幂函数 优秀教案
幂函数教学设计
幂函数教学设计幂函数是初等函数的一种,是指以自然数为指数的函数。
其函数式可以表示为y=x^n,其中x为自变量,n为常数指数,y为函数的值。
以下是五个优秀的幂函数教学设计:1.教学目标:通过本节课的学习,学生将掌握幂函数的概念、性质和图像。
教学过程:(1)导入环节:通过提问引入幂函数的概念,如何用自然数表示指数。
(2)基础知识讲解:介绍幂函数的定义、性质和图像特点。
(3)解答问题:让学生通过例题解答,巩固对幂函数的理解。
(4)实例操作:以实际问题为背景,让学生应用幂函数解决实际问题。
(5)总结归纳:总结幂函数的特点和应用,并提醒学生注意幂函数与其他函数的区别。
2.教学目标:通过本节课的学习,学生将理解幂函数的增减性质和相关应用。
教学过程:(1)导入环节:通过展示两个幂函数的图像,让学生观察并讨论它们的变化趋势。
(2)基础知识讲解:讲解幂函数的增减性质,即正指数的幂函数递增,负指数的幂函数递减。
(3)实例分析:通过实例分析,揭示幂函数增减性质的应用,如求不等式的解等。
(4)实践操作:让学生通过练习题巩固对幂函数增减性质的理解和应用。
(5)拓展讨论:引导学生思考其他函数的增减性质,并与幂函数进行比较。
3.教学目标:通过本节课的学习,学生将学会化简幂函数表达式。
教学过程:(1)导入环节:通过提问引入化简幂函数表达式的概念和意义。
(2)基础知识讲解:介绍幂函数的化简规则和步骤,如指数相加相乘规则等。
(3)解答问题:通过例题解答,让学生掌握幂函数化简的方法和技巧。
(4)实例操练:让学生通过练习题巩固幂函数化简的能力。
(5)拓展应用:引导学生将化简幂函数应用到求导、积分等数学问题中。
4.教学目标:通过本节课的学习,学生将了解幂函数的特殊性质和图像变化规律。
教学过程:(1)导入环节:通过提问引入幂函数的特殊性质,如y=x^0、y=x^1等。
(2)基础知识讲解:介绍幂函数特殊性质的证明和图像变化规律。
(3)实例演示:通过示例演示,展示幂函数图像在特殊情况下的形态和变化特点。
幂函数 优秀教案
幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。
2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。
2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。
2) 使学生进一步体会数形结合的思想方法。
3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。
2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。
教学重点】从五个具体幂函数中认识幂函数的一些性质。
教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。
教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。
二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。
练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。
|。
值域。
|。
奇偶性。
|。
单调性。
|。
定点。
|R。
|。
R+。
|。
奇函数。
|。
增函数。
|。
(1,1)。
|R。
|。
R+。
|。
偶函数。
|。
增函数。
|。
(0,0)。
|R。
|。
R。
|。
奇函数。
|。
增函数。
|。
(0,0)。
|R*。
|。
R*。
|。
奇函数。
|。
减函数。
|。
(1,1)。
|R+。
|。
R+。
|。
无奇偶性。
|。
增函数。
|。
(0,0)。
|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。
归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。
高一数学必修1《幂函数》教案
高一数学必修1《幂函数》教案教学目标:1. 理解幂函数的定义和性质,掌握画出幂函数的图象的方法。
2. 学会用不等式的方法解决幂函数方程的问题。
教学重点:1. 幂函数的定义和性质。
2. 画出幂函数的图象。
3. 不等式解法。
教学难点:1. 幂函数的图象,如何画出图象。
2. 不等式的解法,如何运用不等式解决幂函数方程的问题。
教学方法:1. 归纳法。
2. 演示法。
3. 分组讨论法。
教学内容:一. 幂函数1. 幂函数的定义:设a为正实数,x为任意实数,幂函数f(x)=$a^x$ 定义为f(x)=$a^x$。
2. 幂函数的性质:(1)当a>1时,幂函数f(x)严格单调递增;当0<a<1时,幂函数f(x)严格单调递减。
(2)当a>1时,幂函数f(x)在x轴的右侧无上界;当0<a<1时,幂函数f(x)在x轴的右侧无下界。
(3)当a=1时,幂函数f(x)为常函数y=1。
3. 幂函数的图象:(1)当a>1时,幂函数f(x)在右侧无上界,并超过x轴,图象接近x轴。
(2)当0<a<1时,幂函数f(x)在右侧无下界,趋近于x轴,图象在x轴上方。
(3)当a=1时,幂函数f(x)图象为直线y=1,在y轴上方。
4. 例题:(1)求幂函数y=$\frac{1}{4}$^x 的增减区间,并画出图象。
(2)求方程$\frac{1}{2x+1}$=8 的解。
二. 不等式的解法1. 不等式的性质:(1)等式两边加(减)同一个数、同一个式子,不等式的方向不变;(2)等式两边同乘(除)一个正数,不等式的方向不变;等式两边同乘(除)一个负数,不等式的方向反转。
2. 不等式的应用:利用不等式的性质,解决幂函数的方程。
3. 例题:求不等式$x^2$+2$\sqrt2x$+1<0 的解。
教学流程:1. 教师介绍幂函数的定义和性质,并简单讲解幂函数的图象。
2. 教师出示幂函数$f(x)=2^x$ 的图象,并让同学对幂函数的图象做出讨论,了解幂函数图象的特点,为下面的探究提供基础。
幂函数教案(第1课时)
幂函数教案(第1课时)教学目标:㈠知识和技能1.了解幂函数的概念,会画幂函数,,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质教学难点幂函数的单调性与幂指数的关系教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?(总结:根据函数的定义可知,这里p是w的函数)问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)二、新课讲解(一)幂函数的概念如果设变量为,函数值为,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。
《幂 函 数》优秀教案
3.3 幂 函 数新知导学1.一般地,我们把形如y =x α的函数称____,其中x 是____,α是__.2.幂函数的性质一般地,当α>0时,幂函数y =x α有下列性质:(1)图象都通过点____,____;(2)在第一象限内,函数值随x 的增大而____;(3)在第一象限内,α>1时,图象是向____凸的;0<α<1时,图象是向____凸的;(4)在第一象限内过(1,1)点后,图象向右上方无限伸展.当α<0时,幂函数y =x α有下列性质:(1)图象都通过点____;(2)在第一象限内,函数值随x 的增大而____,图象是向____凸的;(3)在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近;(4)在第一象限内,过____点后,|α|越大,图象下落的速度越快.需要注意一点的是无论α>0或α<0,所有的幂函数在(0,+∞)都有定义,且图象都过点____. 预习自测1.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中幂函数的个数为( )A .0个B .1个C .2个D .3个2.已知幂函数y =f (x )的图象过点(4,2),则f ⎝⎛⎭⎫14的值为( )A .14B .12C .1D .23.图中C 1、C 2、C 3为三个幂函数(y =x a )在第一象限内的图象,则解析式中指数a 的值依次可以是()A .-1,12,3 B .-1,3,12 C .12,-1,3 D .12,3,-1 4.函数y =x -2在区间⎣⎡⎦⎤13,2上的最大值是____.5.若函数f (x )=(2m +3)x m 2-3是幂函数,则m 的值为____.命题方向1 ⇨对幂函数概念的理解典题1 函数f (x )=(m 2-m -1)x m2+m -3是幂函数,且当x ∈(0,+∞)时, f (x )是增函数,求f (x )的解析式.〔跟踪练习1〕在下列给出的函数:(1)y =x ;(2)y =2x ;(3)y =x -1中,幂函数的个数为( )A .0B .1C .2D .3命题方向2 ⇨幂的大小比较典题2 比较下列各组数值的大小:(1)3-52 和3.1-52 ;(2)-8-78 和-(19)78 ;(3)4.125 ,3.8-23 和(-1.9)35 .〔跟踪练习2〕比较下列各组函数值的大小:(1)⎝⎛⎭⎫-23-23 和⎝⎛⎭⎫-π6-23 ;(2)(-2.1)37 和(-2.2)37 ;(3)3.4-35 和(23)-35 .命题方向3 ⇨幂函数的图象、性质综合应用典题3 已知幂函数f (x )=x m2-2m -3(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是减函数,求满足(3+2a )-m 3 >(a -1)-m 3 的实数a 的取值范围.『规律方法』 对于与幂函数有关的综合性问题,一般涉及奇偶性与单调性问题,解决此类问题可分两步:一是利用单调性来弄清指数的正负,二是利用奇偶性来确定幂函数的图象.〔跟踪练习3〕已知函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5),求函数f (x )的解析式.典题4 若(a +1)-13 <(3-2a )-13 ,试求a 的取值范围.学科核心素养 分类讨论思想、数形结合思想1.幂函数定义域的求法幂函数定义域的确定,可分以下三种情况来讨论:(1)当指数α是正整数时,x α的定义域是R .(2)当指数α是正分数时,设α=p q(p ,q 是互质的正整数,q >1),则x α=x p q =q x p .当q 为偶数时,x α的定义域是[0,+∞);当q 为奇数时,x α的定义域是R .(3)当指数α是负整数时,设α=-k ,x α=1x k ,显然x 不能为0,所以x α的定义域是{x |x ≠0}. 典题5 求下列函数的定义域:(1)y =x 35 ;(2)y =x 14 ;(3)y =x -23 ;(4)y =x -34 .2.数形结合思想典题6 已知实数a 、b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能...成立的关系式有( )A .1个B .2个C .3个D .4个 课堂达标验收1.下列函数是幂函数的是( )A .y =5xB .y =x 5C .y =5xD .y =(x +1)52.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为() A .1,3 B .-1,1 C .-1,3 D .-1,1,33.如图所示为幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1B .n <0<m <1C .-1<n <0,m <1D .n <-1,m >14.已知幂函数f (x )=x α的图象经过点(27,3),则f (1 000)=____.5.比较下列各组中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)(23)34 与(34)23 .。
高中数学幂函数的优秀教案
高中数学幂函数的优秀教案教学目标:1. 了解幂函数的定义和性质;2. 掌握幂函数的图像特点和变化规律;3. 能够应用幂函数解决实际问题。
教学重点:1. 幂函数的定义和性质;2. 幂函数图像的特点;3. 幂函数的变化规律。
教学难点:1. 幂函数图像的绘制;2. 幂函数的应用解题。
教学准备:1. 教学PPT;2. 幂函数的相关教学素材;3. 面板书和彩色粉笔;4. 计算器。
教学过程:一、导入新知识(5分钟)教师通过举例引导学生回顾幂函数的定义和性质,激发学生对幂函数的兴趣。
二、讲解幂函数的定义和性质(15分钟)1. 介绍幂函数的定义,并解释指数、底数的含义;2. 讲解幂函数的性质,包括奇偶性、增减性和对称性等;3. 通过实例让学生理解幂函数的基本特点。
三、分组讨论与展示(15分钟)1. 将学生分成小组,让他们结合所学内容,讨论幂函数的图像特点和变化规律;2. 每组选派一名代表进行展示,分享小组讨论的结论。
四、幂函数图像的绘制(15分钟)1. 通过教学PPT,展示幂函数图像的绘制方法;2. 让学生自行绘制不同幂函数的图像,并与同学分享。
五、应用解题(15分钟)1. 以实际问题为例,让学生应用幂函数解题;2. 指导学生合理建立数学模型,解决问题。
六、课堂小结(5分钟)教师总结本节课的重点知识,强调幂函数的重要性和应用场景,激励学生继续深入学习。
七、作业布置让学生完成相关习题,巩固所学知识。
教学反思:1. 教学重点突出,学生参与度高;2. 演示环节设计合理,能够引导学生深入思考;3. 学生绘制图像能力需要进一步培养,需要增加训练。
这份教案是一份比较完整的高中数学幂函数的教学设计,建议教师在教学中根据学生的实陵情况做出适当的调整,以达到更好的教学效果。
高中教案数学幂函数
高中教案数学幂函数
教学目标:
1. 了解幂函数的定义和特点。
2. 掌握幂函数的图像特征及其性质。
3. 能够应用幂函数解决相关问题。
教学重点和难点:
重点:幂函数的定义、图像特征和应用。
难点:幂函数的性质和相关变化。
教学准备:
1. 幂函数的教学课件、教材及作业。
2. 幂函数相关的练习题和解析。
3. 白板、彩色笔等教学用具。
教学步骤:
一、导入(5分钟)
1. 引入幂函数的概念,让学生回顾已学过的函数类型。
2. 导出幂函数的定义和表示形式。
二、讲解幂函数的性质和图像特征(15分钟)
1. 介绍幂函数的定义和一般形式。
2. 分析幂函数增减性,根据指数的正负进行分类讨论。
3. 绘制幂函数的图像,让学生观察和分析图像的特点。
三、练习和讨论(20分钟)
1. 学生尝试通过计算和图像观察解答幂函数相关的问题。
2. 针对不同难度的问题,组织学生进行小组讨论和分享解决思路。
四、作业布置和讲解(10分钟)
1. 布置幂函数相关练习题作业,要求学生按时完成并提交。
2. 督促学生积极思考和讨论作业问题,批改及讲解作业结果。
五、课堂总结(5分钟)
1. 总结今天学习的知识点和重点。
2. 提醒学生复习巩固幂函数相关内容,做好课后练习。
教学反思:
通过本节课的教学,学生应该能够掌握幂函数的定义、性质及应用,有利于学生对数学函数的理解和运用。
同时,要引导学生在学习过程中不断思考和探索,培养其解决问题的能力和思维方式。
幂函数教案
幂函数教案1. 了解幂函数的定义与性质2. 掌握幂函数的图像特征和变化规律3. 能够应用幂函数解决实际问题教学重点:1. 幂函数的基本定义2. 幂函数的图像特征和变化规律3. 幂函数的应用教学难点:1. 幂函数的变化规律和推导过程2. 如何将幂函数应用于实际问题的解决教学方法:讲授、演示、模拟、探究、归纳、实践等多种教学方法相结合。
教学手段:多媒体教学手段、问答互动、小组合作等手段相结合。
教学过程:Step 1 引入新知1. 教师可以通过多媒体展示一些日常生活或工作中与幂函数相关的实例,如身高、电话费等,引发学生对幂函数的兴趣。
2. 教师可以让学生在小组内讨论幂函数的定义与性质,并让几位同学发表自己的理解和看法。
Step 2 探究幂函数的定义与性质1. 定义幂函数:f(x)=x^a (其中,a为常数,x为变量,且a≠0)2. 讲解幂函数的图像特征:a>1 时,是一条向上的单调增函数;a=1 时,是一条过原点的直线;0<a<1 时,是一条向下的单调增的函数;a<0 时,分为两种情况:a=-1时,是一条过原点的直线;a<-1时,是一条向下的单调减函数。
3. 幂函数的性质:偶函数、奇函数、单调性Step 3 探究幂函数的变化规律1. 讲解如何利用幂函数的图像,通过a的变化推导幂函数的特点和变化规律。
2. 让学生模拟实验,通过手工计算,验证幂函数的变化规律。
Step 4 应用幂函数解决实际问题1. 讲解如何将所学的幂函数应用于实际问题的解决。
2. 教师给出一些与幂函数相关的应用题,让学生在小组内讨论,并找到解题的有效方法。
Step 5 总结与拓展1. 用幂函数的概念总结一遍所学的知识点。
2. 教师可以适时地推出一些与幂函数相关的拓展问题,以拓展课堂思维。
3. 课堂评价:通过问答、小组讨论、实习演绎等方式,对学生的课堂表现进行评价。
教学反思:幂函数是高中数学中的一种基本函数,对于理解其他函数、解决实际问题等方面都具有很重要的作用。
幂函数教案
幂函数教案幂函数教案一. 教学目标:1. 了解幂函数的定义和性质。
2. 掌握幂函数的图像及其平移、缩放和翻折等变换规律。
3. 学会通过观察和分析,对给定的幂函数进行图像绘制。
4. 理解幂函数的增减性、单调性和奇偶性。
5. 能够解决与幂函数相关的实际问题。
二. 教学内容:1. 幂函数的定义和性质。
2. 幂函数的图像及其平移、缩放和翻折等变换规律。
3. 幂函数的增减性、单调性和奇偶性。
4. 实际问题解决。
三. 教学步骤:步骤一:导入新知识通过一个问题引入幂函数的概念,例如:小明家附近有一块广告牌,它上面的字体每年放大或缩小4倍,求第几年后字体的大小会超过原来的10倍。
步骤二:讲解幂函数的定义和性质1. 引导学生回顾指数的概念,理解幂函数的定义。
2. 讲解幂函数的性质,例如幂函数的函数图像都经过点(0,1),幂函数的增长速度由底数决定等。
步骤三:绘制幂函数的图像及变换规律1. 通过绘制几个幂函数的图像来说明幂函数的变化规律。
2. 引导学生发现幂函数的平移、缩放和翻折等变换规律。
3. 练习绘制给定幂函数的图像。
步骤四:讲解幂函数的增减性、单调性和奇偶性1. 引导学生通过观察图像,探讨幂函数的增减性。
2. 引导学生通过观察图像,探讨幂函数的单调性。
3. 引导学生通过观察图像和计算函数值,探讨幂函数的奇偶性。
步骤五:解决实际问题给学生提供一些与幂函数相关的实际问题,让学生运用所学的知识解决问题,例如:一个小球从高处自由下落,第n次落地时的高度是多少?四. 教学方法1. 探究式教学法:通过引导学生观察、分析、绘制图像等方式,让学生主动探索幂函数的性质和规律。
2. 实践教学法:通过解决实际问题的方式,提高学生对所学知识的应用能力。
3. 演示教学法:通过绘制幂函数的图像等示范,让学生更好地理解幂函数的变换规律。
五. 教学资源1. 幂函数的图像和相关实例。
2. 计算器或电脑及相关数学软件。
3. 实际问题解决的练习题。
幂函数优秀教案
幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。
二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。
四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。
五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。
幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。
10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。
10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。
10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。
10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。
10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。
10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。
通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。
同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。
在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。
关于幂函数的教案
关于幂函数的教案关于幂函数的教案一教学任务分析:(1)理解幂函数的概念,会画五种常见幂函数的图像;(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
教学重点:常见幂函数的的概念、图像和性质。
教学难点:幂函数的单调性及比较两个幂值的大小。
教具准备:多媒体课件、投影仪、打印好的作业。
教学情景设计问题师生活动设计意图问题1:如果张红购买了1元/千克的蔬菜x千克,那么她需要付的钱数y(元)和购买的蔬菜量x?(千克)之间有何关系?问题2:如果正方形的边长为x,那么正方形面积y=?问题3:如果正方体的棱长为x,那么正方体体积y=问题4:如果正方形场地的面积为x,那么正方形的边长?y=?问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒) 引导学生探索发现:通过生活实例,引出幂函数的概念,使学生体会到数学在生活中的应用,激发学生的学习兴趣。
你能发现这几个函数解析式有什么共同点吗?引导学生归纳结论(1)?指数为常数.(2)?右边均是以自变量为底的幂的形式; 认识五种常见的幂函数。
给出幂函数的定义:一般地,形如? 的函数称为幂函数,其中x为自变量,α为常数. 例1:在函数,,,中,哪几个函数是幂函数? 引导学生依据幂函数定义及特征头判断;1、即 (是)2、 (不是)3、 (不是)4、 (是) 正确认识幂函数请在同一坐标系内画出以上五个幂函数的图像指导学生画出图像,多媒体呈现图像训练学生的作图、识图能力。
观察以上图像将你发现的结论填入性质表?定义域值域关于幂函数的教案二教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质.对于幂函数,只需重点掌握?这五个函数的图象和性质.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析.学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.课时分配 1课时教学目标重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小知识点:幂函数的定义、五个幂函数图象特征能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用教育点:进一步渗透数形结合与类比的思想方法;体会幂函数的变化规律及蕴含其中的对称性自主探究点:通过作图归纳总结幂函数的相关性质考试点:了解幂函数的概念,结合函数的图象了解它们的变化情况易错易混点:学生容易将幂函数和指数函数混淆拓展点:通过指数函数的图象性质研究幂函数指数的变化教具准备:多媒体辅助教学课堂模式:导学案一、引入新课(一) 回顾引入师生互动师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?生:探讨,交流师生共同分析:设计意图(1)给出开放性问题,主要是为了提高学生的想象能力,激发他们学习新内容的兴趣(2)不但培养了学生动手的能力,也营造了师生合作,共同探讨问题的氛围师:我们知道对于等式1 .如果一定,随着的变化而变化,我们建立了指数函数2 . 如果一定,随着的变化而变化,我们建立了对数函数设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?设计说明使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫(二) 观察下列对象:问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数 = 元,问题(2):如果正方形的边长为,那么正方形的面是 =问题3):如果正方体的边长为,那么正方体的体积是 =问题(4):如果正方形场地面积为,那么正方形的边长 =问题(5):如果某人 s内骑车行进了1km,那么他骑车的平均速度 =师生互动师:(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论生:(1)乘以1 (2)求平方 (3)求立方(4)求算术平方根 (5)求-1次方师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数.师生:共同辨析这种新函数与指数函数的异同.设计意图(1)引导学生从具体问题、实际问题中抽象出数学模型。
幂函数教学设计(共7篇)
幂函数教学设计〔共7篇〕第1篇:幂函数教学设计《幂函数》教学设计一、设计构思设计理念注重开展学生的创新意识。
学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。
这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造〞过程。
我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。
注重提高学生数学思维能力。
课堂教学是促进学生数学思维能力开展的主阵地。
问题解决是培养学生思维能力的主要途径。
所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学〞的余味,学生学习的积极性与主动性在教学中便自发生成。
本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的开展。
在问题解决的探究过程中应表达“以人为本〞,充分表达“人人学有价值的数学,人人都能获得必需的数学〞,“不同的人在数学上得到不同的开展〞的教学理念。
有意义的数学学习必须建立在学生的主观愿望和知识经验根底之上,而学生的根底知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。
注重信息技术与数学课程的整合。
高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
教材分析幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。
该教学内容在人教版试验修订本中已被删去。
标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。
故在教学过程及后继学习过程中,应能够让学生体会其实际应用。
高中数学教案《幂函数》
教学计划:《幂函数》一、教学目标1.知识与技能:学生能够理解幂函数的概念,掌握幂函数的一般形式及其图像特征;能够识别并绘制基本幂函数的图像;理解幂函数在特定区间内的单调性、奇偶性等基本性质。
2.过程与方法:通过观察、分析幂函数的图像,引导学生发现幂函数的性质;通过小组合作、讨论交流,培养学生探究问题的能力和团队合作精神;通过实例分析,提高学生运用幂函数解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的观察力和数学思维能力;通过幂函数的学习,让学生体会数学中的对称美、变化美,增强对数学美的感受力;培养学生的严谨治学态度和科学探索精神。
二、教学重点和难点●教学重点:幂函数的概念、一般形式及其图像特征;幂函数的基本性质(如单调性、奇偶性)及其判断方法。
●教学难点:理解幂函数图像与性质之间的关系,能够准确判断幂函数在特定区间内的性质;运用幂函数性质解决实际问题。
三、教学过程1. 引入新课(约5分钟)●情境创设:通过生活中的实例(如细胞分裂、面积与边长的关系等)引出幂的概念,进而引出幂函数的概念。
●问题导入:提出“这些关系能否用函数来表示?它们具有怎样的图像特征?”等问题,激发学生的好奇心和探究欲。
●明确目标:介绍本节课的学习目标,即掌握幂函数的概念、图像特征及基本性质。
2. 讲授新知(约15分钟)●定义讲解:详细讲解幂函数的概念和一般形式,强调底数为常数且不为0,指数为自变量。
●图像特征:利用多媒体展示基本幂函数(如y=x, y=x², y=x³, y=√x, y=1/x等)的图像,引导学生观察并总结它们的共同特征和不同点。
●性质阐述:结合图像,阐述幂函数在特定区间内的单调性、奇偶性等基本性质,并给出判断方法。
3. 观察探究(约10分钟)●图像分析:引导学生分组观察并分析更多幂函数的图像,记录它们的特征,并尝试从图像中判断幂函数的性质。
●小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究幂函数性质的图像表示方法。
幂函数教学设计(优秀5篇)
讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性。
白话文为大家精心整理了幂函数教学设计(优秀5篇),希望能够帮助到大家。
幂函数教学设计篇一1、总体设计说明幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。
函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。
基于以上认识,确定本节课的教学目标如下(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。
(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。
(3)能够利用幂函数的性质比较两个数的大小教学重点与难点如下教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。
本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用2、教学过程剖析2.1创设情境建构概念问题1 (1)正方形的边长a与面积S之间是函数关系吗?(2)正方体的边长a与体积V之间是函数关系吗?【设计意图】从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数学生找到两个变量之间的函数关系,并给出函数的解析式:和。
师:我们把形如的函数称为幂函数。
直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。
师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?生:是一条直线。
师:你确定是一条直线吗?生:是一条直线去掉一个点师:为什么?生:定义域中x不能取到0。
高中数学幂幂函数教案
高中数学幂幂函数教案教学目标:1. 了解幂函数的概念和性质;2. 掌握幂函数的图像、基本形式和变形形式;3. 能够应用幂函数解决实际问题。
教学重点:1. 幂函数的定义和性质;2. 幂函数的图像和基本形式。
教学难点:1. 幂函数的变形形式;2. 幂函数的实际应用。
教学准备:1. 幂函数的教学PPT;2. 白板、彩色粉笔。
教学过程:一、导入(5分钟)1. 引入幂函数的概念,让学生回顾一下函数的定义和特点;2. 引出幂函数的定义和形式,引发学生对幂函数的兴趣。
二、讲解(15分钟)1. 介绍幂函数的定义和性质,包括定义域、值域、增减性和奇偶性等;2. 讲解幂函数的图像和基本形式,让学生理解幂函数的特点和规律;3. 展示幂函数的实例,帮助学生掌握幂函数的应用方法。
三、练习(20分钟)1. 让学生做一些幂函数的练习题,巩固所学知识;2. 指导学生解决实际问题,让学生体会幂函数在生活中的应用。
四、总结(5分钟)1. 总结幂函数的定义、性质和应用;2. 引导学生认识到幂函数在数学中的重要性和实用性。
五、作业布置(5分钟)1. 布置作业,要求学生完成相关幂函数的练习题;2. 提醒学生复习幂函数的知识,为下节课的学习做好准备。
教学反思:本节课主要介绍了幂函数的基本概念和性质,通过理论讲解和实例练习,帮助学生掌握了幂函数的相关知识。
同时,通过生动有趣的教学方式,激发了学生对数学的兴趣,提高了学生的学习积极性和主动性。
在今后的教学中,要继续加强实例讲解和实际应用,培养学生的数学思维和解决问题的能力。
幂函数 优秀教案
幂函数【教学目标】1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。
2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质。
3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性。
【教学重难点】重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质【学法】通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;【教学过程】一、情境引入,学生活动:问题1:某林区木材积蓄量平均每年比上一年增长5%,则x 年后,木材积蓄量y 与x 有何关系?问题2:正方形边长为a ,面积为s ,有何关系?(s 为a 的函数;a 为s 的函数。
) 问题3:正方体边长为a ,体积为v ,有何关系?(v 为a 的函数;a 为v 的函数。
) 问题4:如果某人ts 内骑车行进了1km ,那么他骑车的平均速度为vkm/s ,则v 等于? 问1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?二、数学建构:幂函数定义及其图象。
一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数。
幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析。
共同辨析这种新函数与指数函数的异同。
【练】下列函数中是幂函数的是( )(1)3x y = ; (2)2-=x y ; (3)0x y =; (4)x y 2=;(4)3-=x y ; (5)x y )21(=; (7)23x y =; (8)2)3(x y =。
思考:由此可得若一个函数为幂函数,其结构上应满足:①;②;③。
【例1】作出下列函数的图象:(1)2x y =; (2)3x y =; (3)21x y =; (4)31x y =;(5)1-=x y ; (6)2-=x y ; (7)21-=xy观察与思考,观察图象,总结填写下表:引导学生分析幂函数性质:幂函数性质:0>α:(1)图象都过点(0,0),(1,1);(2)函数αx y =在),0[+∞上为增函数;(3)在第一象限,1>α,图象向下凸;10<<α图象向上凸;(4)在第一象限,1>α时,1>x ,底数越大,图象越在上方;10<<x ,底数越大,图象越在上方;10<<α时,1>x ,底数越大,图象越在上方;10<<x ,底数越大,图象越在上方;0<α:(1)图象过点(1,1);(2)函数αx y =在),0(+∞上为减增函数;(3)在第一象限,图象向上与y 轴无限接近,向右与x 轴无限接近,且图象向下凸;(4)在第一象限,1>x ,底数越大,图象越在上方;10<<x ,底数越大,图象越在上方;三、小结幂函数的概念;幂函数y=x ,y=x 2,y=X ³,y=x-1,y=21x 的图象,结合图象,了解幂函数图象的变化情况和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数
【教学目标】
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质。
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性。
【教学重难点】
重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质
【教学过程】
一、引入新知
阅读教材的具体函数,思考下列问题。
(1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论
上述的问题涉及到的函数,都是形如:y x α=,其中x 是自变量,α是常数。
二、探究新知
1.幂函数的定义
一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数。
如112
3
4
,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等
函数。
2.研究函数的图像
(1)y x =(2)1
2y x = (3)2y x = (4)1y x -= (5)3y x = 提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像。
教师注意引导学
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升)。
特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,
2
上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数。
在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴。
三、例题:
1
.证明幂函数()[0,]f x =+∞上是增函数 证:任取121,[0,),x x x ∈+∞且<2x 则
12()()f x f x -=
因12x x -<0
所以12()()f x f x <
,即()[0,]f x =+∞上是增函数。
思考:
我们知道,若12()
()0,1()
f x y f x f x =><若
得12()()f x f x <
,你能否用这种作比的方法来证明()[0,]f x =+∞上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小 (1)1
1
662,3 (2)3
3
22
(1),(0)x x x +>(3)2
2
244(4),4a --
+
分析:利用幂函数的单调性来比较大小。
四、课堂练习
1.画出2
3
y x =的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性。
五、归纳小结:
提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗?。