高中数学幂函数考点及经典例题题型突破

合集下载

幂函数题型及解析

幂函数题型及解析

幂函数题型及解析1.(1)下列函数是幂函数的是________y=x 2,y=()x ,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x (a >1)分析:由幂函数的定义直接进行判断知甩给的函数中是幂函数的是y=x 2和y=x .解:由幂函数的定义知,y=x 2,y=()x ,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x (a >1),七个函数中是幂函数的是y=x 2和y=x ,(2)①y=x 2+1; ②y=2x ; ③y=; ④y=(x ﹣1)2; ⑤y=x 5; ⑥y=x x+1分析:根据幂函数的定义,对以下函数进行判断即可.解:根据幂函数y=x α,α∈R 的定义知,①y=x 2+1不是幂函数,②y=2x 不是幂函数,③y==x ﹣2是幂函数,④y=(x ﹣1)2不是幂函数,⑤y=x 5是幂函数,⑥y=x x+1不是幂函数;综上是幂函数的为③⑤2.已知幂函数y=f (x )的图象过点(9,).(1)求f (x )的解析式;(2)求f (25)的值;(3)若f (a )=b (a ,b >0),则a 用b 可表示成什么?分析:(1)设出幂函数f (x )的解析式,根据图象过点(9,),求出函数解析式;(2)根据函数的解析式求出f (25)的值;(3)根据函数的解析式求出a 与b 的关系.解:(1)设幂函数f (x )=x t ,∵图象过点(9,),∴;即32t =3﹣1,∴,∴;(2)∵f (x )=,∴f (25)=25-0.5===;(3)∵f (a )=a -0.5=b ,∴a -0.5=b ,∴a ﹣1=b 2,∴a=. 3.比较下列各组中两个值的大小(1)1.5,1.7;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--;(4)()﹣0.24与41)65(-; (5)3.10.5,3.12.3;(6)()﹣1.5,()﹣1.8;(7)0.62,0.63;(8)()﹣0.3,()﹣0.24分析:由幂函数的单调性,有的需要结合指数函数的性质,逐个题目比较可得.解:(1)∵幂函数y=53x 在(0,+∞)单调递增,∴535.1<537.1;(2)∵幂函数y=x 1.5在(0,+∞)单调递增,∴0.71.5>0.61.5;(3))∵幂函数y=32-x在(﹣∞,0)单调递增,∴32)2.1(-->32)25.1(--;(4)∵0<<1,﹣0.24,∴()0.24<41)65(-;(5)3.10.5<3.12.3;(6)()﹣1.5>()﹣1.8;(7)0.62>0.63;(8)()﹣0.3<()﹣0.24 4.若函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,求m 的值②已知幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,当x ∈(0,+∞)时为减函数,求幂函数分析:根据幂函数的性质,列出不等式组,求出m 的值即可解:①∵函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,∴m 2+2m-2=1且m >0;解得m=1②解:∵幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,∴m 2﹣m ﹣1=1,解得m=2,或m=﹣1;又x ∈(0,+∞)时y 为减函数,∴当m=2时,m 2-2m-3=﹣3,幂函数为y=x -3,满足题意;当m=-1时,m 2-2m-3=0,幂函数为y=x 0,不满足题意;综上幂函数y=x -35.幂函数y=(m 2﹣3m+3)x m 是偶函数,求m 的值分析:根据幂函数的定义先求出m 的值,结合幂函数是偶函数进行判断即可.解:∵函数是幂函数,∴m 2﹣3m+3=1,即m 2﹣3m+2=0,则m=1或m=2,当m=1时,y=x 是奇函数,不满足条件.当m=2时,y=x 2是偶函数,满足条件,即m=26.求函数y=32-x 的定义域和值域.分析:本题考察幂函数的概念及性质,把y=32-x化为根式的形式,容易写出它的定义域和值域.解:∵函数y=32-x = ,∴x ≠0,且y >0;∴函数y 的定义域是{x|x ≠0},值域是{y|y >0}7.求函数y=0.2﹣x2﹣3x+4的定义域、值域和单调区间.分析:根据二次函数以及指数函数的性质求出函数的单调性和值域即可.解:令f (x )=﹣x 2﹣3x+4=﹣(x 2+3x+)+=﹣+,∴f (x )在(﹣∞,﹣)递增,在(﹣,+∞)递减,∴函数y=0.2﹣x2﹣3x+4在(﹣∞,﹣)递减,在(﹣,+∞)递增,∴y min ==,∴函数y=0.2﹣x2﹣3x+4的定义域是R 、值域是[,+∞),在(﹣∞,﹣)递减,在(﹣,+∞)递增 8.已知幂函数y=234m m x --(m ∈Z )的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象 分析:由题意得4-3m-m 2>0解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,故m=0,﹣1,﹣2,﹣3,即可画出图象.解:由题意得4﹣3m ﹣m 2>0,即有(m+4)(m ﹣1)<0,解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,所以m=0,﹣1,﹣2,﹣3,m=﹣3,y=x 4,m=﹣2,y=x 6,m=﹣1,y=x 6,m=0,y=x 4其图象如图:9.已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数图象.分析:由题意可得,可得幂指数n 2﹣2n ﹣3为负数,且为偶数.由于当n=1时,幂指数n2﹣2n﹣3=﹣4,满足条件,可得函数的解析式,从而得到函数的图象.解:已知函数y=(n∈Z)的图象与两坐标轴都无公共点,且其图象关于y轴对称,可得幂指数n2﹣2n ﹣3为非正数,且为偶数.由于当n=1时,幂指数n2﹣2n﹣3=﹣4,满足条件,当n=3时,n2﹣2n﹣3=0,满足条件故函数为y=x﹣4,或y=x0,它的图象如图所示:10.已知幂函数y=x m﹣2(m∈N)的图象与x,y轴都无交点,且关于y轴对称,求m的值,并画出它的图象.分析:由题意利用幂函数的性质可得m∈N,m﹣2≤0,且m﹣2为偶数,由此求得m的值.解:∵幂函数y=x m﹣2(m∈N)的图象与x,y轴都无交点,且关于y轴对称,∴①m﹣2<0,m﹣2为偶数,故m=0,即幂函数y=x﹣2,它的图象如右图所示.或②m﹣2=0,m=2,此时y=x0,(x≠0),它的图象如图所示11.已知幂函数的图象与x轴,y轴没有交点,且关于y轴对称,求m的值分析:由幂函数的概念与该函数为偶函数的性质可知,m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数,从而可得答案.解:∵幂函数y=(m∈Z)的图象与x轴,y轴没有交点,且关于y轴对称,∴m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数(m∈Z),由m2﹣2m﹣3≤0得:﹣1≤m≤3,又m∈Z,∴m=﹣1,0,1,2,3.当m=﹣1时,m2﹣2m﹣3=1+2﹣3=0,为偶数,符合题意;当m=0时,m2﹣2m﹣3=﹣3,为奇数,不符合题意;当m=1时,m2﹣2m﹣3=1﹣2﹣3=﹣4,为偶数,符合题意;当m=2时,m2﹣2m﹣3=4﹣4﹣3=﹣3,为奇数,不符合题意;当m=3时,m2﹣2m﹣3=9﹣6﹣3=0,为偶数,符合题意.综上所述,m=﹣1,1,312. 已知幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,求m的值,并且画出它的图象.分析:由题意知,m2﹣2m﹣3<0,且m2﹣2m﹣3为奇数,解此不等式组可得m的值.解:幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,∴m2﹣2m﹣3<0,且m2﹣2m﹣3为奇数,即﹣1<m<3 且m2﹣2m﹣3 为奇数,∴m=0或2,∴y=x﹣3,其图象为:13.若实数m满足不等式0.642m+3<1.253m,求实数m的取值范围分析:不等式0.642m+3<1.253m,即为()﹣(4m+6)<()3m,再由y=()x在R上递增,得到﹣(4m+6)<3m,解出即可.解:不等式0.642m+3<1.253m,即为0.82(2m+3)<()3m,即有()﹣(4m+6)<()3m,由于y=()x在R上递增,则﹣(4m+6)<3m,解得,m>﹣,故实数m的取值范围是(﹣,+∞)14.已知幂函数.(1)试求该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点,求m的值并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.分析:(1)将指数因式分解,据指数的形式得到定义域,利用幂函数的性质知单调性(2)将点的坐标代入列出方程解得m,利用函数的单调性去掉法则f,列出不等式解得,注意定义域.解:(1)∵m2+m=m(m+1),m∈N*∴m2+m为偶数,∴x≥0,所以函数定义域为[0,+∞)由幂函数的性质知:其函数在定义域内单调递增.(2)依题意得:,∴,∴m=1(m∈N*)由已知得:,∴,故a的取值范围为:Welcome To Download !!!欢迎您的下载,资料仅供参考!。

微专题30幂函数15种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题30幂函数15种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题30 幂函数15种常考题型总结题型1 幂函数的概念辨析题型2 求幂函数的解析式或值题型3 根据函数是幂函数求参数值题型4 幂函数的定义域问题题型5 幂函数的值域问题题型6 幂函数的图象及应用题型7 幂函数的图象过定点问题题型8 判断幂函数的单调性题型9 判断与幂函数相关的复合函数的单调性题型10 由幂函数的单调性求参数题型11比较幂值的大小题型12 利用幂函数的单调性解不等式题型13 幂函数的奇偶性的应用题型14 幂函数的单调性和奇偶性的综合应用题型15 幂函数性质的综合应用1、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.幂函数的特征:(1)x α的系数是1;(2)x α的底数x 是自变量;(3)x α的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y =(2x )α,y =2x 5,y =x α+6等的函数都不是幂函数.2、五个幂函数的图象与性质(1)在同一平面直角坐标系内函数(1)y =x ;(2)y =12x;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.注:第一象限一定有幂函数的图象,第四象限一定没有幂函数的图象.(2)五个幂函数的性质y=xy=x 2y =x 3y =12xy =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞)上增,在(-∞,0]上减增增在(0,+∞)上减,在(-∞,0)上减3、一般幂函数的图象特征(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上单调递增.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数在区间(0,+∞)上单调递减.(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.4、幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式.5、求幂函数的定义域和值域的方法幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:(1)当幂指数a 取正整数时,定义域为R ,当a 为正偶数时,值域为[0,)+¥;当a 为奇数时,值域为R .(2)当幂指数a 取零或负整数时,定义域为(,0)(0,)-¥+¥U ,当0a =时,值域为{}1;当a 为负偶数时,值域为(0,)+¥;当a 为负奇数时,值域为{}0y y ¹.(3)当幂指数a 取分数时,可以先化为根式,再利用根式有意义求定义域和值域.6、幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.7、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.8、解决幂函数图象问题应把握的原则(1)依据图象高低判断幂指数的大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =12y x=或y =x 3)来判断.9、比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”.10、利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型1 幂函数的概念辨析【例1】下列函数是幂函数的是( )A .31y x =B .2x y =C .22y x =D .1y x -=-【答案】A【解析】由幂函数的定义,形如y x a =,R a Î叫幂函数,对A ,331y x x-==,故A 正确;B ,C ,D 均不符合.故选:A .【变式1】下列函数中幂函数的是( )A .3y x =B .22y x =+C .()21y x =+D .y =【答案】D【分析】根据幂函数的定义直接得出结果.【详解】A :函数3y x =为一次函数,故A 不符合题意;B :函数22y x =+为二次函数,故B 不符合题意;C :函数22(1)21y x x x =+=++为二次函数,故C 不符合题意;D :函数12y x ==为幂函数,故D 符合题意.故选:D【变式2】现有下列函数:①3y x =;②24y x =;③51y x =+;④()21y x =-;⑤y x =,其中幂函数的个数为( )A .4B .3C .2D .1【答案】C【分析】由幂函数的定义即可求解.【详解】由于幂函数的一般表达式为:(),0y x aa =¹;逐一对比可知题述中的幂函数有①3y x =;⑤y x =共两个.故选:C.题型2 求幂函数的解析式或值【例2】已知幂函数()f x 的图象过点æççè,则14f æö=ç÷èø.【答案】8【分析】设出解析式,代入点的坐标,求出()32f x x -=,再代入求值即可.【详解】令()f x x a=,由题意得2a =,即132222222a -==,解得32a =-,故()32f x x -=,则()323212284f --æö===ç÷èø.故答案为:8【变式1】函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-【答案】C【解析】由幂函数的定义知2271k k --=,即2280k k --=,解得4k =或2k =-.故选:C【变式2】设函数()121,02,0xx x f x x ìï+>=íï£î,则()(4)f f -= .【答案】54【分析】根据分段函数的知识求得正确答案.【详解】()442f --=,()()()144225(4)221214f f f ----==+=+=.故答案为:54【变式3】已知幂函数()f x 满足(6)4(2)f f =,则13f æöç÷èø的值为( )A .2B .14C .14-D .2-【答案】B【分析】设出幂函数的解析式,根据已知,求出参数的关系式,即可计算作答.【详解】依题意,设()f x x a=,则(6)634(2)2f f aa a ===,所以1111()()3334f a a ===.故选:B【变式4】若函数()log 238a y x =-+(0a >且1a ¹)的图象恒过点P ,且点P 在幂函数()f x 的图象上,则()4f = .【答案】64【分析】先找到定点P 的坐标,通过P 点坐标求解幂函数()f x x a=的解析式,从而可求()4f .【详解】对于函数log 238ay x =-+(),令231x -=,解得2x =,此时8y =,因此函数log 238ay x =-+()的图象恒过定点()2,8P ,设幂函数()f x x a=,P 在幂函数()f x 的图象上,82a \=,解得3a =.()3f x x \=.则()34464==f .故答案为:64题型3 根据函数是幂函数求参数值【例3】已知幂函数()(2)n f x m x =+的图象经过点(4,2),则m n -=( )A .3-B .52-C .2-D .32-【答案】D【分析】根据幂函数的定义求解即可》【详解】依题意可得21m +=,所以1m =-,又()nf x x =的图象经过点()4,2,所以42n =,解得12n =,所以13122m n -=--=-.故选:D.【变式1】己知幂函数()(1)af x k x =-×的图象过点12æççè,则()f k = .【分析】先根据幂函数的定义及所过的点求出函数解析式,进而可得出答案.【详解】因为函数()(1)a f x k x =-×是幂函数,所以11k -=,解得2k =,又幂函数()a f x x =的图象过点12æççè,所以12aæö=ç÷èø12a =,所以12()f x x =,所以()()2f k f ==【变式2】已知幂函数()f x k x a=×的图象过点()3,9,则k a +=( )A .5B .4C .3D .2【答案】C【分析】根据幂函数的定义,求得1k =,再由()39f =,求得2a =,即可求解.【详解】由幂函数的定义,可得1k =,又由()39f =,可得39a =,解得2a =,所以3k a +=.故选:C.【变式3】“4m =”是“()22()33m f x m m x +=--是幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】运用幂函数定义及集合包含关系即可求得结果.【详解】因为()()2233m f x m m x +=--是幂函数,所以2331m m --=,解得4m =或1m =-,故“4m =”是“()()2233m f x m m x +=--是幂函数”的充分不必要条件.故选:A.题型4 幂函数的定义域问题【例4】下列函数中定义域为R 的是( )A .12y x =B .54y x =C .23y x =D .13y x -=【答案】C【分析】将分数指数幂化为根式,再根据幂函数的图像与性质即可得到答案.【详解】12y x ==[0,)+¥,故A 错误;54y x ==[0,)+¥,故B 错误;23y x ==R ,故C 正确;13y x-=={0}x x ¹∣,故D 错误,故选:C.【变式1】函数()0=f x x 的定义域是( )A .(],2-¥B .()0,2C .()(),00,2-¥U D .()(],00,2-¥È【答案】C【分析】根据函数的性质,被开偶次方根的数大于等于0,分母不能为0,0的0次幂没有意义等,列出不等式组,解之即可求解.【详解】要使函数()0=f x x 有意义,则有200x x ->ìí¹î,解得:2x <且0x ¹,所以函数的定义域为(,0)(0,2)-¥U ,故选:C .【变式2】函数()112f x x x -=+的定义域为( )A .(),-¥+¥B .()(),00,¥-+¥UC .[)0,¥+D .()0,¥+【答案】D【分析】化简函数解析式,根据函数解析式有意义可得出关于x 的不等式组,由此可解得原函数的定义域.【详解】因为()1121f x x x x -=+=,则00x x ¹ìí³î,可得0x >,故函数()f x 的定义域为()0,¥+.故选:D.【变式3】已知幂函数()y f x =的图象过点()4,2,则()112f x -的定义域为 .【答案】1(,)2-¥【分析】首先求幂函数的解析式,再求函数的定义域,根据复合函数的形式,求函数的定义域.【详解】∵()y f x x a==的图象过点()4,2,∴()f x =()112f x =-x 应该满足:120x ->,即12x <,∴()112f x -的定义域为1,2æö-¥ç÷èø.故答案为:1,2æö-¥ç÷èø题型5 幂函数的值域问题【例5】下列函数中,值域为()0,¥+的是( )A .()f xB .()1(0)f x x x x=+>C .()f x =D .()11(1)f x x x=->【答案】C【分析】根据函数的定义域、幂函数的性质、以及基本不等式可直接求得选项中各函数的值域进行判断即可.【详解】由已知()f x [)0,¥+,故A 错误;()1021x f x x x x >\=+³== ,,时,等号成立,所以()1(0)f x x x x =+>的值域是[)2,+¥,B 错误;()f x =因为定义域为()1,x ¥Î-+0> ,函数值域为(0,)+¥,故C 正确;1()1(1)f x x x =->,()10,1x Î,()11,0x -Î-,所以()()0,1f x Î,故D 错误.故选:C.【变式1】下列四个幂函数:①3y x -=;②2y x -=;③23y x -=;④32y x =的值域为同一区间的是 .(只需填写正确答案的序号)【答案】②③【解析】对于①,331y x x -==,则其值域为{}0y y ¹;对于②,221y x x-==,则其值域为{}0y y >;对于③,23y x-==,则其值域为{}0y y >,对于④,332y x ==,则其值域为{}0y y ³.综上符合题意的是②③.【变式2】在下列函数中,定义域和值域不同的是( )A .13y x =B .12y x =C .53y x =D .23y x =【答案】D【解析】由13y x ==x R Î,R y Î,定义域、值域相同;由12y x ==[0,)x Î+¥,[0,)y Î+¥,定义域、值域相同;由53y x ==可知,x R Î,,定义域、值域相同R y Î;由23y x ==x R Î,[0,)y Î+¥,定义域、值域不相同.故选:D【变式3】函数213324y x x =++,其中8x -…,则其值域为.【答案】[)3,+¥/()3y y ³【分析】利用换元法将函数化为2224(1)3y t t t =++=++,结合二次函数的性质即可得出结果.【详解】设13t x =,则2224(1)3y t t t =++=++.因为8x -…,所以2t -…. 当1t =-时,min 3y =.所以函数的值域为[3)+¥,.故答案为:[3)+¥,【变式4】已知函数())2()x a f x x x a ì³ï=í<ïî,若函数()f x 的值域为R ,则实数a 的取值范围为( )A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-【答案】D【分析】求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.【详解】函数y =[,)a +¥上单调递减,其函数值集合为(,-¥,当0a >时,2y x =的取值集合为[0,)+¥,()f x 的值域(,[0,)R -¥È+¥¹,不符合题意,当0a £时,函数2y x =在(,)a -¥上单调递减,其函数值集合为2(,)a +¥,因函数()f x 的值域为R ,则有2a ³,解得10a -££,所以实数a 的取值范围为[1,0]-.故选:D题型6 幂函数的图象及应用【例6】图中1C 、2C 、3C 为三个幂函数y x a =在第一象限内的图象,则解析式中指数a 的值依次可以是( )A .12、3、1-B .1-、3、12C .12、1-、3D .1-、12、3【答案】D【分析】利用特值验证即可区分出三个幂函数图象分别对应的指数a 的值.【详解】在题给坐标系中,作直线12x =,分别交曲线321,,C C C 于A 、B 、C 三点则A B C y y y <<,又1312111122822-æöæöæö=<=<=ç÷ç÷ç÷èøèøèø则点A 在幂函数3y x =图像上,点B 在幂函数12y x =图像上,点C 在幂函数1y x -=图像上,则曲线123,,C C C 对应的指数分别为11,,32-故选:D【变式1】如图的曲线是幂函数n y x =在第一象限内的图象.已知n 分别取112,,,222--四个值,与曲线1234C C C C 、、、相应的n 依次为( )A .112,,,222--B .112,2,,22--C .11,,2,222--D .112,,2,22--【答案】A【解析】由幂函数的单调性可知曲线1234C C C C 、、、相应的n 应为112,,,222--.故选:A【变式2】幂函数2y x -=的大致图象是( )A .B .C .D .【答案】C【分析】首先求出函数的定义域,即可判断函数的奇偶性,再判断函数的单调性,即可得解.【详解】幂函数()221y f x x x -===定义域为{}|0x x ¹,且()()()2211f x f x x x -===-,所以()2y f x x -==为偶函数,函数图象关于y 轴对称,又当()0,x Î+¥时()2y f x x -==单调递减,则()2y f x x -==在(),0¥-上单调递增,故符合题意的只有C.故选:C【变式3】下面给出4个幂函数的图像,则图像与函数大致对应的是( )A .①3y x =,②2y x =,③12y x =,④1y x -=B .①2y x =,②13y x =,③12y x =,④1y x -=C .①2y x =,②3y x =,③12y x =,④1y x -=D .①13y x =,②12y x =,③2y x =,④1y x -=【答案】A【分析】根据幂函数的图像特征,对照四个选项一一验证,即可得到答案.【详解】函数3y x =为奇函数且定义域为R ,该函数图像应与①对应;函数20y x =³,且该函数是偶函数,其图像关于y 轴对称,该函数图像应与②对应;12y x ==[)0,¥+,该函数图像应与③对应;11y x x-==,其图像应与④对应.故选:A .【变式4】函数()54f x x =的图像大致为( )A .B .C .D .【答案】C【解析】()54f x x =的定义域为R ,且()()5544f x x x f x -=-==,故()54f x x =为偶函数,排除AB ,因为514>,故函数在()0,¥+上增长速度越来越快,为下凸函数,C 正确,D 错误.故选:C 【变式5】已知函数()02,0x f x x x³ï=í<ïî,若()()g x f x =-,则函数()g x 的图象是( )A . B .C .D .【答案】C【解析】作出函数()00x f x ³=<的图象如下图所示:因为()()g x f x =-,则将函数()f x 的图象关于x 轴对称,可得出函数()g x 的图象,如下图所示:故选:C.【变式6】【多选】函数()241f x ax x =++与()ag x x =在同一直角坐标系中的图象可能为( )A .B .C .D .【答案】ABC【分析】根据各选项中二次函数图象特征确定a 的正负,再观察幂函数图象判断即得.【详解】对于A ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如2a =,A 可能;对于B ,二次函数开口向下,则0a <,此时存在()ag x x =与图中符合,如1a =-,B 可能;对于C ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如12a =,C 可能;对于D ,二次函数开口向上,则0a >,此时()ag x x =在()0,¥+为增函数,不符合,D 不可能.故选:ABC【变式7】【多选】下列幂函数中满足条件()()()121212022f x f x x x f x x ++æö<<<ç÷èø的函数是( )A .()f x x =B .()2f x x=C .()f x =D .()1f x x=【答案】BD【分析】由题意知,当0x >时,()f x 的图象是凹形曲线,据此分析各选项中的函数图像是否满足题意即可.【详解】由题意知,当0x >时,()f x 的图象是凹形曲线.对于A,函数()f x x =的图象是一条直线,则当120x x <<时,有()()121222f x f x x x f ++æö=ç÷èø,不满足题意;对于B,函数()2f x x =的图象是凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意;对于C,函数()f x =,则当120x x <<时,有()()121222f x f x x x f ++æö>ç÷èø,不满足题意;对于D,在第一象限内,函数()1f x x =的图象是一条凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意.故选:BD.题型7 幂函数的图象过定点问题【例7】函数()2y x aa =-为常数的图象过定点.【答案】()1,1-【分析】利用11a =求得正确答案.【详解】当1x =时,121y a =-=-,所以定点为()1,1-.故答案为:()1,1-【变式1】【多选】下列四个函数中过相同定点的函数有( )A .2y ax a =+-B .1a y x =+C .11(0,1)x y a a a -=+>¹D .log (2)1(0,1)a y x a a =-+>¹【答案】ABC【分析】根据函数解析式,结合幂指对函数的性质确定各函数所过的定点坐标,即可判断过相同定点的函数.【详解】A :(1)2y a x =-+必过(1,2);B :1a y x =+,由11a =知函数必过(1,2);C :11(0,1)x y a a a -=+>¹,由01a =知函数必过(1,2);D :log (2)1(0,1)a y x a a =-+>¹,由log 10a =知函数必过(1,1);∴A 、B 、C 过相同的定点.故选:ABC.【变式2】已知函数y x a =的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中0m >,0n >,则11m n+的最小值为 .【答案】4【解析】函数y x a =的图象恒过定点(1,1)A ,所以1m n += ,因为,0m n >,所以1111()()224m n m n m n m n n m +=++=++=+=,当12m n ==时,11m n+的最小值为4.【变式3】已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x bf x mm m -=->¹的图象所经过的定点,则b 的值等于( )A .12±B .C .2D .2±【答案】B【分析】先根据幂函数定义得1a =,再确定()f x 的图像所经过的定点为1,2b æöç÷èø,代入()g x 解得b 的值.【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =;函数1()(0,1)2x bf x m m m -=->¹,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b æöç÷èø,所以1()2g b =,即212b =,解得:b =,故选:B.【变式4】若函数()y f x =与()y g x =图象关于y x =对称,且()23af x x +=+,则()yg x =必过定点( )A .()4,0B .()4,1C .()4,2D .()4,3【答案】D【解析】()23af x x +=+ ,()()23af x x \=-+,()()33234af \=-+=,所以,函数()y f x =的图象过定点()3,4,又 函数()y f x =与()y g x =图象关于y x =对称,因此,函数()y g x =必过定点()4,3.故选:D.题型8 判断幂函数的单调性【例8】【多选】下列函数中,在区间()0,¥+单调递减的是( )A .21y x =B .()ln 1y x =+C .1y x x=+D .2xy -=【答案】AD【分析】由复合函数的单调性、指数函数、幂函数及对勾函数单调性判断各个选项即可.【详解】对于A 项,由幂函数性质知,221y x x-==在(0,)+¥上单调递减,故A 项正确;对于B 项,令1t x =+(0x >),则ln y t =(1t >),因为1t x =+在(0,)+¥上单调递增,ln y t =在在(1,)+¥上单调递增,所以ln(1)y x =+在(0,)+¥上单调递增,故B 项不成立;对于C 项,由对勾函数性质可知,1y x x=+在(0,1)上单调递减,在(1,)+¥上单调递增,故C 项不成立;对于D 项,因为12(2xx y -==,所以2x y -=在(0,)+¥上单调递减,故D 项正确.故选:AD.【变式1】【多选】下列函数中,满足“x "ÎR ,()()0f x f x --=,且1x ",2(,0)x Î-¥,都有1212()()0f x f x x x ->-”的是( )A .()51f x x =+B .3()f x x=-C .4()f x x=D .2()2022f x x =-+【答案】BD【分析】由题意得函数()f x 是偶函数,()f x 在(),0¥-上单调递增,在(0,+∞)上单调递减,然后逐个分析判断即可.【详解】由()(),0x f x f x "Î--=R ,知函数()f x 是偶函数,由()12,,0x x ¥"Î-,都有()()12120f x f x x x ->-,知()f x 在(),0¥-上单调递增,所以()f x 在(0,+∞)上单调递减.对于A :()51f x x =+不满足为偶函数,故A 错误;对于B:()333,0,0x x f x x x x ì£=-=í->î,符合题意,故B 正确;对于C :4()f x x=不满足为偶函数,故C 错误;对于D:()22022f x x =-+符合题意.故选:BD.题型9 判断与幂函数相关的复合函数的单调性A .[)2,+¥B .[)4,+¥C .(],2-¥D .(],0-¥【答案】B【分析】求出函数的定义域,利用复合函数的单调性即可判断.【详解】令24t x x =-,则y =由240x x -³,解得4x ³或0x £,故函数y ={0x x £或x ≥4}.又函数24t x x =-在(],0-¥上单调递减,在[)4,+¥上单调递增,y 在[)0,+¥上单调递增,则函数y =[)4,+¥上单调递增.故选:B.【变式1】函数y =的单调减区间为 ;【答案】(],5-¥-【分析】先求解原函数的定义域,然后根据复合函数单调性分析求解即可.【详解】解:令245u x x =+-,则y =y =与245u x x =+-复合而成的函数. 令2450u x x =+-³,得5x £-或1x ³.易知245u x x =+-在(],5-¥-上是减函数,在[)1,+¥上是增函数,而y =在[)0,¥+上是增函数,所以y =(],5-¥-.故答案为:(],5-¥-.【变式2】已知幂函数()f x 的图象过点æççè,则函数()22y f x x =+的单调递增区间为( )A .(),2¥--B .(),1¥--C .(0,+∞)D .(1,+∞)【答案】A【分析】利用待定系数法求出幂函数的解析式,然后利用复合函数的单调性得出结果.【详解】设()f x x a=,因为()f x 的图象过点æççè,所以2a=,解得12a =-,即()12f x x -=,可得()f x 在(0,+∞)上单调递减,则函数()()122222y f x x x x -=+=+=,由220x x +>,解得2x <-或0x >,则函数22y x x =+在(),2¥--上单调递减,在(0,+∞)上单调递增,所以函数()22y f x x =+的单调递增区间为(),2¥--.故选:A.【变式3】【多选】已知幂函数()n f x x =的图像经过点(9,3),则下列结论正确的有( )A .()f x 为增函数B .若120x x >>,则()()121222f x f x x x f ++æö>ç÷èøC .()f x 为偶函数D .若1x >,则()1f x >【答案】ABD【分析】根据幂函数经过点(9,3),求出幂函数的解析式,利用幂函数的性质可直接判断选 项A ,C ,D 正误;对于选项B ,根据函数解析式分别表示出()()1212(),22f x f x x x f ++,再利用不等式的性质比较大小即可.【详解】解:由幂函数()n f x x =的图像经过点(9,3),得93n =,所以12n =.12()f x x ==[0,)+¥,对于A 选项:因为102>,由幂函数的性质得A 选项正确;对于B 选项:若120x x >>,则12(2x xf +()()12221212[([]222f x f x x x x x f +++-=21204x x -=>(),所以()()122212[()][]22f x f x x xf ++>,又()()1212()0,022f x f x x x f ++=>=>,所以()()1212(22f x f x x xf ++>,故B 选项正确;对于C 选项:由于定义域不关于数字0对称,故C 选项不正确;对于D 选项:因为()f x 为增函数,若1x >,则()(1)1f x f >=,故D 选项正确;故选:ABD.题型10 由幂函数的单调性求参数【例10】已知幂函数()()12232mf x m m x -=-满足()()23f f <,则m =.【答案】13-【分析】根据幂函数的定义,得2321m m -=,解得1m =或13m =-,分别代入()f x 判断函数单调性即可.【详解】由幂函数的定义可知,2321m m -=,即23210m m --=,解得1m =或13m =-.当1m =时,()12f x x -=在()0,¥+上单调递减,不满足()()23f f <;当13m =-时,()56f x x =在()0,¥+上单调递增,满足()()23f f <.综上,13m =-.故答案为:13-.【变式1】幂函数()()2345m f x m m x -=--在()0,¥+上为减函数,则m 的值为.【答案】2-【分析】根据幂函数定义求出m 的值,再利用单调性进行检验即得.【详解】因()()2345m f x m m x -=--是幂函数,则25=1m m --,解得:3m =或2m =-.当3m =时,5()f x x =,此时函数在()0,¥+上为增函数,舍去;当2m =-时,10()f x x -=,此时函数在()0,¥+上为减函数,符合题意.故答案为:2-.【变式2】已知幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,则k = .【答案】1【分析】根据幂函数的定义及性质得到方程(不等式)组,解得即可.【详解】因为幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,所以221103k k k ì-=ïí->ïî,解得1k =.故答案为:1【变式3】已知2311,,,,2,33422a ìüÎ---íýîþ,若幂函数()f x x a=在区间(),0¥-上单调递增,且其图像不过坐标原点,则a = .【答案】23-【分析】根据幂函数的性质分析求解.【详解】因为幂函数图像不过坐标原点,则0a £,当23a =-,()23f x x -==在区间(),0¥-上单调递增,符合题意;当34a =-,()34-=f x x ()0,¥+,不合题意;当12a =-,()12f x x -==的定义域为()0,¥+,不合题意;综上所述:23a =-.故答案为:23-.【变式4】已知幂函数()()21mf x m m x =+-在()0,¥+上是减函数,则11mx +<的解集为( )A .()0,1B .()(),01,-¥È+¥C .()2,0-D .()0,2【答案】A【分析】根据()f x 是幂函数且在()0,¥+上是减函数求出m 的值,再将所求不等式两边同时平方求出x 的范围.【详解】 ()()21mf x m m x =+-是幂函数,\211m m +-=,解得1m =或2m =-,当1m =时,()f x x =不满足()f x 在()0,¥+上是减函数,当2m =-时,()2f x x -=满足()f x 在()0,¥+上是减函数,\2m =-,将不等式211x -+<的两边同时平方得,24411x x -+<,解得01x <<,\11mx +<的解集为()0,1.故选:A.【变式5】已知函数2295,1()1,1a x ax x f x x x -ì-+£=í+>î,是R 上的减函数,则a 的取值范围是( )A .92,2éö÷êëøB .94,2éö÷êëøC .[]2,4D .(]9,2,2æù-¥+¥çúèûU 【答案】C【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a a a a -ì³ïï-<íï-´+³+ïî,解得24a ££,所以a 的取值范围是[]2,4故选:C题型11比较幂值的大小【例11】设232555322555a b c æöæöæö===ç÷ç÷ç÷èøèøèø,,,则,,a b c 大小关系是 .【答案】a c b>>【分析】抓住同底与同指构造函数,利用单调性比较大小.【详解】因为()25f x x =在()0,¥+单调增,所以22553255æöæö>ç÷ç÷èøèø,即a c >,因为()25xg x æö=ç÷èø在(),-¥+¥单调减,所以32552255æöæö<ç÷ç÷èøèø,即,c b >综上,a c b >>.故答案为:a c b >>.【变式1】设 1.3 1.4 1.40.9,0.9,0.7a b c ===,则下列不等式中正确的是( )A .a b c <<B .c b a <<C .b a c <<D .c<a<b【答案】B【分析】利用指数函数和幂函数的性质求解即可.【详解】设()0.9xf x =,则由指数函数()0.9xf x =在R 上单调递减,得()() 1.3 1.41.3 1.40.90.9f f a b >Þ=>=,设() 1.4h x x =,则幂函数() 1.4h x x =在()0,¥+上单调递增,得()()1.41.40.90.90.70.7h b c h ==>==,所以a b c >>.故选:B【变式2】设21log 3a =,1312b æö=ç÷èø,1213c æö=ç÷èø,则( )A .c b a <<B .b a c <<C .a b c <<D .a c b<<【答案】D【分析】由对数函数、指数函数以及幂函数的单调性即可比较大小.【详解】2log x y = 在()0,+¥上是增函数,221log log 103a \=<=,12xy æö=ç÷èø在R 是减函数,12y x =在()0,¥+上是增函数,1113221110223b c æöæöæö=>>=>ç÷ç÷ç÷èøèøèø,a c b \<<.故选:D.题型12 利用幂函数的单调性解不等式【例12】不等式()()2233213x x +<-的解为 .【答案】24,3æö-ç÷èø【分析】根据幂函数的性质确定幂函数()23f x x =的奇偶性与单调性即可解不等式.【详解】解:幂函数()23f x x ==R ,且函数在[)0,¥+上单调递增,又()()f x f x -===,则()f x 为偶函数,所以()f x 在(),0¥-上单调递减,则由不等式()()2233213x x +<-可得213x x +<-,平方后整理得231080x x +-<,即()()3240x x -+<,解得243x -<<,则不等式的解集为24,3æö-ç÷èø.故答案为:24,3æö-ç÷èø.【变式1】实数a 满足3322(21)(1)a a --->+,则实数a 的取值集合为.【答案】1,22æöç÷èø【分析】首先分析出幂函数32y x -=的定义域和单调性,然后可解出不等式.【详解】32x y -=()0+¥,,且在定义域上单调递减,因为3322(21)(1)a a --->+,所以21010211a a a a ->ìï+>íï-<+î,解得122a <<故答案为:1,22æöç÷èø【变式2】已知幂函数14()f x x =,若(102)(1)f a f a -<+,则a 的取值范围是.【答案】(]3,5【解析】因为14()f x x =的定义域为[)0+,¥,且14()f x x =在[)0+,¥上单调递增,所以由(102)(1)f a f a -<+可得:1021102010a a a a -<+ìï-³íï+³î,解得:35a <£【变式3】已知函数21*()(N )m mf x xm +=Î.若该函数图象经过点 ,满足条件(2)(1)f a f a ->-的实数a 的取值范围是.【答案】31,2éö÷êëø【解析】由已知212m m +=22m m +=,又m 是正整数,故解得1m =,即12()f x x =,函数定义域是[0,)+¥,易知12()f x x =是增函数,所以由(2)(1)f a f a ->-得210a a ->-³,解得312a £<.【变式4】设函数1221,0(),0x x f x x x -ì-<ï=íï>î,如果()01f x >,则0x 的取值范围是 .【答案】()(),11,-¥-È+¥【分析】通过分00x <和00x >两种情况进行讨论,从而可求出0x 的取值范围.【详解】因为1221,0(),0x x f x x x -ì-<ï=íï>î,所以000211x x -<ìí->î或012001x x >ìïíï>î,解得01x <-或01x >,所以0x 的取值范围是()(),11,-¥-È+¥.故答案为:()(),11,-¥-È+¥.题型13 幂函数的奇偶性的应用【例13】已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为.【答案】1【分析】根据幂函数定义和奇偶性直接求解即可.【详解】()f x 为幂函数,2331a a \-+=,解得:1a =或2a =;当1a =时,()2f x x =为偶函数,满足题意;当2a =时,()3f x x =为奇函数,不合题意;综上所述:1a =.故答案为:1.【变式1】若幂函数()()219mf x m m x =+-的图象关于y 轴对称,则m =( )A .5-或4B .5-C .4D .2【答案】C【分析】根据幂函数的定义与性质分析运算.【详解】若幂函数()()219mf x m m x =+-,则2191m m +-=,解得4m =或5m =-,且幂函数()f x 的图象关于y 轴对称,则m 为偶数,故4m =.故选:C .【变式2】幂函数y =223m m x --(m ∈Z )的图象如图所示,则实数m 的值为.【答案】1【分析】根据函数图象可判断单调性,进而可得2230m m --<,m 为整数,由验证是否是偶函数即可求解.【详解】有图象可知:该幂函数在()0+¥,单调递减,所以2230m m --<,解得13m -<<,m Z Î,故m 可取012,,,又因为该函数为偶函数,所以223m m --为偶数,故1m =故答案为:1题型14 幂函数的单调性和奇偶性的综合应用【例14】下列幂函数中,既在区间()0,¥+上递减,又是奇函数的是( ).A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【分析】根据幂函数的奇偶性和单调性依次判断选项即可得到答案.【详解】对选项A ,12y x =在()0,¥+为增函数,故A 错误.对选项B ,13y x =在()0,¥+为增函数,故B 错误.对选项C ,23y x -=在()0,¥+为减函数,设()123321f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()()11332211f x f x x x éùæö-===êúç÷èø-êúëû,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,¥+为减函数,设()11331f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()113311f x f x x x æöæö-==-=-ç÷ç÷-èøèø,所以()f x 为奇函数,故D 正确.故选:D【变式1】已知幂函数()223m m y x m N --*=Î的图象关于y 轴对称,且在()0,¥+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为 .【答案】()23,1,32æö-¥-ç÷èøU 【分析】根据幂函数的单调性和奇偶性得到1m =,代入不等式得到()()1133132a a +<-,根据函数的单调性解得答案.【详解】幂函数()223m m y x m N --*=Î在()0,¥+上单调递减,故2230m m --<,解得13m -<<.*m N Î,故0m =,1,2.当0m =时 ,3y x -=不关于y 轴对称,舍去;当1m =时 ,4y x -=关于y 轴对称,满足;当2m =时 ,3y x -=不关于y 轴对称,舍去;故1m =,()()1133132a a --+<-,函数13y x -=在(),0¥-和()0,¥+上单调递减,故1320a a +>->或0132a a >+>-或1032a a +<<-,解得1a <-或2332a <<.故答案为:()23,1,32æö-¥-ç÷èøU 【变式2】若幂函数()22529m m f x x -++=的图象关于y 轴对称,()f x 解析式的幂的指数为整数, ()f x 在(),0¥-上单调递减,则m =( )A .19B .19或499C .13-D .13-或73【答案】D【分析】由题意知()f x 是偶函数,()f x 在(),0¥-上单调递减,可得22529m m -++为正偶数,再根据22529m m -++的范围可得答案.【详解】由题意知()f x 是偶函数,因为()f x 在(),0¥-上单调递减,所以22529m m -++为正偶数,又222534342(1)999m m m -++=--+£,∴234(1)29m --+=,解得73m =或13-.故选:D .【变式3】函数()2223()1(03,)m m f x m m x m m --=-+££ÎZ 同时满足①对于定义域内的任意实数x ,都有()()f x f x -=;②在(0,)+¥上是减函数,则f 的值为( )A .8B .4C .2D .1【答案】B【分析】由m 的值依次求出223m m --的值,然后根据函数的性质确定m ,得函数解析式,计算函数值.【详解】m ÎZ ,03m ££,0,1,2,3m =,代入223m m --分别是3,4,3,0---,在定义域内()()f x f x -=,即()f x 是偶函数,因此223m m --取值4-或0,2230m m --=时,()f x 在(0,)+¥上不是减函数,只有234-=-满足,此时1m =,4()f x x -=,444f -===.故选:B .【变式4】已知函数()333x x f x x -=+-,若2(2)(54)0f a a f a -+-<,则实数a 的取值范围为( )A .(4)(4)-¥-+¥U ,,B .(41)-,C .(1)(4)-¥-+¥U ,,D .(14)-,【答案】B【分析】首先判断()f x 的奇偶性和单调性,由此化简不等式2(2)(54)0f a a f a -+-<,从而求得a 的取值范围.【详解】()f x 的定义域为R ,()()333x x f x x f x --=-+-=-,所以()f x 为奇函数,()3133x xf x x =+-在R 上递增,由2(2)(54)0f a a f a -+-<得()2(2)(54)45f a a f a f a -<--=-,∴2245a a a -<-,2340a a +-<,()()410a a +-<解得41a -<<.故选:B题型15 幂函数性质的综合应用【例15】已知幂函数213()(22)m f x m m x -=-+.(1)求函数()f x 的解析式;(2)求函数()f x 的定义域、值域;(3)判断()f x 的奇偶性.【答案】(1)2()f x x -=(2)定义域为()(),00,¥-+¥U ,值域为(0,)+¥(3)偶函数【分析】(1)根据幂函数的定义运算求解;(2)根据幂函数解析式求定义域和值域;(3)根据偶函数的定义分析证明.【详解】(1)函数213()(22)m f x m m x -=-+为幂函数,则2221m m -+=,解得1m =,则13132m -=-=-,所以函数2()f x x -=;(2)221()f x x x-==,令20x ¹,解得0x ¹故函数2()f x x -=的定义域为(,0)(0,)A =-¥+¥U ,∵20x >,则21()0f x x =>,故函数2()f x x -=的值域为(0,)+¥;(3)任取x A Î,22()()()f x x x f x ---=-==,所以函数()f x 是定义域上的偶函数.【变式1】已知幂函数()22()55m f x m m x -=-+的图像关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图像;(3)直接写出函数()1g x >的解集.【答案】(1)1()f x x=(2)图像见解析(3)()()1,00,1-U 【分析】(1)利用幂函数的定义求出m 值,再结合其图像性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数与偶函数的对称性作出()g x 的图像.(3)根据(2)中图像特征写出函数()g x 的单调区间.【详解】(1)因为()22()55m f x m m x -=-+是幂函数,所以2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-¥+¥U ,易得()f x 是奇函数,图像关于原点对称,则1m =满足题意;当4m =时,函数2()f x x =,易知()f x 是R 上的偶函数,其图像关于y 轴对称,关于原点不对称;综上:幂函数()f x 的解析式是11()f x x x-==.(2)因为函数()|()1|||g f x x x ==,定义域为(,0)(0,)-¥+¥U ,且()()11g x g x x x-===-,所以()g x 是(,0)(0,)-¥+¥U 上的偶函数,当0x >时,1()g x x=在(0,)+¥上单调递减,其图像是反比例函数1y x =在第一象限的图像,作出函数()g x 在第一象限的图像,再将其关于y 翻折即可得()g x 在定义域上的图像,如图,(3)观察(2)中图像可得,()1g x >的解集为()()1,00,1-U .。

幂函数及其性质知识点总结经典讲义及配套练习

幂函数及其性质知识点总结经典讲义及配套练习

幂函数及其性质相关知识点:1.幂函数的定义一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的性质(1). 恒过点(1,1),且不过第四象限.(2). 当α>0时,幂函数在(0,+∞)上都是增函数;当α<0时,幂函数在(0,+∞)上都是减函数.( 3). 在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小. (4).当α为偶数,y =x α是偶函数;当α为奇数,y =x α是奇函数。

基础训练:1. 下列函数是幂函数的是( )A .y =5xB .y =x 5C .y =5xD .y =(x +1)32.已知函数y =(m 2+2m -2)x m +2+2n -3是幂函数,则m=________,n=_________. 3.已知幂函数f (x )=x α的图象经过点(9,3),则f (100)=________. 4. 下列幂函数在(-∞,0)上为减函数的是( )A .y =xB .y =x 2C .y =x 3D .y =x 125. 下列函数中,定义域为R 的是( )A .y =x -2B .y =x 12C .y =x 2D .y =x -1 6. 函数y =x 53的图象大致是( )7. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x-1C .y =x 2D .y =x 138. 函数y =x -2在区间[12,2]上的值域为________.9. 设α∈{-1,1,12,3},则使y =x α的定义域为R 且为奇函数的所有α的值组成的集合为________.例题精析:例1.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为______________变式训练:幂函数y =x-1及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个“卦限”:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12的图象经过的“卦限”是___________.例2.比较下列各组数的大小:(1)3-52和3.1-52; (2)-8-78和-(19)78;(3)(-23)-23和(-π6)-23; (4)4.125,3.8-23和(-1.9)-35.变式训练:用“>”或“<”填空:(1)(23)12________(34)12;(2)(-23)-1________(-35)-1;(3)(-2.1)37________(-2.2)-37.例3已知幂函数f (x )=(t 3-t +1)x 12(1-4t -t 2)是偶函数,且在(0,+∞)上为增函数,求函数解析式.变式训练:若函数f (x )=(m 2-m -1)x -m +1是幂函数,且在x ∈(0,+∞)上是减函数,求实数m 的取值范围.课后作业:1. 若幂函数f (x )的图象经过点(2,14),则f (12)=________.2.设α∈{-1,1,12,3},则使幂函数y =x α的定义域为R 的所有α的值为_________.3. 幂函数y =f (x )的图象经过点(2,18),则满足f (x )=-27的x 值等于________.4. 函数y =a x -2(a >0且a ≠1,-1≤x ≤1)的值域是[-53,1],则实数a =__________5. 比较下列各组中两个值的大小:(1)1.535与1.635; (2)0.61.3与0.71.3; (3)3.5-23与5.3-23; (4)0.18-0.3与0.15-0.3.6. 设a =(25)35,b =(25)25,c =(35)25,则a ,b ,c 的大小关系是_______________7. 已知函数y =x 23. (1)求定义域; (2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由 图象确定单调区间.8.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的取值范围.9. 点(2,2)与点(-2,-12)分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x )?。

高中数学幂函数与对数函数的相关题型及解题思路

高中数学幂函数与对数函数的相关题型及解题思路

高中数学幂函数与对数函数的相关题型及解题思路一、幂函数的相关题型及解题思路幂函数是高中数学中的重要内容之一,其相关题型多样且涉及面广。

下面将介绍几种常见的幂函数题型及解题思路。

1. 幂函数的定义域和值域问题对于幂函数$f(x) = a^x$,其中$a>0$且$a\neq 1$,其定义域为全体实数集$(-\infty, +\infty)$。

值域则取决于$a$的取值范围。

当$a>1$时,$f(x)$的值域为$(0,+\infty)$;当$0<a<1$时,$f(x)$的值域为$(0, 1)$。

例如,对于函数$y = 2^x$,其定义域为$(-\infty, +\infty)$,值域为$(0, +\infty)$。

2. 幂函数的图像与性质幂函数的图像特点与底数$a$的取值有关。

当$a>1$时,函数图像递增且上升趋势逐渐变缓;当$0<a<1$时,函数图像递减且下降趋势逐渐变缓。

例如,对于函数$y = 2^x$,其图像在坐标系中递增且上升趋势逐渐变缓。

3. 幂函数的性质与变换幂函数具有以下性质:- 幂函数$f(x) = a^x$的导数为$f'(x) = a^x \ln a$。

- 幂函数的反函数为对数函数,即$f^{-1}(x) = \log_a x$。

例如,对于函数$y = 2^x$,其导数为$y' = 2^x \ln 2$,反函数为$y^{-1} = \log_2 x$。

二、对数函数的相关题型及解题思路对数函数是幂函数的反函数,也是高中数学中的重要内容。

下面将介绍几种常见的对数函数题型及解题思路。

1. 对数函数的定义域和值域问题对于对数函数$f(x) = \log_a x$,其中$a>0$且$a\neq 1$,其定义域为$x>0$。

值域则取决于$a$的取值范围。

当$a>1$时,$f(x)$的值域为$(-\infty, +\infty)$;当$0<a<1$时,$f(x)$的值域为$(-\infty, 0)$。

高一幂函数和应用题知识点

高一幂函数和应用题知识点

高一幂函数和应用题知识点在高中数学学习中,幂函数是一个重要的知识点。

幂函数是指形如f(x)=ax^n的函数,其中a为常数(a≠0),n为自然数。

幂函数在数学上具有广泛的应用,涉及到物理、金融、经济等多个领域。

本文将探讨高一幂函数和应用题的一些基本知识点。

一、幂函数的基本性质幂函数的定义域为实数集,且当a>0时,函数的值域也为正实数集。

当a<0时,函数的值域为负实数集。

幂函数在定义域上的图像可以根据指数n的奇偶性质进行分类。

1. 当n为奇数时,幂函数图像关于y轴对称,且图像一定经过原点。

2. 当n为偶数时,当a>0时,幂函数图像经过原点并在第一象限单调递增;当a<0时,幂函数图像关于原点对称。

幂函数的图像特点可以通过对函数进行分析和变换得到。

例如,当n为正数时,幂函数图像随指数的增大而呈现出挤压效应,即指数越大图像越“扁平”;当n为负数时,幂函数图像随指数的增大表现出拉伸效应,即指数越大图像越“细长”。

二、幂函数的应用题幂函数具有多个实际应用,下面将介绍其中的几个典型应用。

1. 物理应用物理学中,许多现象可以通过幂函数来进行建模和解释。

例如,物体自由落体过程中的速度与时间的关系可以用幂函数表示。

假设一个物体自由下落,以竖直向下的方向为正方向,物体从静止开始,自由落体公式可表示为s(t)=gt^2/2,其中s(t)表示物体与起始点之间的距离,g表示重力加速度,t表示时间。

2. 经济应用在经济学中,幂函数可以用来描述某些经济关系。

例如,某种商品的需求量和价格之间的关系可以用幂函数表示。

假设商品的需求量与价格之间存在指数关系,需求函数可表示为D(p)=ap^(-n),其中D(p)表示需求量,p表示价格,a和n为常数。

3. 生物应用在生物学中,幂函数可以用来描述生物体的某些特性。

例如,生物体的体重和身高之间的关系可以用幂函数表示。

假设某种动物的体重和身高存在幂函数关系,体重函数可表示为W(h)=ah^n,其中W(h)表示体重,h表示身高,a和n为常数。

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解 第16讲 幂函数(难点)一、单选题1.已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是( )A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞【答案】A【分析】构造函数()()2g x f x =-,容易判断()g x 为奇函数,且在R 上单调递增,进而将原不等式转化为()()12g a g a >-,最后根据单调性求得答案.【解析】设()()2g x f x =-,R x ∈,则()()()()()()53533535g x x x x x x x g x -=-+-+-=-++=-,即()g x 为奇函数,容易判断()g x 在R 上单调递增(增+增),又()()214f a f a +->可化为,()()()()()22122112f a f a g a g a g a ->---⇒>--=-⎡⎤⎣⎦,所以a >1-2a ,∴ a >13. 故选:A.2.已知R α∈,则函数2()1x f x x a=+的图像不可能是( )A .B .C .D .【答案】A【分析】根据含参函数的解析式和函数特殊值判断函数可能的图像.【解析】根据2()1x f x x a=+可知210x +>,所以当0x >时,0x α>,即()0f x >,故选项A 错误,而当α为其他值时,B,C,D 均有可能出现. 故选:A3.已知命题p :幂函数2y x -=在(),0∞-上单调递增;命题q :若函数()1f x +为偶函数,则()f x 的图象关于直线1x =对称.则下列命题为假命题的是( ) A .p q ∧B .p q ⌝∨C .()()p q ⌝∧⌝D .()p q ∨⌝ 【答案】C【分析】首先分别判断命题p 和命题q 的真假,然后再根据逻辑连接词“且”、“或”、“非”进行判断即可. 【解析】()2210y x x x-==?∴2y x -=是偶函数, 幂函数2y x -=在()0+∞,上单调递减, ∴2y x -=在(),0∞-上单调递增, ∴命题p 为真命题;则p ⌝为假命题;函数()1f x +为偶函数,()()11f x f x ∴+=-+()f x ∴的图象关于直线1x =对称∴命题q 为真命题;则q ⌝为假命题;又逻辑连接词“且”为“一假必假”,“或”为“一真必真”, 则对于A ,p q ∧为真命题; 对于B ,p q ⌝∨为真命题; 对于C ,()()p q ⌝∧⌝为假命题; 对于D ,()p q ∨⌝为真命题; 故选:C.4.①函数值域为[0,)+∞;②函数为偶函数;③函数在[0,)+∞上()()12120f x f x x x ->-恒成立;④若任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭.已知函数:①121x y =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =.其中同时满足以上四个条件的函数有( )个 A .0B .1C .2D .3 【答案】C【分析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象,再根据图象逐一判断四个函数是否满足①②③④四个条件即可求解.【解析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象:由图知,四个函数的值域都是[)0,∞+都满足①;由图知:①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =图象关于y 轴对称,都是偶函数,④124y x =的定义域为[)0,∞+不关于原点对称,既不是奇函数也不是偶函数,故④124y x =不满足条件②;排除函数④124y x =; 条件③:函数在[)0,∞+上()()12120f x f x x x ->-恒成立;由函数单调性的定义可知:函数在[)0,∞+上单调递增,由四个函数图象可知,①121x y =-,③23y x =,④124y x =满足条件③,函数②212x y ⎛⎫= ⎪⎝⎭不满足条件③,排除函数②212xy ⎛⎫= ⎪⎝⎭;对于条件④:函数①121xy =-:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数①121xy =-满足条件④,函数③23y x =:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数③23y x =满足条件④,所以同时满足以上四个条件的函数有函数①121xy =-、函数③23y x =,共有2个,故选:C5.已知点(n ,8)在幂函数()(2)m f x m x =-的图象上,则函数()g x =域为( )A .[0,1]B .[2,0]-C .[1,2]-D .[2,1]- 【答案】D【分析】由()(2)m f x m x =-为幂函数可求m ,由点(n ,8)在幂函数()(2)m f x m x =-的图象上可求n ,再根据函数的单调性求函数()g x .【解析】由题可得m -2=1,解得m =3,所以3()f x x =,则3()8,2f n n n ===,因此()g x ==[2,3],因为函数=yy =-[2,3]上单调递减,所以函数g (x )在[2,3]上单调递减,而g (2)=1,g (3)=-2,所以g (x )的值域为[-2,1]. 故选:D.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()2221()232f x x a x a a =-+--,若x R ∀∈,(1)()f x f x -≤,则实数a 的取值范围为( )A .11,66⎡⎤-⎢⎥⎣⎦B.⎡⎢⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D.⎡⎢⎣⎦ 【答案】B【分析】根据函数的解析式,分20x a ≤≤、222a x a <<和22x a ≥三种情况分类讨论,得出函数的解析式,结合函数的图象,即可求解. 【解析】由题意,当0x ≥时,()2221()232f x x a x a a =-+--, 所以当20x a ≤≤时,()2221()232f x a x a x a x =-+--=-; 当222a x a <<时,()22221()232f x x a a x a a =-+--=-; 当22x a ≥时,()22221()2332f x x a x a a x a =-+--=-. 综上,函数()2221()232f x x a x a a =-+--, 在0x ≥时的解析式等价于222222,0(),23,2x x a f x a a x a x a x a ⎧-≤≤⎪=-<<⎨⎪-≥⎩. 根据奇函数的图像关于原点对称作出函数()f x 在R 上的大致图像如图所示,观察图像可知,要使x R ∀∈,(1)()f x f x -≤,则需满足()22241a a --≤,解得a ≤≤故选:B.7.定义新运算“⊕”如下:2,,a a b a b b a b⎧⊕=⎨<⎩…,已知函数()(1)2(2)([2,2])f x x x x x =⊕-⊕∈-,则满足(2)(2)f m f m -…的实数m 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .122⎡⎤⋅⎢⎥⎣⎦C .[0.1]D .[ 1.4]-【答案】C【解析】根据新定义,得到()f x 的表达式,判断函数()f x 在定义域的单调性,可得结果. 【解析】当21x -≤≤时,()f x =1?224x x -⨯=-;当12x <≤时,23()224f x x x x =⋅-⨯=-; 所以34,21()4,12x x f x x x --⎧=⎨-<⎩剟…,易知,()4f x x =-在[ 2.1]-单调递增,3()4f x x =-在(1,2]单调递增,且当12x -≤≤时,max ()3f x =-, 当12x <…时,max ()3f x =-,则()f x 在[ 2.2]-上单调递增, 所以(2)(2)f m f m -…得22222222m m m m -≤-≤⎧⎪-≤≤⎨⎪-≤⎩,解得01m 剟. 故选:C【点睛】本题考查对新定义的理解,以及分段函数的单调性,重点在于写出函数()f x 以及判断单调性,难点在于m 满足的不等式,属中档题.8.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【解析】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、多选题9.黄同学在研究幂函数时,发现有的具有以下三个性质:①是奇函数;②值域是{y y R ∈且0}y ≠;③在(,0)-∞上是减函数则以下幂函数符合这三个性质的有( ) A .2()f x x =B .()f x x = C .1()f x x -=D .13()f x x -= 【答案】CD【分析】通过已知三个条件,分别奇偶性、值域和单调性即可排除选项.【解析】由已知可得,此函数为奇函数,而A 选项2()f x x =为偶函数,不满足题意,排除选项;选项B ,()f x x =的值域为}{y y R ∈,且该函数在R 上单调递增,不满足题意条件,排除选项;选项C 、D 同时满足三个条件. 故选:CD.10.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则下列选项中正确的是( ) A .()f x 和()g x 在()0,∞+上的单调性相同 B .()f x 和()g x 在()0,∞+上的单调性相反 C .()f x 和()g x 在(),0-∞上的单调性相同 D .()f x 和()g x 在(),0-∞上的单调性相反 【答案】BC【分析】通过解方程组求出23()1,(),f x x g x x =+=-再判断单调性即得解.【解析】解:由题得()()32321,()()1f x g x x x f x g x x x ---=-++∴+=-++(1),又()()321f x g x x x -=++ (2),解(1)(2)得23()1,(),f x x g x x =+=-3()g x x =-在(,)-∞+∞上单调递减(因为幂函数3y x =是R 上的增函数),因为23()1,(),f x x g x x =+=-在()0,∞+上的单调性相反(()f x 单调递增()g x 单调递减),23()1,(),f x x g x x =+=-在(),0-∞上都是单调递减,故选:BC11.若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数”B .若()1f x x x =+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【分析】根据“弱增函数”的定义,结合基本初等函数的性质,对四个选项一一判断,即可得到正确答案.【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确; 对于B :由对勾函数的性质可知:()1f x x x =+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x=+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x =+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x =+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x a y x a xx==+-+在(]0,2上为减函2,则4a ≥,综上4a =.故D 正确. 故选:ABD .12.记使得函数()269f x x x =-+在[]1,x n ∈上的值域为[]0,4的实数n 的取值范围为集合A ,过点()4,2的幂函数()g x 在区间[]1,13m m -+上的值域为集合B ,若A 是B 的必要不充分条件,则整数m 的取值可以为( ) A .10B .11C .12D .13【分析】根据二次函数的性质可得集合A ;根据幂函数的性质可得集合B ,由集合A 是集合B 的必要不充分条件,则B 是A 的真子集,即可得出答案.【解析】函数()269f x x x =-+的对称轴为3x =,在3x =时取最小值0,故3n ≥,又1x =与5x =时函数值均为4,故5n ≤, 故n 的取值范围为[]3,5,即集合[]3,5A =; 设幂函数()ag x x =,()g x 过点()4,2,即42a =,得12a =,故()g x =[]1,13m m -+上的值域为()1m ≥,即()1B m =≥,若集合A 是集合B 的必要不充分条件,则是[]3,5的真子集,即5(3等号不能同时成立), 解得1012m ≤≤.则整数m 的取值可以为10,11,12. 故选:ABC三、填空题13.已知函数()33x x f x -=-,则关于 的下列结论:①(0)0f =②()f x 是奇函数③()f x 在(,)-∞+∞上是单调递增函数④对任意实数a ,方程()0f x a -=都有解,其中正确的有(填写序号即可)__________.【解析】∵()33x x f x -=-,()33(33)x x x x f x ---=-=--,∴()()f x f x =--所以函数()33x x f x -=-是奇函数,由奇函数的性质,①②均正确;又1()3333xxxx f x -⎛⎫=-=- ⎪⎝⎭,13xy ⎛⎫= ⎪⎝⎭是R 上的单调递减函数,3x y =-是R 上的单调递减函数,由函数单调性的性质,所以()33x x f x -=-在R 上单调递减,③不正确;因为()f x 函数值域为R ,所以对任意实数a ,方程()0f x a -=都有解,④正确,故答案为①②④.14.已知函数()()2231m m f x m m x +-=--是幂函数,对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,R b ∈,且()()0f a f b +<,则a b +______0(填“>”“=”或“<”).【答案】<【分析】由函数()f x 为幂函数,可得m =-1或m =2,又由题意函数()f x 在()0,∞+上单调递增,可得()3f x x =,从而根据函数()f x 的奇偶性和单调性即可求解.【解析】解:因为函数()f x 为幂函数,所以211m m --=,即220m m --=,解得m =-1或m =2.当m =-1时,()31f x x=;当m =2时,()3f x x =. 因为函数()f x 对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,所以函数()f x 在()0,∞+上单调递增, 所以()3f x x =,又()()33f x x x -=-=-,所以函数()3f x x =是奇函数,且为增函数,因为()()0f a f b +<,所以()()()f a f b f b <-=-, 所以a b <-,即0a b +<. 故答案为:<.15.定义在R 上的函数()y f x =是减函数,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--.则当13s ≤≤时,t s的取值范围是___________.【答案】1,13⎡⎤-⎢⎥⎣⎦【解析】由f (x −1)的图象相当于f (x )的图象向右平移了一个单位 又由f (x −1)的图象关于(1,0)中心对称 知f (x )的图象关于(0,0)中心对称, 即函数f (x )为奇函数, 得f (s 2−2s )⩽f (t 2−2t ),从而t 2−2t ⩽s 2−2s ,化简得(t −s )(t +s −2)⩽0, 又1⩽s ⩽3,则-1⩽2-s ⩽1,故2−s ⩽t ⩽s , 从而211t ss -剟,而211,13s ⎡⎤-∈-⎢⎥⎣⎦,故t s 的取值范围是1,13⎡⎤-⎢⎥⎣⎦.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |). 16.对于函数1()1ax f x x +=-(a 为常数),给出下列命题: ①对任意a ∈R ,()f x 都不是奇函数;②()f x 的图像关于点(1,)a 对称;③当1a <-时,()f x 无单调递增区间;④当2a =时,对于满足条件122x x <<的所有1x ,2x 总有1221()()3()f x f x x x -<-.其中正确命题的序号为__________. 【答案】①②④【解析】①()f x 定义域为{}1x x ≠,∴()f x 不可能为奇函数,正确;②(1)11()11a x a a f x a x x -+++==+--,图像关于(1,)a 对称,正确;③当1a <-时,1()1af x a x +=+-在(,1)-∞和(1,)+∞上为增,错误;④2a =时,3()21f x x =+-在(2,)+∞上为减函数,211221123()()()3()(1)(1)x x f x f x x x x x --=<---,正确,故答案为①②④.四、解答题17.已知函数()()()()212813f x a x b x c x =-+-+-∈R . (1)如果函数()f x 为幂函数,试求实数a 、b 、c 的值;(2)如果0a >、0b >,且函数()f x 在区间1,32⎡⎤⎢⎥⎣⎦上单调递减,试求ab 的最大值.【答案】(1)5a =,8b =,1c =,或2a =,9b =,1c =. (2)18【分析】(1)根据幂函数的定义得到方程组,解得即可;(2)分2a =、2a >、02a <<三种情况讨论,结合二次函数的性质及基本不等式计算可得; (1)解:由函数()f x 的定义域为R 知,当()f x 为幂函数时,应满足()12138010a b c ⎧-=⎪⎪⎨-=⎪⎪-=⎩或()12038110a b c ⎧-=⎪⎪-=⎨⎪-=⎪⎩解得,a 、b 、c 的值分别为:5a =,8b =,1c =,或2a =,9b =,1c =. (2)解:①当2a =时,()()()81f x b x c x =-+-∈R 由题意知,08b <<,所以16ab <. ②当2a >时,函数()f x 图象的对称轴为()()3822b x a -=-,以题意得:()()38322b a -≥-,即212a b +≤所以122a b ≥+≥18ab ≤. 当且仅当3a =,6b =时取等号. ③当02a <<时,以题意得:()()381222b a -≤-,即326a b +≤,即()10263b a <≤- 又因为02a <<,所以()()()22111691169026132131633333ab a a a <≤-=--+<--+= 综上可得,ab 的最大值为18. 18.已知函数()()90f x x x x=+≠.(1)当()3,x ∈+∞时,判断并证明()f x 的单调性;(2)求不等式()()2330f x f x +≤的解集.【答案】(1)单调递增,证明见解析;(2){}1-.【解析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可;(2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f x f x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集.【解析】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++…, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭…,所以121x x-+剟, 当0x >时,12x x+…,不合题意,舍去; 当0x <时,只需解12x x-+…,可化为2(1)0x +…,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增,又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f x f x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.19.已知函数()23111x x f x x +++=+.(1)求()f x 的解析式;(2)若对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,求m 的取值范围.【答案】(1)()11f x x x=-+(2)()),2-∞-⋃+∞【分析】(1)令1t x =+,则1x t =-,进而根据换元法求解即可;(2)结合函数()f x 的单调性得()max 52f x =,进而将问题转化为对任意[]0,1a ∈,不等式25122ma m <++恒成立,再求解恒成立问题即可. (1)解:令1t x =+,则1x t =-, 则()()()2131111t t f t t t t-+-+==-+,故()11f x x x=-+. (2)解:由(1)可得()11f x x x=-+.因为函数1y x =+和函数1y x =-均在1,22⎡⎤⎢⎥⎣⎦上单调递增,所以()f x 在1,22⎡⎤⎢⎥⎣⎦上单调递增.故()()max 522f x f ==.对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,即对任意[]0,1a ∈,不等式25122ma m <++恒成立,则2251,2251,22m m m ⎧<+⎪⎪⎨⎪<++⎪⎩解得m 2m <-.故m 的取值范围是()),2-∞-⋃+∞.20.已知幂函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭,且在定义域内单调递增. (1)求函数()f x 的解析式;(2)若函数()()()21g x f x kf x ⎡⎤=+-⎣⎦,1,12x ⎡⎤∈⎢⎥⎣⎦,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由. 【答案】(1)()f x x = (2)存在,且32k =.【分析】(1)结合幂函数的定义、单调性求得m 的值.(2)求得()g x 的解析式,对k 进行分类讨论,结合()g x 的最小值为0来求得k 的取值范围. (1)函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭是幂函数, 222131,0,2302222m m m m m m +-=+-=+-=, 解得1m =或32m =-.由于()f x 在定义域内递增,所以32m =-不符合, 当1m =时,()f x x =,符合题意. (2)()21g x x kx =+-,1,12x ⎡⎤∈⎢⎥⎣⎦,()g x 图象开口向上,对称轴为2kx =-,当122k -≤,即1k ≥-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递增,11310,2422k g k ⎛⎫=+-== ⎪⎝⎭.当1,122k ⎛⎫-∈ ⎪⎝⎭,即21k -<<-时,()222min 1102424k kk k g x g ⎛⎫=-=--=--< ⎪⎝⎭,不符合题意.当12k -≥,即2k ≤-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递减,()1112g k k =+-=≤-,不符合题意.综上所述,存在32k =使得()g x 的最小值为0.21.1.已知函数2,01,()1, 1.x x f x x x≤<⎧⎪=⎨≥⎪⎩(1)求函数()f x 的值域;(2)记()()()a F x f x f a =-,则4()F x m ≤在[0,4]x ∈上恒成立,求实数m 的取值范围. 【答案】(1)[0,2)(2)7,4⎡⎫+∞⎪⎢⎣⎭【分析】(1)分别求出()2f x x =和1()f x x=在各自区间上的值域,最后求并集即为分段函数的值域;(2)写出分段函数4()F x ,求出4()F x 的值域70,4⎡⎫⎪⎢⎣⎭,然后74m ≥即可(1)当01x ≤<时,()2f x x =,在[)0,1上单调递增,所以 0()2f x ≤< 当1≥x 时,1()f x x=,在[)1,+∞上单调递减,所以0()1f x <≤ 故函数()f x 的值域为[0,2). (2)由题意可知,412,01,41()()(4)()411,1 4.4x x F x f x f f x x x ⎧-≤<⎪⎪=-=-=⎨⎪-≤≤⎪⎩当01x ≤<时,1172444x -≤-<,则4170()244F x x ≤=-<;当14x ≤≤时,113044x ≤-≤,则430()4F x ≤≤; 所以470(),[0,4]4F x x ≤<∈,所以要使4()F x m ≤在[0,4]x ∈上恒成立,只要74m ≥即可,m 的取值范围为7,4⎡⎫+∞⎪⎢⎣⎭.22.已知幂函数()()224222m m f x m m x -+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由. 【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可.【解析】(1)(1)因为幂函数()2242()22m m f x m m x -+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意;②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.23.已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围. 【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由幂函数概念及偶函数性质求()f x 解析式(2)由(1)知22()()324a a h x x a =+--+,再由()0h x ≥在[2,2]-上恒成立,即()h x 的最小值恒大于等于0,应用函数思想分类讨论,求a 的范围【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a①当22a-<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤ 又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤ ③当22a ->,即4a <-时,()(2)70g a h a ==+≥ 所以7a ≥-.又4a <- 所以74a -≤<-.综上可知,a 的取值范围为[7,2]-【点睛】本题考查了幂函数,并综合了偶函数、及根据不等式恒成立求参数范围,应用了分类讨论、函数的思想,属于较难的题 24.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 在()1,1-上的单调性,并用定义证明;(3)解不等式:11022f t f t ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭+-≤.【答案】(1)()21xf x x =+; (2)函数()f x 在()1,1-上单调递增,证明见解析;(3)1,02⎛⎤- ⎥⎝⎦.【分析】(1)根据奇函数的定义可求得b 的值,再结合已知条件可求得实数a 的值,由此可得出函数()f x 的解析式;(2)判断出函数()f x 在()1,1-上是增函数,任取1x 、()21,1x ∈-且12x x <,作差()()12f x f x -,因式分解后判断()()12f x f x -的符号,即可证得结论成立;(3)由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得1122f t f t ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,根据函数()f x 的单调性与定义域可得出关于实数t 的不等式组,由此可解得实数t 的取值范围.(1)解:因为函数()21ax bf x x +=+是定义在()1,1-上的奇函数,则()()f x f x -=-, 即2211ax b ax b x x -++=-++,可得0b =,则()21axf x x =+,所以,211222255112af a ⎛⎫=== ⎪⎝⎭⎛⎫+ ⎪⎝⎭,则1a =,因此,()21x f x x =+. (2)证明:函数()f x 在()1,1-上是增函数,证明如下:任取1x 、()21,1x ∈-且12x x <,则()()()()221212112212222212121111x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()12211212122222121211111x x x x x x x x x x xx xx -+---==++++,因为1211x x -<<<,则120x x -<,1211x x -<<,故()()120f x f x -<,即()()12f x f x <. 因此,函数()f x 在()1,1-上是增函数. (3)解:因为函数()f x 是()1,1-上的奇函数且为增函数,由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得111222f t f t f t ⎛⎫⎛⎫⎛⎫+<--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由已知可得112211121112t t t t ⎧+<-⎪⎪⎪-<+<⎨⎪⎪-<-<⎪⎩,解得102t -<<.因此,不等式11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭的解集为1,02⎛⎫- ⎪⎝⎭.25.已知______,且函数()22x bg x x a+=+. ①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题.(1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围.【答案】(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析;(2)77,88⎡-⎤⎢⎥⎣⎦. 【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中,再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数,得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+. 选择②.当0a >时,()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩,所以()222xg x x =+. ()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数. (2)当0x >时,()122g x x x =+,因为224x x +≥,当且仅当22x x=,即x =1时等号成立,所以()104g x <≤; 当0x <时,因为()g x 为奇函数,所以()104g x -≤<;当x =0时,()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立,所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.。

考点11 幂函数【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

考点11 幂函数【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

考点11幂函数1、幂函数的判断及应用判断一个函数是否为幂函数的依据是该函数是否为y x α=(α是常数)的形式,即满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.只有同时满足这三个条件的函数才是幂函数,对于形如(2),2,6y x y x y x ααα===+等函数都不是幂函数。

2、幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y x α=在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f(x)在其他象限内的图象.(2)要牢记幂函数的图象,并能灵活运用.由幂函数的图象,我们知道:①所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).②任何幂函数的图象与坐标轴最多只有一个交点(原点);任何幂函数的图象都不经过第四象限.③当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象上抛;当0<α<1时,幂函数的图象右抛.④当α<0时,幂函数的图象在区间(0,+∞)上是减函数.⑤幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.⑥在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.3、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y x α=(α∈R),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.考点一幂函数的定义(一)求幂函数的值或解析式1.(2022·甘肃庆阳·高一期末)已知幂函数()f x 的图象过点13,3⎛⎫⎪⎝⎭,则此函数的解析式为______.2.(2022·内蒙古·赤峰二中高一期末(文))已知点(a ,2)在幂函数()(3)b f x a x =-的图象上,则函数f (x )的解析式是()A .12()f x x =B .12()2f x x =C .3()f x x =D .1()f x x -=3.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)幂函数()y f x =的图象经过点(14,2),则1(4f =____.4.(2022·全国·高一课时练习)若函数()f x 是幂函数,满足(4)8(2)f f =,则1(1)3f f ⎛⎫+= ⎪⎝⎭_________.5.(2022·北京市第五中学高一期末)已知幂函数()a f x x =过点(28),,若0()5f x =-,则0x =________.6.(2022·上海中学高一期末)某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x 与利润y (单位:万元)分别满足函数关系11ay k x =与22ay k x =.(1)求1k ,1a 与2k ,2a 的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.(二)根据函数是幂函数求参数值7.【多选】(2022·广东茂名·高一期末)若函数()225y k k x =--是幂函数,则实数k 的值可能是()A .3k =B .3k =-C .2k =-D .2k =8.【多选】(2022·广东·韶关市田家炳中学高一期末)如果幂函数()22233mm y m m x --=-+的图象不过原点,则实数m 的取值为()A .0B .2C .1D .无解9.(2022·湖南郴州·高一期末)已知幂函数()f x kx α=的图象过点()2,4,则k α+=__________.考点二幂函数的定义域和值域(一)幂函数的定义域10.(2022·江苏·高一)若()342x --有意义,则实数x 的取值范围是()A .[)2,+∞B .(],2-∞C .()2,+∞D .(),2-∞11.(2022·山西吕梁·高一期末)已知幂函数()f x 的图象过点(,则()f x 的定义域为()A .RB .()0,∞+C .[)0,∞+D .()(),00,∞-+∞U12.(2022·黑龙江绥化·高一期末)函数4()(1)f x x =-+)A .()1,∞+B .(2,)-+∞C .()()211∞-⋃+,,D .R13.(2022·全国·高一专题练习)设α∈11,132⎧⎫-⎨⎬⎩⎭,,则使函数y =xα的定义域为R 的所有α的值为()A .1,3B .-1,1C .-1,3D .-1,1,314.(2022·内蒙古·赤峰红旗中学松山分校高一期末)已知幂函数()1*4n y x n N -=∈的定义域为()0,∞+,且单调递减,则n =________.(二)幂函数的值域15.(2022·全国·高一专题练习)幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为()A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭16.(2022·全国·高一专题练习)函数213324y x x =++,其中8x - ,则其值域为___________.17.(2022·广东·广州六中高一期末)幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是()A .(),-∞+∞B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭18.(2022·上海师大附中高一期末)已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式;(2)令()()g x f x =,求()y g x =在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.19.(2022·贵州·六盘水市第五中学高一期末)已知幂函数()()1221m f m x m x -=--在()0,∞+上为增函数.(1)求实数m 的值;(2)求函数()()2345g x f x x =--+的值域.20.(2022·湖北黄石·高一期中)已知函数())2()x a f x x x a ⎧≥⎪=⎨<⎪⎩,若函数()f x 的值域为R ,则实数a 的取值范围为()A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-考点三幂函数的图象和性质(一)幂函数的图象(1)依据图象高低判定幂指数大小21.(2022·全国·高一课时练习)图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是()A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,322.(2022·全国·高一课时练习)幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a>>>D .b c d a>>>23.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则()A .m n 、是奇数且1mn<B .m 是偶数,n 是奇数,且1m n>C .m 是偶数,n 是奇数,且1m n<D .m n 、是偶数,且1m n>24.(2022·四川凉山·高一期末)如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是()A .3y x =B .2y x =C .y x=D .58y x =(2)图象的识别25.(2022·全国·高一单元测试)下列四个图像中,函数34y x =的图像是()A .B .C .D .26.(2022·上海·高一单元测试)已知幂函数的图象经过点14,2P ⎛⎫⎪⎝⎭,则该幂函数的大致图象是()A .B .C .D .27.(2022·全国·高一单元测试)如图为某体育赛事举重成绩与运动员体重之间关系的折线图,下列模型中,最能刻画举重成绩y (单位:千克)和运动员体重x (单位:千克)之间的关系的是()A .y =()0m >B .y mx n =+()0m >C .2y mx n =+()0m >D .x y ma n =+(0m >,0a >且1a ≠)(二)幂函数的性质(1)由幂函数的单调性求参数28.(2022·广东广州·高一期末)函数()22211mm y m m x --=--是幂函数,且在()0,x ∈+∞上是减函数,则实数m =__________.29.(2022·河南开封·高一期末)已知函数()22my m m x =+幂函数,且在其定义域内为单调函数,则实数m =()A .12B .1-C .12或1-D .12-30.(2022·云南德宏·高一期末)“当()0,x ∈+∞时,幂函数()22231mm y m m x --=--为减函数”是“1m =-或2”的()条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要31.(2022·江西省铜鼓中学高一期末)已知函数()()()2,16,(1a a x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是()A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--(2)由幂函数的单调性解不等式32.(2022·上海中学高一期末)不等式()()2021202142x x --->-的解为______.33.(2022·海南鑫源高级中学高一期末)已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围.34(2022·上海金山·高一期末)已知幂函数()y f x =在其定义域上是严格增函数,且()22mm f x x -=(m Z ∈).(1)求m 的值;(2)解不等式:()()32f x f x-<.(3)由幂函数的单调性比较大小35.(2022·重庆九龙坡·高一期末)已知111333332,,555a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为()A .a b c<<B .b c a<<C .c a b<<D .a c b<<36.(2022·青海·大通回族土族自治县教学研究室高一期末)幂函数()()22251mm f x m m x +-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断(4)幂函数奇偶性的应用37.(2022·全国·高一课时练习)求出下列函数的定义域,并判断函数的奇偶性:(1)22()f x x x -=+;(2)23()3f x x x =+;(3)133()f x x x =+;(4)142()2f x x x -=+.38.(2022·全国·高一专题练习)已知幂函数()2()1mf x m m x =--的图象关于y 轴对称,则()f m =___________.39.(2022·重庆九龙坡·高一期末)已知幂函数()21()55m f x m m x +=-+为奇函数,则m =___________.40.(2022·山东济宁·高一期末)已知()y f x =是奇函数,当0x ≥时,()()23f x x m m =+∈R ,则()8f -=______.(5)幂函数的单调性和奇偶性的综合应用41.(2022·河南开封·高一期末)下列函数中,既是奇函数,又是增函数的是()①1y x=-;②y =||y x x =;④3y x x =+.A .①②B .①④C .②③D .③④42.(2022·云南玉溪·高一期末)幂函数22m m y x +-=()03,m m Z ≤≤∈的图象关于y 轴对称,且在(0,)+∞上是增函数,则m 的值为()A .0B .2C .3D .2和343.(2022·重庆巫山·高一期末)若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______44.(2022·湖北·高一期末)已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是()A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞45.(2022·黑龙江·大庆实验中学高一期末)已知幂函数()223m m y xm N --*=∈的图象关于y 轴对称,且在()0,∞+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为________.(6)幂函数性质的综合应用46.(2022·全国·高一)已知幂函数a y x =(a 是常数),则()A .()f x 的定义域是RB .()f x 在()0,∞+单调递增C .()f x 过定点()1,1D .()f x 可能过定点()1,3-47.【多选】(2022·广西玉林·高一期末)已知函数()a f x x =的图象经过点1,33⎛⎫ ⎪⎝⎭则()A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞48.【多选】(2022·广东揭阳·高一期末)已知幂函数()y f x =的图象经过点(9,3),则下列结论正确的有()A .()f x 为偶函数B .()f x 为增函数C .若1x >,则()1f x >D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭。

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数、二次函数考纲解读 1.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象解决简单的幂函数问题;2.用待定系数法求二次函数解析式,结合图象解决二次函数问题;3.用二次函数、方程、不等式之间的关系解决综合问题.[基础梳理]1.幂函数(1)定义:一般地,函数y =x α叫作幂函数,其中底数x 是自变量,α是常数. (2)幂函数的图象比较:2.二次函数 (1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0). 顶点式:f (x )=a (x -h )2+k (a ≠0). 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)图象与性质:(-∞,+∞)(-∞,+∞)[三基自测]1.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12 B .1 C.32 D .2答案:C2.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3 答案:D3.幂函数f (x )=xa 2-10a +23(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .6 答案:C4.(必修1·第一章复习参考题改编)若g (x )=x 2+ax +b ,则g (2)与12[g (1)+g (3)]的大小关系为________.答案:g (2)<12[g (1)+g (3)]5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1x的增区间为__________.答案:⎝ ⎛⎭⎪⎫132,+∞[考点例题]考点一 幂函数的图象和性质|易错突破[例1] (1)已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是__________.(2)若f (x )=-,则满足f (x )<0的x 的取值范围是________.[解析] (1)∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ), ∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5.故a 的取值范围是(3,5). (2)令y 1=,y 2=,f (x )<0,即为y 1<y 2,函数y 1=,y 2=的图象如图所示,观察图象,当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).[答案] (1)(3,5) (2)(0,1) [易错提醒]1.分不清指数函数与幂函数,比较幂值大小时,若底数相同,指数不同可考虑指数函数;若底数不同指数相同,可考虑幂函数.2.幂函数的单调性只与指数的正、负有关,要注意幂函数定义域.[纠错训练]1.设12<⎝⎛⎭⎫12b <⎝⎛⎭⎫12a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a解析:因为y =⎝⎛⎭⎫12x 是减函数,12<⎝⎛⎭⎫12b <⎝⎛⎭⎫12a<1,所以0<a <b <1.当0<a <1时,y =a x 为减函数,所以a b <a a ,排除A ,B ;因为y =x a 在第一象限内为增函数,所以a a <b a .故选C.答案:C2.若(a +1)-2>(3-2a )-2,则a 的取值范围是__________. 解析:由y =x -2的图象关于x 轴对称知,函数y =x-2在(0,+∞)上是减函数,在(-∞,0)上是增函数.因为(a +1)-2>(3-2a )-2, 所以⎩⎪⎨⎪⎧3-2a >0,a +1>0,3-2a >a +1,或⎩⎪⎨⎪⎧3-2a <0,a +1<0,3-2a <a +1,或⎩⎪⎨⎪⎧3-2a >0,a +1<0,3-2a >-(a +1),或⎩⎪⎨⎪⎧3-2a <0,a +1>0,-(3-2a )>a +1,解得-1<a <23或a ∈∅或a <-1或a >4,所以a 的取值范围是(-∞,-1)∪⎝⎛⎭⎫-1,23∪(4,+∞).答案:(-∞,-1)∪⎝⎛⎭⎫-1,23∪(4,+∞)考点二 二次函数的解析式|方法突破[例2] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解析] 法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴抛物线的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:(利用零点式)由已知f (x )+1=0两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a=8.解得a =-4或a =0(舍).∴所求函数的解析式为f (x )=-4x 2+4x +7. [方法提升][母题变式]将本例改为已知函数f (x )=ax 2+bx +c ,且f (0)=f (4)=3,f (1)=1,则f (x )=________. 解析:因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a=2,所以4a +b =0.f (0)=c =3.∴f (x )=ax 2-4ax +3, ∴f (1)=a -4a +3=1, ∴a =23,∴f (x )=23x 2-83x +3.答案:23x 2-83x +3考点三 二次函数的图象与性质|模型突破角度1 二次函数的单调性[例3] 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-3]C .[-2,0]D .[-3,0][解析] 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. [答案] D [模型解法]角度2 二次函数最值[例4] 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. [解析] (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a.①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象对称轴在[0,1]内,∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增.∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a. ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象对称轴在[0,1]的右侧,∴f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上单调递减.∴f (x )min =f (1)=a -2.综上所述f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.[模型解法]主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解决的关键是弄清楚对称轴与区间的关系.当含有参数时,要依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数在闭区间[m ,n ]上的最大、最小值有如下的分布情况:f (x )=max{f (n ), a <0 (1)若-b2a∈[m ,n ],则f (x )max =max ⎩⎨⎧⎭⎬⎫f (m ),f ⎝⎛⎭⎫-b 2a ,f (n ), f (x )min =min ⎩⎨⎧⎭⎬⎫f (m ),f ⎝⎛⎭⎫-b 2a ,f (n ); (2)若-b2a ∉[m ,n ],则f (x )max =max{f (m ),f (n )},f (x )min =min{f (m ),f (n )}.角度3 二次函数中恒成立问题[例5] (1)已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是__________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为__________.[解析] (1)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. ∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1). (2)2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立; 当x ≠0时,a <32⎝⎛⎭⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. [答案] (1)(-∞,-1) (2)⎝⎛⎭⎫-∞,12 [模型解法][高考类题]1.(2016·高考全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m解析:由f (x )=f (2-x )知f (x )的图象关于直线x =1对称,又函数y =|x 2-2x -3|=|(x -1)2-4|的图象也关于直线x =1对称,所以这两个函数的图象的交点也关于直线x =1对称.不妨设x 1<x 2<…<x m ,则x 1+x m2=1,即x 1+x m =2,同理有x 2+x m -1=2,x 3+x m -2=2,……,又∑i =1mx i =x m +x m -1+…+x 1,所以2∑i =1mx i =(x 1+x m )+(x 2+x m -1)+…+(x m +x 1)=2m ,所以∑i =1mx i=m .答案:B2.(2015·高考四川卷)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25D.812解析:由已知得f ′(x )=(m -2)x +n -8,又对任意的x ∈⎣⎡⎦⎤12,2,f ′(x )≤0,所以⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫12≤0f ′(2)≤0, 即⎩⎪⎨⎪⎧m ≥0,n ≥0m +2n ≤18.2m +n ≤12画出该不等式组表示的平面区域如图中阴影部分所示,令mn =t ,则当n =0时,t =0,当n ≠0时,m =tn.由线性规划的相关知识知,只有当直线2m +n =12与曲线m =tn 相切时,t 取得最大值.由⎩⎨⎧-t n 2=-126-12n =tn,解得n =6,t =18,所以(mn )max =18,选B.答案:B[真题感悟]1.[考点三](2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞),选D.答案:D2.[考点二](2013·高考安徽卷)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=__________.解析:当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2.答案:-x (x +1)23.[考点三](2014·高考浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是__________.解析:结合图象(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 答案:(-∞,2]4.[考点三](2016·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a(x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x3恰有两个不相等的实数解,则a 的取值范围是__________.解析:由题意得⎩⎪⎨⎪⎧0<a <11≤3a <2-4a -32≥0,解得13≤a <23.答案:⎣⎡⎭⎫13,235.[考点三](2015·高考湖北卷)a 为实数,函数f (x )=|x 2-ax |在区间[0,1]上的最大值记为g (a ).当a =__________时,g (a )的值最小.解析:f (x )=|⎝⎛⎭⎫x -a 22-a 24|,其在区间[0,1]上的最大值必在x =0,x =1,x =a2处产生,即g (a )=max{f (0),f (1),f ⎝⎛⎭⎫a 2}=max ⎩⎨⎧⎭⎬⎫0,|1-a |,a 24=max ⎩⎨⎧⎭⎬⎫|1-a |,a 24,在同一坐标系中分别画出y =|1-a |,y =a 24的图象(图略)可知,在两图象的交点处,g (a )取得最小值,此时1-a =a 24,则a =22-2(-2-22舍去).答案:22-2。

相关文档
最新文档