苏科版七年级数学下册期末复习:复习试卷(二).docx

合集下载

苏科初一下册第二学期数学期末试卷及答案全word版

苏科初一下册第二学期数学期末试卷及答案全word版

苏科初一下册第二学期数学期末试卷及答案全word 版一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠2 2.下列计算正确的是( ) A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 3.以下列各组数据为边长,可以构成等腰三角形的是( ) A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm4.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 5.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩ 6.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 7.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 3 8.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .9.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+10.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 11.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-12.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .二、填空题13.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.14.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.15.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 16.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 17.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.18.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.19.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .20.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.21.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.22.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题23.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定; (4)请对你在第(3)小题中所作的判断说明理由.24.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+25.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′.(1)请在图中画出平移后的△A ′B ′C ′;(2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________(4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)26.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.27.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.28.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.29.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。

苏科版数学七年级下册江苏省-第二学期初一期末复习综合试卷(2)含答案

苏科版数学七年级下册江苏省-第二学期初一期末复习综合试卷(2)含答案

2014-2015 学年第二学期初一数学期末复习综合试卷( 2 )命题:汤志良;审查:杨志刚;一、:(本共 10 小,每小 3 分,共 30 分)1 .以下算中,果的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. aga2 a3;B. x6 x2 x4;C. ab 2 3ab2;D. a a3;2 .在以下色食品、回收、能、水四个志中,是称形的是⋯⋯⋯⋯⋯⋯⋯()A. B. C. D.3 .以下命中,真命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .相等的两个角是角;B.若 a>b ,a > b;C.两条直被第三条直所截,内角相等; D .等腰三角形的两个底角相等;1 214.若a 2,b 3 2,c ;d ,它的大小关系是⋯⋯⋯⋯()3 3A. a b c d;B. b a d c ;C. a d c b ;D. c a d b ;x 1 05. (2014 ? 雅安)不等式1 x 的最小整数解是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()1 02A.1;B.2;C.3;D.4;6 .如, AB = DB ,∠1 =∠2,你增添一个适合的条件,使△ABC≌△DBE,增添下面哪个条件不可以判断△ABC ≌△DBE 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A. BC = BE;B. AC = DE;C. ∠A =∠D ;D. ∠ACB =∠DEB ;第6题图第 7题图第10题图7 .如图,已知AB ∥CD,则∠a 、∠B 和∠y 之间的关系为()A .α+β-γ=180 °;B.α+γ=β;C.α+β+γ=360 °;D.α+β-2 γ=180°;8. 若不等式组5 3x ≥ 0有实数解,则实数m 的取值范围是()x m≥ 0A .m≤5B.m 5 C.m 5 D.m≥5 3 3 3 39.假如x q x 1x 项,那么q等于()的即中不含5A. 1; C.1;;;5 510 .如图,∠ AOB = 30 °,点P 是∠AOB 内的一个定点, OP = 20cm ,点 C、D 分别是 OA 、OB 上的动点,连结CP、DP 、 CD ,则△CPD 周长的最小值为()A .10 cm B. 15 cm C.20cm D .40cm二、填空题:(此题共 8 小题,每题 3 分,共 24 分)11. 某种细菌的存活时间只有0.000 012 秒,若用科学记数法表示此数据应为秒.12 1∠B=1..在△ABC 中,若∠ A =∠C,则该三角形的形状是2 313 .一个 n 边形的内角和是1260 °,那么 n=.14 .如图,在△ABC 中,AB=BC ,∠B=120 °,AB 的垂直均分线交AC 于点 D .若 AC=6cm ,则 AD=cm .第14题图15 .若x2 4x b x 2 x a ,则 a b 的值是_______.3m 2n 4 m 4 n= .16. 当时,则g17.( 2013 ? 贺州)如图, A、B、C 分别是线段A1B,B1C,C1A的中点,若△ ABC 的面积是 1 ,那么VA1B1C1的面积.18 .已知 AD 是△ABC 的中线,∠ADC=45 °,把△ADC 沿 AD 所在直线对折,点 C 落在点 E 的地点(如图),则∠EBC 等于度.三、解答题:(此题满分76 分)19. (此题满分8 分)2(1) 1 0 2011 (2)( x+ 2) 2- ( x+ 1)( x- 1) + (2 x52011 ;10-1)( x- 2)20 .(此题满分 6 分)因式分解(1) x2 x y y x ;(2) 2a3 8a ;x 2121.(此题满分 5 分)解不等式组3,并把不等式组的解集在数轴上表示出来.2 1 x 522.(此题满分 5 分)先化简,再求值: a a b 2 a 2b a 2ba 1 b2 2,此中 a1, b 2 .223. (此题 4 分)已知 3 9m 27m 316 ,求m2 3 m3·m2的值.24.(本小题 6 分)如图,已知∠ 1 +∠2 = 180 °,∠A =∠C,且 DA 均分∠FDB .求证:(1)AE//FC ;(2)AD//BC;(3)BC 均分∠DBE .25 .(此题满分6 分)如图, AB ∥ED , BC∥EF,AF = CD ,且 BC =6 .(1)求证:△ABC ≌△DEF;(2)求 EF 的长度.26.(此题满分 6 分)如图,在△ ABC 中, AB=AC , AB 的垂直均分线MN交AC于点D,交AB于点E.(1)求证:△ ABD 是等腰三角形;(2)若∠A=40 °,求∠DBC 的度数;(3)若 AE=6 ,△CBD 的周长为 20 ,求△ABC 的周长.27 . (此题 6 分 )图 (1) 是一个长为2m 、宽为 2n 的长方形,沿图中的虚线用剪刀均匀分红四小块长方形,而后按图(2) 的形状拼成一个正方形.(1) 图 (2) 中的暗影部分的面积为 __ _____;( 用含 m 、 n 式子表示 )(2) 察看图 (2) 请你写出三个代数式:2 2m n 、 m n 、 mn 之间的等量关系是_____;(3) 若 m n 7 , mn 12 ,则m n =_________;(4)实质上有很多代数恒等式能够用图形的面积来表示,如图(3),它表示了2m n m n 2m23mn n2.试画一个几何图形,使它的面积能表示为m n m 3n m2 4mn 3n2.28.( 此题 7 分 )已知方程组x y 1 3ax y 7 的解 x 是非正数,y为负数.a(1 )求 a 的取值范围;(2 )化简: a 1 a 2 ;(3 )若实数 a 知足方程 a 1 a 2 4 ,则a= .29.(此题满分 8 分)在“五 ? 一”时期,某企业组织 318 名职工到雷山西江千户苗寨旅行,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8 名导游,现打算同时租甲、乙两种客车,此中甲种客车每辆载客45 人,乙种客车每辆载客30 人.(1 )请帮助旅行社设计租车方案.(2 )若甲种客车租金为800 元 / 辆,乙种客车租金为600 元/ 辆,旅行社按哪一种方案租车最省钱?此时租金是多少?(3 )旅行前,旅行社的一名导游因为有特别状况,旅行社只好安排7 名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65 座、 45 座和 30 座的大小三种客车,出发时,所租的三种客车的座位恰巧坐满,请问旅行社的租车方案怎样安排?30 .(此题满分9 分)已知,△ ABC 是边长 3cm 的等边三角形.动点P 以 1cm/s的速度从点 A 出发,沿线段AB 向点 B 运动.(1 )如图 1 ,设点 P 的运动时间为t ( s),那么 t= ( s)时,△PBC 是直角三角形;(2 )如图 2 ,若另一动点Q 从点 B 出发,沿线段BC 向点 C 运动,假如动点 P、 Q 都以1cm/s 的速度同时出发.设运动时间为t ( s),那么 t 为什么值时,△ PBQ 是直角三角形?(3 )如图 3 ,若另一动点Q 从点 C 出发,沿射线BC 方向运动.连结 PQ 交 AC 于 D .如果动点 P、 Q 都以 1cm/s 的速度同时出发.设运动时间为t ( s),那么 t 为什么值时,△DCQ是等腰三角形?(4 )如图 4 ,若另一动点Q 从点 C 出发,沿射线BC 方向运动.连结PQ 交 AC 于 D ,连接 PC.假如动点 P、Q 都以 1cm/s 的速度同时出发.请你猜想:在点 P、Q 的运动过程中,△PCD 和△QCD 的面积有什么关系?并说明原因.2014-2015学年第二学期初一数学期末复习综合试卷( 2 )参照答案一、选择题:1.C ;2.A ;3.D ;4.B ;5.C ;6.B ;7.A ;8.A ;9.C ;10.A ;二、填空题:11. 1.2 10 5;12. 直角三角形; 13.9 ;;15.-2 ;16.16 ; 17.7 ;18.45 °;三、解答题:19. (1)100 ;(2 )2x2 x 7 ;20. ( 1) x y x 1 x 1 ;( 2) 2a a 2 a 2 ;21. ( 1) 3 x 1;22. 2a231b2;2 423.-3 ;24.解:(1 )∵∠1+ ∠2=180 °,∠1+ ∠DBE=180 ,∴∠2= ∠DBE ,∴AE∥FC;(2)∵AE∥FC,∴∠A+ ∠ADC=180 °,∵∠A= ∠C,∴∠C+ ∠ADC=180 °,∴AD ∥BC ;(3)∵AD ∥BC,∴∠ADB= ∠CBD ,∠ADF= ∠C,∵AE ∥FC,∴∠C=∠CBE,∴∠CBE= ∠ADF ,∵DA 均分∠FDB ,∴∠ADF= ∠ADB ,∴∠CBE= ∠CBD ,∴BC 均分∠DBE .25.证明:( 1)∵AF=CD ,∴AF+CF=CD+CF,即AC=DF,∵AB∥ED,∴∠A=∠D,∵BC∥EF,∴∠ACB= ∠DFE ,在△ACB 和△DFE 中,A DAC DF ,∴△≌△ ;DEF ABCACB DFE(2)∵△DEF ≌△ABC , BC=6 ,∴EF=BC=6 .26.解:(1 )证明:∵AB 的垂直均分线 MN 交 AC 于点 D ,∴DB=DA ,∴△ABD 是等腰三角形;( 2)∵△ABD 是等腰三角形,∠ A=40 °,∴∠ABD= ∠A=40 °,∠ABC= ∠C= (180 °-40 °)÷2=70 °,∴∠BDC= ∠ABC- ∠ABD=70 °-40 °=30 °;( 3)∵AB 的垂直均分线 MN 交 AC 于点 D ,AE=6 ,∴AB=2AD=12 ,∵△CBD 的周长为 20 ,∴AC+BC=20 ,∴△ABC 的周长 =AB+AC+BC=12+20=32.27. ( 1)m n 2;(2) m n 2m n 24mn ;(3)1;(4)略28.(1)-2<a≤3;( 2 )当 -2 < a < -1 时,原式 =-a-1-a+2=-2a+1;当 -1 ≤a ≤2 时,原式 =a+1-a+2=3;当 2 < a ≤3 时,原式=a+1+a-2=2a-1;( 3 )当 -2 < a < -1 时,原式 =-a-1-a+2=-2a+1=4,解得a=3 ;211 / 12当 -1 ≤a ≤2 时,原式 =a+1-a+2=3, a 不存在;当 2 < a ≤3 时,原式 =a+1+a-2=2a-1=4,解得 a=5 229. 解:(1 )设租甲种客车 x 辆,则租乙种客车( 8-x )辆, 依题意,得 45x+30 ( 8-x )≥318+8 ,解得 x 511,∵打算同时租甲、乙两种客车,∴ x <8 ,即 51115≤x <8 ,15x=6 ,7 ,有两种租车方案:租甲种客车 6 辆,则租乙种客车 2 辆, 租甲种客车 7 辆,则租乙种客车 1 辆;( 2)∵6×800+2 ×600=6000 元, 7 ×800+1 ×600=6200 元,∴租甲种客车 6 辆;租乙种客车 2 辆,所需付费最少为 6000 (元);( 3)设同时租 65 座、 45 座和 30 座的大小三种客车各 x 辆, y 辆,(7-x-y )辆,依据题意得出: 65x+45y+30 (7-x-y )=318+7 ,整理得出: 7x+3y=23 ,1≤x <7 ,1 ≤y <7 ,1 ≤7-x-y <7 , 故切合题意的有: x=2 , y=3 , 7-x-y=2 ,租车方案为:租 65 座的客车 2 辆, 45 座的客车 3 辆, 30 座的 2 辆.30. 解:( 1)当△PBC 是直角三角形时, ∠B=60 °∠,BPC=90 °,因此 BP=1.5cm ,因此 t= 3(2 分)2( 2)当∠BPQ=90 °时,BP=0.5BQ , 3-t=0.5t ,因此 t=2 ;当∠BQP=90 °时,BP=2BQ ,3-t=2t ,因此 t=1 ;因此 t=1 或 2 ( s )(4 分)( 3)因为∠DCQ=120 °,当△DCQ 是等腰三角形时, CD=CQ ,因此∠PDA= ∠CDQ= ∠CQD=30 °,又因为∠A=60 °,因此 AD=2AP ,2t+t=3,解得 t=1 (s );(2 分)( 4)相等,如下图:作 PE 垂直 AD ,QG 垂直 AD 延伸线,则 PE ∥QG ,因此,∠G= ∠AEP ,因为∠G =∠AEP ,∠APE =∠CQG , AP = CQ ,因此△EAP ≌△GCQ (AAS ),因此 PE=QG ,因此,△PCD 和△QCD 同底等高,因此面积相等.金戈铁制卷初中数学试卷金戈铁制卷12 / 12。

苏科初一下册第二学期数学期末考试试卷及答案word版

苏科初一下册第二学期数学期末考试试卷及答案word版

苏科初一下册第二学期数学期末考试试卷及答案word 版一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形 3.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种 4.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 5.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0B .1C .3D .7 8.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .729.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,910.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .11.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 612.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.15.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.16.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 17.已知23x y +=,用含x 的代数式表示y =________.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.已知:()521x x ++=,则x =______________.20.已知代数式2x-3y 的值为5,则-4x+6y=______.21.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.22.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个. 三、解答题23.计算(1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.24.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .25.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.26.若x ,y 为任意有理数,比较6xy 与229x y +的大小.27.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中∠+∠+∠+∠+∠+∠和是________.的12345628.因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.29.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.30.如图,D、E、F分别在ΔABC的三条边上,DE//AB,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠1=∠22.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.3.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身,y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.181016x yx y+=⎧⎨=⎩B.1821016x yx y+=⎧⎨⨯=⎩C.1810216x yx y+=⎧⎨=⨯⎩D.181610x yx y+=⎧⎨=⎩4.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30°D.∠A=12∠B=13∠C5.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()A.10°B.15°C.30°D.35°6.如果x2﹣kx﹣ab=(x﹣a)(x+b),则k应为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b7.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=108.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是()A.2 B.52C.3 D.729.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC 中AC边上的高是()A.CF B.BE C.AD D.CD10.下列计算中,正确的是()A.(a2)3=a5B.a8÷a2=a4C.(2a)3=6a3D.a2+ a2=2 a211.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有( )A.5个B.4个C.3个D.2个12.七边形的内角和是()A.360°B.540°C.720°D.900°二、填空题13.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.14.不等式1x2x123>+-的非负整数解是______.15.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6 B.7 C.8 D.916.如图,在三角形纸片ABC中剪去∠C得到四边形ABDE,且∠C=40°,则∠1+∠2的度数为_____.17.若2(1)(23)2x x x mx n +-=++,则m n +=________.18.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.21.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.22.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .23.若29x kx -+是完全平方式,则k =_____.24.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题25.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值. 解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值; (3)若248200m n mn t t =++-+=,,求2m t n -的值. 27.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩28.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案) (2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).29.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.30.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=12,b=﹣2.31.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.32.(1)填一填 21-20=2( ) 22-21=2( ) 23-22=2( ) ⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019. 33.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭;(2)52342322)(a a a a a +÷-.34.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ; (2)若BD ⊥BC ,试解决下面两个问题: ①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.35.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=︒,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).36.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据内错角相等,两直线平行即可得出结论. 【详解】 ∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C 【分析】根据三角形的高的概念判断. 【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C . 【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.3.B解析:B 【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x张制作盒身,y张制作盒底,根据题意得:18 21016x yx y+=⎧⎨⨯=⎩.故选:B.【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.4.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.5.B解析:B【解析】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B6.A解析:A【分析】根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.【详解】解:∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,又∵x2﹣kx﹣ab=(x﹣a)(x+b),∴x2﹣kx﹣ab=x2+(b﹣a)x﹣ab,∴﹣k=b﹣a,故选:A . 【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.7.A解析:A 【分析】 根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】 ∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ ,解得,1015x y =-⎧⎨=-⎩;把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.8.B解析:B 【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可. 【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +, 根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52.【点睛】此题考查了完全平方公式,找到等量关系列方程为解题关键.9.B解析:B【解析】试题分析:根据图形,BE是△ABC中AC边上的高.故选B.考点:三角形的角平分线、中线和高.10.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A、(a2)3=a6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.11.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.12.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.二、填空题13.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.16.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CED+∠EDC =180°,∠C =40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.17.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题.18.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.a>﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.21.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.22.7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长. 解:∵AB=6cm,AD解析:7【解析】先根据△ABD 周长为15cm ,AB=6cm ,AD=5cm ,由周长的定义可求BC 的长,再根据中线的定义可求BC 的长,由△ABC 的周长为21cm ,即可求出AC 长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.23.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键24.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行. 故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.三、解答题25.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD 是△ABC 的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②,由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组. 28.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.29.(1)∠BDC =∠A+∠B+∠C ,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD 并延长至点F ,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.30.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.31.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.32.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.33.(1)7;(2)55a .【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2; =4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.34.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.35.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.36.a2-a,2分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.。

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库

苏科七年级苏科初一下册第二学期数学期末试卷及答案全百度文库一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm 3.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 4.下列运算结果正确的是( ) A .32a a a ÷= B .()225a a = C .236a a a =D .()3326a a = 5.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b6.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,67.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10118.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A.8312x yx y+=⎧⎨-=⎩B.8312x yx y-=⎧⎨-=⎩C.18312x yx y+=⎧⎨+=⎩D.8312x yx y-=⎧⎨+=⎩10.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°11.将一副三角板如图放置,作CF//AB,则∠EFC的度数是()A.90°B.100°C.105°D.110°12.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为()A.36x yx y-=⎧⎨+=⎩B.36x yx y+=⎧⎨-=⎩C.331661x yx y+=⎧⎨-=⎩D.331661x yx y-=⎧⎨+=⎩二、填空题13.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.14.已知方程组,则x+y=_____. 15.计算:32(2)xy -=___________.16.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.17.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 18.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.若2(1)(23)2x x x mx n +-=++,则m n +=________.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____.21.已知30m -=,7m n +=,则2m mn +=___________.22.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______. 三、解答题23.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.24.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .25.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.26.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.27.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.28.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3),并直接写出点A1的坐标;(3)求三角形ABC的面积.29.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)3 4332(1)11x yx y⎧+=⎪⎨⎪--=⎩.30.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a+b)4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.3.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a∥b,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.5.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误. 故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.6.B解析:B【解析】试题分析:A 、2+2=4,不能构成三角形,故本选项错误;B 、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C 、1+2=3,不能构成三角形,故本选项错误;D 、2+3<6,不能构成三角形,故本选项错误.故选B .考点:三角形三边关系.7.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.11.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.12.C解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x圈,乙每分钟跑y圈则可列方组为:331 661 x yx y+=⎧⎨-=⎩故选:C.【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.二、填空题13.20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,解析:20【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.14.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2.15.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 16.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12,∴a-b=-1÷12=-2,故答案为-2.18.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题. 20.a2+4ab +3b2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a2+4ab +3b2. 故答案为解析:a 2+4ab +3b 2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a 2+4ab +3b 2.故答案为:a 2+4ab +3b 2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键. 21.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 22.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩ 【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.三、解答题23.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.24.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.25.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.26.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.27.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD=180°﹣∠A﹣∠ADG=70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG的度数是解题的关键.28.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.29.(1)272xy=⎧⎪⎨=⎪⎩;(2)692xy=⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.30.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。

新苏科七年级苏科初一下册第二学期数学期末考试卷及答案word版

新苏科七年级苏科初一下册第二学期数学期末考试卷及答案word版

新苏科七年级苏科初一下册第二学期数学期末考试卷及答案word 版一、选择题1.12-等于( )A .2-B .12C .1D .12-2.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .23.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .104.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x +=+5.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 96.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,97.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±88.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =()A .115°B .130°C .135°D .150°10.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④11.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=12.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.14.233、418、810的大小关系是(用>号连接)_____.15.已知23x y +=,用含x 的代数式表示y =________.16.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______.17.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.18.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.19.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.20.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.21.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.三、解答题23.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边24.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立. 25.计算:(1)101223; (2)3258232a a a a a ; (3)223113x x x x x x .26.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.27.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来.(2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 28.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.29.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.30.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 3.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.4.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是因式分解,故A 正确;B 、是整式的乘法运算,故B 错误;C 、是单项式的变形,故C 错误;D 、没把一个多项式转化成几个整式积的形式,故D 错误;故选:A .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.6.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C .【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.7.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,∴8k =±,故选:D .【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.8.A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A .【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.9.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.11.C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.12.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题13.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m ).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).14.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.15.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .16.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.17.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 18.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.19.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.20.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.24.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律. 25.(1)2-;(2)624a ;(3)252x x . 【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则,单项式除单项式法则,合并同类项计算即可求出值;(3)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;【详解】(1)101223 2132=-;(2)3258232a a a a a 66624a a a 624a ;(3)223113x x x x x x 323233332x x x x x x323233332x x x x x x 252x x .【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.26.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】 (1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.27.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.29.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.30.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

苏科七年级苏科初一下册第二学期数学期末考试卷及答案word版

苏科七年级苏科初一下册第二学期数学期末考试卷及答案word版

苏科七年级苏科初一下册第二学期数学期末考试卷及答案word 版一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷= 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 4.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 5.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .6.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 7.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .9.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( ) A .1-B .1-或11-C .1D .1或11 11.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 17.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.18.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.21.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.22.计算:2020(0.25)-×20194=_________.三、解答题23.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.24.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.(1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.25.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.26.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.27.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.28.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+ 29.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.30.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

苏科初一数学下册第二学期期末考试试题及答案word版

苏科初一数学下册第二学期期末考试试题及答案word版

苏科初一数学下册第二学期期末考试试题及答案word 版一、选择题1.12-等于( )A .2-B .12C .1D .12-2.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE3.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=4.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg5.下列图形可由平移得到的是( )A .B .C .D .6.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=07.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 8.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米 B .2.62米C .3.62米D .4.62米9.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣210.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 11.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .25612.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个二、填空题13.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____. 14.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 15.已知22a b -=,则24a b ÷的值是____.16.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.17.已知2x =3,2y =5,则22x+y-1=_____. 18.已知()223420x y x y -+--=,则x=__________,y=__________.19.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.20.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.21.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.22.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题23.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?24.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 . 25.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.26.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.27.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P、Q为有理数,且关于x、y的方程组333 xy p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y是“爱心点”,求p、q的值.28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?29.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b+=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c++=,35ab ac bc++=,则222a b c++=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张长宽分别为a、b的长方形纸片拼出一个面积为2)(4)a b a b++(的长方形,则x y z++=.30.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若//AB CD,点P在AB、CD外部,我们过点P作AB、CD的平行线PE,则有////AB CD PE,则BPD∠,B,D∠之间的数量关系为_________.将点P 移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则BPD∠、B、D∠之间有何数量关系?请证明你的结论.(2)迎“20G”科技节上,小兰制作了一个“飞旋镖”,在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,他很想知道BPD∠、ABP∠、D∠、BQD∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF交AC于点P,AE交DF于点Q,已知126APB∠=︒,100AQF∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意直接根据负指数幂的运算法则进行分析计算即可. 【详解】 解: 12-=12. 故选:B. 【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B 【解析】 【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE . 【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行). 故选:B . 【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.3.B解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

新苏科七年级数学期末下册第二学期考试试卷及答案word版

新苏科七年级数学期末下册第二学期考试试卷及答案word版

新苏科七年级数学期末下册第二学期考试试卷及答案word 版一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩ 3.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 4.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 5.下列代数运算正确的是( ) A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 6.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°7.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .38.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 29.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 310.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒11.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .12.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=二、填空题13.多项式2412xy xyz +的公因式是______.14.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.15.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.16.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .17.计算:5-2=(____________)18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.已知m a =2,n a =3,则2m n a -=_______________.20.已知30m -=,7m n +=,则2m mn +=___________.21.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.22.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 三、解答题23.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .24.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积. (迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.25.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( )又∵∠1=∠2,(已知)∴ =∠2,( )∴ ∥ ,( )∴∠AED = .( )26.已知a +a 1-=3, 求(1)a 2+21a (2)a 4+41a 27.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.29.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )30.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y +=⎧⎨⨯=⎩. 故选:B .【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.4.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.5.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.6.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.7.C解析:C【分析】设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论.【详解】设小明买了签字笔x 支,练习本y 本,根据已知得:2x+3y=10, 解得:1032y x -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数,∴只有两种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.8.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.9.A解析:A【分析】将已知等式代入22m +6n =22m ×26n =(22)m •(23)2n =4m •82n =4m •(8n )2可得.解:∵4m =a ,8n =b ,∴22m+6n =22m ×26n=(22)m •(23)2n=4m •82n=4m •(8n )2=ab 2,故选:A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.10.C解析:C【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可.【详解】解:∵AB ∥CD ,115C ∠=︒,∴115EFB C ∠=∠=︒,∵EFB A E ∠=∠+∠,25A ∠=︒∴1152590E ∠=︒-︒=︒.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.11.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x >2+1,-3x >3,x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.解析:C【解析】解:A .x 2⋅ x 3= x 5,故A 错误;B .(-2x 2)2 = 4 x 4,故B 错误;C .( x 3 )2= x 6,正确;D .x 5÷ x = x 4,故D 错误.故选C .二、填空题13.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.14.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.15.14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE ,S △A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S 1+S 2即可得解.【详解】解:∵BE=CE ,S △ABC =12∴S △ACE =12S △ABC =12×12=6, ∵AD=2BD ,S △ABC =12 ∴S △ACD =23S △ABC =23×12=8, ∴S 1+S 2=S △ACD +S △ACE =8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.16.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125.【点睛】本题考查了负整数指数幂的运算法则,比较简单.18.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29 故答案为29【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.20.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单.21.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.22.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.三、解答题23.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.24.(1)23a (2)12(3)512 【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE ,先求出△ACE 的面积,再得到△ABC 的面积即可;(3)连接BD ,设△ADM 的面积为a ,则△BDM 的面积为2a,设△CDN 的面积为b ,则△BDN 的面积为b ,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC 中BC 边长的高为h ,∵BM =2AM .∴BM=23AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.25.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.26.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a +=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a ++=,∴44147a a +=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.27.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.29.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.30.﹣5x 2﹣4xy +18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.【详解】原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy=﹣5x 2﹣4xy +18,当x =2,y =﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.。

最新苏科七年级数学下册第二学期期末试题及答案word版

最新苏科七年级数学下册第二学期期末试题及答案word版

最新苏科七年级数学下册第二学期期末试题及答案word版一、选择题1.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠1=∠22.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a3.已知,则a2-b2-2b的值为A.4 B.3 C.1 D.04.不等式3x+2≥5的解集是()A.x≥1B.x≥73C.x≤1D.x≤﹣15.若(x2-x+m)(x-8)中不含x的一次项,则m的值为()A.8B.-8C.0D.8或-8 6.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)7.如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.8.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°9.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD 10.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 11.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .12.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个二、填空题13.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.14.若(2x +3)x +2020=1,则x =_____.15.等式01a =成立的条件是________.16.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.17.二元一次方程7x+y =15的正整数解为_____.18.已知()223420x y x y -+--=,则x=__________,y=__________.19.若2m =3,2n =5,则2m+n =______.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.21.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 三、解答题23.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .24.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 25.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .26.因式分解:(1)3a x y y x ;(2)()222416x x +-.27.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.28.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 222132 2222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.29.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.30.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行).故选A .【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b ,5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.5.B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8. 6.C解析:C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.7.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C .【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.9.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.10.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 11.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.12.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.二、填空题13.95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B ,再根据两直线平行,同位角相等求出∠AFE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE 交AB 于F ,∵AB ∥CD ,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.14.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a .解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a≠.故答案为:0a≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.16.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF=∠EFG=50°,∠1=∠GED.∵长方形纸片沿EF折叠后,点D、C 分别落在点D′、C′的位置,∴∠DEF=∠GEF=50°,即∠GED=100°,∴∠1=∠GED=100°.故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.17.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】 此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x . 【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 21.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.22.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 三、解答题23.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.24.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.证明见解析.【分析】根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F .【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .考点:平行线的判定与性质;对顶角、邻补角.26.(1)3xy a ;(2)()()2222x x -+.【分析】 (1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x3a x y x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.27.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°.28.[初步应用]5,3;[深入研究]x3+2x2-x-2=(x+2)(x+1)(x-1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x3+2x2-x-2÷(x+2),即可将多项式x3+2x2-x-2因式分解.【详解】[初步应用]∵多项式x2+□x+6能被x+2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵232321222222xx x x xx xxx-++--+----,∴()()()()()3222221211x x x x x x x x+--=+-=++-.【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.29.(1)见详解;(2)2180C AQB∠+∠=︒;(3)1:2:2【分析】(1)过点C作CF AD,则//BECF,再利用平行线的性质求解即可;(2)过点Q作QM AD,则//BEQM,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD∠=∠-∠,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出12CAD CBE∠=∠,又因为QP PB⊥,因此180CBE CAD∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB∠的度数,再求答案即可.【详解】解:(1)过点C作CF AD,则//BECF,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.30.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.。

新苏科版初一数学下册第二学期期末考试试题及答案word版

新苏科版初一数学下册第二学期期末考试试题及答案word版

新苏科版初一数学下册第二学期期末考试试题及答案word 版一、选择题1.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .02.下列计算中,正确的是( ) A .235235x x x += B .236236x x x = C .322()2x x x÷-=-D .236(2)2x x -=-3.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--4.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y5.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩6.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩ D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩7.若x 2+kx +16是完全平方式,则k 的值为( ) A .4 B .±4 C .8 D .±8 8.计算a 10÷a 2(a≠0)的结果是( ) A .5a B .5a - C .8a D .8a - 9.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=110.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8 B .6 C .2 D .0 11.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .712.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( ) A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.15.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.16.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .17.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________18.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.计算:2m·3m=______. 20.已知代数式2x-3y 的值为5,则-4x+6y=______.21.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______. 22.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 三、解答题23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;… (1)请你根据上面式子的规律直接写出第4个式子: ; (2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由. 24.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.25.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.26.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.27.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.28.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根. 29.解方程组: (1)2338y x x y =-⎧⎨-=⎩(2) 743832x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩ 30.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先将原式化简,然后将a−b =1整体代入求解. 【详解】()()2212221a b a b b a b a b ba b b a b -∴--+--+--=,====.故答案选:C . 【点睛】此题考查的是整体代入思想在代数求值中的应用.2.C解析:C 【解析】试题解析:A.不是同类项,不能合并,故错误. B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确.D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加. 同底数幂相除,底数不变,指数相减.3.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x8x22(2x1)-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.4.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 5.D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.6.C解析:C【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组. 【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.7.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.8.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.9.D解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326aa a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D . 【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.D解析:D 【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可. 【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+ 4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0. 故选:D . 【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.11.C解析:C 【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解.. 【详解】设第三边为x ,由三角形三条边的关系得 4-2<x <4+2, ∴2<x <6,∴第三边的长可能是4. 故选C . 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.16.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把14xy=-⎧⎨=⎩代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.17.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.20.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x -3y=5,∴原式=-2(2x-3y )=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y )=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.21.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;22.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.三、解答题23.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n个等式为:2n(2n+1)+1=(2n+1)2,理由:2n(2n+1)+1=4n2+4n+1=(2n+1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.24.68︒【分析】根据已知首先求得∠BAD的度数,进而可以求得∠BAE,而∠CAE=∠BAE,在△ACD中利用内角和为180°,即可求得∠C.【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE平分∠BAC,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.25.a=4【分析】先联立x+2y=−1与2x−y=13解出x,y,再代入2x−3y=7a−9即可求出a值.【详解】依题意得21 213 x yx y+=-⎧⎨-=⎩解得53xy=⎧⎨=-⎩,代入2x−3y=7a−9,得:a=4,故a的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法. 26.(1)3,0,﹣2;(2)a+b=c,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=5×6=3c=30,∴3a×3b=3c,∴a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.27.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDCAB CF,根据平行线的性质得出∠=∠,根据平行线的判定得出//∠=∠,根据平行线的判定得出即可;∠=∠,求出A EBCC EBC()2根据角平分线定义求出FDA ADB∠=∠,∠=∠,根据平行线的性质得出FDA C∠=∠即可.∠=∠,求出EBC DBCADB DBC∠=∠,C EBC【详解】()12180∠+∠=,12180BDC∠+∠=,∴∠=∠,1BDC∴,//AB CF∴∠=∠,C EBC∠=∠,A CA EBC∴∠=∠,∴;AD BC//()2AD平分BDF∠,∴∠=∠,FDA ADB//AD BC,∠=∠,∴∠=∠,ADB DBCFDA C∠=∠,C EBC∴∠=∠,EBC DBC∴平分DBEBC∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.28.【分析】++,最后求平方根即可.根据题意得到三元一次方程组,解方程组,求出x y z【详解】z-=,=,|1|z-=,=|1|0∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.29.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;30.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=.故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.。

新苏科初一下册第二学期数学期末考试卷及答案word版

新苏科初一下册第二学期数学期末考试卷及答案word版

新苏科初一下册第二学期数学期末考试卷及答案word 版一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠2 2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能4.已知()22316x m x --+是一个完全平方式,则m 的值可能是( ) A .7-B .1C .7-或1D .7或1-5.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩6.若8x a =,4y a =,则2x y a +的值为( ) A .12 B .20 C .32D .256 7.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 28.不等式3+2x>x+1的解集在数轴上表示正确的是( ) A . B .C .D .9.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1 B .(x+2)(x-2)=x 2-4 C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-410.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°11.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y ) B .(﹣x ﹣3y )(x +3y ) C .(2x 2﹣y 2 )(2x 2+y 2 ) D .(4a +b ﹣c )(4a ﹣b ﹣c )12.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件二、填空题13.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____. 15.等式01a =成立的条件是________.16.若多项式29x mx ++是一个完全平方式,则m =______. 17.因式分解:224x x -=_________.18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 20.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____.21.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.22.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____.三、解答题23.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ; (3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.24.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.25.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?26.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台? 27.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+...+22020,将等式两边同时乘以2得, 2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1. 即1+2+22+23+24+…+22020=22021﹣1 仿照此法计算: (1)1+3+32+33+…+320; (2)2310011111 (2222)+++++. 28.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.29.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中,m=___________,n=__________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)30.已知a6=2b=84,且a<0,求|a﹣b|的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论. 【详解】 ∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行). 故选A . 【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.C解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.D解析:D 【分析】根据同位角的定义和平行线的性质判断即可. 【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能. 故选:D . 【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.4.D解析:D 【分析】利用完全平方公式的特征判断即可得到结果. 【详解】 解:()22316x m x --+是一个完全平方式,∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8 解得:m =-1或7 故选:D 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.C解析:C 【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意; C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.6.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.7.D解析:D 【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案. 【详解】解:A 、(a 2)3=a 6,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(2a)3=8a3,,故此选项错误;D、a2+ a2=2 a2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.8.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.9.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.10.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.11.B解析:B 【分析】根据平方差公式:22()()a b a b a b +-=-进行判断. 【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意; 故选B . 【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.12.D解析:D 【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查. 【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查; B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查; C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查; D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D. 【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题13.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.14.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.16.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.x x-解析:2(2)【分析】直接提取公因式即可.【详解】2-=-.x x x x242(2)x x-.故答案为:2(2)【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.18.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.20.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 21.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.22.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.三、解答题23.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】 此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.24.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.25.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.26.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.27.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.28.22442a ab b -+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1=4a 2﹣4ab+2b 2,当a =12,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.29.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.30.16【分析】根据幂的乘方运算法则确定a、b的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.。

苏科初一下册第二学期数学期末考试卷及答案word版

苏科初一下册第二学期数学期末考试卷及答案word版

苏科初一下册第二学期数学期末考试卷及答案word 版一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷= 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 4.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩ C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 7.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3 B .2,3,6 C .3,4,5D .4,5,9 8.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×104 9.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 10.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .11.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .6 12.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 二、填空题13.已知2x +3y -5=0,则9x •27y 的值为______.14.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.15.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.16.等式01a =成立的条件是________.17.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.18.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.21.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.22.分解因式:m 2﹣9=_____.三、解答题23.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 24.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.25.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.26.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 27.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.28.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).29.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.30.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

苏科七年级下册第二学期数学期末考试卷及答案word版

苏科七年级下册第二学期数学期末考试卷及答案word版

苏科七年级下册第二学期数学期末考试卷及答案word版一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.3.如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…P n…,记纸板P n的面积为S n,则S n-S n+1的值为( )A.12nπ⎛⎫⎪⎝⎭B.14nπ⎛⎫⎪⎝⎭C.2112nπ+⎛⎫⎪⎝⎭D.2112nπ-⎛⎫⎪⎝⎭4.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm5.若(x+2)(2x-n)=2x2+mx-2,则()A.m=3,n=1;B.m=5,n=1;C.m=3,n=-1;D.m=5,n=-1;6.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)27.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x元,馒头每个y元,则下列能表示题目中的数量关系的二元一次方程组是()A.53502115900.9x yx y+=+⎧⎨+=⨯⎩B.53502115900.9x yx y+=+⎧⎨+=÷⎩C.53502115900.9x yx y+=-⎧⎨+=⨯⎩D.53502115900.9x yx y+=+⎧⎨+=⨯⎩8.下列图案中,可以看成是由图案自身的一部分经平移后得到的是()A.B.C.D.9.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 10.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .7 11.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题13.等式01a =成立的条件是________.14.若x +3y -4=0,则2x •8y =_________.15.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .16.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.17.二元一次方程7x+y =15的正整数解为_____.18.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .19.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.20.若2m =3,2n =5,则2m+n =______.21.已知m a =2,n a =3,则2m n a -=_______________.22.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____. 三、解答题23.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅24.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()25.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.26.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.27.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.28.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)29.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ;(3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚. 30.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.4.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 5.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n)=2x2+4x-nx-2n,又∵(x+2)(2x-n)=2x2+mx-2,∴2x2+(4-n)x-2n=2x2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.6.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.7.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移.故选:A .【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.9.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.10.C解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x ,由三角形三条边的关系得4-2<x <4+2,∴2<x <6,∴第三边的长可能是4.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.11.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①②把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.15.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.16.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x ,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 17.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y =﹣7x+15,x =1,y =8;x =2,y =1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.20.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.21.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.22.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题23.(1)89;(2)102x;【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89;(2)原式=x10+x10=2x10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.24.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.25.6°【解析】试题分析:先根据三角形内角和求出∠BAC的度数,由AE是△ABC的角平分线,求出∠DAC的度数,由AD是BC边上的高,求出∠EAC的度数,再利用角的和差求出∠DAE的度数.解:∵在△ABC中,∠ABC=56°,∠ACB=44°∴∠BA C=180°-∠ABC-∠ACB=80°∵AE是△ABC的角平分线∴∠EAC=12∠BA C=40°∵AD是BC边上的高,∠ACB=44°∴∠DAC=90°-∠ACB=46°∴∠DAE=∠DAC-∠EAC=6°26.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.27.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.28.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.29.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.30.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2);(2)原式=2a(x2﹣2xy+y2)=2a(x﹣y)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。

苏科版初一下册第二学期数学期末考试卷及答案word版

苏科版初一下册第二学期数学期末考试卷及答案word版

苏科版初一下册第二学期数学期末考试卷及答案word 版一、选择题1.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 2.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-83.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 9.计算28+(-2)8所得的结果是( )A .0B .216C .48D .29 10.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④11.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-12.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8 B .6 C .2 D .0二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.14.若(2x +3)x +2020=1,则x =_____.15.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.16.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .17.()7(y x -+________ 22)49y x =-.18.已知代数式2x-3y 的值为5,则-4x+6y=______.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.21.已知一个多边形的每个外角都是24°,此多边形是_________边形.22.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题23.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.24.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.26.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 27.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.28.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.29.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半. (1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.30.已知1502x x +-=,求值; (1)221x x +(2)1x x-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.2.B解析:B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.3.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.A解析:A【分析】根据平移的定义,逐一判断即可.【详解】解:A、是平移;B、轴对称变换,不是平移;C、是旋转变换,不是平移.D、图形的大小发生了变化,不是平移.故选:A.【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.9.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.10.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.11.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.12.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 二、填空题13.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.14.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.15.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.16.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【±解析:10【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,--解析:7y x【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.本题考查了平方差公式,掌握平方差公式的特征是解题的关键.18.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.19.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.21.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360° 24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.22.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.三、解答题23.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.24.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.25.(1)见详解;(2)见详解;(3)152. 【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB 和CH 的长即可得出面积.【详解】(1)△EFD 如图所示,;(2)CH 如图所示,;(3)根据勾股定理可得:AB=223+6=35,CH=221+2=5,∴S △ABC =12×AB ×CH=12×35×5=152. 【点睛】 本题考查了平移作图,勾股定理,掌握知识点是解题关键.26.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.27.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.28.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A点为“爱心点”,理由如下:当A(5,3)时,m﹣1=5,22n+=3,解得:m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.29.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:360 60=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12x,由题意得,x+12x =180°,解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,(2)设内角为x,则外角为12x,由题意得: x+12x =180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.30.(1)174;(2)32【分析】(1)利用完全平方公式(a+b)²=a²+2ab+b²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a²−2ab+b²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭ 即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.。

苏科初一下册第二学期数学期末试卷及答案全word版

苏科初一下册第二学期数学期末试卷及答案全word版

苏科初一下册第二学期数学期末试卷及答案全word 版一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( ) A .三角形 B .四边形C .六边形D .八边形2.12-等于( ) A .2-B .12C .1D .12-3.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 4.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =5.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩6.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α- B .1902α︒+C .12αD .15402α︒-7.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .2568.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( )A .B .C .D .9.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+- D .21()x x x x x+=+10.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=111.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A12.已知x ay b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( )A .4±B .4C .2D .2±二、填空题13.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.14.计算:23()a =____________.15.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.16.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.17.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______ 18.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____. 19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____.21.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______. 22.已知m a =2,n a =3,则2m n a -=_______________.三、解答题23.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.24.[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式. 例如:如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)图②中阴影部分的正方形的边长是________________;(2)请用两种不同的方法求图②中阴影部分的面积:方法1:________________________;方法2:_______________________; (3)观察图②,请你写出(a+b )2、2()a b -、ab 之间的等量关系是____________________________________________; (4)根据(3)中的等量关系解决如下问题:若6x y +=,112xy =,则2()x y -= [知识迁移]类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式. (5)根据图③,写出一个代数恒等式:____________________________;(6)已知3a b +=,1ab =,利用上面的规律求332a b +的值.25.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为正整数....)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S -)是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值.26.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = . (知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .27.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩.(2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 28.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.29.已知1502x x +-=,求值; (1)221x x + (2)1x x-30.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解. 【详解】解:多边形的内角和是:360°×3=1080°. 设多边形的边数是n , 则(n-2)•180=1080, 解得:n=8.即这个多边形是正八边形. 故选D . 【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.2.B解析:B 【分析】由题意直接根据负指数幂的运算法则进行分析计算即可. 【详解】 解: 12-=12.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.3.C解析:C 【分析】根据同旁内角的定义可判断. 【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内 ∴∠1和∠2是同旁内角的关系 故选:C . 【点睛】本题考查同旁内角的理解,紧抓定义来判断.4.C解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.5.A解析:A 【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可.【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得:2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩,【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.6.A解析:A 【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数. 【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α, ∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=12α-90°.故选:A . 【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.7.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.8.A解析:A 【分析】根据平移的定义,逐一判断即可. 【详解】 解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移. 故选:A . 【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.9.B解析:B 【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解. 【详解】解:根据因式分解的概念, A 选项属于整式的乘法,错误; B 选项符合因式分解的概念,正确; C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B . 【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.10.D解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326a a a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D . 【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.D解析:D 【分析】根据平行线的判定定理对各选项进行逐一判断即可. 【详解】A 、∵∠A +∠2=180°,∴AB ∥DF ,故本选项错误; B 、∵∠A =∠3,∴AB ∥DF ,故本选项错误;C 、∵∠1=∠4,∴AB ∥DF ,故本选项错误;D 、∵∠1=∠A ,∴AC ∥DE ,故本选项正确. 故选:D . 【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.12.B解析:B 【分析】 把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案; 【详解】 解:24213x y x y -=⎧⎨+=⎩①②把①式×5得:248x y -= ③, 用②式-③式得:55y = , 解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = , 又x ay b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,所以61a b =⎧⎨=⎩,故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== , 故答案为:4; 【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题13.32°. 【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1(5﹣2)×180°=108°,5则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.14..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.15.61°【分析】根据平行线的性质可得∠GEB的度数,进而得的度数,再根据角平分线的定义即得答案.【详解】解:,,.EF平分,.故答案为:61°.【点睛】本题考查了平行线的性质、角解析:61°【分析】∠的度数,再根据角平分线的定义即得根据平行线的性质可得∠GEB的度数,进而得AEG答案.【详解】AB CD,解://∴∠=∠=︒,GEB158∴∠=︒-︒=︒.AEG18058122∠,EF平分AEGAEF∴∠=︒.61故答案为:61°.【点睛】本题考查了平行线的性质、角平分线和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.16.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.17.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.18.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.6【分析】把代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12xy=⎧⎨=-⎩代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把12xy=⎧⎨=-⎩代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.21.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.22.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为29 【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.三、解答题23.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.24.(1) a-b ;(2)()2a-b ; ()2a b 4ab +-; (3)22()4()a b ab a b +-=-;(4) 14;(5) (a+b )3=a 3+b 3+3a 2b+3ab 2;(6) 9.【分析】(1)由图直接求得边长即可,(2)已知边长直接求面积,阴影面积是大正方形面积减去四个长方形面积,可得答案,(3)利用面积相等推导公式22()4()a b ab a b +-=-; (4)利用(3)中的公式求解即可,(5)利用体积相等推导33322()33a b a b a b ab +=+++;(6)应用(5)中的公式即可.【详解】解:(1)由图直接求得阴影边长为a-b ;故答案为:a-b ;(2)方法一:已知边长直接求面积为2()a b -;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为2()4a b ab +-;故答案为2()a b -;2()4a b ab +-;(3)由阴影部分面积相等可得22()4()a b ab a b +-=-;故答案为: 22()4().a b ab a b +-=-(4)由22()4()a b ab a b +-=-, 可得22()4()x y xy x y -+=+,∵116,2x y xy +==, ∴2211()462x y -+⨯= , ∴2()14x y -= ;故答案为14;(5)方法一:正方体棱长为a+b , ∴体积为3()a b +,方法二:正方体体积是长方体和小正方体的体积和,即332233a b a b ab +++,∴33322()33a b a b a b ab +=+++;故答案为33322()33a b a b a b ab +=+++;(6)∵33322()33a b a b a b ab +=+++; 将a+b=3,ab=1,代入得:333333,a b a b =+++ 33279,a b =++3318a b +=;339.2a b +∴= 【点睛】本题考查完全平方公式的几何意义;同时考查对公式的熟练的应用,能够由面积相等,过渡到利用体积相等推导公式是解题的关键.25.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m时,∴1792m,m为正整数,9m∴=.【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.26.(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.27.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题; (2)将原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组3259419x y x y -=⎧⎨-=⎩①②把②变形为3x +2(3x ﹣2y )=19,∵3x ﹣2y =5,∴3x +10=19,∴x =3,把x =3代入3x ﹣2y =5得y =2,即方程组的解为32x y =⎧⎨=⎩; (2)原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①② ①+②×2得,7(x 2+4y 2)=119,∴x 2+4y 2=17,把x 2+4y 2=17代入②得xy =2∴x 2+4y 2﹣xy =17﹣2=15答:x 2+4y 2﹣xy 的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.28.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米;当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.29.(1)174;(2)32± 【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭ 即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.30.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc.故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.。

最新苏科七年级下册第二学期数学期末考试卷及答案word版

最新苏科七年级下册第二学期数学期末考试卷及答案word版

最新苏科七年级下册第二学期数学期末考试卷及答案word 版一、选择题1.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 2.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 3.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg4.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=05.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD6.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°7.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( ) A . B . C . D .8.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+9.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .10.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 11.计算28+(-2)8所得的结果是( ) A .0B .216C .48D .29 12.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( )A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=3 二、填空题13.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.14.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________. 15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.17.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若(x ﹣2)x =1,则x =___.20.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 21.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.22.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.三、解答题23.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n个式子,并用所学知识说明第n个等式成立.24.解不等式(组)(1)解不等式114136x xx+-+≤-,并把解集在数轴上....表示出来.(2)解不等式835113x xxx->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解.25.将下列各式因式分解(1)xy2-4xy (2)x4-8x2y2+16y4 26.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)34332(1)11 x yx y⎧+=⎪⎨⎪--=⎩.27.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)28.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.29.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.30.如图,D、E、F分别在ΔABC的三条边上,DE//AB,∠1+∠2=180º.(1)试说明:DF//AC;(2)若∠1=120º,DF平分∠BDE,则∠C=______º.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A选项:(﹣2a3)2=4a6,故是错误的;B选项:(a﹣b)2=a2-2ab+b2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D . 2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

新苏科初一数学下册第二学期末考试试题

新苏科初一数学下册第二学期末考试试题

新苏科初一数学下册第二学期末考试试题一、选择题1.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除 B .能被2020整除C .能被2021整除D .能被2022整除2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 4.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8 C .6D .10 5.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 36.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线8.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( ) A .1.2×107 B .0.12×10﹣6 C .1.2×10﹣7 D .1.2×10﹣8 9.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±810.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .012.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( ) A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.14.若x +3y -4=0,则2x •8y =_________.15.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 17.若关于x 、的方程()2233b a axb y -+++=是二元一次方程,则b a =_______18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种. 19.()22x y --=_____.20.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .21.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.22.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 23.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.24.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题25.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2. (1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.26.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 227.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( ) A .点A 的左边 B .线段AB 上 C .点B 的右边 28.计算: (1)11223; (2)3258232a a a a a ;(3)223113x xx xx x .29.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆. (1)补全'''A B C ∆,利用网格点和直尺画图; (2)图中AC 与''A C 的位置关系是: ; (3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .30.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-31.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=. 32.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值. 33.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5 (3)x (x+7)-(x-3)(x+2) (4)(a-2b-c )(a+2b-c )34.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.35.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数.(1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+--;36.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 解:20203﹣2020 =2020×(20202﹣1) =2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解3.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A.67x x x,故A选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误. 故选B . 【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.6.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7.B解析:B 【分析】根据三角形中线的性质作答即可. 【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B . 【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.8.C解析:C 【分析】用科学计数法将0.00000012表示为a×10-n 即可. 【详解】解:0.00000012=1.2×10﹣7, 故选:C . 【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.10.D解析:D 【分析】根据平行线的判定定理对各选项进行逐一判断即可. 【详解】A 、∵∠A +∠2=180°,∴AB ∥DF ,故本选项错误; B 、∵∠A =∠3,∴AB ∥DF ,故本选项错误;C 、∵∠1=∠4,∴AB ∥DF ,故本选项错误;D 、∵∠1=∠A ,∴AC ∥DE ,故本选项正确. 故选:D . 【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.11.D解析:D 【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可. 【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+ 4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0. 故选:D . 【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.12.B解析:B 【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答. 【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3, ∴点P 的横坐标为-3,纵坐标为1, ∴P 点的坐标为(-3,1). 故选:B . 【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.5×10-6 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000025=2.5×10-6, 故答案为2.5×10-6. 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.15.80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.16.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.18.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.20.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.21.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角45,5解析:()【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,45,5.则第2020个点在()45,5.故答案为()【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.22.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 23.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.24.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题25.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣∠D=68°,∵BC平分∠ABD,∴∠4=12∠ABD=34°,∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.28.(1)2-;(2)624a ;(3)252x x .【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则,单项式除单项式法则,合并同类项计算即可求出值;(3)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;【详解】(1)101223 2132=-;(2)3258232a a a a a66624a a a 624a ;(3)223113x x x x x x 323233332x x x x x x323233332x x x x x x 252x x .【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键. 29.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.30.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】 此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.31.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.32.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】 (1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=, ∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.33.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.34.(1)见解析;(2)见解析.【解析】【分析】 ()1求出1BDC ∠=∠,根据平行线的判定得出//AB CF ,根据平行线的性质得出C EBC ∠=∠,求出A EBC ∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB ∠=∠,根据平行线的性质得出FDA C ∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,求出EBC DBC ∠=∠即可.【详解】()12180BDC ∠+∠=,12180∠+∠=,1BDC ∴∠=∠,//AB CF ∴,C EBC ∴∠=∠,A C ∠=∠,A EBC ∴∠=∠,//AD BC ∴;()2AD 平分BDF ∠,FDA ADB ∴∠=∠,//AD BC ,FDA C ∴∠=∠,ADB DBC ∠=∠,C EBC ∠=∠,EBC DBC ∴∠=∠,BC ∴平分DBE ∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.35.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m=+⎧⎨=-⎩ 因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.36.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-,∴x y -=5=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.。

苏科版七年级数学下册期末试卷及答案(二).doc

苏科版七年级数学下册期末试卷及答案(二).doc

七年级第二学期期末数学试卷(二)(时间:100分钟,满分:100分)一、选择题(每题2分,共20分)1、下列等式不正确的是 ( )A 、()()63242623b a ab b a = B 、()111342332221n m mn n m -=-⎪⎭⎫⎝⎛-C 、()()()151143322y x xy xy yx -=--- D 、()()()21615.025.0125.0632=2、用平方差公式计算()()()1112++-x x x 结果正确的是 ( )A 、x 4-1 B 、14+x C 、()41-x D 、()41+x3、如图,下列判断正确的是 ( ) A 、4对同位角,4对内错角,4对同旁内角 B 、4对同位角,4对内错角,2对同旁内角C 、6对同位角,4对内错角,4对同旁内角D 、6对同位角,4对内错角,2对同旁内角4、如图,∠1=∠2,DE ∥BC ,∠B =75°,∠ACB =44°, 那么∠BDC 为 ( )A 、︒83B 、︒88C 、︒90D 、︒785、三角形两边为7和2,其周长为偶数,则第三边的长为( ) A 、3 B 、6 C 、7 D 、86、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件 中无法判定△ABE ≌△ACD 的是 ( )A 、AD=AEB 、∠AEB=∠ADC C 、BE=CD D 、AB=AC 7、一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,当梯子 的顶端下滑了4米时,梯子的底端在水平方向上滑动了( ) A 、4米 B 、7米 C 、8米 D 、以上答案均不对8、在等边三角形所在平面内有一点P ,使得△PBC 、△PAC 、△PAB 都是等腰三角形,则具有该性质的点有 ( ) A 、1个 B 、7个 C 、10个 D 、无数个9、掷一个一般的骰子时,朝上的点数不小于3的概率是 ( )A 、0B 、61C 、31D 、3210、如图,△ABC 的高AD 、BE 相交于点O ,则 ∠C 与∠BOD 的关系是 ( )8765432121EDCB AED CB AOE DCBAA 、相等B 、互余C 、互补D 、不互余、不互补也不相等 二、填空:(每题2分,共32分)11、计算)8)(4(22+++-mx x n x x 的结果不含2x 和3x 的项,那么m= ;n= .12、若22419y Mxy x ++是完全平方式,则M= . 13、“推三角尺画平行线”的理论依据是 . 14、已知A 、B 互为相反数,C 、D 互为倒数,M 的相反数是21的倒数,则MB A CD M ++-22 的值为 .15、已知二元一次方程03=+y x 的一个解是⎩⎨⎧==b y ax 其中0≠a 那么239-+b a 的值为 .16、某课外兴趣小组外出活动,若每组7人,则余下3人;若每组8人,则不足5人,求这个课外小组分成几组?解:设 .列出方程组为 .17、如图AB ∥CD ,直线EF 分别交于AB 、CD 于E 、F ,E 平分∠BEF , 若∠1=72°,则∠2= °.18、如图,已知AB=AC ,CD=BD ,E 在线段AD 上,则图中全等三角形有 对.19、已知等腰三角形的两边a 、b 满足等式()033222=--+--b a b a , 则该等腰三角形的周长为 .20、如图,已知AB=AC ,用“SAS ”定理证明△ABD ≌△ACE , 还需添加条件 ;若用“ASA ”证明,还需添加条件 ;若用“AAS ”证明,还需 添加条件 ;图中除△ABD ≌△ACE 之外, 还有△ ≌△ . 三、解答题(共48分)21、(6分)已知:3=+y x ,7-=xy .求:①22y x +的值; ②22y xy x +-的值; ③()2y x -的值21GF E DCB A EDCBAFEDC BA22、(6分)用乘法公式计算:①2003200120022⨯-; ②()()()12121242+++…()122+n34=+y x y x 352+=13-=-y ax by x -=+1224、(7分)将下列事件发生的概率标在图中:(1)2008年奥运会在中国北京举行; (2)骆驼比马大;(3)两个奇数的商还是奇数; (4)五边形的内角和是720°; (5)小黄是男生.23、(6分)若与 有相同的解,求a 、b 的值. 1(100%)(50%)21必然发生不可能 发生25、(7分)已知,如图,AC ∥BD ,∠C =90°,BC =BD ,AC =BE. 那么AC 、DE 相等吗?为什么?26、(8分)某班学生60人进行一次数学测验,成绩分成:50~59、60~69、70~79、80~89、90~100五组,前四组频率分别为05.0,15.0,35.0,30.0.求这次测验中优分(不低于80分)的人数是多少?并画出条形统计图。

〖苏科版〗七年级数学下册期末复习考试试卷含答案2

〖苏科版〗七年级数学下册期末复习考试试卷含答案2

54D3E21C BA〖苏科版〗七年级数学下册期末复习考试试卷含答案一、选择题(共10小题,每小题3分,共30分)1、如右图,下列不能判定AB ∥CD 的条件是( ).A 、︒=∠+∠180BCDB B 、;C 、43∠=∠;D 、 5∠=∠B .2、在直角坐标系中,点P (6-2x ,x -5)在第二象限,•则x 的取值范围是( )。

A 、3< x <5 B 、x > 5 C 、x <3 D 、-3< x <53、点A (3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( )A 、(1,-8)B 、(1,-2)C 、(-7,-1)D 、( 0,-1)4、在下列各数:3.1415926、 10049、0.2、π1、7、11131、327、中,无理数的个数( ) A 、2 B 、3 C 、4 D 、55、下列说法中正确的是( )A. 实数2a -是负数B. a a =2C. a -一定是正数D.实数a -的绝对值是a 6、已知a<b,则下列式子正确的是( )。

A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b 7、下列调查中,适合用全面调查的是【 】A 了解某班同学立定跳远的情况B 了解一批炮弹的杀伤半径C 了解某种品牌奶粉中含三聚氰胺的百分比D 了解全国青少年喜欢的电视节目8、六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有多少个小朋友( )A.4B.5C.6D.79、若方程组⎩⎨⎧-=++=+ay x a y x 13313的解满足y x +>0,则a 的取值范围是( )A 、a <-1B 、a <1C 、a >-1D 、a >110、如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、 填空题(本大题共10小题, 每题3分, 共30分)11、16的平方根是_______________ ,︱35-︳的相反数是________(用代数式表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
马鸣风萧萧
1、下列等式不
正确的是 ( )
A 、()()6
3
2
4
2
623b a ab b a = B 、()
11134
2
3
32221n m mn n m -=-⎪⎭

⎝⎛-
C 、()()()
15114
332
2y x xy xy y
x -=--- D 、()()()216
1
5.025.0125.06
3
2
=
2、用平方差公式计算()()()
1112
++-x x x 结果正确的是 ( )
A 、x 4
-1 B 、14
+x C 、()41-x D 、()4
1+x
3、如图,下列判断正确的是 ( ) A 、4对同位角,4对内错角,4对同旁内角
B 、4对同位角,4对内错角,2对同旁内角
C 、6对同位角,4对内错角,4对同旁内角
D 、6对同位角,4对内错角,2对同旁内角
4、如图,∠1=∠2,DE ∥BC ,∠B =75°,∠ACB =44°,
那么∠BDC 为 ( ) A 、︒83 B 、︒88 C 、︒90 D 、︒78
5、三角形两边为7和2,其周长为偶数,则第三边的长为( ) A 、3 B 、6 C 、7 D 、8
6、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒
牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) A.29人 B.30人 C.31人 D.32人
7、一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,当梯子
的顶端下滑了4米时,梯子的底端在水平方向上滑动了( ) A 、4米 B 、7米 C 、8米 D 、以上答案均不对 8、下列说法中,错误..
的是( ) A. 不等式2<x 的正整数解中有一个 B. 2-是不等式012<-x 的一个解 C. 不等式93>-x 的解集是3->x D. 不等式10<x 的整数解有无数个 9、已知:03)3(2
=++++m y x x 中,y 为负数,则m 的取值范围是 ( ) 8
7
65
4
3
21
A 、m >9
B 、m <9
C 、m >-9
D 、m <-9
10、如图,△ABC 的高AD 、BE 相交于点O ,则 ∠C 与∠BOD 的关系是 ( ) A 、相等 B 、互余 C 、互补 D 、不互余、不互补也不相等 二、填空:(每题2分,共32分)
11、计算)8)(4(2
2
+++-mx x n x x 的结果不含2
x 和3
x 的项,那么m= ;n= .
12、若2
2
4
19y Mxy x +
+是完全平方式,则M= . 13、“推三角尺画平行线”的理论依据是 . 14、已知A 、B 互为相反数,C 、D 互为倒数,M 的相反数是
21的倒数,则M
B A CD M ++-22
的值为 . 15、已知二元一次方程03=+y x 的一个解是⎩⎨
⎧==b
y a
x 其中0≠a 那么239-+b a 的值为 .
16、某课外兴趣小组外出活动,若每组7人,则余下3人;若每组8人,则不足5人,求这个课外小组分
成几组?
解:设 .
列出方程组为 .
17、如图AB ∥CD ,直线EF 分别交于AB 、CD 于E 、F ,E 平分∠BEF ,
若∠1=72°,则∠2= °. 18、若关于x 、y 的二元一次方程组⎩⎨
⎧-=+-=+2
21
32y x k y x 的解满足y x +﹥1,则k 的取值范围是 .
19、已知等腰三角形的两边a 、b 满足等式()033222
=--+--b a b a ,
则该等腰三角形的周长为 .
20、不等式2x+9≥3(x+2)的正整数解是________________ 三、解答题(共48分)
21、(6分)已知:3=+y x ,7-=xy .
求:①22y x +的值; ②2
2y xy x +-的值; ③()2
y x -的值
22、(6分)用乘法公式计算:
①2003200120022
⨯-; ②()()()12121242+++…()
122+n
34=+y x y x 352+=
13-=-y ax by x -=+12
23、(6分)若方程组 与 有相同的解,求a 、b 的值.
O
E D
C
B
A 2
1
G
F
E
D
C
B
A
24、求不等式组⎪⎪⎩⎪⎪⎨⎧≤-≥-212
1112
1
x x 的整数解.
25、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。

(1)小明考了68分,那么小明答对了多少道题?
(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?
26、某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.
A种产品B种产品
成本(万元/件) 2 5
利润(万元/件) 1 3
(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
27、(8分)操作与探究
如图,已知△ABC,
(1)画出∠B、∠C的平分线,交于点O;
(2)过点O画EF∥BC,交AB于点E,AC于点F;
(3)写出可用图中字母表示的相等的角,并说明理由;
(4)若∠ABC=80°,∠ACB=60°,求∠A,∠BOC的度数;又若∠ABC=70°,∠ACB=50°,求∠A,∠BOC的度数;
(5)根据(4)的解答,请你猜出∠BOC与∠A度数的大小关系这个结论对任意一个三角形都成立吗?
为什么?。

相关文档
最新文档