人教B版新课标高中数学必修一教案 《基本不等式》
人教版高中数学新教材必修第一册2.2基本不等式1公开课教案(优秀教案,表格式)
数学公开课教案科目授课班级授课时间授课地点讲课人数学课题§2.2基本不等式(第一课时)教学目标1.知识目标:掌握基本不等式及会应用基本不等式求最值2.知识与技能:体会基本不等式应用的条件:一正,二定,三相等;体会应用基本不等式求最值问题解题策略的构建过程。
3.情感态度价值观:通过解题后的反思逐步培养学生养成解题反思的习惯教学重点基本不等式在解决最值问题中的应用教学难点基本不等式在解决最值问题中的变形应用及等号成立的条件教法启发式、探究式学法合作探究课前准备多媒体教学过程主要内容及教师活动设计意图一.复习引入回顾重要不等式:如果Rba∈,,则abba222≥+(当且仅当ba=时,取“=”号)如果0,0a b>>,我们用,a b分别代替,a b,可得什么不等关系?巩固知识,导入新课二.新课讲解1.用分析法证明abba≥+2,0,0a b>>2.如果a,b都是正数,那么2baab+≤,当且仅当a=b时,等号成立。
我们称此不等式为均值不等式。
其中2ba+称为a,b的算术平均数,ab称为a,b的几何平均数。
文字叙述为:两个正数的算术平均数不小于它们的几何平均数3.探究:如图所示,AB是圆的直径,点C是AB上一点,AC=a,BC=b,过点C作垂直于AB的弦DE,连接AD,BD.你能根据图形对基本不等式作出几何解释吗?几何解释:圆的弦长的一半小于或等于圆的半径长,当且仅当弦过圆心时,二者相等学习新的知识点。
人教B版新课标高中数学必修一 基本不等式课件
y
则篱笆的长为 x +2y= 24
矩形花园的面积为xy m2
Q x 2 y ≥ 2xy 2
24≥ 2xy 2
B
x
C
得 144≥2xy 即 xy ≤ 72
当且仅当 x=2y 时,等号成立 即x=12,y=6
因花此园,面这积个最矩大形,的最长大为面积12是m解、72宽xm为2x26ym2时y24,,
b
G
F
a 面积S=___2__b2
C 2、四个直角三角形的
A
aHE
面积和S’ =_2_ab
3、S与S’有什么
B
问:那么它们有相等的情况吗?
样的不等关系? S___>__S′
课程讲解
课程讲解
D
D
a2 b2
b
G Fa
C
a
A
HE
A E(FGH)
b
C
B
B
重要不等式: 一般地,对于任意实数a、b,我们有
课程讲解
结论:一般地,对于任意实数a、b,总有
a 2 b2≥ 2ab
当且仅当a=b时,等号成立 适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a , b分别代替a,b, 可得到什么结论?
课程讲解
如果a 0,b 0,我们用 a , b分别代替a,b, 可得到什么结论?
矩形的长、宽各为多少时,花园的面 x
积最大,最大面积是多少?
B
分析:设AB=x ,BC=24-2x ,
D C
24 2x
课堂练习
变式:如图,用一段长为24m 的篱笆围一个一边靠墙的矩 形花园,问这个矩形的长、宽各为多少时,花园的面积最 大,最大面积是多少?
基本不等式教案
基本不等式(均值定理)2b a ab +≤,(>>)(教案)一、学习目标知识目标:理解均值不等式,并能运用均值不等式解决一些较为简单的问题.掌握平均值定理并能初步应用它求某些函数的最值.能力目标:培养学生探究能力以及分析问题、解决问题的能力.情感目标:通过理解平均值定理的使用条件,学生进一步认识现实世界中的量不等是普遍的,相等是局部的,对学生进行辩证唯物主义教育.通过问题的设置,培养学生善于思考、勤于动手的良好品质.二、重点:理解均值不等式.难点:均值不等式的应用. 三、学习过程: (引出新课)对任意两个正实数,数2a b+均数之间的不等关系可表述为:两个正实数的算术平均数不小于它的几何平均数。
我们把这一基本不等式称之为均值定理,因此又叫均值不等式(板书课题)符号表示为:若∈ ,2a b+问题:能证明吗?(作差法)问题: 能不能用几何方法证明上面的基本不等式呢? 下面我们给出均值不等式的一个几何直观解释:令正实数、为两条线段的长,用几何作图的方法作出长度为2a b+线段,然后比较这两条线段的长。
()作线段,使; ()以为直径作半圆 ()过点作⊥于,交半圆于 ()连接,, ,则 2a b +当≠时,>,即2a b+>当时,,即2a b+=均值不等式与不等式≥的关系如何? 区别:的范围不同。
联系:均值不等式是≥的特例。
小组讨论:判断以下几个均值不等式的应用是否正确?若不正确,说明理由。
() ∵1x ≥,当且仅当时等号成立,∴ 1x的最小值是.().解:()求函数1x (≥)的最小值.解: ∵>,∴1x≥,∴函数的最小值是.学生小组讨论得出求最值的条件:一正二定三相等一、配凑 . 凑系数例. 当04<<x 时,求y x x =-()82的最大值。
解析:由04<<x 知,820->x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
高中不等式的教案
高中不等式的教案高中不等式的教案(通用11篇)高中不等式的教案篇1教学目标1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重难点1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。
教学过程一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式在此基础上,引导学生认识基本不等式。
三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:4、探究基本不等式证明方法:[问]如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。
基本不等式教案
基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。
(2)掌握运用基本不等式求最值的方法和条件。
2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。
(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。
3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。
(2)培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点(1)基本不等式的内容及证明。
(2)运用基本不等式求最值的方法和条件。
2、教学难点(1)基本不等式的证明。
(2)运用基本不等式求最值时条件的判断和正确应用。
三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。
证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。
2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。
对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。
高中数学基本不等式教案设计(优秀3篇)
基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
这次白话文为您整理了高中数学基本不等式教案设计(优秀3篇),如果能帮助到您,小编的一切努力都是值得的。
高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
高中数学必修一《基本不等式》教学设计
高中数学必修一《基本不等式》教学设计教材分析《基本不等式》在数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。
本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。
同时本节课的内容也是之后基本不等式应用的必要基础。
教学目标与素养课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。
2.经历基本不等式的推导与证明过程,提升逻辑推理能力。
3.在猜想论证的过程中,体会数学的严谨性。
数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。
重难点重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.教学准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、情景导入:在前面一节,已经学了重要不等式,那么将重要不等式中各个式子开方变形,会得到什么呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本44-45页,思考并完成以下问题1. 重要不等式的内容是?2.基本不等式的内容及注意事项?3.常见的不等式推论?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.重要不等式2.基本不等式(1)基本不等式成立的条件:_____________.(2)等号成立的条件:当且仅当______时取等号.注意:一正二定三等.3.几个重要的不等式(1)a2+b2≥______(a,b∈R).(2) ≥____(a,b同号).(3) (a,b∈R).(4) (a,b∈R).4. 设a>0,b>0,则a,b的算术平均数为___________,几何平均数为______,基本不等式可叙述为:_____________________.四、典例分析、举一反三题型一利用基本不等式求最值例1 求下列各题的最值.(1)已知x>0,y>0,xy=10,求 的最小值;(2)x>0,求 的最小值;(3)x<3,求 的最大值;【答案】见解析【解析】(1) 由x>0,y>0,xy=10.当且仅当2y=5x,即x=2,y=5时等号成立.(2)∵x>0,等号成立的条件是 即x=2,∴f(x)的最小值是12.(3)∵x<3,∴x-3<0,∴3-x>0,当且仅当 即x=1时,等号成立.故f(x)的最大值为-1.解题技巧:(利用基本不等式求最值)(1)通过变形或“1”的代换,将其变为两式和为定值或积为定值;(2)根据已知范围,确定两式的正负符号;(3)根据两式的符号求积或和的最值.总而言之,基本不等式讲究“一正二定三等”.跟踪训练一(1)已知x>0,y>0,且 求x+y 的最小值;(2)已知x< 求函数 的最大值;(3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值.【答案】见解析【解析】题型二利用基本不等式解决实际问题例2( 1 ) 用篱笆围一个面积为100的矩形菜园 ,当这个矩形的边长为多少时 , 所用篱笆最短?最短篱笆的长度是多少?( 2 ) 用一段长为 36m 的篱笆围成一个矩形菜园 ,当这个矩形的边长为多少时 , 菜园的面积最大?最大面积是多少?【答案】见解析【解析】设矩形菜园的相邻两条边的长分别为,篱笆的长度为m.(1)由已知由 ≥,可得所以,当且仅当=10时,上式等号成立.(2)由已知得,矩形菜园的面积为由 = = 9,可得81,当且仅当=9时,上式等号成立.解题技巧:(利用基本不等式解决实际问题)设出未知数x,y,根据已知条件,列出关系式,然后利用函数的思想或基本不等式解决相应的问题。
高中数学《基本不等式》教案
《基本不等式》教案一、教学目标1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式2ba ab +≤的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略.以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2ba ab +≤的证明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.动手操作,几何引入如图是在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.探究一:在这张“弦图”中能找出一些相等关系和不等关系吗?在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为b a ,,那么正方形的边长为22b a +.于是, 4个直角三角形的面积之和ab S 21=, 正方形的面积222b a S +=. 由图可知12S S >,即ab b a 222>+.探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a ≥),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?通过学生动手操作,探索发现:2ba ab +≤ 2.代数证明,得出结论根据上述两个几何背景,初步形成不等式结论: 若+∈R b a ,,则ab b a 222>+. 若+∈R b a ,,则2ba ab +≤. 学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:(1)若+∈R b a ,,则ab b a 222≥+;(2)若+∈R b a ,,则2ba ab +≤ 请同学们用代数方法给出这两个不等式的证明. 证法一(作差法):0)(2222≥-=-+b a ab b aabab b a 222≥+∴,当b a =时取等号.(在该过程中,可发现b a ,的取值可以是全体实数) 证法二(分析法):由于+∈R b a ,,于是 要证明ab ba ≥+2, 只要证明 ab b a 2≥+, 即证 02≥-+ab b a ,即 0)(2≥-b a ,该式显然成立,所以ab ba ≥+2,当b a =时取等号. 得出结论,展示课题内容 基本不等式: 若+∈R b a ,,则2ba ab +≤(当且仅当b a =时,等号成立) 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立) 深化认识:称ab 为b a ,的几何平均数;称2ba +为b a ,的算术平均数 基本不等式2ba ab +≤又可叙述为: 两个正数的几何平均数不大于它们的算术平均数 3.几何证明,相见益彰探究三:如图,AB 是圆O 的直径,点C 是AB 上一点,a AC =,b BC =.过点C 作垂直于AB 的弦DE ,连接BD AD ,.根据射影定理可得:ab BC AC CD =⋅=由于Rt COD ∆中直角边<CD 斜边OD , 于是有2ba ab +<当且仅当点C 与圆心O 重合时,即b a =时等号成立. 故而再次证明: 当0,0>>b a 时,2ba ab +≤(当且仅当b a =时,等号成立)AB(进一步加强数形结合的意识,提升思维的灵活性) 4.应用举例,巩固提高例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)对于+∈R y x ,,(1)若p xy =(定值),则当且仅当b a =时,y x +有最小值p 2;(2)若s y x =+(定值),则当且仅当b a =时,xy 有最大值42s .(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)例2.求)0(1≠+=x xx y 的值域. 变式1. 若2>x ,求21-+x x 的最小值. 在运用基本不等式解题的基础上,利用几何画板展示)0(1≠+=x xx y 的函数图象,使学生再次感受数形结合的数学思想.并通过例2及其变式引导学生领会运用基本不等式2ba ab +≤的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.练一练(自主练习): 1.已知0,0>>y x ,且182=+yx,求xy 的最小值. 2.设R y x ∈,,且2=+y x ,求y x 33+的最小值. 5.归纳小结,反思提高基本不等式:若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立) 若+∈R b a ,,则2ba ab +≤(当且仅当b a =时,等号成立)(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法. 媒体展示,渗透思想: 若将算术平均数记为21yx z +=,几何平均数记为xy z =2 利用电脑3D 技术,在空间坐标系中向学生展示基本不等式的几何背景:平面21yx z +=在曲面xy z =2的上方6.布置作业,课后延拓(1)基本作业:课本P100习题A 组1、2题(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.(3)探究作业:现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.。
高一数学上册《基本不等式及其应用》教案、教学设计
5.学生的学习兴趣和动机存在差异,教师应关注个体差异,采用多样化的教学策略,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握基本不等式的定义和性质,特别是算术平均数和几何平均数之间的关系,是本章节的重点和难点;
4.强调数学在生活中的应用价值,提高学生对数学学科的认识和尊重,培养学生的数学素养;
5.培养学生团结协作、互相帮助的精神风貌,让学生在合作学习的过程中,学会尊重他人,共同进步。
二、学情分析
在高一数学上册《基本不等式及其应用》这一章节的教学中,考虑到学生的年龄特点和已有的数学知识基础,进行以下学情分析:
让学生独立完成练习,并及时给予反馈。针对学生的错误,进行针对性的讲解和指导。
(五)总结归纳
在总结归纳环节,我会引导学生从以下几个方面进行总结:
1.本节课我们学习了哪些内容?基本不等式的定义是什么?
2.基本不等式的性质有哪些?它们在实际问题中如何应用?
3.学会了哪些证明基本不等式的方法?它们各自的优缺点是什么?
2.学会运用基本不等式解决实际问题,尤其是如何从实际问题中抽象出数学模型,是教学的另一个难点;
3.掌握基本不等式的证明方法,尤其是构造法和分析法,对于培养学生的逻辑思维能力具有重要意义,也是教学的重点;
4.能够灵活运用基本不等式解决综合性较强的数学问题,提高学生的综合运用能力,是本章节教学的难点。
(二)教学设想
针对以上重难点,我设想以下教学策略和方法:
1.引导学生从实际问题出发,通过观察、分析、归纳,发现基本不等式的内涵和性质。在教学过程中,运用多媒体课件、实物模型等教学资源,帮助学生形象地理解抽象的数学概念;
高一数学必修一 教案 2.2 基本不等式
2.2 基本不等式 第1课时 基本不等式学习目标 1.掌握基本不等式及推导过程.2.能熟练运用基本不等式比较两实数的大小.3.能初步运用基本不等式进行证明和求最值.知识点 基本不等式1.如果a >0,b >0a =b 时,等号成立.其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.2.变形:ab ≤⎝⎛⎭⎪⎫a +b 22,a ,b ∈R ,当且仅当a =b 时,等号成立.a +b ≥2ab ,a ,b 都是正数,当且仅当a =b 时,等号成立.1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n>2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.若a >0,则a 3+1a2的最小值为2a .( × )一、利用基本不等式比较大小例1 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2考点 基本不等式比较大小 题点 利用基本不等式比较大小 答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎢⎡⎦⎥⎤1+a 1+b 22, ∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2.反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要善于利用这个桥梁化和为积或者化积为和.跟踪训练1 若0<a <1,0<b <1,且a ≠b ,试找出a +b ,a 2+b 2,2ab ,2ab 中的最大者. 解 ∵0<a <1,0<b <1,且a ≠b , ∴a +b >2ab ,a 2+b 2>2ab ,∴四个数中最大的应从a +b ,a 2+b 2中选择. 而a 2+b 2-(a +b )=a (a -1)+b (b -1), ∵0<a <1,0<b <1,∴a (a -1)<0,b (b -1)<0, ∴a 2+b 2-(a +b )<0, 即a 2+b 2<a +b ,∴a +b 最大.二、利用基本不等式直接求最值例2 (1)当x >0时,求12x+4x 的最小值;(2)当x <0时,求12x+4x 的最大值;(3)当x >1时,求2x +8x -1的最小值; (4)已知4x +a x(x >0,a >0)在x =3时取得最小值,求a 的值. 解 (1)∵x >0,∴12x>0,4x >0.∴12x+4x ≥212x·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,12x+4x 的最小值为8 3.(2)∵x <0,∴-x >0. 则12-x+(-4x )≥212-x4x =83,当且仅当12-x =-4x 时,即x =-3时取等号.∴12x+4x ≤-8 3.∴当x <0时,12x+4x 的最大值为-8 3.(3)2x +8x -1=2⎣⎢⎡⎦⎥⎤x -14x -1+2, ∵x >1,∴x -1>0, ∴2x +8x -1≥2×24+2=10, 当且仅当x -1=4x -1,即x =3时,取等号.(4)4x +a x≥24x ·a x=4a ,当且仅当4x =ax,即a =4x 2=36时取等号, ∴a =36.反思感悟 在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件是否具备. 跟踪训练2 已知x >0,y >0,且x +y =8,则(1+x )·(1+y )的最大值为( ) A .16 B .25 C .9 D .36 答案 B解析 因为x >0,y >0,且x +y =8,所以(1+x )(1+y )=1+x +y +xy =9+xy ≤9+⎝ ⎛⎭⎪⎫x +y 22=9+42=25,因此当且仅当x =y =4时, (1+x )·(1+y )取最大值25. 三、用基本不等式证明不等式例3 已知a ,b ,c 都是正数,求证:a +b +c -ab -bc -ac ≥0. 证明 ∵a ,b ,c 都是正数,∴a +b ≥2ab ,b +c ≥2bc ,a +c ≥2ac , ∴a +b +b +c +a +c ≥2(ab +bc +ac ), ∴a +b +c ≥ab +bc +ac , 即a +b +c -ab -bc -ac ≥0.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用. 跟踪训练3 若实数a <0,求证:a +1a≤-2,并指出等号成立的条件.证明 根据题意,a <0,则-a >0, 左式=a +1a=-⎣⎢⎡⎦⎥⎤a⎝ ⎛⎭⎪⎫-1a ,又由(-a )+⎝ ⎛⎭⎪⎫-1a ≥2a⎝ ⎛⎭⎪⎫-1a =2, 则有a +1a≤-2,当且仅当a =-1时,等号成立.故a +1a≤-2,当且仅当a =-1时,等号成立.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b2>ab >b B .b >ab >a +b2>aC .b >a +b2>ab >a D .b >a >a +b2>ab考点 基本不等式的理解 题点 基本不等式的理解 答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .又∵b >a >0,∴ab >a 2, ∴ab >a .故b >a +b2>ab >a .2.下列不等式正确的是( )A .a +1a≥2B .(-a )+⎝ ⎛⎭⎪⎫-1a ≤-2C .a 2+1a2≥2D .(-a )2+⎝ ⎛⎭⎪⎫-1a 2≤-2答案 C解析 ∵a 2>0,故a 2+1a2≥2成立.3.下列等式中最小值为4的是( ) A .y =x +4xB .y =2t +1tC .y =4t +1t(t >0)D .y =t +1t答案 C解析 A 中x =-1时,y =-5<4,B 中t =-1时,y =-3<4,C 中y =4t +1t ≥24t ·1t=4,当且仅当t =12时等号成立,D 中t =-1时,y =-2<4.故选C.4.下列不等式中,正确的是( ) A .a +4a≥4B .a 2+b 2≥4ab C.ab ≥a +b2D .x 2+3x2≥2 3答案 D解析 a <0,则a +4a≥4不成立,故A 错;a =1,b =1,则a 2+b 2<4ab ,故B 错; a =4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 项正确. 5.已知x >-1,则x +10x +2x +1的最小值为________.答案 16解析x +10x +2x +1=x +1+9x +1+1x +1=x +12+10x +19x +1=(x +1)+9x +1+10, ∵x >-1,∴x +1>0, ∴(x +1)+9x +1+10≥29+10=16. 当且仅当x +1=9x +1, 即x =2时,等号成立.1.知识清单:两个不等式:a 2+b 2≥2ab (a ,b ∈R ),a +b2≥ab (a ,b 都是正数).2.方法归纳:通过拆项、加项配凑成基本不等式的形式. 3.常见误区:一正、二定、三相等,常缺少条件导致错误.1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0. 其中可使b a +a b≥2成立的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 根据基本不等式的条件,a ,b 同号, 则b a>0,故选C.2.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 3.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +ab≥2答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误; 对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2, 当且仅当a =b =1时,等号成立.4.若0<a <b 且a +b =1,则下列四个数中最大的是( ) A.12 B .a 2+b 2C .2abD .a答案 B解析 a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝ ⎛⎭⎪⎫a +b 22=12. a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab .∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大.5.已知a >0,b >0,且ab =2,那么( )A .a +b ≥4B .a +b ≤4C .a 2+b 2≥4 D .a 2+b 2≤4答案 C解析 ∵a >0,b >0,∴a +b ≥2ab =22,故A ,B 均错误.a 2+b 2≥2ab =4,故选C.6.已知a >b >c ,则a -bb -c 与a -c2的大小关系是____________________.答案 a -bb -c ≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0, 所以a -c2=a -bb -c2≥a -b b -c ,当且仅当a -b =b -c 时,等号成立. 7.设a ,b 为非零实数,给出下列不等式: ①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎪⎫a +b 22;③a +b 2≥ab a +b ;④a b +ba ≥2.其中恒成立的是________.(填序号)答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2a 2+b 24=a 2+b 2a 2+b 24≥a 2+b 2+2ab4=a +b24=⎝⎛⎭⎪⎫a +b 22,可知②正确;当a =b =-1时,不等式的左边为a +b2=-1,右边为ab a +b =-12,可知③不正确; 当a =1,b =-1时,可知④不正确. 8.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b ≥4; ③(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4;④a 2+9>6a .其中恒成立的是________.(填序号)答案 ①②③解析 由于a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0,故①恒成立;由于⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +b a +a b≥2ab ·1ab+2b a ·ab =4.当且仅当⎩⎪⎨⎪⎧ab =1ab ,b a =ab ,即a =b=1时,“=”成立,故②恒成立;由于(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b≥2+2b a ·a b =4.当且仅当a b =ba,即a =b 时,“=”成立,故③恒成立;当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.9.设a >0,b >0,且a +b =1a +1b,证明:a +b ≥2.证明 由于a >0,b >0,则a +b =1a +1b =a +bab,由于a +b >0,则ab =1,即有a +b ≥2ab =2, 当且仅当a =b =1时取得等号,∴a +b ≥2. 10.(1)设0<x <32,求4x (3-2x )的最大值;(2)已知a >b >c ,求(a -c )⎝⎛⎭⎪⎫1a -b +1b -c 的最小值.解 (1)∵0<x <32,∴3-2x >0,∴4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x 3-2x 22=92. 当且仅当2x =3-2x ,即x =34时,等号成立.∵0<34<32,∴4x (3-2x )⎝⎛⎭⎪⎫0<x <32的最大值为92. (2)(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =(a -b +b -c )⎝⎛⎭⎪⎫1a -b +1b -c =1+1+b -c a -b +a -b b -c. ∵a >b >c ,∴a -b >0,b -c >0,∴2+b -c a -b +a -b b -c ≥2+2b -c a -b ·a -b b -c=4, 当且仅当a -b =b -c ,即2b =a +c 时取等号,∴(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c 的最小值为4.11.若xy 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3 B.72 C .4 D.92答案 C解析 ⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2 =x 2+x y +14y 2+y 2+y x +14x2 =⎝⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫y 2+14y 2+⎝ ⎛⎭⎪⎫x y +y x ≥1+1+2=4,当且仅当x =y =22或x =y =-22时取等号. 12.已知a >0,b >0,则下列不等式中不成立的是( )A .a +b +1ab ≥2 2B .(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4C.a 2+b 2ab≥2ab D.2ab a +b>ab 答案 D解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝ ⎛⎭⎪⎫1a +1b ≥2ab ·21ab =4,当且仅当a =b 时,等号成立,B 成立;∵a 2+b 2≥2ab >0, ∴a 2+b 2ab≥2ab ,当且仅当a =b 时,等号成立,C 成立; ∵a +b ≥2ab ,a >0,b >0,∴2ab a +b ≤1,2ab a +b≤ab , 当且仅当a =b 时,等号成立,D 不成立.13.x 2+2x -1(x >1)的最小值为________. 答案 2+2 3解析 令x -1=t ,则x =1+t 且t >0,∴x 2+2x -1=1+t 2+2t =t 2+2t +3t=t +3t+2≥23+2. 当且仅当t =3t,即t =3, x =3+1时,等号成立.14.已知x >0,y >0,2x +3y =6,则xy 的最大值为________.答案 32解析 因为x >0,y >0,2x +3y =6,所以xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22 =16·⎝ ⎛⎭⎪⎫622=32. 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.15.若a >0,b >0,a +b =2,则下列不等式恒成立的是________.(写出编号)①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b≥2. 答案 ①③⑤解析 ∵a >0,b >0,a +b =2,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,∴①恒成立; 当a =b =1时,a +b =2>2,故②不恒成立;a 2+b 2≥a +b22=2,∴③恒成立;当a =b =1时,a 3+b 3=2<3,∴④不恒成立;1a +1b =12(a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫2+a b +b a ≥2, ∴⑤恒成立.故填①③⑤.16.若0<x <12,求x 1-4x 2的最大值. 解 由x 1-4x 2=x 21-4x 2=14·4x 21-4x 2=124x 21-4x 2≤12·4x 21-4x 22=14,当且仅当4x 2=1-4x 2,即x 2=18, x =24时取“=”,故x 1-4x 2的最大值为14.。
高中基本不等式教案
高中基本不等式教案【教案】高中基本不等式目标:学习高中基本不等式的基本概念、性质和解题方法。
一、基本概念1. 不等式:含有一个或多个未知数的不等关系的等式。
2. 不等关系:大于、大于等于、小于、小于等于中的一种。
3. 基本不等式:指的是不等式中只有一个未知数,并且只包含常数和未知数的数学不等式,如:ax + b > 0。
二、性质1. 相等性:如果将不等式的两边加上(或减去)同一个非负数,不等式的关系仍然保持不变。
2. 乘法性质:如果将不等式的两边乘以(或除以)同一个正数,不等式的关系仍然保持不变;如果将不等式的两边乘以(或除以)同一个负数,不等式的关系发生改变。
三、解题方法1. 将不等式化简为基本不等式:通过对不等式进行各种变形、移项和化简等操作,将不等式化简为基本不等式进行讨论。
2. 解决基本不等式:根据基本不等式的形式和给定条件,在数轴上寻找满足不等式的解集。
3. 解决复杂不等式:利用基本不等式的性质和解题方法,将复杂不等式化简为基本不等式,然后求解。
练习题:1. 解不等式3x + 2 > 5,并画出其解集在数轴上的表示。
2. 解不等式2(4x - 1) ≤ 6 - x,并画出其解集在数轴上的表示。
3. 解不等式2x - 3 > -x + 5,并画出其解集在数轴上的表示。
4. 解不等式的组合问题:已知不等式2x + 3 > 0和3x - 5 < 0,求不等式2x + 3 > 3x - 5的解集。
以上就是高中基本不等式的教案内容,通过学习基本概念、性质和解题方法,以及进行练习题的训练,能够掌握基本不等式的求解技巧和数轴表示,为后续不等式的学习打下良好的基础。
基本不等式教案
基本不等式教案
主题:基本不等式
目标:
1. 理解基本不等式的概念和性质。
2. 掌握基本不等式的解法和应用。
3. 能够运用基本不等式解决实际问题。
教学步骤:
引入(5分钟):
教师简要介绍基本不等式的概念,并与学生讨论不等式在日常生活中的应用。
教学(30分钟):
1. 解释“大于等于”和“小于等于”的概念,以及它们在数轴上的
表示。
2. 介绍基本不等式的性质和解法,例如当a>b时,有a+c>b+c、ac>bc(其中c为正数)。
3. 解释绝对值不等式的性质和解法,例如当|a|>b时,有a>b
或a<-b。
4. 给出一些简单的示例,让学生应用基本不等式进行求解。
实践(15分钟):
1. 提供一些实际问题,要求学生运用基本不等式进行求解,例如:
a)某学生的数学成绩大于等于80分,语文成绩大于等于85
分,求该学生的总分最小值;
b)某商品原价200元,现在打7折,求最低的折扣价。
2. 学生在小组内讨论并解答问题,教师给予指导和帮助。
总结(5分钟):
教师总结基本不等式的重要性和应用,并复习基本不等式的解法和性质。
拓展:
教师可以提供更复杂的问题,让学生进一步运用基本不等式进行求解,并引导学生在日常生活中寻找更多的不等式应用。
高中基本不等式教案
高中基本不等式教案教案标题:高中基本不等式教案教案目标:1. 理解基本不等式的概念和性质。
2. 掌握解决基本不等式的方法和技巧。
3. 能够在实际问题中应用基本不等式解决相关的数学问题。
教学重点:1. 基本不等式的定义和性质。
2. 解决基本不等式的方法和技巧。
教学难点:1. 运用基本不等式解决实际问题。
教学准备:1. 教师准备:a. 确保对基本不等式的定义、性质、解决方法和技巧有充分的理解。
b. 准备一些例题和练习题,以便在课堂上进行演示和讲解。
c. 准备相关的教学资源,如教材、课件等。
2. 学生准备:a. 每位学生准备一本笔记本和写字工具。
教学过程:一、导入(5分钟)1. 教师可以通过提问的方式引入基本不等式的概念,例如:“你们知道什么是不等式吗?不等式在数学中有什么作用?”2. 引导学生回忆并复习之前学过的不等式知识,如大于、小于、大于等于、小于等于等。
二、概念讲解(10分钟)1. 教师简要介绍基本不等式的概念和性质,包括不等式的符号表示、不等式的解集表示等。
2. 教师通过示例向学生展示基本不等式的解法和解集的表示方法。
三、解决基本不等式的方法和技巧(15分钟)1. 教师通过具体的例题和练习题,向学生讲解解决基本不等式的方法和技巧,如加减法变形、乘除法变形、绝对值法等。
2. 教师引导学生在解题过程中注意步骤和思路,并解答学生提出的疑问。
四、练习与巩固(15分钟)1. 教师提供一些练习题,让学生在课堂上进行解答。
2. 教师鼓励学生积极参与,提供解题思路和方法的指导。
五、应用实例(10分钟)1. 教师通过实际问题,引导学生运用基本不等式解决相关的数学问题。
2. 教师鼓励学生自己思考和解决问题,并与同学分享解题思路。
六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调基本不等式的重要性和应用价值。
2. 教师鼓励学生进一步拓展基本不等式的知识,如高阶不等式等。
七、作业布置(5分钟)1. 教师布置相关的作业,要求学生独立完成。
必修一2基本不等式教案
必修一2基本不等式教案教案标题:必修一2基本不等式教案教学目标:1. 理解基本不等式的概念和性质。
2. 掌握基本不等式的解法和应用。
3. 培养学生的逻辑思维和问题解决能力。
教学准备:1. 教材:必修一教材第2章相关内容。
2. 教具:黑板、粉笔、教学PPT等。
3. 学具:练习题、实例题等。
教学过程:一、导入(5分钟)1. 引入基本不等式的概念,通过提问学生对不等式的理解程度。
2. 列举一些生活中的不等式问题,引发学生对不等式的思考。
二、讲解基本不等式的概念和性质(15分钟)1. 定义基本不等式,解释不等式中的符号和含义。
2. 讲解不等式的性质,如加减不等式、乘除不等式等。
3. 通过实例演示,帮助学生理解不等式的意义和解法。
三、解题方法与技巧(20分钟)1. 介绍基本不等式的解题方法,如移项、整理、图像法等。
2. 指导学生如何根据不等式的性质选择合适的解题方法。
3. 给予学生一些实例题进行练习,帮助他们掌握解题技巧。
四、拓展与应用(15分钟)1. 引导学生思考不等式在实际问题中的应用,如经济问题、几何问题等。
2. 给予学生一些应用题,培养他们解决实际问题的能力。
五、总结与归纳(10分钟)1. 总结基本不等式的概念、性质和解题方法。
2. 强调学生在解题过程中需要注意的问题和技巧。
3. 鼓励学生提出问题,解答他们的疑惑。
六、作业布置(5分钟)1. 布置课后作业,包括练习题和思考题。
2. 提醒学生按时完成作业,并预告下节课的内容。
教学反思:本节课通过引导学生思考和实例演示的方式,帮助学生理解基本不等式的概念和性质。
在解题过程中,通过指导学生选择合适的解题方法和技巧,提高了他们的问题解决能力。
通过拓展与应用环节,培养了学生将不等式应用于实际问题的能力。
整个教学过程注重学生的参与和思考,提高了他们的学习积极性和主动性。
人教版(新教材)高中数学第一册(必修1):第二课时 基本不等式的应用学案
第二课时基本不等式的应用课标要求素养要求1.进一步熟练掌握基本不等式,能够通过拼凑、变形等利用基本不等式求最值.2.能够利用基本不等式解决实际问题.通过学习掌握基本不等式及其应用,重点提升数学运算、逻辑推理、数学建模素养.教材知识探究(1)某养殖场要用100米的篱笆围成一个矩形的鸡舍,怎样设计才能使鸡舍面积最大?(2)某农场主想用篱笆围成一个10 000平方米的矩形农场,怎样设计才能使所用篱笆最省呢?问题实例中两个问题的实质是什么?如何求解?提示这两个都是求最值问题.第一个问题是矩形周长一定,即长x与宽y的和一定,求xy的最大值,xy≤⎝⎛⎭⎪⎫x+y22=252=625,即鸡舍为正方形,长与宽各为25米时鸡舍面积最大.第二个问题是矩形面积一定,求矩形长x与宽y之和最小问题,x+y≥2xy=210 000=200,当且仅当x=y=100时,即当农场为正方形,边长为100米时,所用篱笆最省.1.基本不等式与最大(小)值 口诀:和定积最大,积定和最小两个正数的和为常数时,它们的积有最大值;两个正数的积为常数时,它们的和有最小值.(1)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(2)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2.基本不等式在解决实际问题中有广泛的应用,是解决最大(小)值问题的有力工具.教材拓展补遗『微判断』1.对于实数a ,b ,若a +b 为定值,则ab 有最大值.(×) 提示 a ,b 为正实数.2.对于实数a ,b ,若ab 为定值,则a +b 有最小值.(×) 提示 a ,b 为正实数.3.若x >2,则x +1x 的最小值为2.(×)提示 当且仅当x =1时才能取得最小值,但x >2. 『微训练』1.已知正数a ,b 满足ab =10,则a +b 的最小值是________. 『解 析』 a +b ≥2ab =210,当且仅当a =b =10时等号成立. 『答 案』 2102.已知m ,n ∈R ,m 2+n 2=100,则mn 的最大值是________.『解 析』 由m 2+n 2≥2mn ,∴mn ≤m 2+n 22=50.当且仅当m =n =±52时等号成立.『答 案』 50 『微思考』1.利用基本不等式求最大值或最小值时,应注意什么问题呢?提示利用基本不等式求最值时应注意:一正,二定,三相等.2.已知x,y为正数,且1x+4y=1,求x+y的最小值.下面是某同学的解题过程:解:因为x>0,y>0,所以1=1x+4y≥2×2xy=4xy,所以xy≥4.从而x+y≥2xy≥2×4=8.故x+y的最小值为8.请分析上面解法是否正确,并说明理由.解这个同学的解法是错误的.理由如下:上述解法中连续使用两次基本不等式,但这两个不等式中的等号不能同时成立.第一个不等式当且仅当1x =4y=12,即x=2,y=8时,等号成立;第二个不等式当且仅当x=y时,等号成立,因此x+y不能等于8.正解∵x>0,y>0,1x+4y=1,∴x+y=(x+y)⎝⎛⎭⎪⎫1x+4y=1+yx+4xy+4=yx+4xy+5≥2·yx·4xy+5=9,当且仅当⎩⎪⎨⎪⎧1x+4y=1,yx=4xy,即x=3,y=6时,等号成立.故x+y的最小值为9.题型一利用基本不等式求最值注意基本不等式成立的条件,且等号能否取得『例1』(1)已知x>2,求x+4x-2的最小值;(2)已知2x+2y=1,(x>0,y>0),求x+y的最小值.解(1)∵x>2,∴x-2>0,∴x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立. ∴x +4x -2的最小值为6. (2)∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y =4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·y x =8.当且仅当x y =yx ,即x =y =4时取等号,x +y 的最小值为8. 规律方法 利用基本不等式求最值的策略『训练1』 (1)若x <0,求12x +3x 的最大值; (2)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值. 解 (1)因为x <0,所以12x +3x =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12x +(-3x )≤-2⎝ ⎛⎭⎪⎫-12x ·(-3x )=-12,当且仅当-12x =-3x ,即x =-2时等号成立,所以12x+3x 的最大值为-12. (2)法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.法二 由2x +8y =xy 及x >0,y >0,得8x +2y =1. ∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y=8y x +2xy +10≥28y x ·2xy +10=18.当且仅当8y x =2xy ,即x =2y =12时等号成立. ∴x +y 的最小值是18.题型二 利用基本不等式解决实际应用问题『例2』 某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比A 1B 1B 1C 1=x (x >1),求公园ABCD 所占面积y 关于x 的函数的『解 析』式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解 (1)设休闲区的宽为a 米,则长为ax 米,由a 2x =4 000,得a =2010x. 则y =(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x +160=8010⎝⎛⎭⎪⎫2x +5x +4 160(x >1).(2)8010⎝ ⎛⎭⎪⎫2x +5x +4 160≥8010×22x ×5x+4 160=1 600+4 160=5 760.当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100. 所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100米,宽40米. 规律方法 利用基本不等式解决实际问题的步骤解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量.设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式.把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出『答 案』.『训练2』 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?解 设该厂每x 天购买一次面粉,其购买量为6x 吨. 由题意可知,面粉的保管等其他费用为3×『6x +6(x -1)+6(x -2)+…+6×1』=9x (x +1). 设平均每天所支付的总费用为y 1元,则y 1=1x 『9x (x +1)+900』+6×1 800=9x +900x +10 809≥29x ·900x +10 809=10 989(元),当且仅当9x =900x ,即x =10时,等号成立.所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少. 题型三 基本不等式的综合应用基本不等式应用的关键是获得定值的条件,解题时需灵活的选择方法 『探究1』 已知x >0,y >0且1x +9y =1,则x +y 的最小值为________. 『解 析』 法一 (1的代换): 因为1x +9y =1,所以x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y =10+y x +9x y . 因为x >0,y >0,所以y x +9xy ≥2y x ·9xy =6,当且仅当y x =9xy ,即y =3x ①时,取“=”. 又1x +9y=1,② 解①②可得x =4,y =12.所以当x =4,y =12时,x +y 的最小值是16. 法二 (消元法):由1x +9y =1,得x =yy -9.因为x >0,y >0,所以y >9. 所以x +y =y y -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. 因为y >9,所以y -9>0, 所以(y -9)+9y -9≥2(y -9)·9y -9=6.当且仅当y -9=9y -9,即y =12时,取“=”,此时x =4,所以当x =4,y =12时,x +y 的最小值是16. 法三 (构造定值):因为x >0,y >0,且1x +9y =1, 所以x >1,y >9.由1x +9y =1,得y +9x =xyxy -9x -y +9-9=0(x -1)(y -9)=9(定值).所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=2×3+10=16.当且仅当x -1=y -9=3,即x =4,y =12时取等号,所以x +y 的最小值是16. 『答 案』 16『探究2』 已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________. 『解 析』 正数x ,y 满足x +y =1, 即有(x +2)+(y +1)=4,则4x +2+1y +1=14『(x +2)+(y +1)』⎝⎛⎭⎪⎫4x +2+1y +1 =14⎣⎢⎢⎡⎦⎥⎥⎤5+x +2y +1+4(y +1)x +2≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2x +2y +1·4(y +1)x +2=14×(5+4)=94,当且仅当x =2y =23时,取得最小值94. 『答 案』 94『探究3』 已知a >0,b >0,若不等式2a +1b ≥m2a +b 恒成立,则m 的最大值等于( ) A.10 B.9 C.8D.7『解 析』 因为a >0,b >0,所以2a +b >0,所以要使2a +1b ≥m2a +b恒成立,只需m ≤(2a +b )⎝ ⎛⎭⎪⎫2a +1b 恒成立,而(2a +b )⎝ ⎛⎭⎪⎫2a +1b =4+2a b +2b a +1≥5+4=9,当且仅当a =b 时,等号成立,所以m ≤9. 『答 案』 B规律方法 利用基本不等式求条件最值的常用方法(1)“1”的代换:利用已知的条件或将已知条件变形得到含“1”的式子,将“1”代入后再利用基本不等式求最值. (2)构造法:①构造不等式:利用ab ≤⎝⎛⎭⎪⎫a +b 22,将式子转化为含ab 或a +b 的不等式,将ab ,(a +b )作为整体解出范围;②构造定值:结合已知条件对要求的代数式变形,构造出和或积的定值,再利用基本不等式求最值.(3)函数法:若利用基本不等式时等号取不到,则无法利用基本不等式求最值,则可将要求的式子看成一个函数求最值.『训练3』 (1)已知2a +b =1,a >0,b >0,则1a +1b 的最小值是( ) A.2 2 B.3-2 2 C.3+2 2D.3+ 2(2)已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c 的最小值是( ) A.3+2 2 B.3-2 2 C.6-4 2D.6+4 2(3)求x (m -x )(0<x <m )的最大值.(1)『解 析』 1a +1b =(2a +b )⎝ ⎛⎭⎪⎫1a +1b =3+b a +2a b ≥3+2b a ·2ab =3+2 2.当且仅当b a =2a b ,即a =1-22,b =2-1时,等号成立.∴1a +1b 的最小值是3+2 2.『答案』 C(2)『解析』1a+1b+1c=⎝⎛⎭⎪⎫1a+1b+1c(a+2b+c)=4+2ba+ca+ab+cb+ac+2bc≥4+22ba·ab+2 ca·ac+2 cb·2bc=6+42,当且仅当2ba=ab,ca=ac,cb=2bc时,等号成立,即a2=c2=2b2时,等号成立.『答案』 D(3)解∵0<x<m,∴x>0,m-x>0.∴x(m-x)≤⎝⎛⎭⎪⎫x+m-x22=m24.当且仅当x=m-x时,即x=m2时,x(m-x)(0<x<m)取最大值m24.一、素养落地1.通过运用基本不等式求解函数的最值,培养数学运算及逻辑推理素养,通过运用基本不等式解决实际应用问题,提升数学建模素养.2.利用基本不等式求最值(1)利用基本不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +p x (p >0)的图象求得函数的最值.二、素养训练1.当x >0时,12x +4x 的最小值为( )A.4B.8C.8 3D.16『解 析』 ∵x >0,∴12x >0,4x >0.∴12x +4x ≥212x ·4x =8 3. 当且仅当12x =4x ,即x =3时取最小值83,∴当x >0时,12x +4x 的最小值为8 3.『答 案』 C2.已知x >-2,则x +1x +2的最小值为( ) A.-12B.-1C.2D.0『解 析』 因为x >-2,∴x +1x +2=x +2+1x +2-2≥2-2=0,当且仅当x =-1时“=”成立.『答 案』 D3.已知4x +a x (x >0,a >0)在x =3时取得最小值,则a =________.『解 析』 4x +a x ≥24x ·a x =4a . 当且仅当4x =a x ,即4x 2=a 时等号成立.由题意得a =4×32=36.『答 案』 364.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b ,则这两年的平均增长率x 与增长率的平均值的大小关系为________.『解 析』 由题意得(1+x )2=(1+a )(1+b ),所以1+x =(1+a )(1+b )≤1+a +1+b 2=1+a +b 2, 所以x ≤a +b 2,当且仅当a =b 时等号成立.『答 案』 x ≤a +b 25.已知正数x ,y 满足8x +1y =1,求x +2y 的最小值.解 ∵x >0,y >0,8x +1y =1,∴x +2y =⎝ ⎛⎭⎪⎫8x +1y (x +2y )=10+x y +16y x ≥10+2x y ·16y x =18, 当且仅当⎩⎪⎨⎪⎧8x +1y =1,x y =16y x,即⎩⎪⎨⎪⎧x =12,y =3时,等号成立,故当x =12,y =3时,x +2y 的最小值为18.。
人教B版新课标高中数学必修一教案 《基本不等式》
《基本不等式2a b ab +≤(第1课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.【教学重点】2a bab +≤的证明过程; 【教学难点】 a bab +≤等号成立条件 1.课题导入 2a bab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系.【设计意图】由北京召开的第24界国际数学家大会的会标引出新课,使数学贴近实际,来源于生活.◆ 教学过程◆ 教学重难点◆◆ 教学目标◆ 教材分析2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形.设直角三角形的两条直角边长为a ,b 那么正方形的边长为22a b +.这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥.当直角三角形变为等腰直角三角形,即a =b 时,正方形EFGH 缩为一个点,这时有222a b ab +=.2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.(1)从几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a bab +≤ (2)从不等式的性质推导基本不等式2a bab +≤用分析法证明:要证2a bab +≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3) 要证(3),只要证 ( - )2(4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立. (3)理解基本不等式2a bab +≤的几何意义 探究:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗?易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab . 这个圆的半径为2b a +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.[补充例题]例1 已知x 、y 都是正数,求证: (1)yxx y +≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 分析:在运用定理:ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.解:∵x ,y 都是正数 ∴y x >0,xy>0,x 2>0,y 2>0,x 3>0,y 3>0 (1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233yx>0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证 (a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果.解:∵a ,b ,c 都是正数 ∴a +b ≥2ab >0 b +c ≥2bc >0 c +a ≥2ac >0∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ac =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(2ba +),几何平均数(ab )及它们的关系(2ba +≥ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤222b a +,ab ≤(2b a +)2【设计意图】课时小结,内化知识.本次课通过实例探究抽象基本不等式;由北京召开的第24界国际数学家大会的会标情境引入,贴近生活,贴近数学,能让学生体会数学来源于生活,提高学习数学的兴趣.《基本不等式2a bab +≤(第2课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤的应用 教学难点a bab +≤求最大值、最小值. 1.课题导入◆ 教学过程◆ 教学重难点 ◆◆ 教学目标◆ 教材分析1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 我们称b a ba ,2为+的算术平均数,称b a ab ,为的几何平均数 ab b a ab b a ≥+≥+2222和成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.【设计意图】复习引入. 2.讲授新课例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为x m ,宽为y m ,则xy =100,篱笆的长为2(x +y ) m .由2x yxy +≥ 可得 2100x y +≥ 2()40x y +≥.等号当且仅当x =y 时成立,此时x =y =10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m . (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <21,其面积S =x (36-2x )=21·2x (36-2x )≤2122236236()28x x +-=当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2解法二:设矩形菜园的长为x m .,宽为y m ,则2(x +y )=36, x +y =18,矩形菜园的面积为xy m 2.由18922x y+≤==,可得81xy≤当且仅当x=y,即x=y=9时,等号成立.因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积是81m2归纳:1.两个正数的和为定值时,它们的积有最大值,即若a,b∈R+,且a+b=M,M为定值,则ab≤42M,等号当且仅当a=b时成立.2.两个正数的积为定值时,它们的和有最小值,即若a,b∈R+,且ab=P,P为定值,则a+b≥2P,等号当且仅当a=b时成立.例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得)1600(720240000xxl++=29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx当.2976000,40,1600有最小值时即lxxx==因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.【设计意图】 讲解例题,熟悉方法. 3.随堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 2.课本练习.【设计意图】讲练结合,巩固新知. 4.课时小结本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.【设计意图】课时小结,内化知识.本次课通过两个例题的研究,2a b+≤,并会用此定理求某些函数的最大、最小值.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.《基本不等式2a b +≤(第3课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤,会用此不等式证明不等式,会用此不等式求某些函数的最值教学难点利用此不等式求函数的最大、最小值.1.课题导入1.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 22a bab +≤求最大(小)值的步骤. 【设计意图】复习引入. 2.讲授新课1)利用基本不等式证明不等式例1 已知m >0,求证24624m m+≥. [思维切入]因为m >0,所以可把24m和6m 分别看作基本不等式中的a 和b , 直接利用基本不等式.◆ 教学过程◆ 教学重难点 ◆◆ 教学目标[证明]因为 m >0,,由基本不等式得246221224m m +≥==⨯= 当且仅当24m=6m ,即m =2时,取等号. 规律技巧总结 注意:m >0这一前提条件和246m m⨯=144为定值的前提条件. 【设计意图】例题讲解,利用基本不等式证明不等式,熟练使用基本不等式.3.随堂练习1[思维拓展1] 已知a ,b ,c ,d 都是正数,求证()()4ab cd ac bd abcd ++≥.[思维拓展2] 求证22222()()()a b c d ac bd ++≥+.例2 求证:473a a +≥-. [思维切入] 由于不等式左边含有字母a ,右边无字母,直接使用基本不等式,无法约掉字母a ,而左边44(3)333a a a a +=+-+--.这样变形后,在用基本不等式即可得证.[证明]443(3)333733a a a +=+-+≥==-- 当且仅当43a -=a -3即a =5时,等号成立. 规律技巧总结 通过加减项的方法配凑成基本不等式的形式.2)利用不等式求最值例3 (1) 若x >0,求9()4f x x x =+的最小值; (2)若x <0,求9()4f x x x =+的最大值.[思维切入]本题(1)x >0和94x x⨯=36两个前提条件;(2)中x <0,可以用-x >0来转化.解(1)因为 x >0 由基本不等式得9()412f x x x =+≥==,当且仅当94x x =即x =32时, 9()4f x x x=+取最小值12. (2)因为 x <0, 所以 -x >0, 由基本不等式得:99()(4)(4)()12f x x x x x -=-+=-+-≥==, 所以 ()12f x ≤. 当且仅当94x x -=-即x =-32时, 9()4f x x x =+取得最大-12.规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正. 随堂练习2[思维拓展1] 求9()45f x x x =+-(x >5)的最小值.[思维拓展2] 若x >0,y >0,且281x y+=,求xy 的最小值. 【设计意图】讲练结合,巩固新知.4.课时小结2a b +≤证明不等式和求函数的最大、最小值. 【设计意图】总结基本不等式在某些方面的运用,锻炼学生自我总结的能力.5.评价设计1.证明:22222a b a b ++≥+2.若1->x ,则x 为何值时11++x x 有最小值,最小值为几? 【设计意图】将课堂知识延伸至课外,在巩固知识的同时,锻炼了学生的自主学习能力.本次课是一次常规的习题课,复习知识、举例运用、学生练习、课外练习,从而达到巩固知识的效果.其实这次课还是可以采用老师引导,学生分组讨论研究,得到结果,得到解题方法,从而让学生体验自主研究题目,得到结论的乐趣.。
高中数学新人教版B版精品教案《1.2 基本不等式》
《基本不等式》教学设计 大连市第一中学 郜汝姣一、教学目标知识与技能:1、在必修五学习均值不等式的基础上,继续深入学习基本不等式,探索基本不等式的证明过程,并通过几何解释加深对均值不等式的理解;2、利用基本不等式证明较复杂的不等式;3、推广到一般形式的算术——几何平均值不等式过程与方法:引领学生经历如下过程——首先回忆曾经学习过的均值不等式知识,进而将代数问题寻求它的几何解释,达到加深理解的目的,帮助学生体会“数形结合”的思想方法,尝试解决有关最值问题的各种途径及思维根源,从而培养学生探究能力以及分析问题、解决问题的能力 情感、态度与价值观:在教学中,结合对不等式证明的研究,进一步培养运用所学知识解决一些实际问题的能力,提升学生数学抽象、逻辑推理、数学建模等数学学科素养 通过问题情境的设置,使学生认识到数学是从实际中来,引导学生会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界二、学情分析本校是一所重点高中,相对来说,学生的学习基础较好,本节课中教师多次采用个人思考与小组讨论相结合,再由教师协助学生归纳总结的授课方式,再结合本节课知识特点,通过一题多解激发学生的学习热情,同时帮助学生在已学习的均值不等式的基础上进一步夯实基本不等式理论基础、拓展其应用三、重点难点重点:基本不等式的应用及推广; 难点:基本不等式的几何解释四、 教学过程活动一 复习旧知问题1:如果,请比较与的大小定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”)证明:由于上式中最后一个不等式对于一切成立,并且当且仅当时等号成立对上面结论作简单的恒等变形,就可以得到另一个很有意义的不等式问题2:如果,请比较与的大小定理2:如果b a ,是正数,那么ab ba ≥+2(当且仅当b a =时取“=”) 语言表述:两个正数的算术平均数大于或等于它们的几何平均数。
证明:故上面不等式成立,并且当且仅当时等号成立定理2是我们证明许多不等式的出发点,故称之为基本不等式或平均值不等式活动二 寻求定理2的几何解释(一) 对平均值不等式的几何解释:(将和赋予某种几何量,以加深对均值不等式的理解)解释一:(必修五中出现过的)将和分别赋予两条线段的长度 如图,以为直径作半圆,记其圆心为O ,端点分别为A,B ,在直径AB 上取点C ,使得AC=a ,过C 作AB 的垂线交圆O 于D ,则因为所以所以 所以 所以 在中斜边,即ab ba ≥+2 当且仅当时等号成立(C 点和圆心O重合)解释二:将和分别赋予两个图形的面积AOCBDABCD EF设,分别以为长、宽作矩形ABCD ,作的平分线交CD 于E ,交BC 的延长线于F ,则和都是等腰三角形所以,从图中可以看出即ab ba ≥+2且等号成立F 和C 重合AB=BC矩形ABCD 为正方形活动三 定理的应用(二) 应用:例1:已知是不全相等的正数,求证:证明:因为是正数 (当且仅当时取“=”) (当且仅当时取“=”) (当且仅当时取“=”)因为练习: 1、求证: 2、已知:,求证:活动四 拓展应用(关于3个正数)问题3:如果,请比较与的大小(通过类比推理不难猜想出结论) 例2:设为正数,求证:(当且仅当时等号成立)提示:(思路一)接下来,由学生完成证明:(当且仅当时等号成立)(思路二)(当且仅当时取“=”)(当且仅当时取“=”)活动五 基本不等式的推广定理3:如果+∈R c b a ,,,那么33abc c b a ≥++ (当且仅当c b a ==时取“=”)练习:1、已知正数,求证:2、设为正数,求证:定理4:(一般形式的算术——几何平均值不等式)如果为个正数,则(当且仅当时取“=”)活动六 小结1、基本不等式及其使用条件、几何解释;2、基本不等式的推广;3、基本不等式的应用技巧;4、恒等变形在证明不等式中的应用活动七布置课后思考:1、右图是2021年国际数学家大会的会标,试用此图形对定理1进行几何解释2、面积为1的矩形中,何时周长最短3、求证:4、设为实数,,求证:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基本不等式2a b ab +≤(第1课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.【教学重点】2a bab +≤的证明过程; 【教学难点】 a bab +≤等号成立条件 1.课题导入 2a bab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系.【设计意图】由北京召开的第24界国际数学家大会的会标引出新课,使数学贴近实际,来源于生活.◆ 教学过程◆ 教学重难点◆◆ 教学目标◆ 教材分析2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形.设直角三角形的两条直角边长为a ,b 那么正方形的边长为22a b +.这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥.当直角三角形变为等腰直角三角形,即a =b 时,正方形EFGH 缩为一个点,这时有222a b ab +=.2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.(1)从几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a bab +≤ (2)从不等式的性质推导基本不等式2a bab +≤用分析法证明:要证2a bab +≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3) 要证(3),只要证 ( - )2(4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立. (3)理解基本不等式2a bab +≤的几何意义 探究:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗?易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab . 这个圆的半径为2b a +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.[补充例题]例1 已知x 、y 都是正数,求证: (1)yxx y +≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 分析:在运用定理:ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.解:∵x ,y 都是正数 ∴y x >0,xy>0,x 2>0,y 2>0,x 3>0,y 3>0 (1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233yx>0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证 (a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果.解:∵a ,b ,c 都是正数 ∴a +b ≥2ab >0 b +c ≥2bc >0 c +a ≥2ac >0∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ac =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(2ba +),几何平均数(ab )及它们的关系(2ba +≥ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤222b a +,ab ≤(2b a +)2【设计意图】课时小结,内化知识.本次课通过实例探究抽象基本不等式;由北京召开的第24界国际数学家大会的会标情境引入,贴近生活,贴近数学,能让学生体会数学来源于生活,提高学习数学的兴趣.《基本不等式2a bab +≤(第2课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤的应用 教学难点a bab +≤求最大值、最小值. 1.课题导入◆ 教学过程◆ 教学重难点 ◆◆ 教学目标◆ 教材分析1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 我们称b a ba ,2为+的算术平均数,称b a ab ,为的几何平均数 ab b a ab b a ≥+≥+2222和成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.【设计意图】复习引入. 2.讲授新课例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为x m ,宽为y m ,则xy =100,篱笆的长为2(x +y ) m .由2x yxy +≥ 可得 2100x y +≥ 2()40x y +≥.等号当且仅当x =y 时成立,此时x =y =10. 因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m . (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <21,其面积S =x (36-2x )=21·2x (36-2x )≤2122236236()28x x +-=当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2解法二:设矩形菜园的长为x m .,宽为y m ,则2(x +y )=36, x +y =18,矩形菜园的面积为xy m 2.由18922x y+≤==,可得81xy≤当且仅当x=y,即x=y=9时,等号成立.因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积是81m2归纳:1.两个正数的和为定值时,它们的积有最大值,即若a,b∈R+,且a+b=M,M为定值,则ab≤42M,等号当且仅当a=b时成立.2.两个正数的积为定值时,它们的和有最小值,即若a,b∈R+,且ab=P,P为定值,则a+b≥2P,等号当且仅当a=b时成立.例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得)1600(720240000xxl++=29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx当.2976000,40,1600有最小值时即lxxx==因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.归纳:用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.【设计意图】 讲解例题,熟悉方法. 3.随堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 2.课本练习.【设计意图】讲练结合,巩固新知. 4.课时小结本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.【设计意图】课时小结,内化知识.本次课通过两个例题的研究,2a b+≤,并会用此定理求某些函数的最大、最小值.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.《基本不等式2a b +≤(第3课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1.2a bab +≤;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;2.2a bab +≤,并会用此定理求某些函数的最大、最小值.3.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学重点2a bab +≤,会用此不等式证明不等式,会用此不等式求某些函数的最值教学难点利用此不等式求函数的最大、最小值.1.课题导入1.基本不等式:如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 22a bab +≤求最大(小)值的步骤. 【设计意图】复习引入. 2.讲授新课1)利用基本不等式证明不等式例1 已知m >0,求证24624m m+≥. [思维切入]因为m >0,所以可把24m和6m 分别看作基本不等式中的a 和b , 直接利用基本不等式.◆ 教学过程◆ 教学重难点 ◆◆ 教学目标[证明]因为 m >0,,由基本不等式得246221224m m +≥==⨯= 当且仅当24m=6m ,即m =2时,取等号. 规律技巧总结 注意:m >0这一前提条件和246m m⨯=144为定值的前提条件. 【设计意图】例题讲解,利用基本不等式证明不等式,熟练使用基本不等式.3.随堂练习1[思维拓展1] 已知a ,b ,c ,d 都是正数,求证()()4ab cd ac bd abcd ++≥.[思维拓展2] 求证22222()()()a b c d ac bd ++≥+.例2 求证:473a a +≥-. [思维切入] 由于不等式左边含有字母a ,右边无字母,直接使用基本不等式,无法约掉字母a ,而左边44(3)333a a a a +=+-+--.这样变形后,在用基本不等式即可得证.[证明]443(3)333733a a a +=+-+≥==-- 当且仅当43a -=a -3即a =5时,等号成立. 规律技巧总结 通过加减项的方法配凑成基本不等式的形式.2)利用不等式求最值例3 (1) 若x >0,求9()4f x x x =+的最小值; (2)若x <0,求9()4f x x x =+的最大值.[思维切入]本题(1)x >0和94x x⨯=36两个前提条件;(2)中x <0,可以用-x >0来转化.解(1)因为 x >0 由基本不等式得9()412f x x x =+≥==,当且仅当94x x =即x =32时, 9()4f x x x=+取最小值12. (2)因为 x <0, 所以 -x >0, 由基本不等式得:99()(4)(4)()12f x x x x x -=-+=-+-≥==, 所以 ()12f x ≤. 当且仅当94x x -=-即x =-32时, 9()4f x x x =+取得最大-12.规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正. 随堂练习2[思维拓展1] 求9()45f x x x =+-(x >5)的最小值.[思维拓展2] 若x >0,y >0,且281x y+=,求xy 的最小值. 【设计意图】讲练结合,巩固新知.4.课时小结2a b +≤证明不等式和求函数的最大、最小值. 【设计意图】总结基本不等式在某些方面的运用,锻炼学生自我总结的能力.5.评价设计1.证明:22222a b a b ++≥+2.若1->x ,则x 为何值时11++x x 有最小值,最小值为几? 【设计意图】将课堂知识延伸至课外,在巩固知识的同时,锻炼了学生的自主学习能力.本次课是一次常规的习题课,复习知识、举例运用、学生练习、课外练习,从而达到巩固知识的效果.其实这次课还是可以采用老师引导,学生分组讨论研究,得到结果,得到解题方法,从而让学生体验自主研究题目,得到结论的乐趣.。