2017-2018学年高中数学人教B版选修2-3教学案:2.2.2 事件的独立性 Word版含解析

合集下载

高中数学选修2-3优质学案:2.2.2 事件的相互独立性

高中数学选修2-3优质学案:2.2.2 事件的相互独立性

2.2.2 事件的相互独立性[学习目标] 1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.[知识链接]1.3张奖券只有1张能中奖,3名同学有放回地抽取.事件A为“第一名同学没有抽到中奖奖券”,事件B为“第三名同学抽到中奖奖券”,事件A的发生是否会影响B发生的概率?答因抽取是有放回的,所以A的发生不会影响B发生的概率,事件A和事件B相互独立.2.互斥事件与相互独立事件有什么区别?答两个事件相互独立与互斥的区别:两个事件互斥是指两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响.[预习导引]1.相互独立的概念设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.2.相互独立的性质如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.要点一 相互独立事件的判断例1 从一副扑克牌(除去大小王,共52张)中任抽一张,设A =“抽得老K ”,B =“抽得红牌”,判断事件A 与B 是否相互独立?是否互斥?是否对立?为什么?解 由于事件A 为“抽得老K ”,事件B 为“抽得红牌”,故抽得红牌中有可能抽到红桃K 或方块K ,即有可能抽到老K ,故事件A ,B 有可能同时发生,显然它们不是互斥事件,更不是对立事件,以下考虑它们是否互为独立事件:抽到老K 的概率为P (A )=452=113,抽到红牌的概率P (B )=2652=12,故P (A )P (B )=113×12=126,事件AB 即为“既抽得老K 又抽得红牌”,亦即“抽得红桃老K 或方块老K ”,故P (AB )=252=126,从而有P (A )·P (B )=P (AB ),因此A与B 互为独立事件.规律方法 对于事件A ,B ,在一次试验中,A ,B 如果不能同时发生,则称A ,B 互斥.一次试验中,如果A ,B 两个事件互斥且A ,B 中必然有一个发生,则称A ,B 对立,显然A ∪A 为一个必然事件.A ,B 互斥则不能同时发生,但有可能同时不发生.两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响.跟踪演练1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( ) A .相互独立但不互斥 B .互斥但不相互独立 C .相互独立且互斥 D .既不相互独立也不互斥(2)掷一枚正方体骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是( )A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥 [答案] (1)A (2)B[解析] (1)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.(2)事件A ={2,4,6},事件B ={3,6},事件AB ={6},基本事件空间Ω={1,2,3,4,5,6}. 所以P (A )=36=12,P (B )=26=13,P (AB )=16=12×13,即P (AB )=P (A )P (B ),因此,事件A 与B相互独立.当“出现6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件. 要点二 相互独立事件同时发生的概率例2 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率.解 设“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A B 发生),另一种是甲未射中、乙射中(事件A B 发生).根据题意,事件A B 与A B 互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为 P (A B )+P (A B )=P (A )·P (B )+P (A )·P (B ) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.(3)“2人至少有1人射中”包括“2人都中”和“2人有1人射中”2种情况,其概率为P =P (AB )+[P (A B )+P (A B )]=0.72+0.26=0.98.(4)“2人至多有1人射中目标”包括“有1人射中”和“2人都未射中”两种情况, 故所求概率为P =P (A B )+P (A B )+P (A B )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B )=0.02+0.08+0.18=0.28.规律方法 解决此类问题要明确互斥事件和相互独立事件的意义,若A ,B 相互独立,则A 与B ,A 与B ,A 与B 也是相互独立的,代入相互独立事件的概率公式求解. 跟踪演练2 甲、乙两人破译一密码,他们能破译的概率分别为13和14.求(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能破译的概率.解 设“甲能破译”为事件A ,“乙能破译”为事件B ,则A ,B 相互独立,从而A 与B ,A 与B ,A 与B 均相互独立.(1)“两人都能破译”为事件AB ,则P (AB )=P (A )·P (B )=13×14=112.(2)“两人都不能破译”为事件A B ,则 P (A B )=P (A )·P (B )=[1-P (A )]·[1-P (B )] =(1-13)×(1-14)=12.(3)“恰有一人能破译”为事件(A B )∪(A B ), 又A B 与A B 互斥,则P ((A B )∪(A B ))=P (A B )+P (A B )=P (A )·P (B )+P (A )·P (B ) =13×(1-14)+(1-13)×14=512. (4)“至多一人能破译”为事件(A B )∪(A B )∪(A B ),且A B ,A B ,A B 互斥,故 P ((A B )∪(A B )∪(A B )) =P (A B )+P (A B )+P (A B )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B ) =13×(1-14)+(1-13)×14+(1-13)×(1-14)=1112. 要点三 相互独立事件概率的综合应用例3 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中 (1)三科成绩均未获得第一名的概率是多少?(2)恰有一科成绩未获得第一名的概率是多少?解分别记该生语、数、英考试成绩排名全班第一的事件为A,B,C,则A,B,C两两相互独立且P(A)=0.9,P(B)=0.8,P(C)=0.85.(1)“三科成绩均未获得第一名”可以用A B C表示P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.9)(1-0.8)(1-0.85)=0.003所以三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用(A BC)∪(A B C)∪(AB C)表示.由于事件A BC,A B C和AB C两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P(A BC)+P(A B C)+P(AB C) =P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329,所以恰有一科成绩未获得第一名的概率是0.329.规律方法求复杂事件的概率,应先列出题中涉及的各事件,并用适当的符号表示,再理清各事件之间的关系,最后根据事件之间的关系选取相应的公式进行计算.跟踪演练3某机械厂制造一种汽车零件,已知甲机床的正品率是0.96,乙机床的次品率是0.05,现从它们制造的产品中各任意抽取一件,试求:(1)两件产品都是正品的概率;(2)恰有一件是正品的概率;(3)至少有一件正品的概率.解用A表示“从甲机床生产的产品中抽得正品”,用B表示“从乙机床生产的产品中抽得正品”,用C表示“抽得的两件产品中恰有一件是正品”,用D表示“抽得的两件产品中至少有一件正品”,则C=(A B)∪(A B),D=C∪(AB).(1)由题意知,A与B是相互独立事件P(B)=1-P(B)=1-0.05=0.95,P(A)=0.96,所以两件都是正品的概率为P(AB)=P(A)P(B)=0.96×0.95=0.912.(2)由于事件A B与A B互斥,所以恰有一件是正品的概率为P (C )=P [(A B )∪(A B )] =P (A B )+P (A B ) =P (A )P (B )+P (A )P (B ) =0.96×0.05+0.04×0.95=0.086. (3)由于事件AB 与C 互斥, 所以P (D )=P [(AB )∪C ] =P (AB )+P (C ) =0.912+0.086=0.998.1.坛子中放有3个白球,2个黑球,从中进行不放回地取球2次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( ) A .互斥的事件 B .相互独立的事件 C .对立的事件 D .不相互独立的事件[答案] D[解析] ∵P (A 1)=35.若A 1发生了,P (A 2)=24=12;若A 1不发生,P (A 2)=34,即A 1发生的结果对A 2发生的结果有影响,∴A 1与A 2不是相互独立事件.2.甲、乙、丙三人独立地去译一个密码,分别译出的概率为15,13,14,则此密码能译出的概率是( ) A.160B.25C.35D.5960 [答案] C[解析] 用A ,B ,C 分别表示甲、乙、丙三人破译出密码,则P (A )=15,P (B )=13,P (C )=14,且P (A ·B ·C )=P (A )·P (B )·P (C )=45×23×34=25.∴此密码被译出的概率为1-25=35.3.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( ) A .p 1p 2 B .p 1(1-p 2)+p 2(1-p 1) C .1-p 1p 2 D .1-(1-p 1)(1-p 2)[答案] B[解析] 恰好有1人解决可分为甲解决乙没解决、甲没解决乙解决.这两个事件显然是互斥的.所以恰好有1人解决这个问题的概率为p 1(1-p 2)+p 2(1-p 1).故选B.4.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710. (1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.解 设甲、乙、丙当选的事件分别为A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立, 所以恰有一名同学当选的概率为 P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为 1-P (ABC )=1-P (A )P (B )P (C ) =1-45×35×710=83125.一般地,两个事件不可能既互斥又相互独立,因为互斥事件不可能同时发生,而相互独立事件是以它们能够同时发生为前提.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.(列表比较)。

2018新人教B版高中数学选修2-3全册学案精编

2018新人教B版高中数学选修2-3全册学案精编

目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图1­1­1所示为一个电路图,从左到右可通电的线路共有( )图1­1­1A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图1­1­2,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图1­1­2【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图1­1­3所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图1­1­3A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。

高中数学选修2-3精品教案2:2.2.2 事件的相互独立性教学设计

高中数学选修2-3精品教案2:2.2.2 事件的相互独立性教学设计

2.2.2事件的相互独立性一.教学目标(一)教学知识点1.相互独立事件的意义.2.相互独立事件同时发生的概率乘法公式.(二)能力训练要求1.理解相互独立事件的意义,注意弄清事件的“互斥”与“相互独立”是两个不同的概率.2.掌握相互独立事件同时发生的概率乘法公式.(三)德育渗透目标1.培养学生分析问题、解决问题的能力.2.提高学生的科学素质.二.教学重点1.相互独立事件的概念:若事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.2.事件之间的“互斥”与“相互独立”的区别:互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没有影响.A与也是相互独立事件.3.若事件A与B是相互独立事件,那么A与B,A与B,B4.相互独立事件同时发生的概率乘法公式:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率P(A1·A2·……·A n)=P(A1)·P(A2)·…·P(A n)三.教学难点事件的“相互独立性”的判定.四.教学过程1.复习回顾请同学回忆一下有关互斥事件的主要内容.互斥事件:不可能同时发生的事件.对立事件:不可能同时发生,且必有一事件发生.若A与B为互斥事件,则A、B中有一个发生的概率P(A+B)=P(A)+P(B).若A与A为对立事件,则P(A)+P(A)=1.2.讲授新课现在,请同学们来看这样一个问题:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,若从这两个坛子里分别摸出1个球,则它们都是白球的概率是多少?(引导学生分析)首先,我们发现,这一试验与我们前面所研究的试验有所不同的是:这里有两个坛子,从中分别取一球;可视为做一次试验,需分两步完成,且从一个坛子中取一球是白球还是黑球,对从另一个坛子里摸出一球是白球还是黑球没有任何影响.若记:“从甲坛子里摸出1个球,得到白球”为事件A,记:“从乙坛子里摸出1个球,得到白球”为事件B,则事件A(或B)是否发生对事件B(或A)发生的概率没有影响,也就是说事件A(或B)的发生是独立的,不受事件B(或A)的发生与否的限制.那么,我们不妨将象这样的事件A(或B)是否发生对事件B(或A)发生的概率没有影响的两个事件叫做相互独立事件.例如,在上述问题中,事件A是指“从甲坛子中摸出1个球,得到黑球”,事件B是指“从乙坛子中摸出1个球,得到黑球”,不难判断,事件A与B,A与B,A与B也都是相互独立的.一般地,如果事件A与B相互独立,那么A与B,A与B,A与B也都是相互独立的.看来,若记:“从两个坛子里分别摸出1个球,都是白球”是一个事件,那么它的发生,就是事件A、B同时发生,不妨记作A·B.于是想要研究事件A·B发生的概率P(A·B),则需研究上述两个相互独立事件A、B同时发生的概率.请同学们根据我们所掌握的知识,试着分析……(也可分组讨论)从甲坛子中摸出1个球,有5种等可能的结果;从乙坛子中摸出1个球,有4种等可能的结果.于是从两个坛子里各摸出1个球,根据分步计数原理,可知共有5×4种等可能的结果,表示如下(其中每个结果的左、右分别表示从甲、乙坛子里取出的球的颜色):(白,白)(白,白)(白,黑)(白,黑)(白,白)(白,白)(白,黑)(白,黑)(白,白)(白,白)(白,黑)(白,黑)(黑,白)(黑,白)(黑,黑)(黑,黑)(黑,白)(黑,白)(黑,黑)(黑,黑)在上面的5×4种结果中,从甲坛子里摸出白球的结果有3种,从乙坛子里摸出白球的结果有2种,同时摸出白球的结果有3×2种.因此,从两坛子里分别摸出1个球,都是白球的概率P (A ·B )=4523⨯⨯. 而,从甲坛子里摸出1个球,得到白球的概率P (A )=53,从乙坛子里摸出1个球,得到白球的概率P (B )=42. 不难发现,32534523⨯=⨯⨯.即:P (A ·B )=P (A )·P (B ). 也就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.进而可知:一般地,如果事件A 1,A 2,…,A n 相互独立,那么这几个事件同时发生的概率,等于每个事件发生的概率的积,即P (A 1·A 2·…·A n )=P (A 1)·P (A 2)·…·P (A n )例如,在上面的问题中,“从两个坛子里分别摸出1个球,都是黑球”这一事件的发生,就是事件A ,B 同时发生,可记作A ·B ,其概率P (A ·B )=P (A )·P (B )512152=⨯=. “从甲坛子里摸出1个球,得到黑球”与“从乙坛子里摸出1个球,得到白球”同时发生的概率P (A ·B )=P (A )·P (B )=512152=⨯. “从甲坛子里摸出1个球,得到白球”与“从乙坛子里摸出1个球,得到黑球”同时发生的概率 P (A ·B )=P (A )·P (B )=1032153=⨯ “从两个坛子里分别摸出1个球,得到1个白球和1个黑球”的概率为:P (A ·B )+P (A ·B )=2110351=+. “从两个坛子里分别摸出1个球,得到两个白球或两个黑球”的概率为: P (A ·B )+P (A ·B )=2110351=+. “从两个坛子里分别摸出1个球,得不到两个白球”的概率为 P (A ·B )+P (A ·B )+P (A ·B )1075110351=++= 或1-P (A ·B )=1-107103=. 3.课堂练习(回答).“在先摸出白球的情况下,再摸出白球”,是从装有1个白球,2个黑球的口袋中摸出1个白球,这时事件B 的概率为31;“在先摸出黑球的情况下,再摸出白球”,是从装有2个白球,1个黑球的口袋中摸出1个白球,这时事件B 的概率为32. 这就是说,事件A 发生与否对事件B 发生的概率有影响,因此事件A 与B 不相互独立.4.课堂小结要学会对事件的“相互独立性”的判定.要会用相互独立事件同时发生的概率公式求一些事件的概率.5.课后作业(一)课本P 134习题10.7 1、2、3(二)1.预习:课本P 130~P 132五.板书设计六.教后记:。

数学:2.2.2《事件的独立性》教案(新人教B版选修2-3)

数学:2.2.2《事件的独立性》教案(新人教B版选修2-3)

2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。

过程与方法:能进行一些与事件独立有关的概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=, ∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅ [][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ 0.847=方法二:分析要使这段时间内线路正常工作只要排除CJ 开且A J 与B J 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2. (1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n =∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25()D 920 2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》62

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》62
1、相互独立事件的定义:
若事件A是否发生对事件B发生的概率没有影响,即
则称两个事件A、B相互独立,
这两个事件叫做相互独立事件。
2、相互独立事件的判定:
问题2:在大小均匀的5个鸡蛋中
有3个红皮蛋,2个白皮蛋,每次取一个,
有放回地取两次,
事件A=“第一次取到红皮蛋”,
事件B“第二次取到红皮蛋”
问题3:在大小均匀的5个鸡蛋中
主题:
事件的独立性
清原高中:王彦胜
教学目标:
1、理解两个事件相互独立的概念
2、能进行一些与事件独立有关的概率的计算。
3、通过对实例的分析,会进行简单的应用。
课时:2
课型:新授
教学重、难点:
独立事件的判断、独立事件同时发生的概率
导学方法:问题引导法
导学步骤:
导学行为(师生活动)
设计意图
设置情境:
复习引入:
“三个臭皮匠顶个诸葛亮”有理论依据吗?
问题1探究:
依次抛掷两枚硬币,
“Hale Waihona Puke 掷第一枚硬币正面向上”记为事件A“抛掷第二枚硬币正面向上”记为事件B
问:事件A对事件B的发生是否有影响?
这时的PB│A与PB相等吗?
这时的PB│ 与PB相等吗?
激发学生学习兴趣
让学生复习条件概率、发现两个事件的关系,引出定义
新知探索:
理清本节所学
构建知识网络
分析步骤
互斥、对立、独立事件同时发生实际问题的训练
实例分析问题,从中发现解决问题的步骤
强化训练:
变式1:
变式题1:在图中添加第四个开关 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是,计算在这段时间内线路正常工作的概率

人教版高中选修(B版)2-32.2.2事件的独立性教学设计

人教版高中选修(B版)2-32.2.2事件的独立性教学设计

人教版高中选修(B版)2-32.2.2事件的独立性教学设计一、教学目标1.知识目标:了解什么是事件的独立性,以及如何计算事件的独立性。

2.技能目标:能够运用事件的独立性计算方法,解决相关问题。

3.情感目标:培养学生对事件的独立性的兴趣和探究精神。

二、教学重难点1.教学重点:让学生掌握事件的独立性概念和计算方法。

2.教学难点:让学生能够应用事件的独立性解决实际问题。

三、教学方法采用课堂讲授、讨论、练习等多种教学方法,提高学生的主动性和参与度。

四、教学内容第一节事件的独立性概述1. 事件的概念事件是指问题所涉及的某种结果或情况。

2. 事件的独立性概念在概率论中,两个事件A和B是独立的,当且仅当A发生不会影响到B发生的概率。

3. 事件的独立性计算方法•如果两个事件A、B独立,则P(A∩B)=P(A)×P(B)。

•如果两个事件A、B相互依存,则P(A∩B)=P(A)×P(B|A)。

第二节事件的独立性练习1. 练习一某座23层的高楼,电梯每层停留的概率是相等的,如果电梯每次上升一层停一次,问从1楼到第23楼,电梯停靠次数的期望是多少次?2. 练习二某公司有两个售货员A、B,他们的产品销售情况如。

如果顾客购买的商品已知,问售货员A、B相互独立的概率是多少?销售情况销售情况五、教学设计第一节事件的独立性概述1.通过扫描二维码获取PPT,展示“事件的概念”“事件的独立性概念”“事件的独立性计算方法”三个板块;2.引导学生思考“事件的独立性”在生活中的应用;3.提问检查学生对“事件的独立性概念”“事件的独立性计算方法”的掌握情况。

第二节事件的独立性练习1.展示一个“某座23层的高楼电梯停靠次数期望”的问题(练习一);2.分组讨论,学生给出自己的解法,老师进行点评;3.展示“售货员销售情况”的问题(练习二);4.学生独立解决问题并汇报答案,老师进行点评。

六、教学评估1.课后布置一份与课堂讲授、讨论、练习内容相关的习题作业;2.采用学生自评和教师评估相结合的方式,评定学生的学习效果。

高中数学人教B版选修2-3配套课件:2.2.2事件的独立性

高中数学人教B版选修2-3配套课件:2.2.2事件的独立性

影响,∴A与B相互独立,A,B能同时发生,不是互斥事件. (2)设2个白球为a,b,两个红球为1,2,则从袋中取2个球的 所有取法为{a,b},{a,1},{a,2},{b,1},{b,2},{1,2}, 4 2 5 2 则P(A)=6=3,P(B)=6,P(AB)=3, ∴P(AB)≠P(A)· P(B). ∴事件A,B不是相互独立事件,事件A,B能同时发生,∴ A,B不是互斥事件.
【思路探究】 利用相互独立事件的定义判断.
【自主解答】
(1)“从甲组中选出1名男生”这一事件是否
发生,对“从乙组中选出1名女生”这一事件发生的概率没有影 响,所以它们是相互独立事件. 5 (2)“从8个球中任意取出1个,取出的是白球”的概率为 8 , 若这一事件发生了,则“从剩下的7个球中任意取出1个,取出 4 的仍是白球”的概率为 7 ;若前一事件没有发生,则后一事件发 5 生的概率为 7 ,可见,前一事件是否发生,对后一事件发生的概 率有影响,所以二者不是相互独立事件.
3 【提示】 (1)不影响;(2)P(A)=5, 3×2 3 1 P(B)=2,P(AB)= =10; 5×4 3 PAB 10 1 (3)∵P(B|A)= = 3 =2, PA 5 ∴P(B|A)=P(B);
PAB (4)∵P(B|A)= =P(B), PA ∴P(AB)=P(A)P(B).
1.概念 (1)设A,B为两个事件,若事件A是否发生对事件B发生的概 率没有影响,即 P(B|A)=P(B) ,则称两个事件A,B相互独立, 并把这两个事件叫做 相互独立事件 .
(2)对于n个事件A1,A2,„,An,如果其中任一个事件发生 的概率不受 其他事件是否发生 A2,„,An相互独立. 的影响,则称n个事件A1,
一个袋子中有4个小球,其中2个白球,2个红球,讨论下列 A,B事件的相互独立性与互斥性. (1)A:取一个球为红球,B:取出的红球放回后,再从中取 一球为白球; (2)从袋中取2个球,A:取出的两球为一白球一红球;B: 取出的两球中至少一个白球.

高中数学人教B版选修2-3二章《2.2.2 事件的独立性》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教B版选修2-3二章《2.2.2 事件的独立性》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教B版选修2-3第二章《2.2.2 事件的独立性》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1.了解相互独立事件的概念,初步掌握用定义判断某些事件是否相互独立,能区分互斥事件
与相互独立事件。

了解相互独立事件同时发生的概率的乘法公式,会运用此公式计算一些简单的概率问题。

2.经历概念的形成及公式的探究、应用过程,培养学生观察、分析、类比、归纳的能力,并渗透逆向思维的数学思想方法,提高学生自主学习的能力与探究问题的能力。

3.通过适宜的教学情境,激发学生学习数学的兴趣,发展数学应用意识,认识数学的应用价值,培养学生的合作意识。

2学情分析
学生在高一必修三的学习中,已经接触到古典概型、互斥事件这些概念;而且在前几课中,对立事件的概念也已经学会。

3教学重难点
教学重点:相互独立事件的概念,及同时发生的概率公式
教学难点:对相互独立事件的理解,及应用概率公式解决实际问题
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】复习回顾
复习回顾:
(1) 什么叫做互斥事件?什么叫做对立事件?
(2) 两个互斥事件A、B有一个发生的概率公式是什么?
(3) 若A与A为对立事件,则P(A)与P(A)关系如何?。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》7

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》7

2.2.2 事件的独立性主备人:王福海【学习目标】1、知识与技能:理解事件独立性的概念,掌握相互独立事件同时发生的概率乘法公式。

2、过程与方法:通过实例探究事件独立性的过程,学会判断事件相互独立性的方法。

3、情感、态度与价值观:1、通过本节课的学习,体会数学的应用意识。

2、感悟数学是人类进步不竭的动力。

【学习重点、难点】理解事件的独立性,会求一些简单问题的概率.【教学重点】独立事件同时发生的概率【教学难点】有关独立事件发生的概率计算预学案一、复习回顾1条件概率的定义:2条件概率公式:二、情境引入情境:在大小均匀的5个鸡蛋中有3个红皮蛋,2个白皮蛋,每次取一个,有放回地取两次,求在已知第一次取到红皮蛋的条件下,第二次取到红皮蛋的概率?思考:第一次取到红皮蛋的条件,对第二次取到红皮蛋的概率是否产生影响?导学案三、课堂探究探究(一)相互独立事件1.相互独立事件的定义:设A, B 为两个事件,如果 P AB = P A P B , 则称事件A 与事件B 相互独立事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件2 公式的推广:一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3 性质: 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立探究(二)独立与互斥从一副扑克牌(52张)中任取一张,设A=“取到K”,B=“取到红牌”,C=“取到J”,判断下列事件是否相互独立?是否互斥,是否对立?①A 与B ②A与C练习:判断下列事件是否为相互独立?是否互斥是否对立?1、抛掷一枚质地均匀的硬币两次。

记A=“第一次出现正面”,B =“第二次出现正面”2、甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球。

高中数学 2.2.2事件的相互独立性教案 新人教版选修2-3

高中数学 2.2.2事件的相互独立性教案 新人教版选修2-3

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》0

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.2 事件的独立性》0

事件的独立性A,如果其中任一个,n,n A 相互独立.、判断下列事件是否为相互独立事件)分别抛掷两枚质地均匀的硬币,事件B =“第二枚为正面”个红球,2)n A ⋂⋂3()()n A P A ⨯⨯、甲、乙两名篮球运动员分别进行一次投篮,如果,求: )两人都投中的概率; )其中恰有一人投中的概率;四、归纳小结五、作业(3)至少一人投中的概率.变式1、甲、乙,丙三名篮球运动员分别进行一次投篮,如果两人投中的概率分别是0.6和0.5和0.5,求:(1)三人都投中的概率;(2)其中恰有一人都投中的概率;(3)至少一人投中的概率.例3、在一段线路中并联着三个自动控制的常开开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是,计算在这段时间内线路正常工作的概率.变式2、在一段线路中有三个自动控制的常开开关,如图所示.假定在某段时间内每个开关能够闭合的概率都是,计算在这段时间内线路正常工作的概率.思考题:诸葛亮一人组成的团队PK臭皮匠三人组成的团队,他们解决同一个问题的概率分别为:诸葛亮解决问题的概率为;臭皮匠老大解决问题的概率为,老二为,老三为, 要求臭皮匠团队成员必须独立解决,三人中至少有一人解决问题就算团队胜出,问臭皮匠团队与诸葛亮团队谁的胜算比较大?1、相互独立事件的判断2、相互独立事件的概率学生测试课后作业网络,优化知识结构和思维结构通过课堂测试及时反馈学生学习情况通过课后作业巩固所学知识,及时反馈课堂教学情况,解决引课问题.分层次作业有利于不同学生的个性化选择检测题:1. A、B为球面上相异的两点,则通过A、B可作的大圆()A.只有一个 B.一个或无数个 C.一定是无数个 D.不存在2.设地球半径为R,在北纬300圈上有A、B两地,它们的经度相差12021那么这两地的纬度圈上的弧长等于.3.已知球的两个平行截面的面积分别为49π、400π,且两个截面之间的距离为9,球的半径为.4.在北纬450圈上有甲、已两地,甲地位于东径12021乙地位于西径1500,则地球(半径为R)表面上甲、乙两地的最短距离为.。

人教版数学高二B版选修2-3 事件的独立性教案

人教版数学高二B版选修2-3  事件的独立性教案
“子轩队”和“姚明队”谁赢?学生非常踊跃,两边的支持率不分伯仲。
空白的PPT页面,
极大地调动了学生的好奇心,让学生快速融入课堂。
将与明星“投篮比赛”改编成题,激发学生学习兴趣,预留悬念,同时引出课题:事件的独立性。




请同学们根据《条件概率》一节课所学的内容,回答下列三个问题:
问题1: 一枚硬币任意抛掷两次,事件 “第一次出现正面”;事件 “第二次出现正面”,求 和 .
问题2:在大小均匀的5个苹果中有3个红苹果,2个青苹果,每次取一个,有放回地取两次,设 “第一次取到红苹果”, “第二次取到红苹果”,求 和 .
问题3:请根据问题1和问题2,归纳他们概率结果的共同点,并试着分析生成这种现象的根本原因.
学生自己探究并计算,得出结论 =
学生先自己独立思考,然后小组合作交流,给出结论:事件A是否发生对事件B发生的概率没有影响.
假设姚明今天来到了潍坊一中高二14班,听说我们的刘子轩、王行健、田志航等非常喜欢篮球运动,要和他们进行一场投篮比赛,规则是:三位同学每人投一次,姚明投一次,已知姚明投球的命中率是0.9,三名同学的命中率分别是0.4,0.5,0.7,猜一猜:哪一个队投中的概率大?
用学生喜欢的篮球赛为背景,教师第一次设疑,让学生能很有兴趣地给出答案---姚明。
(4)两人都投不中的概率;
(5)至多一人投中的概率。
点拨:
“至多”“至少”类型的题目
先是三名学生到黑板上板演,下面的同学独立完成,然后找学生对做的情况进行点评,教师进行补充点拨。
两相互独立事件同时发生的概率公式的应用,规范解题步骤,并让学生体会直接法和间接法的不同用处。



广
推广:

高中数学选修2-3精品教案6:2.2.2 事件的相互独立性教学设计

高中数学选修2-3精品教案6:2.2.2 事件的相互独立性教学设计

2.2.2 事件的相互独立性整体设计教材分析概率论是研究和揭示随机现象规律性的数学分支.它的理论和方法渗透到现实世界的各个领域,应用极为广泛.而在概率论中,独立性是极其重要的概念,它的主要作用是简化概率计算.相互独立事件同时发生的概率与前面学习的等可能性事件、互斥事件有一个发生的概率,是三类典型的概率模型.将复杂问题分解为这三种基本形式,是处理概率问题的基本方法.因此,本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决现实问题能力的一种途径,更是加强学生应用意识的良好素材.在本节中引入独立性的概念主要是为了介绍二项分布的产生背景,为下一节起铺垫作用.课时分配1课时教学目标知识与技能理解两个事件相互独立的概念,能进行与事件独立性有关的概率的计算.过程与方法通过教学渗透由特殊到一般的数学思想,提高解决实际问题的能力.情感、态度与价值观通过对实例的分析,问题的探究,学会合作,提高学习数学的兴趣.重点难点教学重点:独立事件同时发生的概率.教学难点:有关独立事件发生的概率计算.教学过程引入新课我们知道求事件的概率有加法公式:若事件A与B互斥,则P(A∪B)=P(A)+P(B).那么怎么求A与B的积事件AB呢?回顾旧知:1.事件A与B至少有一个发生的事件叫做A与B的和事件,记为A∪B(或A+B);2.事件A 与B 都发生的事件叫做A 与B 的积事件,记为A ∩B (或AB );如果事件A 1,A 2,…,A n 彼此互斥,那么P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ). 提出问题:甲果盘里有3个苹果,2个橙子,乙果盘里有2个苹果,2个橙子,从这两个果盘里分别摸出1个水果,它们都是苹果的概率是多少?活动结果:不妨设事件A :“从甲果盘里摸出1个水果,得到苹果”;事件B :“从乙果盘里摸出1个水果,得到苹果”.“从这两个果盘里分别摸出1个水果,它们都是苹果”是一个事件,它的发生,就是事件A ,B 同时发生,记作AB .(简称积事件)从甲果盘里摸出1个水果,有5种等可能的结果;从乙果盘里摸出1个水果,有4种等可能的结果.于是从这两个果盘里分别摸出1个水果,共有5×4种等可能的结果.同时摸出苹果的结果有3×2种.所以从这两个果盘里分别摸出1个水果,它们都是苹果的概率P (AB )=3×25×4=310. 探究新知提出问题:大家观察P (AB )与P (A )、P (B )有怎样的关系?活动结果:从甲果盘里摸出1个水果,得到苹果的概率P (A )=35,从乙果盘里摸出1个水果,得到苹果的概率P (B )=24.显然P (AB )=P (A )P (B ). 继续探究:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)事件A 是否发生对事件B 发生的概率有无影响?(无影响)探究结果:显然,事件A “从甲果盘里摸出1个水果,得到苹果”对事件B “从乙果盘里摸出1个球水果,得到苹果”没有影响,即事件A 的发生不会影响事件B 发生的概率.于是:P (B |A )=P (B ),又P (B |A )=P (AB )P (A ),易得:P (AB )=P (A )P (B |A )=P (A )P (B ). 将上述问题一般化,得出如下定义:1.相互独立事件的定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立(mutually independent).理解新知事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件就叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立.简证:若A 与B 是相互独立事件,则P (AB )=P (A )P (B ).所以P (A B )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )(1-P (B ))=P (A )P (B );P (A B )=P (B )-P (AB )=P (B )-P (A )P (B )=(1-P (A ))P (B )=P (A )P (B );P (A B )=P (A )-P (A B )=P (A )-P (A )P (B )=P (A )(1-P (B ))=P (A )P (B ); 即A 与B ,A 与B ,A 与B 也相互独立.教师指出:定义表明如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立,反之亦然.2.相互独立事件同时发生的概率:P (AB )=P (A )P (B ).即两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.类比:若事件A 与B 互斥,则P (A ∪B )=P (A )+P (B ).提出问题:该结论能否推广到一般情形?P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).活动结果:一般地,如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).运用新知例1已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?设计意图:题目富有趣味性,激发学生兴趣,使其创造力得到进一步发挥.解:设“臭皮匠老大解出问题”为事件A,“老二解出问题”为事件B,“老三解出问题”为事件C,“诸葛亮解出问题”为事件D,则三个臭皮匠中至少有一人解出问题的概率为1-P(A B C)=1-0.5×0.55×0.6=0.835>0.8=P(D).所以,合三个臭皮匠之力解出问题的把握就大过诸葛亮.例2甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,A 与B,A与B,A与B为相互独立事件,(1)2人都射中的概率为:P(AB)=P(A)P(B)=0.8×0.9=0.72,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A B 发生),另一种是甲未射中、乙射中(事件A B发生).根据题意,事件A B与A B互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26,∴2人中恰有1人射中目标的概率是0.26.(3)(法1):“2人至少有1人射中”包括“2人都中”和“2人有1人不中”两种情况,其概率为P =P(AB)+[P(A B)+P(A B)]=0.72+0.26=0.98.(法2):“2人至少有一个射中”与“2人都未射中”为对立事件,2人都未射中目标的概率是P(A B)=P(A)P(B)=(1-0.8)(1-0.9)=0.02,∴2人至少有1人射中目标的概率为P=1-P(A B)=1-0.02=0.98.(4)(法1):“至多有1人射中目标”包括“有1人射中”和“2人都未射中”,故所求概率为:P=P(A B)+P(A B)+P(A B)=P(A)P(B)+P(A)P(B)+P(A)P(B)=0.02+0.08+0.18=0.28.(法2):“至多有1人射中目标”的对立事件是“2人都射中目标”,故所求概率为P=1-P(AB)=1-P(A)P(B)=1-0.72=0.28.变练演编在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027.∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P(A B C)=1-0.027=0.973.答:在这段时间内线路正常工作的概率是0.973.变式1:如图添加第四个开关J D与其他三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率.([1-P(A B C)]·P(D)=0.973×0.7=0.681 1)变式2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.方法一:P(A B C)+P(A BC)+P(A B C)+P(ABC)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.847.方法二:分析要使这段时间内线路正常工作只要排除J C开且J A与J B至少有1个开的情况.则1-P(C)[1-P(AB)]=1-0.3×(1-0.72)=0.847.达标检测已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.解:(1)设“敌机被第k 门高炮击中”为事件为A k (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为A 1A 2A 3A 4A 5 .∵事件A 1,A 2,A 3,A 4,A 5相互独立,∴敌机未被击中的概率为P (A 1A 2A 3A 4A 5 )=P (A 1)P (A 2)P (A 3)P (A 4)P (A 5)=(1-0.2)5=(45)5. ∴敌机未被击中的概率为(45)5. (2)设至少需要布置n 门高炮才能有0.9以上的概率击中敌机,仿照(1)可得:敌机被击中的概率为1-(45)n ,∴令1-(45)n ≥0.9.∴(45)n ≤110. 两边取常用对数,得n ≥11-3lg2≈10.3. ∵n ∈N *,∴n =11.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.点评:逆向思考方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便.课堂小结1.一般地,两个事件不可能既互斥又相互独立,因为互斥事件不可能同时发生,而相互独立事件是以它们能够同时发生为前提.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.(列表比较)互斥事件 相互独立事件 定义不可能同时发生的两个事件 事件A 是否发生对事件B 发生的概率没有影响 概率公式 P (A +B )=P (A )+P (B ) P (AB )=P (A )P (B ) 2.解决概率问题的关键:分解复杂问题为基本的互斥事件与相互独立事件.补充练习基础练习1.袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率是( )A.12B.25C.35D.1102.甲、乙、丙三人独立地去译一个密码,分别译出的概率为15,13,14,则此密码能译出的概率是( )A.160B.25C.35D.59603.两个篮球运动员在罚球时命中概率分别是0.7和0.6,每人投篮3次,则2人都恰好进2球的概率是________.【答案】1.D 2.C 3.0.190 512拓展练习某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.解:设A i ={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为A 1A 2A 3,于是所求概率为P (A 1A 2A 3)=910×89×18=110; (2)拨号不超过3次而接通电话可表示为:A 1+A 1A 2+A 1A 2A 3,于是所求概率为P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1A 2)+P (A 1A 2A 3)=110+910×19+910×89×18=310.。

2017新人教B版高中数学选修2-3全册学案

2017新人教B版高中数学选修2-3全册学案

目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图1­1­1所示为一个电路图,从左到右可通电的线路共有( )图1­1­1A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图1­1­2,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图1­1­2【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图1­1­3所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图1­1­3A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别分类加法计数原理分步乘法计数原理联系两个原理回答的都是关于完成一件事情的不同方法的种数的问题区别一完成一件事共有n类办法,关键词是“分类”完成一件事共分n个步骤,关键词是“分步”区别二每类办法都能完成这件事任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有每个步骤都完成了,才能完成这件事区别三各类办法都是互斥的、并列的、独立的各步之间是相互关联的、互相依存的1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。

2017-2018学年高中数学人教B版选修2-3教学案:2.2.3独立重复试验与二项分布含解析

2017-2018学年高中数学人教B版选修2-3教学案:2.2.3独立重复试验与二项分布含解析

2.2.3独立重复试验与二项分布错误!独立重复试验要研究抛掷硬币的规律,需做大量的掷硬币试验.试想每次试验的前提是什么?提示:条件相同.1.在相同条件下重复地做n次试验,各次实验的结果相互独立,则称它们为n次独立重复试验.2.一般地,如果在一次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C错误! p k(1-p)n-k(k=0,1,2,…,n).二项分布在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8.用A i(i=1,2,3)表示第i次投篮命中这件事,用B1表示仅投中1次这件事.问题1:试用A i表示B1.提示:B1=(A1∩错误!2∩错误!3)∪(错误!1∩A2∩错误!3)∪(错误!1∩错误!∩A3).2问题2:试求P(B1).提示:因为P(A1)=P(A2)=P(A3)=0。

8,且A1∩错误!2∩错误!3,错误!1∩A2∩错误!3,错误!1∩错误!2∩A3两两互斥,故P(B1)=P(A1∩错误!2∩错误!3)+P(错误!1∩A2∩错误!3)+P(错误!1∩错误!∩A3)2=0.8×0。

22+0。

8×0.22+0.8×0.22=3×0。

8×0.22。

问题3:用B k表示投中k次这件事,试求P(B2)和P(B3).提示:P(B2)=3×0.2×0。

82,P(B3)=0.83.问题4:由以上结果你能得出什么结论?提示:P(B k)=C错误!0。

8k0.23-k,k=0,1,2,3.若将事件A发生的次数记为X,事件A不发生的概率为q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C错误!p k q n-k,其中k=0,1,2,…,n。

于是得到X的分布列X 01…k…nP C0,np0q nC错误!p1q n-1…C错误!p k q n-k…C错误!p n q0由于表中的第二行恰好是二项式展开式(q+p)n=C错误!p0q n+C错误!p1q n-1+…+C错误!p k q n-k+…+C错误! p n q0各对应项的值,所以称这样的离散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p).1.独立重复试验满足的条件:(1)每次试验是在相同的条件下进行的;(2)各次试验的结果互不影响,即每次试验是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生.2.二项分布中各个参数的意义:n表示试验的总次数;k表示在n次独立重复试验中成功的次数;p表示试验成功的概率;1-p 表示试验不成功的概率.3.二项分布的特点:(1)对立性:即一次试验中只有两种结果—-“成功”和“不成功”,而且有且仅有一个发生;(2)重复性:试验在相同条件下独立重复地进行n次,保证每一次试验中“成功”的概率和“不成功"的概率都保持不变.错误!独立重复试验的概率[例1],计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.[思路点拨] 由于5次预报是相互独立的,且结果只有两种(或准确,或不准确),符合独立重复试验模型.[精解详析] (1)记“预报1次准确”为事件A,则P(A)=0.8。

2017-2018学年高中数学人教B版选修2-3教学案:2-2-1

2017-2018学年高中数学人教B版选修2-3教学案:2-2-1

2.2条件概率与事件的独立性2.2.1 条件概率[对应学生用书P26]100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A ={产品的长度合格},B ={产品的质量合格},A ∩B ={产品的长度、质量都合格}. 问题1:试求P (A )、P (B )、P (A ∩B ). 提示:P (A )=93100,P (B )=90100,P (A ∩B )=85100.问题2:任取一件产品,已知其质量合格(即B 发生),求它的长度(即A 发生)也合格(记为A |B )的概率.提示:事件A |B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P (A |B )=8590. 问题3:试探求P (B )、P (A ∩B )、P (A |B )间的关系. 提示:P (A |B )=P (A ∩B )P (B ).条件概率的概念 (1)事件的交事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积)记做D =A ∩B (或D =AB ).(2)条件概率对于两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率.用符号“P (B |A )”表示.即条件概率公式P (B |A )=P (A ∩B )P (A ),P (A )>0.1.事件B 发生在“事件A 已发生”这个附加条件下的概率通常情况下与没有这个附加条件的概率是不同的.2.由条件概率的定义可知,P (B |A )与P (A |B )是不同的.另外,在事件A 发生的前提下,事件B 发生的概率不一定是P (B ),即P (B |A )与P (B )不一定相等.3.P (B |A )=P (A ∩B )P (A )可变形为P (A ∩B )=P (B |A )·P (A ),即只要知道其中的两个值就可以求得第三个值.4.事件AB 表示事件A 和事件B 同时发生.把事件A 与事件B 同时发生所构成的事件D 称为事件A 与B 的交(或积),记为D =A ∩B (或D =AB ).[对应学生用书P27][例1] 在52道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.[思路点拨] 根据分步乘法计数原理先计算出事件总数,然后计算出各种情况下的事件数后即可求解.[精解详析] 设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)从5道题中不放回地依次抽取2道题的基本事件总数为A 25=20.事件A 所含基本事件的总数为A 13×A 14=12.故P (A )=1220=35.(2)因为事件A ∩B 含A 23=6个基本事件. 所以P (A ∩B )=620=310.(3)法一 由(1)、(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率为P (B |A )=P (A ∩B )P (A )=31035=12.法二 因为事件A ∩B 含6个基本事件,事件A 含12个基本事件,所以P (B |A )=612=12.[一点通]计算条件概率的两种方法:(1)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即P (B |A )=事件A ∩B 所含基本事件的个数事件A 所含基本事件的个数;(2)在原样本空间Ω中,先计算P (A ∩B ),P (A ),再按公式P (B |A )=P (A ∩B )P (A )计算求得P (B |A ).1.(新课标全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45解析:根据条件概率公式P (B |A )=P (AB )P (A ),可得所求概率为0.60.75=0.8.答案:A2.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (A ∩B )=1C 27,故P (B |A )=P (A ∩B )P (A )=16. 答案:163.一个盒子中有6只正品晶体管,4只次品晶体管,任取两次,每次取一只,第一次取后不放回,若已知第一只是正品,求第二只也是正品的概率.解:令A i ={第i 只是正品},i =1,2. P (A 1)=6×910×9=35,P (A 1∩A 2)=6×510×9=13,P (A 2|A 1)=P (A 1∩A 2)P (A 1)=1335=59.[例2] (10分)7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.[思路点拨] 设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.[精解详析]设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球}, (2分)则容易求得P(A)=710,P(B)=3 10,P(R|A)=12,P(W|A)=12,P(R|B)=45,P(W|B)=15. (5分)事件“试验成功”表示为(R∩A)∪(R∩B),又事件R∩A与事件R∩B互斥, (7分) 所以由概率的加法公式得P((R∩A)∪(R∩B))=P(R∩A)+P(R∩B)=P(R|A)·P(A)+P(R|B)·P(B)=12×710+45×310=59100. (10分)[一点通]对于比较复杂的事件,可以先分解为两个(或若干个)较简单的互斥事件的并,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.4.一批产品中有4%的次品,而合格品中一等品占45%,从这批产品中任取一件,求该产品是一等品的概率.解:设A表示“取出的产品为合格品”,B表示“取出的产品为一等品”,则P(B|A)=45%.因为P(A)=4%,P(A)=1-P(A)=1-4%=96%.所以P(B)=P(A∩B)=P(A)·P(B|A)=96%×45%=43.2%.5.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球.现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,问从2号箱取出红球的概率是多少?解:记A={从2号箱中取出的是红球},B={从1号箱中取出的是红球},则P (B )=42+4=23,P (B )=1-P (B )=13,P (A |B )=3+18+1=49, P (A |B )=38+1=13,P (A )=P (A ∩B )∪(A ∩B ) =P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13 =1127.掌握好条件概率应注意以下几点:(1)事件B 在“事件A 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的.(2)所谓的条件概率,是试验结果的一部分信息已知(即在原随机试验的条件上,再加上一定的条件),求另一事件在此条件下发生的概率.(3)已知A 发生,在此条件下B 发生,相当于A ∩B 发生,求P (B |A )时,可把A 看成新的基本事件空间来计算B 发生的概率,即P (B |A )=n (A ∩B )n (A )=n (A ∩B )n (Ω)n (A )n (Ω)=P (A ∩B )P (A ).[对应课时跟踪训练(十二)]1.已知P (B |A )=12,P (A )=35,则P (A ∩B )等于( )A.56B.910C.310D.110解析:P (B |A )=P (A ∩B )P (A ),故P (A ∩B )=35×12=310.答案:C2.下列说法正确的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (A ∩B )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) 解析:由P (B |A )=P (A ∩B )P (A )知, P (A ∩B )=P (A )·P (B |A ). 答案:C3.某班学生的考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A.15B.310C.12D.35解析:设A 为事件“数学不及格”,B 为事件“语文不及格”,P (B |A )=P (A ∩B )P (A )=0.030.15=15.所以数学不及格时,该学生语文也不及格的概率为15. 答案:A4.(辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12解析:P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A )=14. 答案:B5.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.解析:由题意知,P (A ∩B )=310,P (B |A )=12. 由P (B |A )=P (A ∩B )P (A ),得P (A )=P (A ∩B )P (B |A )=35. 答案:356.如图,四边形EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________________.解析:因为P (A )表示事件“豆子落在正方形EFGH 内”的概率,为几何概型,所以P (A )=S 正方形EFGH S 圆O=2π.P (A ∩B )=12×1×1π×12=12π=12π. 由条件概率计算公式,得 P (B |A )=P (A ∩B )P (A )=12π2π=14.答案:147.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们颜色相同的情况下,求该颜色是白色的概率.解:令事件A 为“一次摸出的5个球颜色相同”, 事件B 为“一次摸出的5个球全是白色球”,则n (A )=C 510+C 59,n (A ∩B )=C 510,故P (B |A )=n (A ∩B )n (A )=C 510C 510+C 59=23. 8.一袋中共有10个大小相同的黑球和白球.若从袋中任意摸出2个球,至少有1个白球的概率为79,(1)求白球的个数.(2)现从中不放回地取球,每次取1球,取2次,已知第2次取得白球,求第1次取得黑球的概率.解:(1)记“从袋中任意摸出2个球,至少有1个白球”为事件A ,记袋中白球数为x 个.则P (A )=1-C 210-xC 210=79,故x =5,即白球的个数为5.(2)令“第2次取得白球”为事件B ,“第1次取得黑球”为事件C ,则P (B ∩C )=C 15C 110·C 15C 19=2590=518,P (B )=C 15·C 15+C 15·C 14C 110·C 19=25+2090=12.故P(C|B)=P(B∩C)P(B)=51812=59.。

2017-2018学年高中数学人教A版选修2-3教学案:2.2.2 事件的相互独立性

2017-2018学年高中数学人教A版选修2-3教学案:2.2.2 事件的相互独立性

2.2.2 事件的相互独立性预习课本P54~55,思考并完成以下问题1.事件的相互独立性的定义是什么?性质是什么?2.相互独立事件与互斥事件的区别?[新知初探] 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.(2)性质:A 与B 是相互独立事件,则⎩⎪⎨⎪⎧A 与B A 与BA 与B 也相互独立.[点睛] 相互独立事件与互斥事件的区别[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不可能事件与任何一个事件相互独立.( ) (2)必然事件与任何一个事件相互独立.( )(3)如果事件A 与事件B 相互独立,则P (B |A )=P (B ).( )(4)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案:(1)√ (2)√ (3)√ (4)√2.甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.答案:0.563.一件产品要经过两道独立的工序, 第一道工序的次品率为a, 第二道工序的次品率为b, 则该产品的正品率为________.答案:(1-a )(1-b )4.已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=________,P (AB )=________.答案:16 16事件独立性的判断[典例] 判断下列事件是否为相互独立事件.(1)甲组3名男生, 2名女生; 乙组2名男生, 3名女生,现从甲、乙两组中各选1名同学参加演讲比赛, “从甲组中选出1名男生”与“从乙组中选出1名女生”.(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件是否发生没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.两个事件是否相互独立的判断(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(3)条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断.[活学活用]把一颗质地均匀的骰子任意地掷一次,判断下列各组事件是否是独立事件?(1)A={掷出偶数点},B={掷出奇数点};(2)A={掷出偶数点},B={掷出3的倍数点};(3)A={掷出偶数点},B={掷出的点数小于4}.解:(1)∵P(A)=12,P(B)=12,P(AB)=0,∴A与B不是相互独立事件.(2)∵P(A)=12,P(B)=13,P(AB)=16,∴P(AB)=P(A)·P(B),∴A与B是相互独立事件.(3)∵P(A)=12,P(B)=12,P(AB)=16,∴P(AB)≠P(A)·P(B),∴A与B不是相互独立事件.相互独立事件概率的计算[为0.6, 购买甲、乙保险相互独立,各车主间相互独立.(1)求一位车主同时购买甲、乙两种保险的概率;(2)求一位车主购买乙种保险但不购买甲种保险的概率.[解]记A表示事件“购买甲种保险”,B表示事件“购买乙种保险”,则由题意得A 与B,A与B,A与B,B与A都是相互独立事件,且P(A)=0.5,P(B)=0.6.(1)记C表示事件“同时购买甲、乙两种保险”,则C=AB,所以P(C)=P(AB)=P(A)·P(B)=0.5×0.6=0.3.(2)记D表示事件“购买乙种保险但不购买甲种保险”,则D=A B,所以P(D)=P(A B)=P(A)·P(B)=(1-0.5)×0.6=0.3.[一题多变]1.[变设问]本例中车主至少购买甲、乙两种保险中的一种的概率是多少?解:法一:记E表示事件“至少购买甲、乙两种保险中的一种”,则事件E包括A B,A B,AB,且它们彼此为互斥事件.所以P(E)=P(A B+A B+AB)=P(A B)+P(A B)+P(AB)=0.5×0.6+0.5×0.4+0.5×0.6=0.8.法二:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件.所以P (E )=1-P (AB )=1-(1-0.5)×(1-0.6)=0.8.2.[变条件,变设问]某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解:记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率 P 1=P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228.(2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+0.8×0.7×0.6=0.564.(1)求相互独立事件同时发生的概率的步骤是: ①首先确定各事件之间是相互独立的; ②确定这些事件可以同时发生; ③求出每个事件的概率,再求积.(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.[典例] 三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.[解] 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34. 不发生故障的事件为(A 2∪A 3)A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)A 1] =P (A 2∪A 3)·P (A 1)=[1-P (A 2)·P (A 3)]·P (A 1) =⎝⎛⎭⎫1-14×14×12=1532.求较为复杂事件的概率的方法(1)列出题中涉及的各事件,并且用适当的符号表示;(2)理清事件之间的关系(两事件是互斥还是对立.或者是相互独立),列出关系式; (3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.[活学活用]某校田径队有三名短跑运动员,根据平时的训练情况统计,甲、乙、丙三人100 m 跑(互不影响)的成绩在13 s 内(称为合格)的概率分别是25,34,13,如果对这三名短跑运动员的100 m 跑成绩进行一次检测.(1)三人都合格的概率与三人都不合格的概率分别是多少? (2)出现恰有几人合格的概率最大?解:设“甲、乙、丙三人100 m 跑合格”分别为事件A ,B ,C ,显然A ,B ,C 相互独立,P (A )=25,P (B )=34,P (C )=13,所以P (A )=1-25=35,P (B )=1-34=14,P (C )=1-13=23.设恰有k 人合格的概率为P k (k =0,1,2,3). (1)三人都合格的概率为P 3=P (ABC )=P (A )P (B )P (C )=25×34×13=110.三人都不合格的概率为P 0=P (A -B -C -)=P (A )P (B )P (C )=35×14×23=110.所以三人都合格的概率与三人都不合格的概率都是110.(2)因为AB C ,A B C ,A BC 两两互斥,所以恰有两人合格的概率为:P 2=P (AB C +A B C +A BC )=P (AB C )+P (A B C )+P (A BC )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率为P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.由(1)(2)知P 0,P 1,P 2,P 3中P 1最大,所以出现恰有一人合格的概率最大.层级一 学业水平达标1.袋内有3个白球和2个黑球,从中不放回地摸球,用A 表示“第一次摸得白球”,用B 表示“第二次摸得白球”,则A 与B 是( )A .互斥事件B .相互独立事件C .对立事件D .不相互独立事件解析:选D 根据互斥事件、对立事件和相互独立事件的定义可知,A 与B 不是相互独立事件.故选D .2.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( )A .事件A 与B 互斥 B .事件A 与B 对立C .事件A 与B 相互独立D .事件A 与B 既互斥又独立解析:选C 因为P (A )=23,所以P (A )=13,又P (B )=13,P (AB )=19,所以有P (AB )=P (A )P (B ),所以事件A 与B 相互独立但不一定互斥.3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )A .1425B .1225C .34D .35解析:选A 由题意知P 甲=810=45,P 乙=710,所以P =P 甲·P 乙=1425. 4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是( )A .0.56B .0.92C .0.94D .0.96解析:选C 设事件A 表示:“甲击中”,事件B 表示:“乙击中”.由题意知A ,B 互相独立.故目标被击中的概率为P =1-P (A ·B )=1-P (A )P (B )=1-0.2×0.3=0.94.5.从甲袋内摸出1个红球的概率是13,从乙袋内摸出1个红球的概率是12,从两袋内各摸出1个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰好有1个红球的概率解析:选C 至少有1个红球的概率是13×⎝⎛⎭⎫1-12+12×⎝⎛⎭⎫1-13+12×13=23. 6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.解析:所求概率P =0.8×0.1+0.2×0.9=0.26. 答案:0.267.已知P (A )=0.3,P (B )=0.5,当事件A ,B 相互独立时,P (A ∪B )=________,P (A |B )=________.解析:∵A ,B 相互独立,∴P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65. P (A |B )=P (A )=0.3.答案:0.65 0.38.设两个相互独立的事件A ,B 都不发生的概率为19,A 发生B 不发生的概率等于B发生A 不发生的概率,则事件A 发生的概率P (A )=________.解析:由已知可得⎩⎪⎨⎪⎧(1-P (A ))(1-P (B ))=19,P (A )(1-P (B ))=P (B )(1-P (A )),解得P (A )=P (B )=23.答案:239.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为45和34.求:(1)甲、乙两个气象台同时预报天气准确的概率. (2)至少有一个气象台预报准确的概率.解:记“甲气象台预报天气准确”为事件A ,“乙气象台预报天气准确”为事件B .显然事件A ,B 相互独立且P (A )=45,P (B )=34.(1)P (AB )=P (A )P (B )=45×34=35.(2)至少有一个气象台预报准确的概率为 P =1-P (AB )=1-P (A )P (B )=1-15×14=1920.10.已知A ,B ,C 为三个独立事件,若事件A 发生的概率是12,事件B 发生的概率是23,事件C 发生的概率是34,求下列事件的概率:(1)事件A ,B ,C 只发生两个; (2)事件A ,B ,C 至多发生两个.解:(1)记“事件A ,B ,C 只发生两个”为A 1,则事件A 1包括三种彼此互斥的情况,A ·B ·C ;A ·B ·C ;A ·B ·C ,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P (A 1)=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=112+18+14=1124,∴事件A ,B ,C 只发生两个的概率为1124.(2)记“事件A ,B ,C 至多发生两个”为A 2,则包括彼此互斥的三种情况:事件A ,B ,C 一个也不发生,记为A 3,事件A ,B ,C 只发生一个,记为A 4,事件A ,B ,C 只发生两个,记为A 5,故P (A 2)=P (A 3)+P (A 4)+P (A 5)=124+624+1124=34. ∴事件A ,B ,C 至多发生两个的概率为34.层级二 应试能力达标1.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为( )A .0.12B .0.88C .0.28D .0.42解析:选D P =(1-0.3)(1-0.4)=0.42.2.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .13解析:选A 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示“第二个圆盘的指针落在奇数所在的区域”,则P (B )=23.故P (AB )=P (A )·P (B )=23×23=49. 3.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .13B . 29C . 49D .827解析:选A 按A →B →C →A 的顺序的概率为13×13×13=127,按A →C →B →A 的顺序的概率为23×23×23=827,故跳三次之后停在A 叶上的概率为P =127+827=13.4.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,则灯亮的概率为( )A .316B .34C .1316D .14解析:选C 记“A ,B ,C ,D 四个开关闭合”分别为事件A ,B ,C ,D ,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P (C )P (D )[1-P (AB )]=12×12×⎝⎛⎭⎫1-12×12=316.∴灯亮的概率为1-316=1316. 5.加工某零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.解析:加工出来的零件的正品率为⎝⎛⎭⎫1-170×⎝⎛⎭⎫1-169×⎝⎛⎭⎫1-168=6770,所以次品率为1-6770=370. 答案:3706.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案:0.1287.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6,0.4,0.5,0.2.已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率.解:记“该选手能正确回答第i轮的问题”为事件A i(i=1,2,3,4),则P(A1)=0.6,P(A2)=0.4,P(A3)=0.5,P(A4)=0.2.(1)法一:该选手被淘汰的概率:P=P(A1∪A1A2∪A1A2A3∪A1A2A3A4)=P(A1)+P(A1)P(A2)+P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3)P(A4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.法二:P=1-P(A1A2A3A4)=1-P(A1)P(A2)·P(A3)·P(A4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)法一:P=P(A1A2∪A1A2A3∪A1A2A3A4)=P(A1)P(A2)+P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3)P(A4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.法二:P=1-P(A1)-P(A1A2A3A4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.8.(全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 事件的独立性[对应学生用书P28]甲箱里装有3个白球、2个黑球,乙箱里装有2个白球、2个黑球.从这两个箱子里分别摸出1个球,记事件A 为“从甲箱里摸出白球”,B 为“从乙箱里摸出白球”.问题1:事件A 发生会影响事件B 发生的概率吗? 提示:不影响.问题2:试求P (A )、P (B )、P (A ∩B ).提示:P (A )=35,P (B )=12,P (A ∩B )=3×25×4=310.问题3:P (B |A )与P (B )相等吗?提示:因为P (B |A )=P A ∩BP A =31035=12,所以P (B |A )与P (B )相等.问题4:P (A ∩B )与P (A )×P (B )相等吗?提示:因为P (B |A )=P A ∩BP A=P (B ),所以P (A ∩B )与P (A )×P (B )相等.1.相互独立事件的概念若事件A 是否发生对事件B 发生的概率没有影响,即P (B |A )=P (B ),则称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.2.相互独立事件的性质如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立. 3.相互独立事件同时发生的概率公式如果事件A 与B 相互独立,那么P (A ∩B )=P (A )×P (B ).1.事件A 与B 相互独立就是事件A 的发生不影响事件B 发生的概率,事件B 的发生不影响事件A 发生的概率.2.当事件A 与事件B 相互独立,且P (A )>0,P (B )>0时,有P (B |A )=P (B ),P (A |B )=P (A ).3.两个事件A ,B 相互独立的充要条件是P (A ∩B )=P (A )P (B ).注意:独立事件是依据事件之间的相互关系对事件进行区别划分的一种方式.事件的独立性既可以指两个事件之间的独立关系,也可以指多个事件之间的独立关系.[对应学生用书P29][例1] (1)“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的是白球”这两个事件是否相互独立?为什么?(2)“从8个球中任意取出1个,取出的是白球”与“把取出的1个白球放回容器,再从容器中任意取出1个,取出的是黄球”这两个事件是否相互独立?为什么?[思路点拨] 利用相互独立事件的定义判断.[精解详析] (1)“从8个球中任意取出1个,取出的是白球”记为事件A ,“从剩下的7个球中任意取出1个,取出的是白球”记为事件B ,则P (A )=58,P (B )=58×47+38×57=58,P (A ∩B )=5×48×7=514. 因为P (A ∩B )≠P (A )P (B ),所以二者不是相互独立事件.(2)因为把取出的白球放回容器,所以对“从中任意取出1个,取出的是黄球”的概率没有影响,所以二者是相互独立事件.[一点通]判断两个事件是否相互独立的方法:(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.(3)条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断.1.下列事件中,A ,B 是相互独立事件的是( )A .一枚硬币掷两次,A ={第一次为正面},B ={第二次为反面}B .袋中有2白,2黑的小球,不放回地摸两球,A ={第一次摸到白球},B ={第二次摸到白球}C .掷一枚骰子,A ={出现点数为奇数},B ={出现点数为偶数}D .A ={人能活到20岁},B ={人能活到50岁}解析:把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C ,A ,B 应为互斥事件,不相互独立; D 是条件概率,事件B 受事件A 的影响.答案:A2.分别抛掷两颗质地均匀的骰子,A ={第一颗骰子出现奇数点},B ={第二颗骰子出现偶数点},判定事件A ,B 是否相互独立.解:分别掷两颗质地均匀的骰子,则A ={第一颗骰子出现1,3,5点},共有3种结果.B ={第二颗骰子出现2,4,6点},共有3种结果.A ∩B ={第一颗骰子出现奇数点,第二颗骰子出现偶数点},共有C 13·C 13=9种结果.由于每种结果的出现均是等可能的,由古典概型的有关知识可知P (A )=36=12,P (B )=36=12,P (A ∩B )=C 13C 13C 16C 16=936=14. 所以P (A ∩B )=P (A )·P (B ),即事件A 、事件B 相互独立.[例2] 语文为0.9,数学为0.8,英语为0.85,求:(1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少?[思路点拨] 明确已知事件的概率及其关系,把待求事件的概率表示成已知事件的概率,再选择公式计算.[精解详析] 分别记该生语文、数学、英语考试成绩排名全班第一的事件为A,B,C,则A,B,C两两相互独立且P(A)=0.9,P(B)=0.8,P(C)=0.85.(1)“三科成绩均未获得第一名”可以用,A∩ B∩C表示,P(A∩B∩C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.9)(1-0.8)(1-0.85)=0.003,即三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用(A∩B∩C)∪(A∩B∩C)∪(A∩B∩C)表示.由于事件A∩B∩C,A∩B∩C和A∩B∩C两两互斥,根据概率加法公式和相互独立事件的概率公式,所求的概率为P(A∩B∩C)+P(A∩B∩C)+P(A∩B∩C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329,即恰有一科成绩未获得第一名的概率是0.329.[一点通]1.公式P(A∩B)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1∩A2∩…∩A n)=P(A)P(A2)…P(A n).12.求相互独立事件同时发生的概率的步骤:(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件发生的概率,再求其积.3.制造一种零件,甲机床的正品率是0.96,乙机床的正品率是0.95,从它们制造的产品中各任意抽取一件,则两件都是正品的概率是________.解析:用A表示从甲机床制造的产品中抽得正品,用B表示从乙机床制造的产品中抽得正品.由题意得,A ,B 是相互独立事件,故P (A ∩B )=P (A )P (B )=0.96×0.95=0.912.答案:0.9124.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________.解析:用A ,B ,C 分别表示甲、乙、丙三人破译出密码, 则P (A )=15,P (B )=13,P (C )=14,且P (A ∩B ∩C )=P (A )P (B )P (C )=45×23×34=25.所以此密码被译出的概率为1-25=35.答案:355.红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,求红队至少两名队员获胜的概率.解:记甲胜A 、乙胜B 、丙胜C 分别为事件D ,E ,F ,则甲不胜A 、乙不胜B 、丙不胜C 分别为事件D ,E ,F .根据各盘比赛结果相互独立,可得红队至少两名队员获胜的概率为P =P (D ∩E ∩F )+P (D ∩E ∩F )+P (D ∩E ∩F )+P (D ∩E ∩F )= P (D )P (E )P (F )+P (D )P (E )·P (F )+P (D )P (E )·P (F )+P (D )·P (E )P (F )=0.6×0.5×(1-0.5)+0.6×(1-0.5)×0.5+(1-0.6)×0.5×0.5+0.6×0.5×0.5=0.55.[例3] (10分)三个元件T 1,T 2,T 3正常工作的概率分别为2,4,4,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.[思路点拨] 记三个元件T 1,T 2,T 3正常工作分别为事件A 1,A 2,A 3,再把不发生故障的事件表示为(A 2∪A 3)∩A 1,最后由相互独立事件、对立事件、互斥事件的概率公式求概率.[精解详析] 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.(4分)不发生故障的事件为(A 2∪A 3)∩A 1,(6分) 故不发生故障的概率为P =P [(A 2∪A 3)∩A 1]=P (A 2∪A 3)·P (A 1)=[1-P (A 2)·P (A 3)]·P (A 1)=⎝ ⎛⎭⎪⎫1-14×14×1=15.(10分) [一点通]解决此类问题应注意:(1)恰当用事件的“并”“交”表示所求事件;(2)“串联”时系统无故障易求概率,“并联”时系统有故障易求概率,求解时注意对立事件概率之间的转化.6.如图,A ,B ,C 表示3个开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性为( )A .0.054B .0.994C .0.496D .0.06解析:记三个开关都正常工作分别为事件A ,B ,C ,则P (A )=0.9,P (B )=0.8,P (C )=0.7.三个开关同时出现故障的事件为A ∩B ∩C ,则此系统正常工作的概率为P =1-P (A ∩B ∩C )=1-P (A )P (B )P (C )=1-0.1×0.2×0.3=0.994.答案:B7.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.求该选手被淘汰的概率.解:记事件“该选手能正确回答第i 轮的问题”为A i (i =1,2,3) ,则P (A 1)=45,P (A 2)=35,P (A 3)=25.法一:该选手被淘汰的概率为P (A -1)+P (A 1∩A -2)+P (A 1∩A 2∩A -3)=P (A -1)+P (A 1)P (A -2)+P (A 1)P (A 2)P (A -3) =15+45×25+45×35×35=101125. 法二:该选手被淘汰的概率为 1-P (A 1∩A 2∩A 3)=1-45×35×25=101125.1.“相互独立事件”与“互斥事件”的区别:[对应课时跟踪训练十三1.袋内有大小相同的3个白球和2个黑球,从中不放回地摸球,用A 表示“第一次摸到白球”,用B 表示“第二次摸到白球”,则A 与B 是( )A .互斥事件B .相互独立事件C .对立事件D .非相互独立事件解析:根据互斥事件、对立事件及相互独立事件的概念可知,A 与B 为非相互独立事件. 答案:D2.某射击运动员射击一次命中目标的概率为0.9,则他连续射击两次都命中的概率是( )A .0.64B .0.56C .0.81D .0.99解析:A i 表示“第i 次击中目标”,i =1,2,则P (A 1∩A 2)=P (A 1)P (A 2)=0.9×0.9=0.81. 答案:C3.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的.今从甲、乙两盒中各任取一个,则恰好可配成A 型螺栓的概率为( )A.120B.1516C.35D.1920解析:设“从甲盒中取一螺杆为A 型螺杆”为事件A ,“从乙盒中取一螺母为A 型螺母”为事件B ,则A 与B 相互独立,P (A )=160=4,P (B )=180=3,则从甲、乙两盒中各任取一个,恰好可配成A 型螺栓的概率为P =P (A ∩B )=P (A )P (B )=45×34=35.答案:C4.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )等于( )A.29B.118C.13D.23解析:由P (A ∩B )=P (B ∩A )得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A ∩B )=19,∴P (A )=P (B )=13.∴P (A )=23.答案:D5.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为________.解析:由题意知P =1-(1-0.3)×(1-0.5)=0.65. 答案:0.656.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.解析:设从甲袋中任取一个球,事件A 为“取得白球”,则事件A 为“取得红球”,从乙袋中任取一个球,事件B 为“取得白球”,则事件B 为“取得红球”.∵事件A 与B 相互独立,∴事件A 与B 相互独立. ∴从每袋中任取一个球,取得同色球的概率为P ((A ∩B )∪(A -∩B -))=P (A ∩B )+P (A -∩B -)=P (A )P (B )+P (A -)P (B -) =23×12+13×12=12. 答案:127.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为45和34.在同一时间内,求:(1)甲、乙两个气象台同时预报天气准确的概率; (2)至少有一个气象台预报准确的概率.解:记“甲气象台预报天气准确”为事件A ,“乙气象台预报天气准确”为事件B . (1)P (A ∩B )=P (A )×P (B )=45×34=35.(2)至少有一个气象台预报准确的概率为P =1-P (A ∩B )=1-P (A )×P (B )=1-15×14=1920.8.甲、乙两名跳高运动员在一次2米跳高中成功的概率分别为0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳三次,第三次才成功的概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率; (3)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.解:记“甲第i 次试跳成功”为事件A i ,“乙第i 次试跳成功”为事件B i , 依题意得P (A i )=0.7,P (B i )=0.6,且A i ,B i 相互独立.(1)“甲试跳三次,第三次才成功”为事件A 1∩A 2∩A 3,且这三次试跳相互独立. ∴P (A 1∩A 2∩A 3)=P (A 1)P (A 2)P (A 3)=0.3×0.3×0.7=0.063. (2)记“甲、乙两人在第一次试跳中至少有一人成功”为事件C .P (C )=1-P (A 1)P (B 1)=1-0.3×0.4=0.88.(3)记“甲在两次试跳中成功i 次”为事件M i (i =0,1,2),“乙在两次试跳中成功i 次”为事件N i (i =0,1,2),∵事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为M 1∩N 0+M 2∩N 1,且M 1∩N 0,M 2∩N 1为互斥事件,则所求的概率为P (M 1∩N 0+M 2∩N 1)=P (M 1∩N 0)+P (M 2∩N 1)=P (M 1)P (N 0)+P (M 2)P (N 1)=C 12×0.7×0.3×0.42+0.72×C 12×0.6×0.4=0.067 2+0.235 2=0.302 4.∴甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.302 4.。

相关文档
最新文档