七年级数学竞赛试题_新课标人教版[1]
人教版七年级数学竞赛试题含答案
![人教版七年级数学竞赛试题含答案](https://img.taocdn.com/s3/m/69cc0ee7ccbff121dc36832b.png)
七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。
七年级数学竞赛试题(含答案)
![七年级数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/f58d793df56527d3240c844769eae009581ba2fb.png)
七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
4、定义a*b=ab+a+b,若3*x=27,则x的值是________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F的对面是_______。
FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。
7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。
8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。
9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。
10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。
二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。
新人教版七年级下册数学竞赛试卷及答案
![新人教版七年级下册数学竞赛试卷及答案](https://img.taocdn.com/s3/m/3a06739be518964bce847cbf.png)
54D3E 21C B A七年级下册数学竞赛题一、选择题(共10小题,每小题3分,共30分) 1、如右图,下列不能判定AB ∥CD 的条件是( ).A 、︒=∠+∠180BCDB B 、;C、43∠=∠; D 、 5∠=∠B .2、在直角坐标系中,点P(6-2x ,x -5)在第二象限,•则x 的取值范围是( )。
A 、3< x <5B 、x > 5C 、x <3 D、-3< x <5 3、点A (3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B 的坐标为( ) A、(1,-8) B 、(1, -2) C 、(-7,-1)D 、( 0,-1)4、在下列各数:3.1415926、 10049、0.2、π1、7、11131、327、中,无理数的个数( )A、2 B 、3 C 、4 D、5 5、下列说法中正确的是( )A . 实数2a -是负数 B. a a =2 C. a -一定是正数 D .实数a -的绝对值是a6、若a >b,则下列不等式变形错误..的是 A.a +1 > b +1 B. a2 > 错误! C . 3a -4 > 3b -4 D .4-3a > 4-3b7、如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( )A . 46°B . 44°C. 36°D . 22°8、若方程组⎩⎨⎧-=++=+a y x ay x 13313的解满足y x +>0,则a 的取值范围是( ) A 、a <-1 B 、a <1 C 、a >-1 D、a >19、如图,宽为50 cm的长方形图案由10个全等的小长方形拼成,其小长方形的面积( )A .400 cm 2ﻩB .500 cm 2 ﻩ C.600 c m2 ﻩD.4000 cm210.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B. a≤﹣36 C. a>﹣36ﻩD. a≥﹣36二、填空题(本大题共9小题, 每题3分,共27分)11、16的平方根是_______________12、规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.ﻩ13、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.14、阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)15、某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.16、如图④,AB∥CD,∠BAE =120º,∠DCE = 30º,则∠AEC = 度。
人教版初一下数学竞赛试题及答案
![人教版初一下数学竞赛试题及答案](https://img.taocdn.com/s3/m/2d661a7ccec789eb172ded630b1c59eef8c79aec.png)
人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。
12. 如果一个数的相反数是-5,那么这个数是________。
13. 一个数的绝对值等于5,这个数可以是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个数的倒数是1/4,这个数是________。
三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。
17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。
人教版七年级数学下册竞赛试卷(含解析)
![人教版七年级数学下册竞赛试卷(含解析)](https://img.taocdn.com/s3/m/ee76b4e80740be1e640e9a67.png)
人教版七年级数学下册竞赛试卷一、选择题1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.20176.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.二.填空题7.关于x的不等式组恰好只有三个整数解,则a的取值范围是8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=.10.使代数式的值为整数的全体自然数x的和是.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=;x n+x n+1=.12.已知S=,则S的整数部分是.三.解答题13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是.(参考公式:S n=1+2+3+…+n=)17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是.参考答案与试题解析一、选择题(每题5分,共30分)1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【分析】利用平方法把三个数值平方后再比较大小即可.【解答】解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选:A.2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定【分析】由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,然后代入化简即可得出答案.【解答】解:由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,代入,=++,=,=0.故选:C.3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式【分析】根据x、p的取值范围,根据所给代数式,简化原式,再把x的最大值15代入计算即可.【解答】解:∵p≤x≤15,∴x﹣p≥0,x﹣15≤0,x﹣p﹣15≤0,∴|x﹣p|+|x﹣15|+|x﹣p﹣15|=x﹣p+(15﹣x)+(﹣x+p+15)=x﹣p+15﹣x﹣x+p+15=﹣x+30,又∵p≤x≤15,∴x最大可取15,即x=15,∴﹣x+30=﹣15+30=15.故选:C.4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个【分析】由题意可知这样的四位数可分别从使用的不同数字的个数分类考虑:(1)只用1个数字,(2)使用2个不同的数字,(3)使用3个不同的数字,(4)使用4个不同的数字,然后分别分析求解即可求得答案.【解答】解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.故选:C.5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.2017【分析】根据平方差公式将各数变形后判断即可.【解答】解:如果一个数可以表示成两个正整数的平方差,记为x=a2﹣b2=(a+b)(a ﹣b),则x可以分解为a+b,a﹣b的积,且注意到这两个因子差2b,即同奇同偶,所以大于1的奇数可以分解为两个奇数之积(1和他自身),必可以写成两数平方之差(可以反求出来);而一个偶数必须要写成两个偶数之积,则必能被4整除才行,所以四个数中,只有2014不能写成两整数之平方差,故选:A.6.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.【分析】首先设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解方程即可求得QY的长,即可解决问题.【解答】解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.二.填空题(每题5分,共计30分)7.关于x的不等式组恰好只有三个整数解,则a的取值范围是【分析】首先确定不等式组的解集,根据整数解的个数确定有哪些整数解,根据解的情况得到关于a的不等式组,从而求出a的范围.【解答】解:解不等式组得,,∴不等式组的解集是﹣a<x≤a,∵关于x的不等式组恰好只有三个整数解,∴必定有整数解0,∵|﹣a|>|a|,∴三个整数解不可能是0,1,2.若三个整数解为﹣1,0,1,则,解得≤a≤;若三个整数解为﹣2,﹣1,0,则,此不等式组无解,所以a的取值范围是≤a≤.故答案为≤a≤.8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为3.【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵,,,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:3.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=2.【分析】根据完全平方公式和非负性解答即可.【解答】解:由题意得:(2x2﹣1)(y2﹣1)+2y2(x2﹣1)=0,因为x≥1,y≥1,所以y2﹣1=0,x2﹣1=0,∴y=1,x=1,∴x2+y2=2,故答案为:2.10.使代数式的值为整数的全体自然数x的和是22.【分析】将原式分解为x﹣1+,得到使得原式的值为整数的自然数分别为0、1、2、3、5、11,求的其和即可.【解答】解:∵原式==x﹣1+,∴使得代数式的值为整数的全体自然数x分别为0、1、2、3、5、11,∴全体自然数x的和是0+1+2+3+5+11=22.故答案为22.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=55;x n+x n+1=(n+1)2.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:55、(n+1)2.12.已知S=,则S的整数部分是60.【分析】由已知可得,<S<,则可确定60<S<60,即可求解.【解答】解:S=>=60,S=<=60,∴60<S<60,∴S的整数部分是60,故答案为:60.三.解答题(第13题20分,其余每题14分,共计90分)13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).【分析】(1)设a=2002,将原式转化为[a(a﹣7)]2的形式,此题得证;(2)先将原式分解成[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),在判断出(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,即可得出结论.【解答】(1)证明:设a=2002,原式=(a﹣3)(a﹣2)(a﹣1)(a+1)(a+2)(a+3)+36=(a2﹣1)(a2﹣4)(a2﹣9)+36=a6﹣(1+4+9)a4+(4+9+36)a2﹣36+36=a6﹣14a4+49a2=a2(a4﹣14a2+49)=a2•(a﹣7)2=[a(a﹣7)]2.故1999×2000×2001×2003×2004×2005+36=[2002(2002﹣7)]2=(2002×1995)2,即1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4=(92n+1)4﹣(72n+1)4=[(92n+1)2+(72n+1)2][(92n+1)2﹣(72n+1)2]=[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),∵n为正整数,∴(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,∴[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1)能被8整除,即98n+4﹣78n+4能被8整除.14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.【分析】先将(a﹣c)2﹣4(b﹣c)(a﹣b)=0,按照完全平方公式和多项式乘法的运算法则展开化简,再利用三项的完全平方公式变形,从而利用偶次方的非负性得出a+c 与b的数量关系,则的值可得.【解答】解:∵(a﹣c)2﹣4(b﹣c)(a﹣b)=0,∴a2﹣2ac+c2﹣4ab+4b2+4ac﹣4bc=0,∴a2+c2+4b2+2ac﹣4ab﹣4bc=0,∴(a+c﹣2b)2=0,∴a+c=2b,∵abc≠0,∴=2.∴的值为2.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.【分析】设,用m的代数式表示x,再根据“若,则[x]=n“,可以列出关于m的不等式,求出m的范围,再代回求出x.【解答】解:设是非负整数,,∴,∴,解得,4<m⩽8,∵m是非负整数,∴m=5,6,7,8,当m=5 时,得,当m=6 时,得x=6,当m=7 时,得,当m=8 时,得,即满足的所有实数x的值是,.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是n=30,x=1;n=31,x=16;n=32,x =32.(参考公式:S n=1+2+3+…+n=)【分析】根据已知得n个连续的自然数的和为.再根据两种特殊情况,即x=n;x=1;求得剩下的数的平均数的公式,从而得出1<x<n时,剩下的数的平均数的范围,则n有3种情况,分别计算即可.【解答】解:由已知,n个连续的自然数的和为.若x=n,剩下的数的平均数是;若x=1,剩下的数的平均数是,故,解得30≤n≤32当n=30时,29×16=﹣x,解得x=1;当n=31时,30×16=﹣x,解得x=16;当n=32时,31×16=﹣x,解得x=32.故答案为:n=30,x=1;n=31,x=16;n=32,x=32.17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是3∠CNP =∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a.利用平行线的性质即可解决问题.(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°﹣(2y+x),∠CGD=180°﹣(2x+y),推出∠AFB+∠CGD=360°﹣(3x+3y)即可解决问题.(3)分两种情形分别画出图形求解即可.【解答】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°﹣(2y+x),同理:∠CGD=180°﹣(2x+y),∴∠AFB+∠CGD=360°﹣(3x+3y),=360°﹣3×45°=225°.(3)如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同法可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.故答案为:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.。
人教版本初中七年级的下学期数学竞赛试卷试题
![人教版本初中七年级的下学期数学竞赛试卷试题](https://img.taocdn.com/s3/m/e76cdcb669eae009591bec57.png)
人教版七年级下学期数学比赛试卷一、认真选一选(每题3 分,共 36 分)二、 1、在△ABC中,若∠A=∠B=,则∠ C等于()A、B、C、D、2、计算正确的结果是()A、B、C、D、3、以下事件中,必定事件是()A、翻开电视机,它正在播放广告B、往常状况下,当气温低于零摄氏度,水会结冰C、黑暗中,我从我的一大串钥匙中随意选了一把,用它翻开了门D、随意两个有理数的和是正有理数4、小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如上图,那么哥哥球衣上的实质号码是()A 、 25 号B、52号C、55 号D 、22 号5、在右图4×4 的正方形网格中,△MNP绕某点旋转必定的角度,获得△,则其旋转中心可()A、点 AB 、点 BC、点 CD 、点 D6.以下分解因式正确的选项是()A .B . 2a- 4b+2=2 ( a- 2b)C.D.7、若对于的二元一次方程组的解也是二元一次方程的解,则的值为()A、B、C、D、8.已知五条线段的长分别是 1, 2, 3,4, 5,若每次从中拿出三条,分别以这三条线段为三边,一共能够围成不一样三角形的个数是()A . 5 个B.4 个C.3 个D.2 个9 .如图,已知平分,.则下列结论错误的是()A△≌△B.垂直均分C.垂直均分D.四边形是轴对称图形10 、如图,有一块直角三角板XYZ 搁置在△ ABC 上,恰巧三角板XYZ 的两条直角边XY、XZ 分别经过点B, C,若∠ A= 40°,则∠ ABX+∠ ACX=()A 、 25°B 、30°C、45°D、 50°第 10 题11、如图△ ABC 中已知 D、 E、 F 分别为 BC、 AD 、 CE 的中点,且S△ABC=,则 S 暗影的值为()A、B、C、D、12.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5 这点开始跳,则经2011 次跳后它停在的点所对应的数为()A . 1 B. 2 C.3 D. 5二、认真填一填(每题 3 分,共 18 分)13、计算:。
数学竞赛试卷七年级【含答案】
![数学竞赛试卷七年级【含答案】](https://img.taocdn.com/s3/m/fd32d2ba5ff7ba0d4a7302768e9951e79b8969a7.png)
数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.14B. 2.5C. 5.0D. -3.54. 下列哪个数是负数?A. -1B. 0C. 1D. 25. 下列哪个数是偶数?A. 21B. 23C. 25D. 27二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 两个正数相乘的结果是负数。
()3. 两个负数相除的结果是正数。
()4. 两个正数相除的结果是负数。
()5. 0乘以任何数都等于0。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。
2. 如果一个数的平方根是4,那么这个数是______。
3. 两个负数相乘的结果是______。
4. 两个正数相乘的结果是______。
5. 0乘以任何数都等于______。
四、简答题(每题2分,共10分)1. 请解释有理数的概念。
2. 请解释整数的概念。
3. 请解释负数的概念。
4. 请解释偶数的概念。
5. 请解释奇数的概念。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a) -3 + 7b) 5 (-2)c) -4 × 6d) -9 ÷ 3e) 14 ÷ (-2)2. 判断下列各式的符号:a) -(-5)b) -(+8)c) -(-12)d) -(+15)e) -(-20)3. 计算下列各式的值:a) √16c) √36d) √49e) √644. 判断下列各数是否为整数,并解释原因:a) 3.14b) 2.5c) 5.0d) -3.5e) 8.95. 判断下列各数是否为负数,并解释原因:a) -1b) 0c) 1d) 2e) -3六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。
数学竞赛试题初一及答案
![数学竞赛试题初一及答案](https://img.taocdn.com/s3/m/c98a6f7dbdd126fff705cc1755270722192e5935.png)
数学竞赛试题初一及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个表达式的结果等于0?A. 3 - 3B. 2 × 0C. 5 ÷ 5D. 4 + 05. 如果一个角的补角是它的3倍,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°二、填空题(每题2分,共10分)6. 一个数的相反数是它本身的数是______。
7. 一个数的绝对值是它本身的数是非负数,那么这个数是______或______。
8. 一个三角形的内角和等于______度。
9. 如果一个数的平方根是它本身,那么这个数是______或______。
10. 一个数的立方等于它本身,这个数是______、______或______。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 5) × (7 - 2)。
12. 计算下列表达式的值:(-2)³ - 3 × 2²。
13. 计算下列表达式的值:√(49) + √(16)。
14. 计算下列表达式的值:(-1)⁴ - 2²。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求它的斜边长度。
17. 一个数列的前三项是1,3,6,求这个数列的第四项。
五、证明题(每题25分,共25分)18. 证明:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角的度数是30°。
答案:一、选择题1. B2. D3. C4. A5. D二、填空题6. 07. 正数,08. 1809. 0,110. 0,1,-1三、计算题11. 6412. -813. 714. 3四、解答题15. 周长:(15 + 10) × 2 = 50厘米;面积:15 × 10 = 150平方厘米。
七年级数学竞赛试题(含答案)
![七年级数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/455b0003b90d6c85ec3ac678.png)
七年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是( )A .B .C .D . 2.若定义“⊙”:a ⊙b=b a ,如3⊙2=23=8,则3⊙等于( )A .B .8C .D .3.已知x+y=7,xy=10,则3x 2+3y 2=( )A .207B .147C .117D .874.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失( )A .179元B .97C .100元D .118元5.如图,直线a ∥b ,那么∠x 的度数是( )A .72°B .78°C .108°D .90°二、填空题(本大题共8小题,每小题4分,共32分) 6.若()()1532-+=++mx x n x x ,则m 的值为___________。
7.已知4433553,5,2===c b a ,则a ,b ,c 的大小关系(从小到大排列,用“<”连接)__________________。
8.如果代数式535-++cx bx ax ,当x=﹣2时该式的值是7,那么当x=2时该式的值是__________。
9.若()0862=+++-y y x ,则xy=__________。
10. 如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于__________。
11. 已知多项式162++px x 是完全平方式,则p 的值为___________。
12.己如,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB=BD ,BC=CE ,CA=AF ,连DE 、EF 、FD ,则△DEF 的面积为___________。
七年级数学竞赛题精选和参考答案
![七年级数学竞赛题精选和参考答案](https://img.taocdn.com/s3/m/35b851aac850ad02de8041fc.png)
七年级数学竞赛题精选_______一.填空题1.一辆汽车车牌在地面积水中的倒影为 ,请写出该车牌2.已知:|x+3|+|x -2|=5,y=-4x+5,则 y 的最大值是。
3.已知a 、b 为△ABC 的两边,且满足ab b a 222=+,你认为△ABC 是三角形。
4.在一个5×5 的方格盘中共有个正方形。
5.已知ab x b a x b x a x +++=++)())((2,观察等式,试分解因式:=+-232x x 。
6.若a 3m =3 b 3n =2,则(a 2m )3+(b n )3-b n b 2n =7.如图,把⊿ABC 绕点C 顺时针旋转o25,得到⊿C B A '', B A ''交AC 于D ,已知∠DC A '=o 90,则∠A 的度数是;8.已知012=-+x x ,则2004223++x x =;一、选择题:1.下列属平移现象的是( )A ,山水倒映。
B.时钟的时针运转。
C.扩充照片的底片为不同尺寸的照片。
D .人乘电梯上楼。
2.如图,在边长为a 的正方形中挖去一个边长为b 的小正方形,把余下的部分剪拼成一个矩形,通过计算两个阴影部分的面积,验证了一个等式,此等式是()A.a 2-b 2=(a +b)(a -b)B.(a +b)2=a 2+2a b+b 2C.(a -b)2=a 2-2a b+b 2 D .(a +2b)(a -b)=a 2+a b -b 23.已知实数a 、b 满足:1=ab 且b a M +++=1111, bb a a N +++=11,则M 、N 的关系为( )(A )N M > (B )N M < (C )N M = (D )M 、N 的大小不能确定 4.若x 2-2(m -3)x +9是一个多项式的平方,则m =( )A 6B 12C 6或0D0或5.一枚硬币连抛5次,出现3次正面向上的机会记做P 1;五枚硬币一起向上抛,出现3枚正面向上的机会记做P 2,你认为下面结论正确的是()A.P 1 > P 2B. P 1 < P 2C. P 1 = P 2D. 不能确定6.若M=3x 2-8xy +9y 2-4x +6y +13(x ,y 是实数),则M 的值一定是( )A.正数B.负数C.零D.整数三.解答题1.因式分解:2..已知 的值。
七年级数学竞赛测试卷(含答案)
![七年级数学竞赛测试卷(含答案)](https://img.taocdn.com/s3/m/156bb93da9114431b90d6c85ec3a87c240288adf.png)
七年数学竞赛测试卷一、填空题:1、若实数a 、b 、c 满足abc= -2,a+b+c >0,则a 、b 、c 中有_______个负数.2、设a △b=a 2-2b ,则(-2)△(3△4)的值为_______________.3、若关于x 的方程x-2(x- a 3 )=43 x 与3x+a 12 -1-5x8 = 1的解相同,则x=_______.4、已知x 、y 是实数,且满足⎩⎨⎧=+=+21192291183352y x y x ,则x +y =__________.5、已知13x x-=,那么多项式3275x x x --+的值是 ; 6、在一次打靶射击中,某个运动员打出的环数只有8、9、10三种。
在作了多于11次的射击后,所得总环数为100。
则该运动员射击的次数为 ,环数为8、9、10的次数分别为 .7、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于 ; 8、已知1111110 0 ()()()a b c a b c a b c b c c a a b⨯⨯≠++=+++++,并且,则的值为 ;9、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则10、若-2a m-1b m+ n 与5.6a n – 2m b 3m+ n – 4是同类项,则方程组⎩⎨⎧2mx+ny=460mx+(n-2)y=240的解为 .11、十个人围成一圈,每个人心里都想好一个数,并把自己想的数如实告诉他两旁的人,每个人都将他两旁的人告诉他的数的平均数报出来,报出的数分别为1,2,3,4,5,6,7,8,9,10.问报3的人心里想的数是 ; 12、若关于x 、y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组111222534534a x b y c a x b y c +=⎧⎨+=⎩的解为____________.13、若10=++y x x ,12=-+y y x ,则y x +的值是 。
2019-七年级数学下册竞赛测试题人教新课标版
![2019-七年级数学下册竞赛测试题人教新课标版](https://img.taocdn.com/s3/m/e8a7702284254b35effd3499.png)
2019-2020年七年级数学下册竞赛测试题人教新课标版一、选择题( 以下每题的四个结论中, 仅有一个是正确的, 请将表示正确答案的英文字母填在每题后边的圆括号内. 每题5分, 共50分)题号 1 2 3 4 5 6 7 8 9 10 共得分答案1.2011+(-2011)-2011 ×(-2011) ÷2011=( ).(A)-4022 (B)-2011 (C)2011 (D)6033是有理数, 则a 112000的值不能够是( ).(A)1 (B)-1 (C) -2000 (D) 01 1 1 13. 若四个有理数a,b,c,d 满足, 则a,b,c,d 的a 1997b 1998c 1999d 2000大小关系是( )(A)a>c>b>d (B) c>a>b>d (C) b>d>a>c (D)d>b>a>c4. 用一根长为a米的线围成一个等边三角形, 测知这个等边三角形的面积为b平方米. 现于这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为( ) 米.(A) 6ba(B)4ba(C)2ba(D)8ba5. 爸爸给女儿园园买了一个( 圆柱形的) 寿辰蛋糕, 园园想把蛋糕切成大小不用然相等的若干块( 很多于10块), 分给10个小朋友. 若沿竖直方向切成这块蛋糕, 最少需要切( ) 刀.(A)3 (B)4 (C)6 (D)96. 以下四个命题:①若是两个角是对顶角, 则这两个角相等. ②若是两个角相等, 则这两个角是对顶角. ③如果两个角不是对顶角, 则这两个角不相等. ④若是两个角不相等, 则这两个角不是对顶角.其中正确的命题有( ).(A)1 个(B)2 个(C)3 个(D)4 个7、如图,三角形ABC的底边BC长3 厘米,BC边上的高是 2 厘米,将三角形以每秒 3 厘米的速度沿高的方向向上搬动 2 秒,这时,三角形扫过的面积是()平方厘米。
2017-2018年人教版七年级数学上册竞赛试卷
![2017-2018年人教版七年级数学上册竞赛试卷](https://img.taocdn.com/s3/m/91a30650ccbff121dd36837f.png)
212017-2018学年度第一学期人教版七年级数学竞赛试卷一、选择题(12个小题,每个小题3分,共36分。
) 1. 下列说法不正确的是( )A.分数都是有理数B.-a 是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数 2. .已知ab ≠0,则+的值不可能的是( )A . 0B .1C .2D . ﹣23.给出下列式子:0,3a ,π,错误!未找到引用源。
,1,3a 2+1,-错误!未找到引用源。
+y.其中单项式的个数是( )A.5B.1C.2D.34、计算:-2+5的结果是( )A. -7B. -3C. 3D. 7 5、2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功,它的飞行高度距离地球350千米,350千米用科学记数法表示应为( )A. 3.5×102B. 3.5×105C. 0.35×104D. 350×1036、下列各组数中,结果相等的是( )A. -22与(-2)2B. 与 ( )3C. -(-2)与-|-2|D. -12017与(-1)20177、已知b a m 225-和n b a -347是同类项,则2m - n 的值是( )A 、6B 、4C 、3D 、2 8.在有理数-4,0,-1,3中,最小的数是( ) A .-4 B .0 C .-1 D .39. 已知22(3)0a b -++=,则a b 的值是( )A .-6B . 6C . -9D .910.已知a ≤2,b ≥-3,c ≤5,且a -b +c =10,则a +b +c 的值等于( )。
(A )10 (B )8 (C )6 (D )4、 、、、二、填空题(6个小题,每个小题4分,共24分)13、当正整数m= _________ 时,代数式的值是整数.14、(3a +2b)-2(a - )= a +4b ,则横线上应填的整式是 .15、已知(x+3)2与|y -2|互为相反数,z 是绝对值最小的有理数,则代数式(x+y)y +xyz 的值为 .16.在-2 ,-15,9, 0 ,10- 这五个有理数中,最大的数是 ,最小的数是 . 17.若23m ab +与43(2)n a b -是同类项,且它们的和为0,则mn = .18.已知3232572A x x x m =+-++,223B x mx =+-,若多项式A B +不含一次项,则多项式A B +的常数项是 .三、解答题 :(9个小题共90分) 19. (10分)计算:(1)5×(-2)+(-8)÷(-2); (2)71123627()3927-⨯-+;20.(10分)求下列未知数的值(1)x 2=25 (2)y 3= - 6421.(10分)计算:(1)8a +7b -12a -5b ; (2) 111111111111123200523200422005232004⎛⎫⎛⎫⎛⎫⎛⎫+++++++-++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭23 5322、(8分)在数轴上表示下列各数:321,-3,0,—1.5,并把所有的数用“<”号连接起来.23.(8分).先列式再计算: -1 减去 与 的和所得差是多少?24.(10分).先化简,再求值:(2-a 2+4a)-(5a 2-a -1),其中a =-2.25.(10分).已知x 、y 互为相反数,且|y -3|=0,求2(x 3-2y 2)-(x -3y)-(x -3y 2+2x 3)的值.26.一根长度为1米的木棍,第一次截去全长的12 ,第二次截去余下的13 ,第三次截去第二次截后余下的14 ,……,第n 次截去第(n-1)次截后余下的1n+1 。
初中七年级数学竞赛试题含答案
![初中七年级数学竞赛试题含答案](https://img.taocdn.com/s3/m/c2755add84254b35eefd3482.png)
初中七年级数学竞赛练习题(一)一、选择题(每题4分,共40分)1.某粮店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg 、(25±0.2)kg 、(25 ± 03)kg 的字样,从中任意拿出两袋 ,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kg D . 0.4kg2.若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ). A.2 B. -2 C. 6 D.2或63.在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为( )A . 14辆B . 10辆C . 16辆D . 12辆4.文具店老板卖均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板( )A. 赚了5元B. 亏了25元C. 赚了25元D. 亏了5元. 5. 如图,数轴上每个刻度为1个单位长度,点A 对应的数为a ,点B 对应的数为b ,且72=-a b ,那么数轴上原点的位置在( )A.A 点.B.B 点。
C.C 点。
D.D 点。
6. x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零7.观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.6519 8.若14+x 表示一个整数,则整数x 可取值共有( ).A.3个B.4个C.5个D.6个 9.方程13153520052007x x x x +++=⨯ 的解是 x =( ) A.20072006 B.20062007 C. 10032007 D.1003200710. 若a 为正有理数,在-a 与a 之间(不包括-a 和a )恰有2007个整数,则a 的取值范围为( ).A. 0<a<1004B. 1003≤a<1004C. 1003<a ≤1004D. 0<a ≤1003 二.填空题(每格3分,共30分)11.请将3、3、7、7这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2009×( -31)2008= ;13.若|x-y+3|+()21999-+y x =0,则yx yx -+2= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求. 15.设c b a ,,为有理数,则由abcabc c c b b a a +++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则│b-a │+│a+c │+│c-b•│=____ _ ___; 17.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
七年级数学新人教版竞赛试题或试卷
![七年级数学新人教版竞赛试题或试卷](https://img.taocdn.com/s3/m/2c266218ac02de80d4d8d15abe23482fb4da02e5.png)
选择题:1. 已知正方形ABCD的边长为6cm,点E为边AB上的点,连接DE并延长得到直线EF,若AC与EF平行,那么EF的长度为:A. 3cmB. 6cmC. 9cmD. 12cm2. 已知等差数列的首项为3,公差为4,若第n项为35,那么n的值是:A. 8B. 9C. 10D. 113. 若a + b = 7,ab = 12,那么a² + b²的值为:A. 49B. 61C. 73D. 854. 函数y = |x - 3| - 2的图像与x轴交于点P和Q,那么PQ的长度为:A. 2B. 4C. 6D. 85. 已知三角形ABC中,∠A = 60°,|AB| = 6cm,|AC| = 8cm,那么|BC|的长度为:A. 7cmB. 9cmC. 10cmD. 12cm填空题:1. 式子4x - 3 = 7的解为x = ______。
2. 若a² + b² = 25,且a + b = 7,那么ab的值为_______。
3. 已知等比数列的首项为2,公比为3,若第n项为1458,那么n的值为_______。
4. 解方程x² - 5x + 6 = 0得到的解为x = _______ 和x = _______。
5. 函数y = -2x + 5的图像与x轴的交点为(_______, 0)。
应用题:1. A、B两地相距300公里,A地有一辆车以50千米/小时的速度向B地出发,B地有一辆车以70千米/小时的速度向A地出发。
已知从A地出发的车比从B地出发的车早1小时到达对方所在地。
求从A地出发的车与从B地出发的车相遇的时间。
2. 一个长方形花坛,长与宽的比为3:2,若长边增加5米,短边减小3米,面积不变,求原来的长和宽各是多长。
3. 足球队比赛,每胜一场得3分,平一场得1分,负一场得0分。
某球队共打了10场比赛,得分总和为17分。
若该队未负过,那么该队平过几次?4. 甲、乙两个水箱一起开满水,正好用1小时时间。
竞赛新人教版七年级下册数学试卷
![竞赛新人教版七年级下册数学试卷](https://img.taocdn.com/s3/m/f063ecc2a1c7aa00b52acb2f.png)
七年级下册数学竞赛试卷一、选择题:(每题5分,共20分)1、如图1,下列各点在阴影区域内的是( )A 、(3,2)B 、(-3,2)C 、(3,-2)D 、(-3,-2)2、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么 ●、▲、■这三种物体按质量从大到小....的顺序排列为( ) A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●3、已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x a x 4、“5.12”汶川大地震后,灾区急需帐篷。
某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷2000顶,其中甲种帐篷每顶可安置6人,乙种帐篷每顶可安置4人,该企业捐助的帐篷共可安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组正确的是( )A 、⎩⎨⎧=+=+9000y x 42000y 4xB 、 ⎩⎨⎧=+=+9000y x 62000y 4x C 、⎩⎨⎧=+=+9000y 6x 42000y x D 、⎩⎨⎧=+=+9000y 4x 62000y x二、填空题:(每空4分,共20分)5、将点(1,2)先向左平移1个单位长度,再向下平移2个单位长度,得到的对应点的坐标是__________。
6、一副三角板如图5所示叠放在一起,则图中∠a 的度数是________7、如图6,在△ABC 中,BE 平分∠ABC ,DE ∥BC ,∠ABE=35,则∠DEB=________8、若方程组⎩⎨⎧=-=+aby x b y x 2的解是⎩⎨⎧==0y 1x ,那么b a -=__________。
α9、已知关于x 的不等式组⎩⎨⎧--0x 10a x >>的整数解共有3个,则a 的取值范围是___________。
福建省永春第二中学七年级数学竞赛试题精选(1) 新人教版
![福建省永春第二中学七年级数学竞赛试题精选(1) 新人教版](https://img.taocdn.com/s3/m/194cc2e3cc7931b764ce1522.png)
七年级数学竞赛试题精选(满分100分,时间2小时)姓名 班级 得分一、 耐心填一填(每题5分) 1.()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
2. 定义a*b=ab+a+b,若3*x=27,则x 的值是________。
3.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F 的对面是 。
FA DBC A ED C4.A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是 。
5. 用 1、2、3、4、5这五个数组成一个数字不重复的五位数中抽到的数是15的倍数的概率是 。
6.某商场经销一种商品,由于进货价格比原来预计的价格降低了6.4%,使得销售利润增加了8个百分点,那么原来预计的利润率是 。
二、 细心选一选(每题5分)1.如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是( )A 、1B 、2C 、3D 、42. 某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打( )销售。
A、9折 B、8.5折 C 、8折 D、7.5折3.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN :PQ 等于( )A Q P M NB CA 、1B 、2C 、3D 、44.四点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2009学年度第一学期
七年级数学竞赛试题
学校________ ; 班级__________; 姓名__________; 坐号________.
一、选择(每题4分,共24分)
1、在- 0.1428中用数字3替换其中一个非0数码后,使所得的数最大。
则被替换的数字是()
A、1
B、2
C、4
D、8
2、有理数a、b、c、在数轴上的对应点如图所示
下面的关系中正确的是()
A、a c>bc;
B、ab<a+c;
C、2a+3b+c>0;
D、2a+3b+c<0
3、某年某个月份有5个星期三,它们的日期之和为80(把日期作为一个数,例如22日看作22),那么这个月的3号是星期()
A、日
B、一
C、二
D、四
4、(-0.125)2008×(-8)2009的值为()
A、-4
B、4
C、-8
D、8
5、已知三角形三个内角的度数都是质数,则该三角形必定有一个内角等于()
A、2°
B、3°
C、5°
D、7°
6、对于数x,符号[x]表示不大于x的最大整数。
例如:[3.14]=3,[-7.01]=-8,
则关于x的方程[
77
3
x]=4的整数根有()A、4个 B、3个 C、2个 D、1个
-1
-3
a b c
二、填空题(4×10=40分)
7、-1+2-3+4-5+···+2006-2007+2008=____________;
8、已知a 与b 互为相反数,则ab
b a 200899190922+=__________________.
9、已知y=ax 7+bx 5+cx 3+dx-6,若x=1则y=2008则x= -1时y=_________. 10、搭一个正方形需要4根火柴棒,搭2个正方形需要7根火柴棒,搭3个正方形需要10根火柴,则2008根火柴棒按这种方式最多能搭________个正方形.
11、定义运算:a ※b=ab-a+b 则[(-2)※(-2)] ※(4
1
)=___________. 12、关于x 的方程3x=2x+a 的解与2
423x
x =-的解相同,则a=________. 13、方程)7
3
(163)]7
3(4
1[4
3
-=
---x x x x 的解是____________________. 14、一个盖着瓶盖的瓶子里装着一些水(如图)
2
2
请你根据图中标明的数据 ,计算瓶子的容积是_______________
15、将2009减去它的21
,再减去余下的3
1,再减去余下的4
1
,
再减去余下的51,依次类推,直到最后减去余下的 2009
1
,最后答数是
__________.
16、有一串真分数,按下列方法排列:5
4
53525
1434241
323121,、、、、、、、、···则第1001个分数是__________
4cm
瓶底面积为10cm 7cm
5cm
瓶底面积为10cm
三、解答(每题12分,共36分) 17、)2008
13121)(20091211()2008131211)(200913
12
1(+∙∙∙+++∙∙∙++-+∙∙∙++++
∙∙∙++
18、燃蜡时间问题(英国),在伦敦的一个大雾天,一家商店的店主叫店员点燃两支长度相等的蜡烛,一支可维持4小时,另一支可维持5小时,雾散后,店主吹熄蜡烛,发现其中一支剩下的长度是另一支剩下长度的4倍,问蜡烛点燃了多长时间?
20、设一个六位数 ,它乘以3后变为新的六位数 求原来的六位数。