2015中考数学知识点:圆
2015中考数学复习——专题十四圆
专题14 圆 一.选择题1.(2012年,鸡西) 如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是⊙A 上的一点,且∠EPF=45°,则图中阴影部分的面积为 ( )A A.4-π B.4-2π C.8+π D.8-2π2. (2012年,黄石)如图(4)所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且2AB =,1AD =,P 点在切线CD 上移动.当APB ∠的度数最大时,则ABP ∠的度数为( )A. 15°B. 30°C. 60°D. 90° 3.(2012娄底)如图,正方形MNEF 的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB 与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是( )A . 4πB . 3πC . 2πD .π4.(2012年,苏州)如图,已知BD 是⊙O 的直径,点A 、C 在⊙O 上,=,∠AOB=60°,则∠BDC 的度数是( )P图(4)· OACDBD A CPFE B5.(2012•德州)如果两圆的半径分别为4和6,圆心距为10,那么这两圆的位置关系是( ) A . 内含 B . 外离 C . 相交 D . 外切 6.(2012泰安)如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC=120°,OC=3,则的长为( )A .πB .2πC .3πD .5π 7.(2012成都)已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.(2012年,漳州)如图,一枚直径为4cm 的圆形古钱币沿着直线滚动一周,圆心移动的距离是BA .2πcmB .4πcmC .8πcmD .16πcm 9.(2012年,北海)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为: ( )A .外离B .相交C .内切D .外切 10.(2012年,桂林)已知两圆半径为5cm 和3cm ,圆心距为3cm ,则两圆的位置关系是【 】 A .相交 B .内含 C .内切 D .外切 11.(2012年,河北)如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE > B.AD BC = C.12D AEC =∠∠ D.ADE CBE △∽△ 12、(2012年,河南)如图,已知AB 为O 的直径,AD 切O 于点A, EC CB =则下列结论不一定正确的是A .BA DA ⊥B .OC AE ∥C .2COE CAE ∠=∠D .OD AC ⊥二.填空题的外接圆,∠BOC=100°,则∠A=cm.3.(2012年,漳州)如图,⊙O的半径为3cm,当圆心0到直线AB的距离为_______cm时,直线AB与⊙0相切.4.(2012年,苏州)已知扇形的圆心角为45°,弧长等于,则该扇形的半径为.5.(2012年,潜江)平面直角坐标系中,⊙M的圆心坐标为(0,2),半径为1,点N在x 轴的正半轴上,如果以点N为圆心,半径为4的⊙N与⊙M相切,则圆心N的坐标为.6.(2012•兰州)如图,两个同心圆,大圆半径为5c m ,小圆的半径为3c m ,若大圆的弦AB 与小圆相交,则弦AB 的取值范围是 8<AB ≤10 .7.(2012•兰州)如图,已知⊙O 是以坐标原点O 为圆心,1为半径的圆,∠AOB =45°,点P 在x 轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设P (x ,0),则x 的取值范围是 .8.(2012年,佛山)如图,把一个斜边长为2且含有030角的直角三角板ABC 绕直角顶点C 顺时针旋转090到11A B C ∆,则在旋转过程中这个三角板扫过的图形的面积是()A .πB .3 C.342π+ D.11124π+ 9.(2012年,岳阳)圆锥底面半径为,母线长为2,它的侧面展开图的圆心角是 .10.(2012张家界)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为. 11.(2012年,南通)如图,在⊙O 中,∠AOB =46º,则∠ACB = º. 12.(2012成都)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π )OBAC13.(2012年,莆田)若扇形的圆心角为60°,弧长为2π,则扇形的半径为 . 14.(2012年,肇庆)扇形的半径是9 cm ,弧长是3πcm ,则此扇形的圆心角为 ▲ 度.三.解答题1.(2012年,肇庆)(本小题满分10分)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE 、AD 交于点P . 求证:(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .2.(2012年,泉州)(12分)已知:A 、B 、C 不在同一直线上. (1).若点A 、B 、C 均在半径为R 的⊙O 上,A 、B 、C 如图一,当∠A=45°时,R=1,求∠BOC 的度数和BC 的长度; Ⅱ.如图二,当∠A 为锐角时,求证sin ∠A=RBC2; (2).若定长线段....BC 的两个端点分别在∠MAN 的两边AM 、AN (B 、C 均与点A 不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP ⊥AM ,CP ⊥AN ,交点为点P ,试探索:在整个滑动过程中,P 、A 两点的距离是否保持不变?请说明理由. N QC B B p A B M 图① 图② 图③ (第二十五题图)图73.(2012年,苏州)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC 的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?4.(2012年,佛山)如图,直尺、三角尺都和圆O 相切,AB=8cm .求圆O的直径.C5.(2012武汉)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.6.(2012张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A.C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.7.(2012南昌)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;②如图2,当折叠后的经过圆心为O时,求的长度;③如图3,当弦AB=2时,求圆心O到弦AB的距离;(2)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.8.(2012•济宁)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是⊙O的切线..9.(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.(2012宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过10.点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C.D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A.B,连接AP、BP、AC.DB,且AC与DB的延长线交于点E.(1)求证:;(2)若PQ=2,试求∠E度数.11.(2012•资阳)如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.12.(2012年,北京)已知:如图,AB是O⊙的直径,C是O⊙上一点,OD BC⊥于点D,过点C作O⊙的切线,交OD的延长线于点E,连结BE.(1)求证:BE与O⊙相切;(2)连结AD并延长交BE于点F,若9OB=,2sin3ABC∠=,求BF的长.13.(2012年,南平)(9分)如右图,已知△ABC中,AB=AC,DE⊥ACDE与半⊙O相切于点D.求证:△ABC是等边三角形.14.(2012年,桂林)(10分)如图,等圆⊙O1和⊙O2相交于A、B12心,顺次连接A、O1、B、O2.(1)求证:四边形AO1BO2是菱形;(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2O2D;(3)在(2)的条件下,若△AO2D的面积为1,求△BO2D的面积.答案三1.(本小题满分10分)证明:(1)∵AB 是直径 ∴∠ADB = 90°即AD ⊥BC (1分) 又∵AB=AC ∴D 是BC 的中点 (3分) (2)在△BEC 与 △ADC 中,∵∠C=∠C ∠CAD=∠CBE (5分) ∴△BEC ∽△ADC (6分) (3)∵△BEC ∽△ADC ∴CEBCCD AC = 又∵D 是BC 的中点 ∴2BD=2CD=BC ∴CEBD BD AC 2= 则 CE AC BD ⋅=22 ① (7分) 在△BPD 与 △ABD 中, 有 ∠BDP=∠BDA又∵AB=AC AD ⊥BC ∴∠CAD=∠BAD又∵∠CAD=∠CBE ∴∠DBP=∠DAB∴△BPD ∽△ABD (8分) ∴BDAD PD BD = 则 AD PD BD ⋅=2② (9分) ∴由①,②得:AD PD BD CE AC ⋅==⋅222∴AD DP CE AB ⋅=⋅2 (10分) 2解:(1). ①∠BOC=90°(同弧所对的圆周角等于其所对的圆心角的一半);由勾股定理可知BC=11+=2(提示:也可延长BO 或过点O 作BC 边的垂线段)②证明:可连接BO 并延长,交圆于点E ,连接EC. 可知EC ⊥BC (直径所对的圆周角为90°) 且∠E=∠BAC (同弧所对的圆周角相等) 故sin ∠A=RBC2. (2).保持不变.可知△CQP ∽△BQA ,且∠AQP=∠BQC ,所以△BCQ ∽△APQ; 即PQ CQ AP BC =; AP=︒30cos BC =334(为定值).故保持不变。
2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第27课时 直线与圆的位置关系(共32张PPT)
考点聚焦
归类探究
回归教材
第27课时┃ 直线与圆的位置关系
例 2 [2014· 盐城] 已知:如图 27-1,AB 为⊙O 的直径, PD 切⊙O 于点 C, 交 AB 的延长线于点 D, 且∠D=2∠CAD. (1)求∠D 的度数; (2)若 CD=2,求 BD 的长.
图 27-1
考点聚焦
归类探究
归 类 探 究
探究一 直线和圆的位置关系的判定
命题角度: 1.定义法判定直线和圆的位置关系; 2.d,r比较法判定直线和圆的位置关系.
考点聚焦
归类探究
回归教材
第27课时┃ 直线与圆的位置关系
例 1 [2014· 陇南] 已知⊙O 的半径是 6 cm, 点 O 到同一平 面内直线 l 的距离为 5 cm, 则直线 l 与⊙O 的位置关系是( A ) A.相交 B.相切 C.相离 D.无法判断
考点聚焦
归类探究
回归教材
第27课时┃ 直线与圆的位置关系
(2)∵∠D=∠CAD=∠BCD=∠OCA,∠ACB=90°, ∴∠CAD=∠D=30°. ∵CD∥AE, ∴∠EAB=∠D=30°=∠CAD. ∵DC=AC=10 3, 3.
∴由圆的对称性可得 AE=AC=10 1 = AE=5 3, 2 ∴OM=5, ∴圆心 O 到 AE 的距离为 5.
图 27-2
考点聚焦
归类探究
回归教材
第27课时┃ 直线与圆∠D=∠CAD=∠BCD. ∵OA=OC, ∴∠OCA=∠OAC, ∴∠OCA=∠BCD. ∵AB 是⊙O 的直径, ∴∠ACB=90°,即∠OCB+∠OCA=90°, ∴∠OCB+∠BCD=90°,即∠OCD=90°. ∵点 C 在⊙O 上, ∴DC 是⊙O 的切线.
2015年浙江省杭州数学中考总复习课件第26课时:圆的基本性质
第26课时┃ 圆的基本性质
2.确定圆的条件 确定圆 不在同一直线上的三个点确定一个圆 的条件 垂直平分线 的交点,即为三角 三角形 三角形三边 ____________ 的外心 形外接圆的圆心 锐角三角形的外心在三角形的内部,直角三 防错提 角形的外心在直角三角形的斜边上,钝角三 醒 角形的外心在三角形的外部
2.[2014·湖州] 如图 26-8,已知 AB 是△ABC 外接圆的直 径,∠A=35°,则∠B 的度数是 (C )
A.35°
图 26-8 B.45° C.55°
D.65°
考点聚焦
杭考探究
当堂检测
第26课时┃ 圆的基本性质
3.[2014·台州] 从下列直角三角板与圆弧的位置关系中, 可判断圆弧为半圆的是 (B )
杭考探究 当堂检测
第26课时┃ 圆的基本性质
【归纳总结】
直径所在的直线 圆具有轴对称性, ____________是它的 轴对称性 对称轴
垂直于弦的直径平分这条弦 ________, 并且平分弦 垂径定理 所对的弧
不是直径 平分弦 (____________) 的直径垂直于 弦所对的弧 弦,并且平分________________ 垂直平分 弧所对的弦 平分弧的直径________
第26课时
圆的基本性质
第26课时┃ 圆的基本性质
考 点 聚 焦
考点1 圆的有关概念
1.[2014·扬州] 如图 26-1,以△ABC 的边 BC 为直径的 ⊙O 分别交 AB,AC 于点 D,E,连结 OD,OE,若∠A=65°, 50 则∠DOE=________ °.
图 26-1
考点聚焦 杭考探究 当堂检测
当堂检测
2015年河北中考数学总复习课件(第26课时_圆的有关概念与性质)
第26课时┃ 圆的有关概念与性质
课 前 热 身
1.若⊙O 的半径为 5 cm,点 A 到圆心 O 的距离为 4 cm,则 点 A 与⊙O 的位置关系是 ( C ) A.点 A 在⊙O 外 B.点 A 在⊙O 上 C.点 A 在⊙O 内 D.不能确定 ︵ 2. [2014· 温州] 如图 26-1, 已知点 A, B, C 在⊙O 上, ACB 为优弧, 下列选项中与∠AOB 相等的是 ( A )
考点聚焦
冀考探究
第26课时┃ 圆的有关概念与性质
考点2 圆心角、弧、弦之间的关系 弦 相 在同圆或等圆中,相等的圆心角所对的______ 等,所对的______ 弧 也相等 在同圆或等圆中,两个圆心角、所对应的两条弦 和所对应的两条弧这三组量中,只要有一组量相 等,其他两组量就分别相等
性质 推论
冀考解读
第26课时 圆的有关概念与性质
第26课时┃ 圆的有关概念与性质
冀 考 解 读
考点梳理 常考题型 年份 2015 热度预测 确定圆的条件 选择、填空 ☆☆ 点和圆的位置 选择、填空 ☆☆ 关系 圆心角、弧、弦 选择、填空、 ☆☆☆ 之间的关系 解答 圆周角定理及其 选择、填空、 2012 ☆☆☆☆ 推论 解答 2013 2012 垂径定理及其 选择、填空、 ☆☆☆☆ 2013 推论 解答 2014
课前热身
考点聚焦
冀考探究
第26课时┃ 圆的有关概念与性质
考点3 圆周角
Hale Waihona Puke 圆周角 定义 圆周角 定理 推论 1 推论 2
顶点在圆上,两边都与圆相交的角叫做圆周角 圆上一条弧所对的圆周角等于它所对的圆心角 的________ 一半 直角 ; 直径所对的圆周角是______ 90°的圆周角所对 直径 的弦是______ 同弧所对的圆周角______ 相等
2015年中考圆知识点归纳
中考圆知识点考点一、圆的相关概念1、圆的定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦.(如图中的AB)(2)直径经过圆心的弦叫做直径.(如途中的CD)直径等于半径的2倍.(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示.考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(2)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧. (3)圆的两条平行弦所夹的弧相等.垂径定理及其推论可概括为:考点四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.2、圆的中心对称性圆是以圆心为对称中心的中心对称图形.考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角.2、弦心距从圆心到弦的距离叫做弦心距.3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.考点六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角.2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.考点七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外.考点八、过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆.2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆.3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心.4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补.考点九、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离.如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l 与⊙O 相切⇔d=r ; 直线l 与⊙O 相离⇔d>r ;考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角. 即:在⊙O 中,∵四边ABCD 是内接四边形,∴180C BAD ∠+∠=︒180B D ∠+∠=︒,DAE C ∠=∠.考点十一、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端,∴MN 是⊙O 的切线.2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点. 推论2:过切点垂直于切线的直线必过圆心.以上三个定理及推论也称二推一定理:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.考点十二、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.即:∵PA 、PB 是的两条切线,∴PA PB =;PO 平分BPA ∠.考点十三、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等. 即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅DB推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.即:在⊙O 中,∵直径AB CD ⊥,∴2CE AE BE =⋅.2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即:在⊙O 中,∵PA 是切线,PB 是割线,∴ 2PA PC PB =⋅.3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图).即:在⊙O 中,∵PB 、PE 是割线,∴PC PB PD PE ⋅=⋅.考点十四、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦.如图:12O O 垂直平分AB .即:∵⊙1O 、⊙2O 相交于A 、B 两点, ∴12O O 垂直平分AB .考点十五、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和.考点十六、三角形的内切圆和外接圆 1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆. 2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.A考点十七、圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种.如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种. 如果两个圆有两个公共点,那么就说这两个圆相交.2、圆心距两圆圆心的距离叫做两圆的圆心距.3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r(R≥r)两圆内切⇔d=R-r(R>r)两圆内含⇔d<R-r(R>r)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦.考点十八、圆内正多边形的计算1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形.2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.3、正三角形在⊙O中△ABC是正三角形,有关计算在∆中进行:::2Rt BODOD BD OB=.4、正四边形同理,四边形的有关计算在Rt OAE∆中进行,::OE AE OA=.5、正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.考点十九、与正多边形有关的概念 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心. 2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径. 3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距. 4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角.考点二十、正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形.一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心. 3、正多边形的画法先用量角器或尺规等分圆,再做正多边形.考点二十一、弧长和扇形面积 1、弧长公式n °的圆心角所对的弧长l 的计算公式为180rn l π= 2、扇形面积公式lOlR R n S 213602==π扇 其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长. 3、圆锥的侧面积rl r l S ππ=∙=221其中l 是圆锥的母线长,r 是圆锥的地面半径.考点二十二、内切圆及有关计算.(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等. (2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r =2cb a -+ . (3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径.(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦. 如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D.考点二十三、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.。
2015连线中考数学一轮复习系列专题19_圆的基本性质
(3)有3对弧相等: , , .
(4)添加辅助线的方法:连接半径或作垂直于弦的直径,是两种重要的添线方法.
知识点五.圆周角定理
1.定义:
顶点在圆上,并且两边都与圆相交的角叫圆周角.
基础知识
知识点一、圆的有关概念
1.圆的定义①(动态定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.以点O为圆心的圆记做“⊙O”.
②(静态定义)圆是到定点的距离等于定长的点的集合.即:圆上各点到圆心的距离都等于定长(半径),反之到圆心距离等于半径的点一定在圆上;
11(邵阳)如图(八)所示,某窗户是由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出 所在圆O的半径r.
12. (武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.
(1)如图(1),若点P是的中点,求PA的长;
(2)如图(2),若点P是的中点,求PA的长;
例7.如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.
巩固练习
1.(湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()
④等弧:能够完全重合的弧叫等弧.
知识点三、弧、弦、圆心角之间的关系
1.圆的旋转不变性
把圆绕着圆心旋转任意一个角度,都与原来的图形重合,我们把这种性质称为圆的旋转不变性.圆是中心对称图形,圆心是它的对称中心.
2015年广西中考数学总复习课件第25课时 圆的基本性质(共69张PPT)
C )
D.70°
图6-25-2 第25课时 圆的基本性质
3 .如图 6-25-3,线段AB是⊙ O 的直径,弦CD⊥AB,∠ CAB
=20°,则∠AOD等于( C )
A.160° B.150°
C.140°
D.120°
图6-25-3
第25课时
圆的基本性质
4.如图 6-25-4,AB 是⊙O 的直径,C,D 是⊙O 上两点,CD ⊥AB 于点 E,则下列结论不正确的是( C )
°,则 sin∠ACB 的值是( A )
图 6-25-9 1 A. 2 2 B. 2 3 C. 2 3 D. 3
第25课时
圆的基本性质
►
例2
类型之二
圆周角定理
[2014•兰州] 如图6-25-10,△ABC为⊙O的内接三角
形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度
数等于________.
4.顶点在圆上,并且两边都与圆相交的角叫做________ 圆周角 . 圆心角 5 .顶点在圆心上,并且两边都和圆相交的角叫做 ________ .
第25课时
圆的基本性质
考点2
垂径定理及推论
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条
弧.
推论 (1):平分弦 ( 不是直径 )的直径垂直于弦,并且平分弦
第25课时
圆的基本性质
┃课堂过关检测┃ 1.如图6-25-1,已知⊙O的半径为13,弦AB长为24,则点
O到AB的距离是( B )
A.6 B.5 C.4 D.3
图6-25-1
第25课时
圆的基本性质
2015年中考数学圆的知识点:圆的定义及有关概念
2015年中考数学圆的知识点:圆的定义及有关概念
知识点一、圆的定义及有关概念
1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。
连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
在同圆或等圆中,能够重合的两条弧叫做等弧。
例P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.
解题思路:圆内最长的弦是直径,最短的弦是和OP垂直的弦,答案:10cm,8cm.。
数学中考复习 圆的相关知识点及习题
圆专题一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角和圆周角(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1.旋转对称性(1)圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2)圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系.2.轴对称性(1)圆是轴对称图形,经过圆心的任一条直线是它的对称轴.(2)圆的轴对称性⇒垂径定理.三、圆的性质定理1.圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.F EBA CDOr a 2d O CBA所对的两圆心角相等所对的两条弦相等 所对的两条弧相等所对的两条弦的弦心距相等EO D B A【例1】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【例2】 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.二、圆的性质定理1. 圆周角定理【例3】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【例4】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ ∠的大小为( )A .10︒B .20︒C .30︒D .40︒【例5】 如图,O ⊙是ABC ∆的外接圆,已知60B ∠=︒,则CAO ∠的度数是( )A .15︒B .30︒C .45︒D .60︒【例6】 如图,已知O 的弦AB CD ,相交于点E ,AC 的度数为60︒,BD 的度数为100︒,则AEC ∠等于ON MHG FE DC BA( ) A .60°B .100°C .80°D .130°【例7】 如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.【例8】 如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.【例9】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【例10】 如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.DCA BBA【例11】 如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.【例12】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5【例13】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【例14】 如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.2. 圆内接四边形【例15】 如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =PC 的长.【例16】 如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,BAPEC BAP DCBAAB BD =,且0.6PC =,求四边形ABCD 的周长.【例17】 如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定. (8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:C二、过已知点的圆1. 过已知点的圆(1) 经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. (2) 经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个. (3) 过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. (4) 过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2. 定理:不在同一直线上的三点确定一个圆(1) “不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆; (2) “确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1. 三角形的外接圆(1) 经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. (2) 锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部. 2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例18】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7二、过三点的圆【例19】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例20】 如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .三、三角形的外接圆及外心【例21】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .【例22】 等边三角形的外接圆的半径等于边长的( )倍. ABCD .12【例23】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例24】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【例25】 已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E . ⑴ 求证:AD 的延长线平分∠CDE ;⑴ 若30∠=︒BAC ,∆ABC 中BC边上的高为2+∆ABC 外接圆的面积.直线与圆的位置关系设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:6. 切线的性质(9) 定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.(10) 注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB 过圆心,AB 过切点M ,则AB l ⊥. ②过圆心,垂直于切线⇒过切点.AB 过圆心,AB l ⊥,则AB 过切点M . ③过切点,垂直于切线⇒过圆心.AB l ⊥,AB 过切点M ,则AB 过圆心.7. 切线的判定(1) 定义法:和圆只有一个公共点的直线是圆的切线; (2) 距离法:和圆心距离等于半径的直线是圆的切线; (3) 定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.AB CD El8. 切线长和切线长定理(1) 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. (2) 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1. 三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-.二、切线的性质及判定【例1】 如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.lcb acbaO F ED CACBAB A【例2】 已知:如图,ABC ∆内接于O ,AD 是过A 的一条射线,且B CAD ∠=∠.求证:AD 是O 的切线.【例3】 已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例4】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【例5】 已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠DC 为O ⊙的切线;(2)2CD AD BD =⋅.【例6】 如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C【例7】 如图,已知AB 为⑴O 的弦,C 为⑴O 上一点,⑴C =⑴BAD ,且BD ⑴AB 于B .(1)求证:AD 是⑴O 的切线.(2)若⑴O 的半径为3,AB =4,求AD 的长.【例8】 如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【例9】 如图,AB 是O ⊙的的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦DF AB⊥于点G .(1)求证:点E 是BD 的中点; (2)求证:CD 是O ⊙的切线;(3)若4sin 5BAD ∠=,O ⊙的半径为5,求DF 的长.【例10】 如图,等腰三角形ABC 中,10AC BC ==,12AB =.以BC 为直径作O ⊙交AB 于点D ,交AC于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O ⊙的切线; (2)求sin E ∠的值.一、切线长定理1.如图,PA PB ,分别是O 的切线,A B ,为切点,AC 是O 的直径,已知35BAC ∠=︒,P ∠的度数为( ) A .35︒ B .45︒ C .60︒ D .70︒2.如图,PA PB 、分别切O ⊙于A B ,两点,PC 满足AB PB AC PC AB PC AC PB ⋅-⋅=⋅-⋅,且AP PC ⊥,2PAB BPC ∠=∠,求ACB ∠的度数.3.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C.D.P则OP =( )A .50cm B.cm Ccm D.cm5.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D C E ,,.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .146.等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是________.7.如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,PDE ∆周长为16,求O ⊙的半径.8.如图,PA PB ,切O 于AB ,,MN 切O 于C ,交PA PB ,于M N ,两点,已知8PA =,求PMN ∆的周长.PB P于G,交AB AC、于MN,则BMN∆的周长为______________.10.如图,已知AB是O⊙的直径,BC是和O⊙相切于点B的切线,O⊙的弦AD平行于OC,若2OA=,且6AD OC+=,求CD的长.补充讲义两圆的公切线(选讲自己了解)9.两圆的外公切线(11)求两圆外公切线长:构造外公切线、圆心距、大圆与小圆半径的差为边的特征直角三角形.如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的外公切线长为:l=,sin2R rdα-=(12)求两圆内公切线长:构造外公切线、圆心距、大圆与小圆半径的和为边的特征直角三角形.10.两圆的内公切线如图,设大圆的半径为R,小圆的半径为r,两圆的圆心距为d,两外公切线的夹角为α,则两圆的内公切线长l=,sin2R r dα+ =CB AP圆与相似三角形经典证明题1.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3 点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系为.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4..Rt.ABC...ACB=90°.D.AB.......BD.....O.AC..E...DE.....BC.......F..BD=BF..1....AC..O....2..BC=6.AB=12...O....5....AB..O......A..O..........C...OC..O..D.BD.....AC.E...AD..1.....CDE..CAD..2..AB=2.AC=2..AE...6. 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB 于点E..1....AC•AD=AB•AE..2...BD.⊙O....D....E.OB.....BC=2...AC...7.如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.8. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.9. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10......O..AB....OC.AB..CD.OB...F..AB.......E..EF=ED..1....DE..O.....2..OF.OB=1.3..O...R=3.....11....AB .⊙O .....D ......∠BDE =∠CBE .BD .AE ...F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA =AO ,DE =2,求PD 的长和⊙O 的半径.12.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,PB :PC =1:2. (1)求证:AC 平分∠BAD ;(2)探究线段PB ,AB 之间的数量关系,并说明理由; (3)若AD =3,求△ABC 的面积.13.已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC . (1)求证:BD 是⊙O 的切线; (2)求证:2CE EH EA =⋅; (3)若⊙O 的半径为5,3sin 5A =,求BH 的长.第13题图FH EOC B A。
中考数学知识点:有关圆的字母表示方法
中考数学知识点:有关圆的字母表示方法
有关圆的字母表示方法
圆--⊙半径r弧--⌒直径d
扇形弧长/圆锥母线l周长C面积S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;
内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO 10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):
外离P外切P=R+r;相交R-r。
2015年河北省地区中考数学总复习课件 第24讲 圆的基本性质
数 学
第二十四讲 圆的基本性质
1.主要概念 (1)圆:平面上到 __定点__的距离等于__定长__的所有点组成的图形叫 做圆.__定点__叫圆心,__定长__叫半径,以O为圆心的圆记作⊙O. (2)弧和弦:圆上任意两点间的部分叫 __弧__,连接圆上任意两点的线 段叫__弦__,经过圆心的弦叫直径,直径是最长的__弦__. (3)圆心角:顶点在__圆心__,角的两边与圆相交的角叫圆心角. (4)圆周角:顶点在__圆上__,角的两边与圆相交的角叫圆周角. (5)等弧:在同圆或等圆中,能够完全__重合__的弧.
(4)圆周角定理及推论: 圆周角定理:一条弧所对的圆周角等于它所对圆心 角的__一半__. 圆周角定理的推论: ①同弧或等弧所对的圆周角相等;同圆或等圆中相 等的圆周角所对的弧__相等__. ②半圆 ( 或直径 ) 所对的圆周角是 __ 直角 __ ; 90°的圆 周角所对的弦是__直径__.
(3)∵点 P,A 不重合 ,∴α>0° .由(1)得, 当 α 增大到 30°时,点 ︵ ,∵当 0°<α<30°时, 点 A′在⊙ O 内 ,线段 BA′与 AB ︵只 A′在 AB 有一个公共点, 由(2)知,α增大到 60°时,BA′与⊙ O 相切,即 ︵ 只有一个公共点 B.当 α 继续增大时,点 P 逐渐靠近 线段 BA′与 AB 点 B,但点 P,B 不重合,∴∠OBP<90°.∵α=∠ OBA+∠ OBP, ∠OBA=30° ,∴α<120°,∴当 60°<α<120°时,线段 BA′与 ︵ 只有一个公共点 B.综上所述,α的取值范围是 0°< α<30°<或 AB 60°≤α<120°
2.圆的有关性质 (1)圆的对称性: ①圆是__轴对称__图形,其对称轴是__过圆心的任 意一条直线__. ②圆是__中心对称__图形,对称中心是__圆心__.
2015年河北中考数学总复习课件(第28课时_与圆有关的计算)
冀考解读
课前热身
考点聚焦
冀考探究
第28课时┃ 与圆有关的计算
考点3 扇形的面积计算
nπ R2 (1)S 扇形=______( 360 n 是圆心角度数,R 是半径); 扇形面积 1 lR l 是弧长,R 是半径) (2)S 扇形=______( 2 弓形面积 S 弓形=S 扇形±S△
冀考解读
课前热身
冀考解读 课前热身 考点聚焦 冀考探究
第28课时┃ 与圆有关的计算
圆锥的 π ra S 侧=________ 侧面积 圆锥的 S 全=S 侧+S 底=π ra+π r2 全面积
冀考解读
课前热身
考点聚焦
冀考探究
第28课时┃ 与圆有关的计算
冀 考 探 究
探究一 正多边形和圆
命题角度: 1.正多边形与圆的关系; 2.与正多边形有关的计算.
解 析
∵正六边形的边心距为 3 ,∴ OB =
1 1 2 2 2 2 3,AB= OA.∵ OA = AB + OB ,∴OA =( OA)2 2 2 +( 3)2,解得 OA=2.故选 B.
冀考解读 课前热身 考点聚焦 冀考探究
第28课时┃ 与圆有关的计算
4.[2014· 济宁] 如果圆锥的母线长为 5 cm,底面圆的半径 为 2 cm,那么这个圆锥的侧面积是 ( B ) A.10 cm2 B.10π cm2 C.20 cm2 D.20π cm2
解 析 ∵圆锥的侧面积 S=π rl,r 是底面圆半径, l 是母线长,∴S=π ³2³5=10π (cm2).故选 B.
冀考解读
课前热身
考点聚焦
冀考探究
第28课时┃ 与圆有关的计算
考 点 聚 焦
考点1 正多边形和圆
2015届九年级数学中考一轮复习教学案:第22课时圆的有关概念
第22课时圆的有关概念【课时目标】1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等孤的概念.2.探索并掌握垂径定理及其推论.3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论.4.知道三角形的外心,并能画任意三角形的外接圆.【知识梳理】1.圆的基本概念:在同一平面内,线段OA绕它固定的一个端点_______形成的图形叫做圆,_______叫做圆心,_______叫做半径.圆上任意两点间的_______叫做圆弧;在同圆或等圆中,能够_______的弧叫做等弧.2.圆的有关性质:(1)对称性:圆是中心对称图形,_______是它的对称中心;圆也是轴对称图形,_______都是它的对称轴.(2)圆心角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别_______.(3)垂径定理:垂直于弦的直径_______弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径________于弦,且平分这条弦所对的两条弧.3.圆心角和圆周角:(1)圆心角:顶点在_______的角叫做圆心角;圆心角的度数_______它所对的弧的度数.圆周角:顶点在圆上,两边都与圆_______的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角_______,都等于这条弧所对的圆心角的_______.推论:半圆(或直径)所对的圆周角是_______,90°的圆周角所对的弦是________.4.确定圆的条件:(1)不在_______的三个点可以确定一个圆.(2)三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫做________.5.圆内接四边形:圆内接四边形的对角_______.【考点例析】考点一垂径定理及其推论例1如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )A.8 B.10C.16 D.20提示连接OC,即可证得△OEC是直角三角形,根据垂径定理即可求得OC,进而求出AB的长.考点二圆周角定理及其推论例2如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为( )A.35°B.45°C.55°D.75°提示连接AD,由“AB是⊙O的直径”可知∠ADB=90°.因为∠ABD=55°,所以∠A=90°-55°=35°.又因为∠A与∠BCD是BD所对的圆周角,所以∠BCD=∠A.例3如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________.提示先由平行四边形的性质得到∠ABC=∠AOC,由圆周角定理得∠ADC=12∠AOC,再根据圆内接四边形的对角互补及平行四边形的性质求出四边形OABC各内角的度数,最后把∠OAD+∠OCD看作整体来求解.考点三圆的性质与其他知识的综合运用例4如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB 的最小值是________.提示先由MN=20求出⊙O的半径,再连接OA、OB,由勾股定理得出OD、CC的长,作点B关于MN的对称点B',连接AB',则AB'即为PA+PB的最小值,B'D=BD=6.过点B'作AC的垂线,交AC的延长线于点E,在Rt△AB'E中利用勾股定理即可求出AB'的值.例5(2012.凉山)如图,直径为OA的⊙P与x轴交于O、A两点,点B、C把OA三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和点D,求直线l的解析式.提示(1)要证明△POD≌△A BO,已有AP=PO这一条件,又由OA为⊙P的直径可知∠ABO=∠AOD=90°,现在只需再证一组角相等即可.连接PB,由点B、C把OA三等分,可得∠1=∠2=60°,进而得∠3=∠2=60°,从而全等得证;(2)用待定系数法确定直线l的解析式,只需得到点P和点D的坐标.【反馈练习】1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( ) A.AE=BE B.OE=DEC.∠AOD=50°D.D是AB的中点2.如图,在⊙O中,弦AB∥CD.若∠ABC=40°,则∠BOD的度数为( ) A.20°B.40°C.50°D.80°3.如图,⊙C过原点,且与两坐标轴分别交于点A、B,点A的坐标为(0,3),M是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为( )A.6 B.5 C.3 D.324.如图,∠PAC=30°,在射线AC上顺次截取AD=3 cm,DB=10 cm.以DB为直径作⊙O交射线AP于E、F两点,则EF的长是_______cm.5.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.6.如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点为O'.(1)求证:四边形OAOB是菱形;(2)当点O'落在⊙O上时,求b的值.。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
2015年北京中考数学专题--圆(白真)
2015年中考复习专题------圆1、(2014北京西城数学一模)21.如图,在ABC△中,AB AC=,以AB为直径作圆O,交BC于点D,连结OD,过点D作圆O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD AC∥;(2)当10AB=,5cos5ABC∠=时,求AF及BE的长.2、(2014朝阳一模)21.如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E.AB、CO交于点M,连接OB.(1)求证:∠ABO=12∠ACB;(2)若sin∠EAB =1010,CB=12,求⊙O 的半径及BEAE的值.MDBO ECA3、(2014东城一模)21. 如图,AB是⊙O的直径,点E是BD上一点,∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是BD的中点,连结AE交BC于点F,当BD=5,CD=4时,求DF的值.4、(2014房山一模)21.如图, AE是⊙O直径,D是⊙O上一点,连结AD并延长使AD=DC,连结CE交⊙O于点B,连结AB.过点E的直线与AC 的延长线交于点F,且∠F=∠CED.(1)求证:EF是⊙O切线;(2)若CD=CF=2,求BE的长.FBCA O ED为直径的⊙O 与边AC 相切于点E ,连结DE 并延长交BC 的延长线于点F . (1)求证:∠B DF =∠F ;(2)如果CF =1,sinA =35,求⊙O 的半径.7、(2014门头沟一模)20.如图8,⊙O 的直径AB =4,点P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连结AC . (1)若∠CP A =30°,求PC 的长;(2)若点P 在AB 的延长线上运动,∠CP A 的平分线交AC 于点M . 你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小.OFEDC BA MPO CBAACBOD 为直径的⊙O 与边AC 相切于点E ,连接DE 并延长DE 交BC 的延长线于点F . (1)求证:BD=BF ;(2)若CF=1,cosB=,求⊙O 的半径.9、(2014平谷一模)20. 如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D . (1)求证:AC =CD .(2)若AC =2,AO =5,求OD 的长.10、(2014石景山一模)21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:BCP APC ∠=∠; (2)若53sin =∠APC ,4=BC ,求AP 的长.11、(2014海淀一模)如图,在△ABC 中,AB AC =,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点,DF ⊥AC 于F .(1)求证:DF 为⊙O 的切线;(2)若3cos 5C =,9CF =,求AE 的长.BPCO AOF EABC DEB COF DAOPDBCEA 12、(2014通州一模)21.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE ∥BD ,交BC 于点F ,交AE 于点E . (1)求证:∠E =∠C ; (2)当⊙O 的半径为3,cos A =45时,求EF 的长.13、(2014延庆一模)21. 已知:如图,在△ABC 中,AB=AC ,点D 是边BC 的中点.以 CD 为直径作⊙O ,交边AC 于点P ,连接BP ,交AD 于点E . (1)求证:AD 是⊙O 的切线;(2)如果PB 是⊙O 的切线,BC =4,求PE 的长.14、(2014燕山一模)21. 如图,点C 是以AB 为直径的圆O 上一点,直线AC 与过B 点的切线相交于点D ,点E 是BD 的中点,直线CE 交直线AB 于点F . (1)求证:CF 是⊙O 的切线; (2)若23=ED ,43tan =F , 求⊙O 的半径.15、(2014昌平一模)21. 如图,已知A 、B 、C 分别是⊙O 上的点,∠B =60°,P 是直径CD 的延长线上的一点,且AP =AC . (1)求证:AP 与⊙O 相切; (2)如果AC =3,求PD 的长.EFD O CB ADPO CAB。
【中考复习方案】2015中考数学总复习 第32课时 与圆有关的位置关系课件(考点聚焦+京考探究+热考京讲)
第32课时┃与圆有关的位置关系
热考五
切线长定理的应用
例 5 [2014· 曲靖] 如图 32-3,PA,PB 是⊙O 的 切线,A,B 为切点,AC 是⊙O 的直径,AC,PB 的 延长线相交于点 D. (1)若∠1=20°,求∠APB 的度数; (2)当∠1 为多少度时,OP=OD?并说明理由.
[解析] 设圆的半径为 r,点 O 到直线 l 的距离为 d, ∵d=5,r=6,∴d<r,∴直线 l 与圆相交.
考点聚焦
京考探究
第32课时┃与圆有关的位置关系
方法点析
直线与圆的位置关系分为三种情况:相交、相切和相离.解决此类问题主要有两种方 法: (1)根据定义,由直线与圆的交点情况直接判断; (2)可通过比较圆心到直线的距离 d 与圆半径 r 的大小关系完成判定.设圆的半径为 r, 点 O 到直线 l 的距离为 d,若 d<r,则直线与圆相交;若 d=r,则直线与圆相切;若 d>r, 则直线与圆相离. 在判断其关系时,要结合题目的已知条件选择正确的方法.
方法点析
点与圆的位置关系的判断: 设点到圆心的距离为 d, 圆 的半径为 R,则当 d=R 时,点在圆上;当 d>R 时,点在 圆外;当 d<R 时,点在圆内.
考点聚焦
京考探究
第32课时┃与圆有关的位置关系
热考二
直线与圆的位置关系
例 2 [2014· 陇南] 已知⊙O 的半径是 6 cm, 点 O 到同一 平面内直线 l 的距离为 5 cm,则直线 l 与⊙O 的位置关系是 ( A ) A.相交 B.相切 C.相离 D.无法判断
考点聚焦
京考探究
第32课时┃与圆有关的位置关系
方法点析
切线的两种常用证明方法 (1)有交点, 连半径, 证垂直. 已知此线过圆上某点, 连接圆心和这点(即为半径),再证垂直即可. (2)无交点, 作垂直, 证半径. 当此线与圆无交点时, 过圆心向此线作垂线段,证明此垂线段等于半径.
【名师面对面】2015中考数学总复习 第6章 第23讲 圆的基本性质课件
B.80°
D.130°
圆内接四边形
2.如图,AB是⊙O的直径,AD⊥l于点D,直线l与⊙O相交于点E,F, 若∠DAE=18°,求∠BAF的大小. 【解析】第1题先利用圆周角性质,再利用∠A与 ∠C互补求∠C的度数;第2题连结BF,由AB是⊙O 的直径,根据直径所对的圆周角是直角,可得 ∠AFB=90°,由三角形外角的性质,可求得 ∠AEF的度数,又由圆的内接四边形的性质,求得 ∠B的度数,从而求得答案. 解:连结BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90° -∠B,∵∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中, 四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B= 180°-108°=72°,∴∠BAF=90°-∠B=90°-72°=18°
第23讲 圆的基本性质
1.理解圆的有关概念和性质,了解弧、弦、圆心 角的关系,了解点与圆的位置关系. 2.探索如何过一点、两点和不在同一直线上的三 点作圆. 3.掌握垂径定理及其推论,并能够解决简单的实 际问题. 4.理解圆周角与圆心角及其所对弧的关系,直径 所对圆周角的特征,以及圆内接四边形的概念、性 质等.
径,∠A=35°,则∠B的度数是( ) C
A.35°
C.55°
B.45°
D.65°
2.(2014· 温州)如图,已知A,B,C在⊙O上,弧
ABC为优弧,下列选项中与∠AOB相等的是( A )
A.2∠C
C.4∠A
B.4∠B
D.∠B+∠C
3.(2013· 金华、丽水)一条排水管的截面如图所示, 已知排水管的半径OB=10,水面宽AB=16,则截
则∠BOC的度数为( A.25° C.60° ) B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国教育在线讯 2015年参加中考的考生需要了解所学习的科目的知识点都有哪些,下面是中考频道为大家总结归纳中考数学直角三角形知识点汇总,希望对2015中考考生有所帮助。
初三数学知识点第十章圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
5. 与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半:(右图)
(解Rt△OAM可求出相关元素, 、等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、基本图形
十、重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦。