 AD,作∠ ADE=40°,DE 交线段 AC 于 E.( 1)当∠ BDA=115°时,∠ EDC=°,∠ DEC=°;点D从B向C运动时,∠ BDA 渐渐变(填“大”或“小”);ABD≌△ DCE,请说明原因;( 2)当DC等于多少时,△( 3)在点 D 的运动过程中,△ ADE 的形状能够是等腰三角形吗?若能够,请直接写出∠BDA 的度数.若不可以够,请说明原因.10.如图,点O 是等边△ ABC内一点,∠ AOB=110°,∠ BOC=α.以 OC为一边作等边三角形OCD,连结 AC、 AD.(1)当α=150°时,试判断△ AOD 的形状,并说明原因;(2)研究:当 a 为多少度时,△ AOD 是等腰三角形?第3课时一、选择题1.如图,将一个有45°角的三角板的直角极点放在一张宽为3cm 的纸带边缘上.另一个顶点在纸带的另一边缘上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的直角边的长为()A.3cm B. 6cm C. 8cm D. 9cm2.如图,△ ABC中,∠ C=90°,∠ B=30°, AC=3,点 P 是 BC 边上的动点,则AP 的长不行能是()A.3.5B.4.2C. 5.8D. 6.53.如图,在△ABC 中,∠ A=90°,∠ C=30°,AD⊥ BC 于D, BE 是∠ ABC 的均分线,且交AD 于 P,假如AP=2,则AC 的长为()A.2B. 4C. 6D. 8BC的长()4.如图,在△ABC中, AB=AC,∠ C=30°, AB⊥ AD, AD=4cm,求A.8cm B. 12cm C. 15cm D.16cm5.如图,已知∠ AOB=60°,点P 在边OA 上,OP=10,点M 、N在边OB 上,PM=PN,若MN=2 ,则 OM=()A.3B. 4C. 5D. 6二、填空题6.如图,在等边△ABC中, BD是AC 边上的中线,过点 D 作DE⊥ BC于点E,且CE=1.5,则AB 的长为.7.假如一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的顶角的度数为.8.在等腰△ABC中,AD⊥ BC交直线BC于点D,若 AD=BC,则△ ABC的顶角的度数为.三、解答题9.如图,一艘轮船清晨8 时从点 A 向正北方向出发,小岛P 在轮船的北偏西15°方向.轮船每小时航行15 海里, 11时轮船抵达点 B 处,小岛P 此时在轮船的北偏西30°方向.( 1)求此时轮船距小岛为多少海里?( 2)在小岛 P 的四周 20 海里范围内有暗礁,假如轮船不改变方向持续向前航行,能否会有触礁危险?请说明原因.10.已知,如图 Rt△ABC中,∠ BAC=90°,AD 是 BC边上的高,∠ B=2∠ C,E 是 BC的中点.求证: DE=AB.参照答案第1课时1.解:过点 C 作 CD∥ b,∵直线 a∥ b,∴CD∥ a∥ b,∴∠ 4=∠ 1=25°,∵∠ ACB=60°,∴∠ 3=∠ ACB﹣∠ 4=60°﹣ 25°=35°,∴∠ 2=∠ 3=35°.应选: B.2.解:当x=3 时,此时 2x﹣1=5,∴3+3> 5,能构成三角形,此时三角形的周长为: 3+3+5=11,当 x=2x﹣1 时,此时 x=1,∴1+1< 3,不可以构成三角形,当 2x﹣ 1=3 时,此时 x=2∴3+2> 3,能构成三角形,此时三角形的周长为: 3+3+2=8,应选: B.3.解:∵等边三角形ABC 中, AD⊥BC,∴BD=CD,即:AD 是BC 的垂直均分线,∵点 E在 AD上,∴BE=CE,∴∠ EBC=∠ ECB,∵∠ EBC=45°,∴∠ ECB=45°,∵△ ABC是等边三角形,∴∠ ACB=60°,∴∠ ACE=∠ ACB﹣∠ ECB=15°,应选: A.4.解:∵∠ AOB=60°, OA=OB,∴△ OAB 是等边三角形,∴OA=AB,∠ OAB=∠ ABO=60°①当点 C 在线段 OB 上时,如图 1,∵△ ACD是等边三角形,∴AC=AD,∠ CAD=60°,∴∠ OAC=∠ BAD,在△ AOC和△ ABD 中,,∴△ AOC≌△ ABD,∴∠ ABD=∠ AOC=60°,∴∠ DBE=180°﹣∠ ABO﹣∠ ABD=60°=∠AOB,∴BD∥ OA,②当点 C 在 OB 的延伸线上时,如图2,同①的方法得出OA∥ BD,∵△ ACD是等边三角形,∴AC=AD,∠ CAD=60°,∴∠ OAC=∠ BAD,在△ AOC和△ ABD 中,,∴△ AOC≌△ ABD,∴∠ ABD=∠ AOC=60°,∴∠ DBE=180°﹣∠ ABO﹣∠ ABD=60°=∠AOB,∴BD∥ OA,应选: A.5.解:延伸EP、 FP 分别交 AB、 BC于 G、 H,则由 PD∥AB, PE∥BC, PF∥AC,可得,四边形 PGBD, EPHC是平行四边形,∴PG=BD, PE=HC,又△ ABC是等边三角形,又有 PF∥ AC, PD∥ AB 可得△ PFG,△ PDH 是等边三角形,∴PF=PG=BD,PD=DH,又△ ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,应选: C.6.解:∵ AB=BC=BD,∠CBD,∴∠ ADB=90°﹣∠ ABD,∠ CDB=90°﹣∴∠ ADC=∠ ADB+∠ CDB=90 °﹣∠ ABD+90°﹣∠CBD=180 °﹣(∠ ABD+∠ CBD)=180 °﹣× 80°=180 °﹣40°=140 °.故答案为: 140.7.解:①如图一,∵△ ABC是等腰三角形,BD⊥ AC,∠ ADB=90°,∠ ABD=50°,∴在直角△ ABD 中,∠ A=90°﹣ 50°=40°,=70°;∴∠ C=∠ ABC=②如图二,∵△ ABC是等腰三角形,BD⊥ AC,∠ ADB=90°,∠ ABD=50°,∴在直角△ ABD 中,∠ BAD=90°﹣ 50°=40°,又∵∠ BAD=∠ABC+∠ C,∠ ABC=∠ C,∴∠ C=∠ ABC===20°.故答案为: 70°或 20°.8.解:∵ AB=AC,∠ A=40°,∴∠ ABC=(180°﹣∠ A)=(180°﹣50°)=65°,∵MN 垂直均分线 AB,∴ AD=BD,∴∠ ABD=∠ A=50°,∴∠ DBC=∠ ABC﹣∠ ABD=65°﹣50°=15°.故答案为: 15°.9.解:( 1)如下图,(2)∵ AB=AC,∴点 A 在 BC的垂直均分线上,∵BE=CE,∴点 E 在 BC 的垂直均分线上,∴A、E 都在BC的垂直均分线上,∵延伸 AE交 BC边于点 D,∴AD⊥ BC.10.( 1)证明:∵△ABC为等边三角形.∴AB=AC,∠ BAC=∠ ACB=60°,在△ BAE和△ ACD中:∴△ BAE≌△ ACD(2)答: BP=2PQ.证明:∵△ BAE≌△ ACD,∴∠ ABE=∠ CAD.∵∠ BPQ为△ ABP外角,∴∠ BPQ=∠ ABE+∠ BAD.∴∠ BPQ=∠ CAD+∠ BAD=∠ BAC=60°∵BQ⊥ AD,∴∠ PBQ=30°,∴ BP=2PQ.第2课时1.解:连结AB,依据题意得:OB=OA=AB,∴△ AOB 是等边三角形,∴∠ AOB=60°.应选: C.2.解:A、AB=AC,∠B=∠C,只好说明△ABC 是等腰三角形,错误;B、 AD⊥ BC, BD=CD,只好说明△ ABC是等腰三角形,错误;C、 BC=AC,∠ B=∠C,能说明△ ABC是等边三角形,正确;D、 AD⊥BC,∠ BAD=∠ CAD,只好说明△A BC是等腰三角形,错误;应选: C.3.解:有三角都是60°,或有三边相等的三角形是等边三角形,那么可由( 1),( 4)推出等边三角形,(2)若每个角各取一个外角时,该结论建立.而( 3)只好得出这个三角形是等腰三角形.应选: C.4.解:①若增添的条件为AB=AC,由∠ A=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△ABC为等边三角形;②若增添条件为∠B=∠ C,又∵∠ A=60°,∴∠ B=∠ C=60°,∴∠ A=∠ B=∠ C,则△ ABC为等边三角形;AB、BC 上的高相等,如下图:③若增添的条件为边已知:∠ BAC=60°, AE⊥ BC,CD⊥AB,且 AE=CD,求证:△ ABC为等边三角形.证明:∵ AE⊥ BC, CD⊥ AB,∴∠ ADC=∠ AEC=90°,在 Rt△ ADC和 Rt△ CEA中,,∴Rt△ ADC≌ Rt△CEA( HL),∴∠ ACE=∠ BAC=60°,∴∠ BAC=∠B=∠ ACB=60°,∴AB=AC=BC,即△ABC为等边三角形,综上,正确的说法有 3 个.应选: A.5.解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=(180°﹣∠ A)=72°,∵ BD, CE是角均分线,∴∠ ABD=∠ DBC=∠ ABC=36°,∠ ACE=∠ECB=36°,∴∠ A=∠ ABD=∠ ACE,∠ DBC=∠ ECB,∴∠ BDC=180°﹣∠ ACB﹣∠ DBC=180°﹣ 72°﹣ 36°=72°,同理∠ BEC=72°,∴∠ BDC=∠ ACB,∠ BEC=∠ EBC,∴∠ EOB=180°﹣∠ BEC﹣∠ EBD=180°﹣ 72°﹣36°=72°,同理∠ DOC=72°,∴∠ BEO=∠ BOE,∠ CDO=∠ COD,即等腰三角形有△ OBC,△ ADB,△ AEC,△ BEC,△ BDC,△ ABC,△ EBO,△ DCO,共 8 个,应选: A.6.解:∵( a﹣ b)2+( a﹣c) 2+|b ﹣ c|=0 ,∴a﹣ b=0,a﹣ c=0, b﹣ c=0,∴a=b, a=c,b=c,∴a=b=c,∴这个三角形是等边三角形;故答案为:等边三角形.7.解:等边三角形每条边上的中线、高线和所对角的均分线相互重合(三线合一),∴假如一个三角形的两条角分线又是它的两条高线,则这个三角形是等边三角形.8.解:∵ BP、 CP分别是∠ ABC和∠ ACB 的角均分线,∴∠ ABP=∠ PBD,∠ ACP=∠PCE,∵PD∥ AB, PE∥ AC,∴∠ ABP=∠BPD,∠ ACP=∠CPE,∴∠ PBD=∠ BPD,∠ PCE=∠ CPE,∴BD=PD, CE=PE,∴△ PDE的周长 =PD+DE+PE=BD+DE+EC=BC=8cm.故答案是: 8.9.解:( 1)∠ EDC=180°﹣∠ ADB﹣∠ ADE=180°﹣ 115 °﹣ 40°=25 °,∠DEC=180°﹣∠ EDC﹣∠ C=180°﹣ 40°﹣ 25°=115°,∠BDA 渐渐变小;故答案为: 25°, 115°,小;(2)当 DC=2时,△ ABD≌△ DCE,原因:∵∠ C=40°,∴∠ DEC+∠ EDC=140°,又∵∠ ADE=40°,∴∠ ADB+∠ EDC=140°,∴∠ ADB=∠ DEC,又∵ AB=DC=2,∴△ ABD≌△ DCE(AAS),( 3)当∠ BDA 的度数为 110°或 80°时,△ ADE的形状是等腰三角形,原因:∵∠ BDA=110°时,∴∠ ADC=70°,∵∠ C=40°,∴∠ DAC=70°,∠ AED=∠ C+∠EDC=30°+40°=70°,∴∠ DAC=∠AED,∴△ ADE的形状是等腰三角形;∵当∠ BDA 的度数为80°时,∴∠ ADC=100°,∵∠ C=40°,∴∠ DAC=40°,∴∠ DAC=∠ADE,∴△ ADE的形状是等腰三角形.10.解:(1 )∵△ OCD是等边三角形,∴OC=CD,而△ ABC是等边三角形,∴BC=AC,∵∠ ACB=∠ OCD=60°,∴∠ BCO=∠ ACD,在△ BOC与△ ADC 中,∵,∴△ BOC≌△ ADC,∴∠ BOC=∠ ADC,而∠ BOC=α=150°,∠ ODC=60°,∴∠ ADO=150°﹣ 60°=90°,∴△ ADO 是直角三角形;(2)∵设∠ CBO=∠ CAD=a,∠ ABO=b,∠ BAO=c,∠ CAO=d,则 a+b=60°, b+c=180°﹣110°=70°, c+d=60°,∴ b﹣ d=10°,∴( 60°﹣ a)﹣d=10°,∴ a+d=50°,即∠ DAO=50°,①要使 AO=AD,需∠ AOD=∠ ADO,∴190°﹣α=α﹣ 60°,∴α=125°;②要使 OA=OD,需∠ OAD=∠ ADO,∴ α﹣ 60°=50°,∴ α=110°;③要使 OD=AD,需∠ OAD=∠AOD,∴190°﹣α=50°,∴α=140°.因此当α为 110°、125°、 140°时,三角形AOD 是等腰三角形.第3课时1.解:过点 C 作 CD⊥ AD, CD=3cm,在直角三角形ADC 中,∵∠ CAD=30°,∴AC=2CD=2× 3=6cm .应选: B.2.解:∵△ ABC中,∠ C=90°,∠ B=30°, AC=3,∴AB=2AC=6,即 AP 的范围是 3≤ AP≤ 6,∴ 6.5 不在范围内;应选: D.3.解:∵△ ABC中,∠ BAC=90°,∠ C=30°,∴∠ ABC=60°.又∵ BE是∠ ABC 的均分线,∴∠ EBC=30°,∴∠ AEB=∠ C+∠ EBC=60°,∠ C=∠ EBC,∴∠ AEP=60°, BE=EC.又 AD⊥ BC,∴∠ CAD=∠ EAP=60°,则∠ AEP=∠EAP=60°,∴△ AEP的等边三角形,则AE=AP=2,在直角△ AEB中,∠ ABE=30°,则 EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.应选: C.4.解:∵ AB=AC,∠ C=30°,∴∠ B=∠ C=30°,∠ BAC=120°,∵AB⊥ AD,∴∠ BAD=90°,∵AD=4cm,∴BD=2AD=8cm,∵∠ DAC=120°﹣ 90°=30°,∴∠ DAC=∠C,∴AD=DC=4cm,∴BC=BD+DC=8cm+4cm=12cm,应选: B.5.解:作PH⊥ MN 于 H,∵PM=PN,∴MH=NH= MN=1 ,∵∠ AOB=60°,∴∠ OPH=30°,∴OH= OP=5,∴OM=OH﹣ MH=4 ,应选: B.6.解:∵△ ABC是等边三角形,∴∠ ABC=∠ C=60°, AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD 均分∠ ABC交 AC 于点 D,∴ AD=CD=3,∴ AB=AC=AD+CD=6.故答案为: 67.解:此题分两种状况议论:( 1)如图 1,当 BD 在三角形内部时,∵BD= AB,∠ ADB=90°,∴∠ A=30°;( 2)当如图 2, BD 在三角形外面时,∵BD= AB,∠ ADB=90°,∴∠ DAB=30°,∠ ABC=180°﹣∠ DAB=30°=150°.故答案是: 30°或 150°.8.解:① BC 为腰,∵AD⊥ BC于点 D,AD= BC,∴∠ ACD=30°,如图 1, AD 在△ ABC内部时,顶角∠ C=30°,如图 2, AD 在△ ABC外面时,顶角∠ ACB=180°﹣30°=150°,② BC 为底,如图 3,∵AD⊥ BC于点 D,AD= BC,∴AD=BD=CD,∴∠ B=∠ BAD,∠ C=∠ CAD,∴∠ BAD+∠ CAD=× 180°=90°,∴顶角∠ BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或 150°或 90°.故答案为: 30°或 150°或 90°.9.解:( 1)∵∠ PAB=15°,∠ PBC=30°,∴∠ PAB=∠ APB,PB=AB=15× 3=45 海里;(2)过 P 点作 PD⊥ BC于 D,在 Rt△ PBD中,∠ PBD=30°, PB=45,∴ PD==22.5,22.5> 20.因此,轮船持续向前航行,不会有触礁危险.10.解:∵ Rt△ ABC中,∠ BAC=90°,∠ B=2∠ C,∴∠ B=60°,∠ C=30°,∴BC=2AB,∵AD 是 BC边上的高, E 是 BC 的中点.∴ BC=2AE,∴ AB=AE,∴∠ AED=60°,∴∠ DAE=30°,∴AE=2DE=AB,即 DE= AB.。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案
沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cmB.5 cmC.5.8 cmD.6 cm2、如图,将一张一个角为60°的直角三角形纸片,沿其一条中线剪开后,不能拼成的四边形是().A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形3、下列图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科g曲线D.斐波那契螺旋线4、如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.25、下列语句中是真命题的是()A.同旁内角互补B.三角形三条中线不会交于一点C.到线段两个端点距离相等的点在线段的垂直平分线上D.三角形按边分类可分为不等边三角形和等边三角形6、若等腰三角形的两条边长分别为7cm和14cm,则它的周长为()A.28B.35C.28或35D.21或287、如图,在中,,点在上,于点,的延长线交的延长线于点,则下列结论中错误的是()A. B. C. D.8、如图,AB为⊙O直径,点D为AB延长线上一点,DC为⊙O切线,切点为C,若AC=CD,则AC:BD的值为()A. B.2 C. D.9、如图,△ABC内接于⊙O,∠C=30°,AB=2,则⊙O的半径为()A. B. C.2 D.410、窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案。
下列表示我国古代窗棂样式结构的图案中,既是轴对称,又是中心对称的图形是( )A. B. C. D.11、如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1)B.(1,-2)C.(-2,1)D.(-2,-1)12、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、下面四个手机应用软件图标中是轴对称图形的是().A. B. C. D.15、如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A. B. C. D.二、填空题(共10题,共计30分)16、(问题探究)如图1,,直线,垂足为,交于点,点到直线的距离为2,点到的距离为1,,,则的最小值是________;(提示:将线段沿方向平移1个单位长度即可解决,如图2所示.)(关联运用)如图3,在等腰和等腰中,,在直线上,,连接、,则的最小值是________.17、如图,在△ABC中,∠ACB=90°,AC=8,BC=6,P是直线AB上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,B′A长度的最小值是m,B′A长度的最大值是n,则m+n的值等于________.18、如图,△ABC中,D是BC上一点,AC=AD=BD,若∠DAC=84°,则∠B=________度.19、若等腰三角形的一个底角为,则这个等腰三角形的顶角为________.20、如图,四边形中,连接、,点为上一点,连接,为等边三角形,,,,,则________.21、如图,正方形ABCD的面积为4,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S10的值为________.22、如图,在△ABC中,CD平分∠ACB,AD⊥CD,垂足为D,AD交BC于点F,E 为AB的中点,连接DE,AC=15,BC=27;则DE=________。
沪科版八年级上册数学习题课件第15章15.3.4等腰三角形中作辅助线的四种常用方法
∴△ACE≌△BFE,∴CE=EF,AC=BF,∴CF=2CE.
又∵∠ACB=∠ABC,CB是△ADC的中线,
∴AC=AB=BD=BF.
∵∠DBC=∠A+∠ACB=∠ABF+∠ABC,∴∠DBC=∠FBC.
在△DBC和△FBC中, DB=FB ∠DBC=∠FBC BC=BC, ∴△DBC≌△FBC,∴DC=CF=2CE.
解:如图,在DC上截取DH,使得DH=DB,连接AH. ∵BD=DH,AD⊥BH,∴AB=AH. ∵AB+BD=DC,DC=DH+HC,∴AB=CH=AH, ∴∠B=∠AHD,∠C=∠HAC. 设∠C=x,则∠AHD=∠B=2x, ∵∠B+∠C+∠BAC=180°,∴2x+x+120°=180°, ∴x=20°,∴∠C=20°.
∴AD⊥BC,∠ADB=∠ADC=90°.
在Rt△AED和Rt△AFD中, AE=AF AD=AD, ∴Rt△AED≌Rt△AFD.
∴∠ADE=∠ADF.∴∠EDB=∠FDC.
2.【合肥瑶海区期中】如图,在△ABC中,AB=AC, 点D在AB上,点E在AC的延长线上,且BD=CE,DE 交BC于F,求证:DF=EF.
5.如图,CE,CB分别是△ABC与△ADC的中线,且∠ACB=
∠ABC.求证:CD=2CE. 证明:如图,过点B作BF∥AC交CE的延长线于点F.
∵CE是△ABC的中线,BF∥AC,
∴AE=BE,∠A=∠ABF,∠ACE=∠F. 在△ACE和△BFE中, ∠A=∠ABF ∠ACE=∠F AE=BE,
习题链接
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题
在等腰三角形ABC中, AB=AC,D是BC的中点,过A作AE⊥DE,AF⊥DF, 且AE=AF.求证:∠EDB=∠FDC.
秋沪科版(安徽专版)八年级数学上册课件:15.3.4 活用“三线合一”巧解题 (共19张PPT)
技巧 5 利用“三线合一”证垂直
5.如图,在△ABC中,AB=AC,直线AE交BC于点D, O是AE上一动点(不与A重合),且OB=OC,试猜想 AE与BC的关系,并说明理由.
解:猜想:AE垂直平分BC,即AE⊥BC,BD=CD. 理由如下:∵AB=AC,OB=OC,AO=AO, ∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO. ∴AE⊥BC,BD=CD(等腰三角形三线合一).
返回
梦栖皖水江畔 心驻黄山之巅 情系安徽学子 相约《点拨训练》
返回
技巧 6 利用“三线合一”证角的倍分关系
6.如图,在△ABC中,AB=AC,BD⊥AC于点D, 求证:∠DBC= ∠BAC.
1 2
证明:过点A作AF⊥BC于点F.
∵AB=AC,AF⊥BC,
∴∠CAF=∠BAF= ∠BAC.
∵AF⊥BC,BD⊥AC1 , ∴∠CAF+∠C=∠D2 BC+∠C=90°.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
证明:ቤተ መጻሕፍቲ ባይዱAB=AC,∴△ABC是等腰三角形. ∵AD是BC边上的中线, ∴AD⊥BC,∠BAD=∠CAD. ∴∠CAD+∠C=90°. ∵BE⊥AC,∴∠CBE+∠C=90°. ∴∠CBE=∠CAD. ∴∠CBE=∠BAD.
返回
技巧 8 利用“三线合一”证线段的和差关系
8.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C. 求证:CD=AB+BD.
证明:如图,以A为圆心,AB长为半径画弧交CD于点E,连接 AE,则AE=AB,所以∠AEB=∠ABC.又因为AD⊥BC, 所以AD是BE边上的中线,即DE=BD.又因为∠ABC= 2∠C,所以∠AEB=2∠C.而∠AEB=∠CAE+∠C, 所以∠CAE=∠C.所以CE=AE=AB, 故CD=CE+DE=AB+BD.
沪科新版八年级(上) 中考题同步试卷:15.3 等腰三角形(04)
.
18.如图,△ABC 是等边三角形,高 AD、BE 相交于点 H,BC=4 ,在 BE 上截取 BG=
2,以 GE 为边作等边三角形 GEF,则△ABH 与△GEF 重叠(阴影)部分的面积为
.
19.如图,在 Rt△ABC 中,∠C=30°,以直角顶点 A 为圆心,AB 长为半径画弧交 BC 于
点 D,过 D 作 DE⊥AC 于点 E.若 DE=a,则△ABC 的周长用含 a 的代数式表示为
带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成 30°角,如图,则三角
板的最大边的长为( )
A.3cm
B.6cm
C. cm
D. cm
9.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC,ED⊥AB 于 D.如果∠A=30°,
AE=6cm,那么 CE 等于( )
第2页(共7页)
A. cm
沪科新版八年级(上)中考题同步试卷:15.3 等腰三角形(04)
一、选择题(共 11 小题)
1.正三角形△ABC 的边长为 3,依次在边 AB、BC、CA 上取点 A1、B1、C1,使 AA1=BB1
=CC1=1,则△A1B1C1 的面积是( )
A.
B.
C.
D.
2.在 Rt△ABC 中,∠C=90°,AB=10.若以点 C 为圆心,CB 为半径的圆恰好经过 AB 的中点 D,则 AC=( )
B.2cm
C.3cm
D.4cm
10.如图,已知∠AOB=60°,点 P 在边 OA 上,OP=12,点 M,N 在边 OB 上,PM=PN,
若 MN=2,则 OM=( )
A.3
B.4
C.5
D.6
2021秋八年级数学上册15、3等腰三角形4等腰三角形中作辅助线的四种常用方法课件新版沪科版
证明:连接AD.∵AB=AC,D是BC的中点, ∴AD⊥BC,∠ADB=∠ADC=90°.
在Rt△AED和Rt△AFD中, AE=AF AD=AD, ∴Rt△AED≌Rt△AFD.
∴∠ADE=∠ADF.∴∠EDB=∠FDC.
2.【合肥瑶海区期中】如图,在△ABC中,AB=AC, 点D在AB上,点E在AC的延长线上,且BD=CE,DE 交BC于F,求证:DF=EF.
4.【六安金安区校级期末】如图,在△ABC中,AB=AC, D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证 :BD+DC=AB.
证明:如图,延长BD到F,使BF=BA,连接AF,CF, ∵∠ABD=60°,∴△ABF为等边三角形, ∴AF=AB=AC,∠AFB=60°,∴∠ACF=∠AFC. 又∵∠ACD=60°,∴∠AFB=∠ACD, ∴∠DFC=∠DCF,∴DC=DF. ∴BD+DC=BD+DF=BF=AB,即BD+DC=AB.
第15章 轴对称图形与 等腰三角形
15.3 等腰三角形
第4课时 等腰三角形中作辅助线的四种 常用方法
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题
答案显示
1.【六安金安区校级期末】如图,在等腰三角形ABC中, AB=AC,D是BC的中点,过A作AE⊥DE,AF⊥DF, 且AE=AF.求证:∠EDB=∠FDC.
解:如图,在DC上截取DH,使得DH=DB,连接AH. ∵BD=DH,AD⊥BH,∴AB=AH. ∵AB+BD=DC,DC=DH+HC,∴AB=CH=AH, ∴∠B=∠AHD,∠C=∠HAC. 设∠C=x,则∠AHD=∠B=2x, ∵∠B+∠C+∠BAC=180°,∴2x+x+120°=180°, ∴x=20°,∴∠C=20°.
新沪科版八年级上册初中数学 15-3 等腰三角形课时练(课后作业设计)
15.3 等腰三角形1. 已知一个等腰三角形的顶角为30°,则它的一个底角等于( )A. 30°B. 75°C. 150°D. 125°2. 一个等腰三角形的顶角是底角的4倍,则其顶角的度数为( )A. 20°B. 30°C. 80°D. 120°3. 等腰三角形的“三线合一”指的是( )A. 中线、高线、角平分线互相重合B. 腰上的中线、腰上的高线、底角的平分线互相重合C. 顶角的平分线、中线、高线互相重合D. 顶角的平分线,底边上的高线、底边上的中线互相重合4. 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )A. 35°B. 45°C. 55°D. 60°5. 如图,射线BA,CA交于点A,连接BC,已知AB=AC,∠B=40°,那么x的值是________.6. 一个等腰三角形中有一个内角为80°,则另外的两个内角的度数为______.7. 如图,在△ABC中,AB=AC,AD平分∠BAC,BC=3 cm.则∠ADB的度数是________,BD的长是________.8. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,若∠BAC=70°,则∠BAD=________.9. 如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.10. 如图,在△ABC中,AB=AC,D是BC中点,DE⊥AC,垂足为E,∠BAC=50°,求∠ADE的度数.11. 如图,AD∥BC,点E在AB的延长线上,CB=CE,试猜想∠A与∠E的大小关系,并说明理由.12. 如图,在△ABC中,AB=AC,AD⊥BC,点P是AD上的一点,且PE⊥AB,PF⊥AC,垂足分别为点E,F,求证:PE=PF.13. 如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.参考答案1. 【答案】B【解析】底角=(180°-30°)÷2=75°.故选B.2.【答案】A【解析】设底角为x,顶角为4x.则2x+4x=180°,解得x=30°,∴4x=120°,故选D.3. 【答案】C【解析】等腰三角形的“三线合一”指的是:顶角的平分线、中线、高线互相重合.故选C.4. 【答案】C【解析】∵AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C.∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=(180°﹣70°)=55°.故选C.5.【答案】80【解析】∵AB=AC,∴∠C=∠B.∵∠B=40°,∴∠C=40°,∴x=∠B+∠C=80°.6. 【答案】80°,20°或50°,50°【解析】①当80°的角是顶角,则两个底角是50°,50°;②当80°的角是底角,则顶角是20°.故答案为80°,20°或50°,50°.7.【答案】(1) 90° (2) 1.5 cm【解析】∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=DC=BC,∴∠ADB=90°,BD=1.5 cm.故答案为∠ADB=90°,BD=1.5 cm.8.【答案】35°【解析】等腰三角形底边上的高线就是顶角的角平分线,则∠BAD=∠BAC=35°.9. 证明:∵AB=AC,∴∠ABC=∠ACB.∵BD=CD,∴∠DBC=∠DCB,∴∠ABC-∠DBC=∠ACB-∠DCB,即∠ABD=∠ACD.10. 解:∵AB=AC,D是BC的中点,∴AD平分∠BAC.∵∠BAC=50°,∴∠DAE=∠BAC=25°.又∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°-∠DAE=90°-25°=65°.11. 解:∠A=∠E.理由如下:∵CB=CE,∴∠E=CBE.又∵AD∥BC,∴∠A=∠CBE,∴∠A=∠E.12.证明:在三角形ABC中,AB=AC,AD BC于D,即PE=PF.13. 证明:∵AB=AC,∴∠B=∠C.在△ABD和△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案(最新)
沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=()A.4B.3C.2D.12、如图,在中,,则的度数为()A. B. C. D.3、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=5,则△BCE的面积等于()A.20B.7C.5D.44、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm5、下列四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个6、石鼓文,秦刻石文字,因其刻石外形似鼓而得名.下列石鼓文,是轴对称的是()A. B. C. D.7、如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A.3B.4C.5D.68、下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个9、在Rt△ABC中,∠C=90°,AC=2,∠B=30°,则BC为().A.1B.C.D.410、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°11、等腰三角形的周长为26cm,一边长为6cm,那么腰长为()A.6cmB.10cmC.6cm或10cmD.14cm12、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S;④AG+DF=FG.则下列结论正确有( )△FGHA.①②④B.①③④C.②③④D.①②③13、如图,在正方形中,是边的中点,将沿折叠,使点落在点处,的延长线与边交于点.下列四个结论:① ;② ;③ ;④ S,其中正正方形ABCD确结论的个数为()A. 个B. 个C. 个D. 个14、下列图形中,既是轴对称图形又是中心对称图形的是)A. B. C. D.15、如图,已知△ABC,∠C=90°,按以下步骤:①分别以A.B为圆心,以大于AB的长为半径作弧,两弧相交于两点M、N;②作直线MN交BC于点D.若AC=1.5,∠B=15°.则BD等于( )A.1.5B.2C.2.5D.3二、填空题(共10题,共计30分)16、如图,△ABC是等边三角形,AD是BC边上的中线,点E在AC上,且∠CDE=20°,现将△CDE沿直线DE折叠得到△FDE,连结BF.∠BFE的度数是________.17、如图,已知的面积为4,平分,且于点,那么的面积为________.18、如图,在中,,,是的中点,且它关于的对称点是,则________.19、如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为________.20、已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.21、如图,在△ABC中,∠C=2∠B,在BC上取一点D,使BD=2AC,若AB=2AD=4,则=________.22、如图,在菱形ABCD中,,点E在边CD上,且,与关于AE所在的直线成对称图形以点A为中心,把顺时针旋转,得到,连接GF,则线段GF的长为________.23、如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为________.24、如图,在中,.点在上,点在的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则的面积为________.25、等腰三角形的一个角是100°,则它的底角度数是________°.三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、如图,CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由:解:∵ CD是线段AB的垂直平分线∴ AC=BC,AD=DB()在△ADC和△BDC中,( )∴△ADC≌和△BDC().∴ ∠CAD=∠CBD().28、已知,如图,在△ABC 中,AD 平分∠BAC,AD=AB,CM⊥AD 于 M,请你通过观察和测量,猜想线段 AB、AC 之和与线段 AM 有怎样的数量关系,并证明你的结论.29、如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.30、如图,在ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,EP 交AB于点F,FD∥AC交BC于点D.求证:△AEF是等腰三角形.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C6、A7、C8、B9、C10、B11、B12、B13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3 等腰三角形第4课时
1.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE 的长为()
A.10 B.8 C.5 D.2.5
2.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()
A.4cm B.2cm C.1cm D.1
2m
3.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()
A.5m B.8m C.10m D.20m
4.如图,已知∠ABC=60°,DA是BC的垂直平分线,BE平分∠ABD交AD于点E,连接CE.则下列结论:①BE=AE;②BD=AE;③AE=2DE;④S△ABE=S△CBE,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④
5.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.
6.如图,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,底边上的高AD=_______cm.
7.如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD=_________cm.
8.在△ABC中,已知AB=4,BC=10,∠B=30°,那么S△ABC=_________.
9.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是_____海里.
10.如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=1 2
DC.
11.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.
参考答案
1.A
2.C
3.A
4.C
5.2;
6.6;
7.18;
8.10;
9.10 10.如图,连接DB.
∵MN是AB的垂直平分线,
∴AD=DB,
∴∠A=∠ABD,
∵BA=BC,∠B=120°,
∴∠A=∠C=1
2(180°﹣120°)=30°,
∴∠ABD=30°,
又∵∠ABC=120°,
∴∠DBC=120°﹣30°=90°,
∴BD=1
2DC,
∴AD=1
2DC.
11.∵△ABC中,∠ACB=90°,∠A=30°,AB=4,
∴BC=1
2AB=
1
2×4=2,
∵CD是△ABC的高,∴∠CDA=∠ACB=90°,∠B=∠B,
故∠BCD=∠A=30°,
∴在Rt△BCD中,BD=1
2BC=
1
2×2=1,
∴BD=1.。