微积分笔记
微积分上重要知识点总结

1、常用无穷小量替换2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有界集。
3、初等函数:正割函数sec就是余弦函数cos的倒数;余割函数就是正弦函数的倒数;反三角函数:定义域、值域4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几何意义、左右极限、极限为A的充要条件、极限的证明。
5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。
6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
7、极限的四则运算法则。
8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。
9、两个重要极限及其变形10、等价无穷小量替换定理11、函数的连续性:定义(增量定义法、极限定义法)、左右连续12、函数的间断点:第一类间断点与第二类间断点,左、右极限都存在的就是第一类间断点,第一类间断点有跳跃间断点与可去间断点。
左右极限至少有一个不存在的间断点就是第二类间断点。
13、连续函数的四则运算14、反函数、复合函数、初等函数的连续性15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。
16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。
17、求导法则与求导公式:函数线性组合的求导法则、函数积与商的求导法则、反函数的求导法则、复合函数求导法则、对数求导法、基本导数公式18、隐函数的导数。
19、高阶导数的求法及表示。
20、微分的定义及几何意义、可微的充要条件就是可导。
21、A微分的基本公式与运算法则dy=f’(x0)Δx、22、微分形式的不变性23、微分近似公式:24、导数在经济问题中的应用(应用题):(1)边际(变化率,即导数)与边际分析:总成本函数与边际成本、总收益函数与边际收益、利润函数与边际利润(2)弹性(书78页)及其分析、弹性函数及应用、需求量与价格之间的变化关系25、中值定理:罗尔定理、拉格朗日中值定理及推论、可喜中值定理、26、洛必达法则求极限(89页)27、函数单调性28、函数的极值、最值、极值点与驻点及其区别,最大利润、最小平均成本、最大收益问题,经济批量问题。
微积分笔记

微积分笔记
微积分是高等数学的一部分,是研究函数的极限、导数、积分等概念和方法的数学分支。
微积分被广泛应用于科学、工程、经济学等领域。
本篇文章将为大家介绍微积分的基本概念和方法。
1. 函数的极限
函数的极限是指当自变量趋近于某个值时,函数取值趋近于某个常数或无穷大。
函数的极限可以用极限符号表示,例如$lim_{xto a}f(x)=L$表示当自变量$x$趋近于$a$时,函数$f(x)$的极限为$L$。
2. 导数
函数的导数描述了函数在某一点的变化率。
导数可以用极限符号表示,例如$f'(x)=lim_{hto0}frac{f(x+h)-f(x)}{h}$表示函数
$f(x)$在$x$点的导数。
导数的几何意义是函数图像在该点的切线的斜率。
3. 积分
积分可以看作是导数的逆运算。
积分可以用定积分和不定积分两种方式表示。
定积分表示函数在某一区间上的面积,可以表示为$int_a^bf(x)dx$;不定积分表示函数的原函数,可以表示为$int
f(x)dx$。
4. 微积分中的应用
微积分被广泛应用于科学、工程、经济学等领域。
例如,微积分可以用于求解物理学中的运动问题、工程学中的优化问题、经济学中的最大化问题等。
本篇文章为大家介绍了微积分的基本概念和方法,希望能对大家的学习有所帮助。
微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
考研数学三必背知识点:微积分

微积分必考知识点一、函数、极限与连续性1、无穷小量(假设:0)(lim ,0)(lim 0==→→x g x f x x x x )(1)若)()(lim=→x g x f x x ,则)(x f 为)(x g 的高阶无穷小量,记为)]([)(x g o x f =(2)若∞=→)()(limx g x f x x ,则)(x f 为)(x g 的低阶无穷小量(3)若A x g x f x x =→)()(lim,则)(x f 为)(x g 的同阶无穷小量(4)若1)()(lim=→x g x f x x ,则)(x f 为)(x g 的等价无穷小量,记为)(~)(x g x f2、常见无穷小等价代换(0→x 时)x nx x x x x x e x x x x x x x x x x n x1~11,21~11,21~cos 1,~1,~)1ln(,~arctan ,~arcsin ,~tan ,~sin 2-+-+--+2、极限存在准则(1) 夹逼准则:若)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0(2) 单调有界数列必有极限 (3) 两个重要极限:ex xxx x x xx x =+=+=→∞→→1)1(lim )11(lim ,1sin lim3、间断点 (1) 第一类间断点:)(lim),(limx f x f x x x x +-→→都存在,当)(lim)(limx f x f x x x x +-→→=时为可去间断点,)(lim)(limx f x f x x x x +-→→≠时为跳跃间断点。
(2) 第二类间断点:)(lim),(limx f x f x x x x +-→→其中一个不存在。
4、闭区间上连续函数定理(1) 零点定理:设)(x f 在],[b a 上连续,0)()(<b f a f 则必有),(b a ∈ξ使得0)(=ξf(2) 介值定理:设)(x f 在],[b a 上连续,)()(b f a f ≠,且有c 介于)(),(b f a f 之间,则必有),(b a ∈ξ使得c f =)(ξ (3) 最值定理:设)(x f 在],[b a 上连续,mM,分别为最大最小值,且Mc m<<,则必有),(b a ∈ξ使得c f =)(ξ二、一元函数微分学1、导数 (1) 导数的概念hx f h x f x f x x x f x f x f h x x )()(lim)(,)()(lim)(0000000-+='--='→→当00=x ,则xf x f f x )0()(lim)0(0-='→(2) 左右导数xx f x f x f xx f x f x f x x ∆-='∆-='-+→∆-→∆+)()(lim )(,)()(lim )(000002、常用基本求导公式x x x x xx ax x e e a a a axx c axx x x a sin )(cos ,cos )(sin ,1)(ln ,ln 1)(log,,ln ,)(,01-='='='='==='='-α22222211)cot (,11)(arctan ,11)(arccos ,11)(arcsin ,sin1)(cot ,cos1)(tan xx arc xx xx xx xx xx +-='+='--='-='-='='3、导数四则运算:2)(,)(,)(vv u v u vu v u v u uv v u v u '-'=''+'=''±'='±4、微分中值定理(1) 罗尔中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,则在),(b a ∈ξ有0)(='ξf (2) 拉格朗日中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有a b a f b f f --=')()()(ξ (3) 柯西中值定理:如果)(),(x F x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有)()()()()()(ξξF f a F b F a f b f ''=--(4) 泰勒公式(00=x 的麦克劳林公式):)()0(!1)0(!21)0()0()()(2nnn x o x fn x f x f f x f ++''+'+=5、洛必达法则:当0x x →时,函数)(),(x g x f 都趋于零或者趋于无穷大,则)()(lim)()(limx g x f x g x f x x x x ''=→→注意:洛必达法则只适用于“0”“∞∞”型极限,而其它类型极限需要变形和化简为此二类极限。
高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
微积分笔记

因为是数列,所以n>0(如果一个数列没有极限,就称该数列是发散的)
定量描述:(பைடு நூலகம்重要)设有数列{Xn}与常数a,若对于任意给定的正数ε(不论它多小),总存在正整数N,使得
对于n>N时的一切Xn,不等式丨Xn-a丨<ε都成立,则称常数a是数列{Xn}的极限,或称数列{Xn}收
收敛的【数列】必定有界,有界【数列】不一定收敛。
无界数列必定发散,发散数列不一定无界。
(5)极限的唯一性
收敛数列的极限是唯一的。(数列如果有极限,则极限是唯一的)(无需证明)
(6)收敛数列的保号性
若数列{Xn}的极限是a,且a>0(或a<0),则存在正整数N,使得当n>N时,恒有Xn>0(或Xn<0)。(无需证明)
x→+∞
成立;所以⑴得证。
⑵同理可证:lim f(x)=lim f(x)=A﹦=>lim f(x)=A
x→+∞ x→-∞ x→∞
若数列{Xn}从某项起有Xn≥0(或Xn≤0),且数列{Xn}的极限是a,则a≥0(或a≤0)。(无需证明)
1、5函数的极限
(1)自变量趋向无穷大时函数的极限
【定性描述:对于函数f(x),如果存在常数A,当x趋向无穷大时,f(x)无限接近于A,则A是f(x)当x趋向无穷大时的极限。
定量描述:设函数f(x)在点x₁的某一去心邻域内有定义,若对于任意给定的正数ε(不论它多小),总存在正数δ,使得
对于满足不等式0<丨x-x₁丨<δ的一切x,恒有丨f(x)-A丨<ε,则称常数A为函数f(x)当x→x₁时的极限。
③取N≥[δ(ε)],则当n>N时,总有丨Xn-a丨<ε成立
#重点题型:用极限定义证明数列的极限---课本P38例2例3,辅导书P50例1例2
微积分知识点总结笔记

微积分知识点总结笔记微积分是数学中的一个重要分支,它涉及到了各种变化率、积分、微分和极限等概念。
在现代数学中,微积分是一门非常基础的学科,它广泛应用于物理、工程、经济学等领域。
本文将从微积分的基本概念、函数的极限、导数和微分、不定积分和定积分、微分方程等方面对微积分的知识点进行总结。
1.微积分的基本概念微积分的基本概念包括函数、极限、导数和积分。
首先,函数是自变量到因变量的映射规律,通常用f(x)或y来表示。
当自变量x的取值逐渐接近某一数值时,函数值f(x)也有着确定的趋势,这种趋势称为极限。
导数是函数在某一点处的变化率,而积分则是对函数在某一区间上的累积效应。
2.函数的极限函数的极限是微积分中的基础概念之一,它用来描述自变量趋于某一数值时,函数值的变化情况。
数学上通常用极限符号lim来表示,比如lim(x->a)f(x)=L表示当x趋近a时,函数f(x)的极限是L。
在微积分中,函数的极限经常用来计算导数和积分,因此对于函数的极限有着很重要的意义。
3.导数和微分导数是函数在某一点处的变化率,它描述了函数在这一点附近的近似线性变化。
导数的计算可以通过极限的方法进行,通常用f'(x)或dy/dx来表示。
微分是导数的积分形式,它表示了函数的微小变化。
在实际中,导数和微分常用来描述函数的变化趋势和优化问题,比如求解最大值、最小值和函数图像的曲线斜率等。
4.不定积分和定积分不定积分是对函数的积分形式,它表示了函数在某一区间上的累积效应。
通常用∫f(x)dx来表示,它求解的是函数的原函数。
定积分则是对函数在某一区间上的定量描述,它表示了函数曲线与x轴之间的面积。
在微积分中,不定积分和定积分是密切相关的,它们有着许多重要的性质和应用,比如面积、体积、弧长、曲线图形的面积等。
5.微分方程微分方程是描述变化规律的数学方程,它由未知函数、自变量和导数等组成。
微分方程在物理、工程、生物等领域中有着广泛的应用,它可以用来描述各种自然现象的变化规律,比如弹簧振动、电路运行、生物种群的增长和衰减等。
微积分笔记整理

微积分笔记整理以下是一份微积分笔记整理的示例,涵盖了微积分的一些关键概念和公式:一、导数(Derivative)1. 定义:函数在某一点的切线斜率。
2. 公式:$(f(x+h)-f(x))\div h$(当$h$趋近于$0$时)。
3. 导数的意义:- 函数的变化率。
- 曲线的切线斜率。
- 判断函数的单调性。
二、微分(Differential)1. 定义:函数在某一点的切线增量。
2. 公式:$df=f^\prime(x)dx$。
3. 微分的意义:- 切线的近似值。
- 函数的增量。
三、积分(Integral)1. 定义:函数在某个区间上的面积。
2. 公式:$\int_{a}^{b}f(x)dx$。
3. 积分的意义:- 函数的面积。
- 函数的平均值。
- 求导的逆运算。
四、微积分基本定理(Fundamental Theorem of Calculus)1. 牛顿-莱布尼茨公式(Newton-Leibniz Formula):若$F^\prime(x)=f(x)$,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$。
2. 不定积分(Indefinite Integral):函数的原函数族。
3. 定积分(Definite Integral):函数在某个区间上的确定积分值。
五、常见函数的导数和积分1. 常数函数:导数为$0$,积分为$cx$($c$为常数)。
2. 线性函数:导数为常数,积分为$cx+d$($c$、$d$为常数)。
3. 指数函数:导数为指数本身,积分为指数加$1$的反函数。
4. 对数函数:导数为$\frac{1}{x}$,积分为$x\ln|x|+c$。
5. 三角函数:正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数;积分根据不同的三角函数有不同的公式。
(完整word版)微积分(知识点概要).(良心出品必属精品)

微积分 (知识点概要)第一章函数、极限与连续1.1函数定义与符号1.2极限概念与运算法则1.3求极限的方法1.4函数的连续性1.1函数的定义(P1)1.若变量x、y之间存在着确定的对应关系,即当x的值给定时,唯一y值随之也就确定,则称y是x的函数,记为y=f(x)。
2.确定函数有两个要素:函数的定义域和对应关系。
例如:y=lgx2 与y =2lgx 就不是相同的函数,因为它们的定义域不同。
一旦在问题中设定函数y=f(x),记号“f”就是表示确定的对应规则,f(3)就是表示按此对应规则在x=3时所对应的函数值y等。
P6)称幂函数x k(k为常数),指数函数a x ,对数函数loga x (a为常数,a﹥0,a≠1)三角函数及反三角函数为基本初等函数。
凡由基本初等函数经有限次...加、减、乘、除及有限次复合且能用一个式子表达的函数,称为初等函数。
(1)有界性:(P5)对于函数f(x),若存在常数M、m对定义域内所有xf(x)≤M 称f(x)有上界f(x)≥m 称f(x)有下界,既有上界又有下界简称有界。
(2)奇偶性:(P3)若函数f(x)的定义域关于x=0的对称区间,又对于定义域内的任意x均有f(-x)=f(x) 则称f(x)为偶函数。
f(-x)=-f(x) 则称f(x)为奇函数。
(3)单调性:(P4)若函数f(x)在[a、b]上有定义对∀x∊[a、b]x1﹤x2时f(x1)≤f(x2) f(x) 在[a、b]上↗f(x1)≥f(x2) f(x) 在[a、b]上↘(4)周期性:(P5)若存在常数a(a≠0),使对任意x且有f(x)= f(x+a)则称f(x)为周期函数,称常数a 为f(x)的周期。
1.2极限概念与运算法则P11)当一个变量f(x)在x →a 的变化过程中变化趋势是无限地接近于一个常数b ,则称变量f(x)在x →a 的过程中极限存在。
称常数b 为它的极限,记为ax →lim f(x)=b 否则就称极限不存在。
大一(上)-微积分-知识点(重点)

大一(上) 微积分 知识点第一章 函数一、A ⋂B=∅,则A 、B 是分离的。
二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。
A-B={x|x ∈A 且x ∉B}(属于前者,不属于后者)三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。
四、笛卡尔乘积:设有集合A 和B ,对∃x ∈A,∃y ∈B ,所有二元有序数组(x,,y )构成的集合。
五、相同函数的要求:①定义域相同②对应法则相同六、求反函数:反解互换七、关于函数的奇偶性,要注意:1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数;2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数;3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。
第二章 极限与连续一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。
二、极限存在定理:左、右极限都存在,且相等。
三、无穷小量的几个性质:1、limf(x)=0,则2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0=4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0四、无穷小量与无穷大量的关系:①若y 是无穷大量,则y 1是无穷小量;②若y (y ≠0)是无穷小量,则y1是无穷大量。
经济数学—微积分(函数的知识点及结论)

集合与简易逻辑一、集合:1、知识点归纳①定义:一组对象的全体形成一个集合②特征:确定性、互异性、无序性③表示法:列举法{1,2,3,…}、描述法{x|P}韦恩图④分类:有限集、无限集、空集φ⑤数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N *、空集φ⑥关系:属于∈、不属于∉、包含于⊆(或⊂)、真包含于、集合相等=⑦运算:交运算A∩B={x|x∈A且x∈B};并运算A∪B={x|x∈A或x∈B};补运算AC U={x|x∉A且x∈U},U为全集⑧性质:A⊆A;φ⊆A;若A⊆B,B⊆C,则A⊆C;A∩A=A∪A=A;A∩φ=φ;A∪φ=A;A∩B=A⇔A∪B=B⇔A⊆B;A∩C U A=φ;A∪C U A=I;C U( C U A)=A;C U(A⋃B)=(C U A)∩(C U B)方法:数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决2、注意:①区别∈与、与⊆、a与{a}、φ与{φ}、{(1,2)}与{1,2};②A⊆B时,A有两种情况:A=φ与A≠φ③若集合A中有n)(Nn∈个元素,则集合A的所有不同的子集个数为n2,所有真子集的个数是n2-1, 所有非空真子集的个数是22-n④空集是指不含任何元素的集合}0{、φ和}{φ的区别;0与三者间的关系空集是任何集合的子集,是任何非空集合的真子集条件为BA⊆,在讨论的时候不要遗忘了φ=A的情况⑤理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是函数值的取值?还是曲线上的点?可用列举法、数形结合等方法来理解集合中元素的意义海伦·凯勒:“当一个人感觉到有高飞的冲动时,他将再也不会满足于在地上爬。
”二、含绝对值的不等式及一元二次不等式知识点归纳1绝对值不等式①不等式)0(><aax的解集是{}axax<<-;②不等式)0(>>aax的解集是{}axaxx-<>或,③不等式|ax+b|<c, c>0的解集为{})0(|><+<-ccbaxcx;④不等式|ax+b|>c c>0的解集为{})0(,|>>+-<+ccbaxcbaxx或⑤两边都为非负数(或式)时,可两边平方⑥含有多个绝对值不等式时,可用零点分段法⑦含有两个绝对值的不等式可用几何意义解决。
微积分所有知识点

微积分所有知识点1. 极限啊,那可是微积分的基石呀!就好比盖房子得先有稳固的地基一样。
你想想,函数在某个点无限趋近的值,这多神奇呀!比如,当 x 趋近于0 时,1/x 会趋近于无穷大,是不是很有意思呢?2. 导数呢,简直就是微积分的秘密武器!它就像汽车的速度表,能告诉你函数变化的快慢。
比如一个物体运动的路程函数,它的导数就是速度呀,想象一下你在赛跑,能实时知道自己的速度,酷不酷?3. 积分呀,那是在积累“财富”呢!把小小的部分一点点加起来,最后得到一个大的结果。
就好比你每天存一点钱,时间长了就有一笔可观的存款了。
例如求曲线下的面积,通过积分就能算出来啦,神奇吧!4. 微分中值定理,听起来高大上吧?其实就像在一段路程中总能找到一个特别的点一样。
比如说,在一段曲线中,肯定有一个地方的切线斜率和两端连线的斜率相等,厉害吧!5. 泰勒公式,那可是近似的好帮手哟!它能把复杂的函数用简单的多项式来近似。
就好像有个难搞的家伙,突然变得很听话好接近了。
比如可以用泰勒公式来近似计算三角函数的值哦!6. 定积分的应用,那可多了去了。
像计算体积呀、弧长呀什么的。
就像是在生活中,你可以用它来计算各种实际问题,多有用呀!比如说计算一个圆柱的体积。
7. 无穷级数,哇,那是数不尽的奇妙呀!就如同天上的星星一样多而神秘。
可以用它来表示一些无法用常规式子表示的东西呢,很厉害吧!比如用无穷级数来表示某些特殊函数。
8. 多元函数微积分,那可复杂又有趣呢!就像在一个丰富多彩的世界里探索。
比如研究一个三维物体的性质,是不是感觉很有挑战性呀!我觉得呀,微积分就像一把神奇的钥匙,能打开好多知识的大门,让人深陷其中,不能自拔!。
微积分知识点总结梳理

微积分知识点总结梳理一、导数1. 导数的定义在微积分中,导数是描述函数变化率的重要工具。
给定函数y=f(x),如果函数在某一点x0处的导数存在,那么它的导数可以用以下极限来定义:\[f’(x_0)=\lim_{\Delta{x} \to 0} \frac{f(x_0+\Delta{x})-f(x_0)}{\Delta{x}}\]2. 导数的几何意义导数的几何意义指的是函数在某一点处的导数就是该点处切线的斜率。
切线和曲线在该点处相切,且与曲线在该点处有着相同的斜率。
3. 导数的计算方法导数的计算方法有很多种,常见的有用极限定义、求导法则、隐函数求导、参数方程求导等方法。
其中求导法则包括常数法则、幂函数法则、指数函数和对数函数法则、三角函数法则、反三角函数法则、复合函数求导法则等。
4. 导数的应用导数在物理学、工程技术、经济学等领域都有广泛的应用。
在物理学中,速度、加速度等物理量都与导数有密切的关系。
在经济学中,边际收益、边际成本、弹性系数等经济学指标的计算都需要用到导数。
二、积分1. 积分的定义积分是导数的逆运算,它是函数的面积或曲线长度的定量描述。
给定函数y=f(x),函数在区间[a, b]上的定积分可以用以下极限来定义:\[\int_{a}^{b} f(x)dx=\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\Delta{x}\]其中\[Δx=\frac{b-a}{n}\]2. 积分的几何意义积分的几何意义指的是函数在区间[a, b]上的定积分就是该函数与x轴所围成的曲边梯形的面积。
它表示函数在该区间上的总体积或总体积分。
3. 积分的计算方法积分的计算方法有很多种,常见的有用不定积分的积分法则、定积分的积分法则、分部积分法、换元积分法、特殊函数积分法等。
4. 积分的应用积分在几何学、物理学、工程技术、统计学等领域都有着重要的应用。
在几何学中,积分可以用来计算曲线长度、曲线面积和曲面体积。
微积分c1笔记

以下是一份微积分C1的笔记:
一、导数
1.导数的定义:函数在某一点的变化率称为该点的导数。
2.导数的计算方法:利用导数的定义,通过求极限的方法计算导数。
3.导数的几何意义:导数表示函数在该点处的切线斜率。
二、微分
1.微分的定义:函数在某一点的变化量称为该点的微分。
2.微分的计算方法:利用微分的定义,通过求极限的方法计算微分。
3.微分的几何意义:微分表示函数在该点处的切线斜率的变化量。
三、导数与微分的关系
1.导数是微分的商,即导数=微分/自变量增量。
2.微分是导数的乘积,即微分=(自变量增量)*导数。
四、导数的应用
1.利用导数求函数的极值:通过求导数并令导数为0,找到函数的极值点。
2.利用导数求函数的单调性:通过求导数并判断导数的正负,确定函数的单调性。
3.利用导数求曲线的切线方程:通过求导数得到切线的斜率,再利用点斜式方程得到切线方程。
五、微分的应用
1.利用微分求函数的近似值:通过微分得到函数在某一点的近似值。
2.利用微分求函数的增减性:通过求微分并判断微分的正负,确定函数的增减性。
3.利用微分求函数的极值:通过求微分并判断微分的零点,找到函数的极值点。
微积分笔记学习资料

微积分笔记第一章 函数、极限和连续§1.1 函数一、主要内容㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y是严格单调增加(或减少)的;则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X 也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D当x 1<x 2时, 若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称奇函数:f(-x)=-f(x) 偶函数:f(-x)=f(x) 3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n , (n 为实数)3.指数函数: y=a x , (a >0、a ≠1)4.对数函数: y=log a x ,(a >0、a ≠1)5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、主要内容㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A. 定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim)(lim⑵当0x x →时,)(x f 的极限: A x f x x =→)(l i m 0左极限:A x f x x =-→)(lim 0右极限:A x f xx =+→)(lim 0⑶函数极限存的充要条件:定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量 1.无穷大量:+∞=)(l i m x f称在该变化过程中)(x f 为无穷大量。
微积分笔记于教授

微积分笔记于教授(最新版)目录1.微积分的概念2.微积分的发展历程3.微积分的应用领域4.微积分笔记的重要性5.于教授的微积分笔记特点正文微积分是数学中的一门基础课程,主要研究函数的极限、连续性、微分、积分等性质。
微积分在物理、化学、工程学等科学领域有着广泛的应用,是解决实际问题的重要工具。
微积分的发展历程可以追溯到古希腊时期,当时的数学家们对于曲线的切线问题、求解面积和体积等问题进行了深入的研究。
经过几百年的发展,牛顿和莱布尼茨在 17 世纪末期分别独立发现了微积分的基本原理,这标志着微积分的正式诞生。
微积分的应用领域非常广泛,包括但不限于以下几个方面:1.物理学:微积分在物理学中的应用可以追溯到牛顿和莱布尼茨的时代。
当时,牛顿用微积分原理描述了物体在力的作用下的运动状态,莱布尼茨则用微积分解决了机械能守恒定律。
2.工程学:在工程领域,微积分被广泛应用于结构分析、电路设计、流体力学等方面。
3.经济学:微积分在经济学中的应用主要体现在优化生产和消费等方面,帮助企业找到最优的生产和销售策略。
4.生物学:在生物学中,微积分可以帮助研究者解析生物生长和繁殖等过程,对生物种群的数量进行预测。
微积分笔记对于学生掌握微积分知识具有重要意义。
一份优秀的微积分笔记应该包括以下几个方面:1.重点知识点的梳理:对微积分的基本概念、原理和公式进行归纳总结。
2.典型例题的解析:通过解答典型例题,帮助学生掌握微积分方法在实际问题中的应用。
3.错误题型分析:记录在练习过程中犯过的错误,分析错误原因,避免再次犯错。
4.学习心得和经验总结:记录学习过程中的感悟和经验,不断提高自己的学习方法和技巧。
于教授的微积分笔记具有以下特点:1.系统性强:于教授的微积分笔记从基础概念到高级技巧,涵盖了微积分的各个方面,帮助学生建立起完整的知识体系。
2.实用性强:于教授的微积分笔记中包含了大量典型例题和实际应用案例,让学生能够更好地理解微积分方法在实际问题中的应用。
微积分笔记于教授

微积分笔记于教授【实用版】目录1.微积分的概念2.微积分的发展历程3.微积分的应用领域4.微积分的学习方法与技巧5.教授微积分的于教授正文1.微积分的概念微积分是数学的一个重要分支,主要研究函数的极限、连续性、微分、积分等性质。
微积分可以分为微分学和积分学两个部分,它们分别研究函数的局部性质和整体性质。
微积分在物理、化学、工程等领域有着广泛的应用,是现代科学和技术的基础。
2.微积分的发展历程微积分的发展历程可以追溯到古希腊时期,当时的数学家们研究了一些与微积分相关的问题。
然而,真正奠定微积分基础的是 17 世纪的牛顿和莱布尼茨。
牛顿在研究物体运动时,发现了微积分的基本原理,而莱布尼茨则独立发现了微积分,并创立了莱布尼茨微积分法。
此后,微积分得以迅速发展,并逐渐成为数学的主流领域。
3.微积分的应用领域微积分在各个领域都有广泛的应用,例如在物理学中,可以用微积分描述物体的运动和力的作用;在化学中,可以用微积分解析化学反应过程;在工程领域,微积分可以用于建筑结构的强度分析和优化设计。
此外,微积分在经济学、生物学等领域也有重要应用。
4.微积分的学习方法与技巧学习微积分需要掌握一定的数学基础,例如代数、几何等。
学习微积分的方法包括听课、做习题、参加讨论班等。
在学习过程中,要注重理解概念,熟练掌握基本公式和运算方法。
此外,要注意培养自己的数学思维能力和解题技巧,例如极限的求法、积分的换元法等。
5.教授微积分的于教授于教授是我国著名的微积分专家,拥有丰富的教学经验和研究成果。
他讲解微积分概念清晰、深入浅出,深受学生喜爱。
于教授在课堂上善于启发学生思考,鼓励学生提问,注重培养学生的独立思考能力。
同时,他还关注学生的实际应用能力,通过讲解实际问题,帮助学生更好地理解微积分。
必修4-微积分知识点总结

必修4-微积分知识点总结
1. 导数与微分
- 导数的定义及其计算方法
- 微分的概念和应用
2. 导数的基本性质
- 导数的四则运算法则和链式法则
- 隐函数的导数和高阶导数
3. 极限与连续
- 极限的概念和性质
- 无穷小量与无穷大量的定义
- 连续函数的定义和性质
4. 幂指函数与对数函数的导数
- 幂函数和指数函数的导数公式
- 对数函数的导数公式和性质
5. 反函数与参数方程的求导
- 反函数的导数计算
- 参数方程的求导方法
6. 高阶导数与泰勒公式
- 高阶导数的定义和计算方法
- 泰勒公式及其应用
7. 常微分方程
- 常微分方程的概念
- 一阶线性常微分方程的求解方法
8. 微分方程的应用
- 生活中微分方程的应用案例
9. 偏导数与多元函数的微分
- 偏导数的定义和计算方法
- 多元函数的全微分和微分近似
10. 隐函数的偏导数和方向导数- 隐函数的偏导数计算
- 方向导数的概念和计算方法
11. 极值与最值
- 极值的定义和判断条件
- 最值的概念和计算方法
以上是必修4微积分课程的知识点总结。
希望对您的学习有帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y是严格单调增加(或减少)的;则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X 也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D当x 1<x 2时, 若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称奇函数:f(-x)=-f(x) 偶函数:f(-x)=f(x) 3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n , (n 为实数)3.指数函数: y=a x , (a >0、a ≠1)4.对数函数: y=log a x ,(a >0、a ≠1)5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A. 定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim)(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(l i m左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量 1.无穷大量:+∞=)(l i m x f称在该变化过程中)(x f 为无穷大量。
X 再某个变化过程是指: ,,,∞→+∞→-∞→x x x 000,,x x x x x x →→→+-2. 无穷小量:0)(l i m =x f 称在该变化过程中)(x f 为无穷小量。
3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim0)(lim ≠+∞=⇔=x f x f x f4. 无穷小量的比较:l i m ,0l i m ==βα⑴若0lim=αβ,则称β是比α较高阶的无穷小量; ⑵若c =αβlim(c 为常数),则称β与α同阶的无穷小量; ⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α; ⑷若∞=αβlim,则称β是比α较低阶的无穷小量。
定理:若:;,2211~~βαβα则:2121l i ml i m ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ (n=1、2、3…)且: a z y n n n n ==∞→∞→lim lim则:a x n n =∞→l i m2. 函数极限存在的判定准则:设:对于点x 0的某个邻域内的一切点(点x 0除外) 有:)()()(x h x f x g ≤≤且:A x h x g x x x x ==→→)(l i m )(l i m 0则:A x f x x =→)(l i m 0㈣极限的运算规则 若:Bx v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BAx v x u x v x u ==)(lim )(lim )()(lim)0)((l i m ≠x v推论:①)]()()(lim [21x u x u x u n ±±±)(lim )(lim )(lim 21x u x u x u n ±±±=②)(lim )](lim[x u c x u c ⋅=⋅③n n x u x u )]([lim )](lim [=㈤两个重要极限 1.1si n l i m=→xxx 或1)()(sin lim)(=→x x x ϕϕϕ2.e xxx =+∞→)11(l i me x xx =+→10)1(l i m§1.3 连续一、 主要内容 ㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o0)]()([l i m l i m 000=-∆+=∆→∆→∆x f x x f y x x2o )()(l i m 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→ 右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续。
在端点a 和b 连续是指:)()(l i ma f x f a x =+→左端点右连续;)()(li m b f x f b x =-→ 右端点左连续。
5. 函数的间断点: 若)(x f 在0x 处不连续,则0x 为)(x f 的间断点。
间断点有三种情况: 1o )(x f在0x 处无定义;2o)(l i m 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(l i m00x f x f x x ≠→。
两类间断点的判断: 1o 第一类间断点:特点:)(l i mx f x x -→和)(lim 0x f x x +→都存在。
可去间断点:)(lim 0x f x x →存在,但)()(l i m00x f x f x x ≠→,或)(x f 在0x 处无定义。
2o 第二类间断点:特点:)(l i mx f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(l i m 0x f x x →振荡不存在。
无穷间断点:)(l i mx f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1. 连续函数的四则运算:设)()(l i m 00x f x f x x =→,)()(l i m 00x g x g x x =→1o )()()]()([l i m 000x g x f x g x f x x ±=±→2o)()()]()([l i m 000x g x f x g x f x x ⋅=⋅→ 3o )()()()(l i m000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(l i m 0x g x x2. 复合函数的连续性:)]([),(),(x f y x u u f y ϕϕ===)]([)(l i m),()(l i m 0)(000x f u f x x x u x x ϕϕϕϕ==→→则:)]([)](l i m[)]([l i m 00x f x f x f x x x x ϕϕϕ==→→3. 反函数的连续性:)(),(),(001x f y x fx x f y ===-)()(l i m)()(l i m01100y fy fx f x f y y x x --→→=⇔=㈢函数在],[b a 上连续的性质 1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值。
x2.有界定理:)(xf在],[ba上连续⇒)(xf在],[ba上一定有界。
3.介值定理:)(xf在],[ba上连续⇒在),(ba内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤x)(xf在],[ba上连续,且)(af与)(bf异号⇒在),(ba内至少存在一点ξ,使得:0)(=ξf。
4.初等函数的连续性:初等函数在其定域区间内都是连续的。
第二章一元函数微分学§2.1 导数与微分一、主要内容㈠导数的概念1.导数:)(xfy=在0x的某个邻域内有定义,xxfxxfxyxx∆-∆+=∆∆→∆→∆)()(limlim0)()(lim0xxxfxfxx--=→)(0xxxx dxdyxfy==='='2.左导数:)()(lim)(0xxxfxfxfxx--='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+定理:)(x f 在0x 的左(或右)邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-(或:)(lim )(00x f x f x x '='+→+) 3.函数可导的必要条件: 定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件: 定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在。