九十六种化学反应机理

合集下载

有机化学反应机理详解(共95个反应机理)

有机化学反应机理详解(共95个反应机理)

一.Arbuzow反响(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷感化,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反响时,其活性次序为:R'I >R'Br >R'Cl.除了卤代烷外,烯丙型或炔丙型卤化物.a-卤代醚.a- 或 b-卤代酸酯.对甲苯磺酸酯等也可以进行反响.当亚酸三烷基酯中三个烷基各不雷同时,老是先脱除含碳原子数起码的基团.本反响是由醇制备卤代烷的很好办法,因为亚磷酸三烷基酯可以由醇与三氯化磷反响制得:假如反响所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基雷同(即 R' = R),则 Arbuzow反响如下:这是制备烷基膦酸酯的经常运用办法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能产生该类反响,例如:反响机理一般以为是按 S N2 进行的分子内重排反响:反响实例二.Arndt-Eister 反响酰氯与重氮甲烷反响,然后在氧化银催化下与水共热得到酸.反响机理重氮甲烷与酰氯反响起首形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)产生重排得烯酮(3),(3)与水反响生成酸,若与醇或氨(胺)反响,则得酯或酰胺.反响实例三.Baeyer----Villiger 反响反响机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁徙到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时产生O-O键异裂.是以,这是一个重排反响具有光学活性的3---苯基丁酮和过酸反响,重排产品手性碳原子的枸型保持不变,解释反响属于分子内重排:不合错误称的酮氧化时,在重排步调中,两个基团均可迁徙,但是照样有必定的选择性,按迁徙才能其次序为:醛氧化的机理与此类似,但迁徙的是氢负离子,得到羧酸.反响实例酮类化合物用过酸如过氧乙酸.过氧苯甲酸.间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成响应的酯,个中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特色是反响速度快,反响温度一般在10~40℃之间,产率高.四.Beckmann 重排肟在酸如硫酸.多聚磷酸以及能产生强酸的五氯化磷.三氯化磷.苯磺酰氯.亚硫酰氯等感化下产生重排,生成响应的代替酰胺,如环己酮肟在硫酸感化下重排生成己内酰胺:反响机理在酸感化下,肟起首产生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁徙到缺电子的氮原子上,所形成的碳正离子与水反响得到酰胺.迁徙基团假如是手性碳原子,则在迁徙前后其构型不变,例如:反响实例五.Birch还原芬芳化合物用碱金属(钠.钾或锂)在液氨与醇(乙醇.异丙醇或仲丁醇)的混杂液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反响机理起首是钠和液氨感化生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子系统中有7个电子,加到苯环上谁人电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭系统,(Ⅰ)暗示的是部分共振式.(Ⅰ)不稳固而被质子化,随即从乙醇中牟取一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子改变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,敏捷再从乙醇中牟取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中央碳原子上质子化比末尾碳原子上质子快,原因尚不清晰.反响实例代替的苯也能产生还原,并且经由过程得到单一的还原产品.例如六.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得响应的饱和醇.芬芳酸酯也可进行本反响,但收率较低.本法在氢化锂铝还原酯的办法发明以前,广泛地被运用,非共轭的双键可不受影响.反响机理起首酯从金属钠获得一个电子还原为自由基负离子,然后从醇中牟取一个质子改变成自由基,再从钠得一个电子生成负离子,清除烷氧基成为醛,醛再经由雷同的步调还原成钠,再酸化得到响应的醇.反响实例醛酮也可以用本法还原,得到响应的醇:七.Bucherer 反响萘酚及其衍生物在亚硫酸或亚硫酸氢盐存鄙人和氨进行高温反响,可得萘胺衍生物,反响是可逆的.反响时如用一级胺或二级胺与萘酚反响则制得二级或三级萘胺.若有萘胺制萘酚,可将其参加到热的亚硫酸氢钠中,再参加碱,经煮沸除去氨而得.反响机理本反响的机理为加成清除进程,反响的第一步(无论从哪个偏向开端)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反响实例八.苯基羟胺(N-羟基苯胺)和稀硫酸一路加热产生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被代替者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反响机理反响实例九.Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存鄙人加热起缩合感化,生成吖啶类化合物.反响机理反响机理不详反响实例十.Cannizzaro 反响凡α位碳原子上无生动氢的醛类和浓NaOH或KOH水或醇溶液感化时,不产生醇醛缩合或树脂化感化而起歧化反响生成与醛相当的酸(成盐)及醇的混杂物.此反响的特点是醛自身同时产生氧化及还原感化,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会产生此反响,其他醛类与强碱液,感化产生醇醛缩合或进一步变成树脂状物资.具有α-生动氢原子的醛和甲醛起首产生羟醛缩合反响,得到无α-生动氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反响,如乙醛和甲醛反响得到季戊四醇:反响机理醛起首和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的情势转移到另一分子的羰基不克不及碳原子上.反响实例十一.Chichibabin 反响杂环碱类,与碱金属的氨基物一路加热时产生胺化反响,得到响应的氨基衍生物,如吡啶与氨基钠反响生成2-氨基啶,假如α位已被占领,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.丫啶和菲啶类化合物均能产生本反响.喹啉.吡嗪.嘧啶.噻唑类化合物较为艰苦.氨基化试剂除氨基钠.氨基钾外,还可以用代替的碱金属氨化物:反响机理反响机理还不是很清晰,可能是吡啶与氨基起首加成,(Ⅰ),(Ⅰ)转移一个负离子给质子赐与体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的赐与体,最后的产品是2-氨基吡啶的钠盐,用水分化得到2-氨基吡啶:反响实例吡啶类化合物不轻易进行硝化,用硝基还原法制备氨基吡啶甚为艰苦.本反响是在杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.吖啶和菲啶类化合物均能产生本反响.十二.Claisen 酯缩合反响含有α-氢的酯在醇钠等碱性缩合剂感化下产生缩合感化,掉去一分子醇得到β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇感化下产生缩合得到乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反响.反响机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),是以,乙酸乙酯与乙醇钠感化所形成的负离子在均衡系统是很少的.但因为最后产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠感化形成稳固的负离子,从而使均衡朝产品偏向移动.所以,尽管反响系统中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反响,成果反响照样可以顺遂完成.经常运用的碱性缩合剂除乙醇钠外,还有叔丁醇钾.叔丁醇钠.氢化钾.氢化钠.三苯甲基钠.二异丙氨基锂(LDA)和Grignard试剂等.反响实例假如酯的α-碳上只有一个氢原子,因为酸性太弱,用乙醇钠难于形成负离子,须要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠感化下,可以进行缩合,而在乙醇钠感化下则不克不及产生反响:两种不合的酯也能产生酯缩合,理论上可得到四种不合的产品,称为混杂酯缩合,在制备上没有太大意义.假如个中一个酯分子中既无α-氢原子,并且烷氧羰基又比较生动时,则仅生成一种缩合产品.如苯甲酸酯.甲酸酯.草酸酯.碳酸酯等.与其它含α-氢原子的酯反响时,都只生成一种缩合产品.现实上这个反响不限于酯类自身的缩合,酯与含生动亚甲基的化合物都可以产生如许的缩合反响,这个反响可以用下列通式暗示:十三.Claisen—Schmidt 反响一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存鄙人产生缩合反响,并掉水得到不饱和醛或酮:反响机理反响实例十四.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被代替基占满时,重排重要得到邻位产品,两个邻位均被代替基占领时,重排得到对位产品.对位.邻位均被占满时不产生此类重排反响.交叉反响试验证实:Claisen重排是分子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键产生位移.两个邻位都被代替的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反响机理Claisen 重排是个协同反响,中央经由一个环状过渡态,所以芳环上代替基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经由一次[3,3]s 迁徙和一次由酮式到烯醇式的互变异构;两个邻位都被代替基占领的烯丙基芳基酚重排时先经由一次[3,3]s 迁徙到邻位(Claisen 重排),因为邻位已被代替基占领,无法产生互变异构,接着又产生一次[3,3]s 迁徙()到对位,然后经互变异构得到对位烯丙基酚.代替的烯丙基芳基醚重排时,无论本来的烯丙基双键是Z-构型照样E-构型,重排后的新双键的构型都是E-型,这是因为重排反响所经由的六员环状过渡态具有稳固椅式构象的缘故.反响实例Claisen 重排具有广泛性,在醚类化合物中,假如消失烯丙氧基与碳碳相连的构造,就有可能产生Claisen 重排.十五.Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只实用于对酸稳固的化合物.对酸不稳固而对碱稳固的化合物可用还原.反响机理本反响的反响机理较庞杂,今朝尚不很清晰.反响实例十六.Combes 喹啉合成法Combes合成法是合成喹啉的另一种办法,是用芳胺与1,3-二羰基化合物反响,起首得到高产率的β-氨基烯酮,然后在浓硫酸感化下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反响机理在氨基的间位有强的邻.对位定位基团消失时,关环反响轻易产生;但当强邻.对位定位基团消失于氨基的对位时,则不轻易产生关环反响.反响实例十七.Cope 清除反响叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二代替羟胺,产率很高.现实上只需将叔胺与氧化剂放在一路,不需分别出氧化叔胺即可持续进行反响,例如在湿润的二甲亚砜或四氢呋喃中这个反响可在室温进行.此反响前提平和.副反响少,反响进程中不产生重排,可用来制备很多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子消失时,清除得到的烯烃是混杂物,但是Hofmann产品为主;如得到的烯烃有顺反异构时,一般以 E-型为主.例如:反响机理这个反响是E2顺式清除反响,反响进程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生如许的环状构造,氨基和β-氢原子必须处于统一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,如许的过度态须要较高的活化能,形成后也很不稳固,易于进行清除反响.反响实例十八.Cope 重排1,5-二烯类化合物受热时产生类似于 O-烯丙基重排为 C-烯丙基的重排反响()反响称为Cope重排.这个反响30多年来引起人们的广泛留意.1,5-二烯在150—200℃单独加热短时光就轻易产生重排,并且产率异常好.Cope重排属于周环反响,它和其它周环反响的特色一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几乎全体是(Z, E)-2,6辛二烯:反响机理Cope重排是[3,3]s-迁徙反响,反响进程是经由一个环状过渡态进行的协同反响:在立体化学上,表示为经由椅式环状过渡态:反响实例十九.Curtius 反响酰基叠氮化物在惰性溶剂中加热分化生成异氰酸酯:异氰酸酯水解则得到胺:反响机理反响实例二十.Crigee,R 反响1,2-二元醇类的氧化产品因所用的氧化剂的种类而不合.用K2Cr2O7或KMnO4氧化时生成酸类.用特别氧化剂四乙醋酸铅在CH3COOH或苯等不生动有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反响也可以在酸催化剂(三氯醋酸)存鄙人进行.本反响被广泛地运用于研讨醇类构造及制备醛.酮类,产率很高.反响机理反响进程中师长教师成环酯中央产品,进一步C--C键裂开成醛或酮.酸催化的场合,反响过程可以用下式暗示:反响实例二十一.Dakin 反响酚醛或酚酮类用H2O2在NaOH存鄙人氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反响可运用以制备多远酚类.反响机理反响实例二十二.Elbs 反响羰基的邻位有甲基或亚甲基的二芳基酮,加热时产生环化脱氢感化,生成蒽的衍生物:因为这个反响平日是在回流温度或高达400-450 °C的温度规模内进行,不必催化剂和溶剂,直到反响物没有水放出为止,在如许的高温前提下,一部分原料和产品产生碳化,部分原料酮被释放出的水所裂解,烃基产生清除或降解以及分子重排等副反响,致使产率不高.反响机理本反响的机理尚不清晰.反响实例二十三.Edvhweiler-Clarke 反响在过量甲酸存鄙人,一级胺或二级胺与甲醛反响,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反响机理反响实例二十四.将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,变成硝基化合物.反响机理反响实例二十五.Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含雷同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环.反响机理反响实例二十六.Friedel-Crafts 烷基化反响芳烃与卤代烃.醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3,H2SO4, H3PO4, BF3, HF等)存鄙人,产生芳环的烷基化反响.卤代烃反响的生动性次序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反响进程中易产生重排.反响机理起首是卤代烃.醇或烯烃与催化剂如三氯化铝感化形成碳正离子:所形成的碳正离子可能产生重排,得到较稳固的碳正离子:碳正离子作为亲电试剂进攻芳环形成中央体s-络合物,然后掉去一个质子得到产生亲电代替产品:反响实例二十七.Friedel-Crafts酰基化反响芳烃与酰基化试剂如酰卤.酸酐.羧酸.烯酮等在Lewis酸(通经常运用无水三氯化铝)催化下产生酰基化反响,得到芬芳酮:这是制备芬芳酮类最重要的办法之一,在酰基化中不产生烃基的重排.反响机理反响实例二十八.Fries 重排酚酯在Lewis酸存鄙人加热,可产生酰基重排反响,生成邻羟基和对羟基芳酮的混杂物.重排可以在硝基苯.硝基甲烷等溶剂中进行,也可以不必溶剂直接加热进行.邻.对位产品的比例取决于酚酯的构造.反响前提和催化剂等.例如,用多聚磷酸催化时重要生成对位重排产品,而用四氯化钛催化时则重要生成邻位重排产品.反响温度对邻.对位产品比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产品(动力学掌握),较高温度下重排有利于形成邻位异构产品(热力学掌握).反响机理反响实例二十九.Fischer,O-Hepp,E 重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):平日产生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则产生邻位重排成1-亚硝基化合物:反响机理在HCl存鄙人,N-亚硝基化合物起首解离成仲胺及NOCl然落后行亚硝基化:三十.Gabriel 合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液感化改变成邻苯二甲酰亚胺盐,此盐和卤代烷反响生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性前提下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种办法.有些情形下水解很艰苦,可以用肼解来代替:反响机理邻苯二甲酰亚胺盐和卤代烷的反响是亲核代替反响,代替反响产品的水解进程与酰胺的水解类似.反响实例三十一.Gattermann 反响重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸产生置换反响得到氯代或溴代芳烃:本法长处是操纵比较简略,反响可在较低温度下进行,缺陷是其产率一般较低.反响机理见反响实例三十二.Gattermann-Koch 反响芬芳烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存鄙人反响,生成芬芳醛:反响机理反响实例三十三.Gomberg-Bachmann 反响芬芳重氮盐在碱性前提下与其它芬芳族化合物偶联生成联苯或联苯衍生物:反响机理反响实例三十四.Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨产生缩合反响,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很广泛的反响,用于合成吡啶同系物.反响机理反响进程可能是一分子b-羰基酸酯和醛反响,另一分子b-羰基酸酯和氨反响生成b-氨基烯酸酯,所生成的这两个化合物再产生Micheal加成反响,然后掉水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:三十五.Haworth 反响萘和丁二酸酐产生然后按尺度的办法还原.关环.还原.脱氢得到多环芬芳族化合物.反响机理见反响实例三十六.Hell-Volhard-Zelinski 反响羧酸在催化量的三卤化磷或红磷感化下,能与卤素产生a-卤代反响生成a-卤代酸:本反响也可以用酰卤作催化剂.反响机理反响实例三十七.Hinsberg 反响伯胺.仲胺分别与对甲苯磺酰氯感化生成响应的对甲苯磺酰胺沉淀,个中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反响.此反响可用于伯仲叔胺的分别与判定.三十八.Hofmann 烷基化卤代烷与氨或胺产生烷基化反响,生成脂肪族胺类:因为生成的伯胺亲核性平日比氨强,能持续与卤代烃反响,是以本反响不成防止地产生仲胺.叔胺和季铵盐,最后得到的往往是多种产品的混杂物.用大过量的氨可防止多代替反响的产生,从而可得到优越产率的伯胺.反响机理反响为典范的亲核代替反响(S N1或S N2)三十九.Hofmann 清除反响季铵碱在加热前提下(100--200°C)产生热分化,当季铵碱的四个烃基都是甲基时,热分化得到甲醇和三甲胺:假如季铵碱的四个烃基不合,则热分化时老是得到含代替基起码的烯烃和叔胺:反响实例四十.Hofmann 重排(降解)酰胺用溴(或氯)在碱性前提下处理改变成少一个碳原子的伯胺:反响机理反响实例四十一.Houben-Hoesch 反响酚或酚醚在氯化氢和氯化锌等Lewis酸的存鄙人,与腈感化,随落后行水解,得到酰基酚或酰基酚醚:反响机理反响机理较庞杂,今朝尚未完整解释反响实例。

有机化学反应机理详解(共95个反应机理)

有机化学反应机理详解(共95个反应机理)

一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

九十六种有机反应机理

九十六种有机反应机理

1、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:2、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例3、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

九十六种有机反应机理(上)

九十六种有机反应机理(上)

有机化学反应机理1、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例2、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例3、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学反应机理详解(共95个反应机理)

有机化学反应机理详解(共95个反应机理)

一、Arbuzow反响(重排)之五兆芳芳创作亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反响时,其活性次序为:R'I >R'Br >R'Cl.除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反响.当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团.本反响是由醇制备卤代烷的很好办法,因为亚磷酸三烷基酯可以由醇与三氯化磷反响制得:如果反响所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzow反响如下:这是制备烷基膦酸酯的经常使用办法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能产生该类反响,例如:反响机理一般认为是按 S N2 进行的份子内重排反响:反响实例二、Arndt-Eister 反响酰氯与重氮甲烷反响,然后在氧化银催化下与水共热得到酸.反响机理重氮甲烷与酰氯反响首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)产生重排得烯酮(3),(3)与水反响生成酸,若与醇或氨(胺)反响,则得酯或酰胺.反响实例三、Baeyer----Villiger 反响反响机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时产生O-O键异裂.因此,这是一个重排反响具有光学活性的3---苯基丁酮和过酸反响,重排产品手性碳原子的枸型保持不变,说明反响属于份子内重排:不合错误称的酮氧化时,在重排步调中,两个基团均可迁移,但是仍是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸.反响实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反响速率快,反响温度一般在10~40℃之间,产率高.四、Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下产生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反响机理在酸作用下,肟首先产生质子化,然后脱去一份子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反响得到酰胺.迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反响实例五、Birch复原芬芳化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混杂液中复原,苯环可被复原成非共轭的1,4-环己二烯化合物.反响机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环份子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部分共振式.(Ⅰ)不稳定而被质子化,随即从乙醇中夺取一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中夺取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚.反响实例取代的苯也能产生复原,并且通过得到单一的复原产品.例如六、Bouveault---Blanc 复原脂肪族羧酸酯可用金属钠和醇复原得一级醇.α,β-不饱和羧酸酯复原得相应的饱和醇.芬芳酸酯也可进行本反响,但收率较低.本法在氢化锂铝复原酯的办法发明以前,普遍地被使用,非共轭的双键可不受影响.反响机理首先酯从金属钠取得一个电子复原为自由基负离子,然后从醇中夺取一个质子转变成自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步调复原成钠,再酸化得到相应的醇.反响实例醛酮也可以用本法复原,得到相应的醇:七、Bucherer 反响萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行低温反响,可得萘胺衍生物,反响是可逆的.反响时如用一级胺或二级胺与萘酚反响则制得二级或三级萘胺.如有萘胺制萘酚,可将其参加到热的亚硫酸氢钠中,再参加碱,经煮沸除去氨而得.反响机理本反响的机理为加成消除进程,反响的第一步(无论从哪个标的目的开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反响实例八、苯基羟胺(N-羟基苯胺)和稀硫酸一起加热产生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反响机理反响实例九、Berthsen,A.Y 吖啶分解法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩协作用,生成吖啶类化合物.反响机理反响机理不详反响实例十、Cannizzaro 反响凡α位碳原子上无活跃氢的醛类和浓NaOH或KOH水或醇溶液作用时,不产生醇醛缩合或树脂化作用而起歧化反响生成与醛相当的酸(成盐)及醇的混杂物.此反响的特征是醛自身同时产生氧化及复原作用,一份子被氧化成酸的盐,另一份子被复原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会产生此反响,其他醛类与强碱液,作用产生醇醛缩合或进一步酿成树脂状物质.具有α-活跃氢原子的醛和甲醛首先产生羟醛缩合反响,得到无α-活跃氢原子的β-羟基醛,然后再与甲醛进行穿插Cannizzaro反响,如乙醛和甲醛反响得到季戊四醇:反响机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一份子的羰基不克不及碳原子上.反响实例十一、Chichibabin 反响杂环碱类,与碱金属的氨基物一起加热时产生胺化反响,得到相应的氨基衍生物,如吡啶与氨基钠反响生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简洁有效的办法,普遍适用于各类氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能产生本反响.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反响机理反响机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子赐与体(AH),产生一份子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的赐与体,最后的产品是2-氨基吡啶的钠盐,用水分化得到2-氨基吡啶:反响实例吡啶类化合物不容易进行硝化,用硝基复原法制备氨基吡啶甚为困难.本反响是在杂环上引入氨基的简洁有效的办法,普遍适用于各类氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能产生本反响.十二、Claisen 酯缩合反响含有α-氢的酯在醇钠等碱性缩合剂作用下产生缩协作用,失去一份子醇得到β-酮酸酯.如2份子乙酸乙酯在金属钠和少量乙醇作用下产生缩合得到乙酰乙酸乙酯.二元羧酸酯的份子内酯缩合见Dieckmann缩合反响.反响机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的.但由于最后产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产品标的目的移动.所以,尽管反响体系中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反响,结果反响仍是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反响实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不克不及产生反响:两种不合的酯也能产生酯缩合,理论上可得到四种不合的产品,称为混杂酯缩合,在制备上没有太大意义.如果其中一个酯份子中既无α-氢原子,并且烷氧羰基又比较活跃时,则仅生成一种缩合产品.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反响时,都只生成一种缩合产品.实际上这个反响不限于酯类自身的缩合,酯与含活跃亚甲基的化合物都可以产生这样的缩合反响,这个反响可以用下列通式暗示:十三、Claisen—Schmidt 反响一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下产生缩合反响,并失水得到不饱和醛或酮:反响机理反响实例十四、Claisen 重排烯丙基芳基醚在低温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产品,两个邻位均被取代基占据时,重排得到对位产品.对位、邻位均被占满时不产生此类重排反响.穿插反响实验证明:Claisen重排是份子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键产生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反响机理Claisen 重排是个协同反响,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法产生互变异构,接着又产生一次[3,3]s 迁移()到对位,然后经互变异构得到对位烯丙基酚.取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型仍是E-构型,重排后的新双键的构型都是E-型,这是因为重排反响所经过的六员环状过渡态具有稳定椅式构象的缘故.反响实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能产生Claisen 重排.十五、Clemmensen 复原醛类或酮类份子中的羰基被锌汞齐和浓盐酸复原为亚甲基:此法只适用于对酸稳定的化合物.对酸不稳定而对碱稳定的化合物可用复原.反响机理本反响的反响机理较庞杂,目前尚不很清楚.反响实例十六、Combes 喹啉分解法Combes分解法是分解喹啉的另一种办法,是用芳胺与1,3-二羰基化合物反响,首先得到高产率的β-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反响机理在氨基的间位有强的邻、对位定位基团存在时,关环反响容易产生;但当强邻、对位定位基团存在于氨基的对位时,则不容易产生关环反响.反响实例十七、Cope 消除反响叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一起,不需别离出氧化叔胺便可持续进行反响,例如在枯燥的二甲亚砜或四氢呋喃中这个反响可在室温进行.此反响条件温和、副反响少,反响进程中不产生重排,可用来制备许多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除得到的烯烃是混杂物,但是 Hofmann产品为主;如得到的烯烃有顺反异构时,一般以 E-型为主.例如:反响机理这个反响是E2顺式消除反响,反响进程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生这样的环状结构,氨基和β-氢原子必须处于同一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反响.反响实例十八、Cope 重排1,5-二烯类化合物受热时产生类似于 O-烯丙基重排为 C-烯丙基的重排反响()反响称为Cope重排.这个反响30多年来引起人们的普遍注意.1,5-二烯在150—200℃单独加热短时间就容易产生重排,并且产率很是好.Cope重排属于周环反响,它和其它周环反响的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几近全部是(Z, E)-2,6辛二烯:反响机理Cope重排是[3,3]s-迁移反响,反响进程是经过一个环状过渡态进行的协同反响:在立体化学上,表示为经过椅式环状过渡态:反响实例十九、Curtius 反响酰基叠氮化物在惰性溶剂中加热分化生成异氰酸酯:异氰酸酯水解则得到胺:反响机理反响实例二十、Crigee,R 反响1,2-二元醇类的氧化产品因所用的氧化剂的种类而不合.用K2Cr2O7或KMnO4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH3COOH或苯等不活跃有机溶剂中和缓氧化,生成二份子羰基化合物(醛或酮).氧化反响也可以在酸催化剂(三氯醋酸)存在下进行.本反响被普遍地应用于研究醇类结构及制备醛、酮类,产率很高.反响机理反响进程中先生成环酯中间产品,进一步C--C键裂开成醛或酮.酸催化的场合,反响历程可以用下式暗示:反响实例二十一、Dakin 反响酚醛或酚酮类用H2O2在NaOH存在下氧化时,可将份子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反响可利用以制备多远酚类.反响机理反响实例二十二、Elbs 反响羰基的邻位有甲基或亚甲基的二芳基酮,加热时产生环化脱氢作用,生成蒽的衍生物:由于这个反响通常是在回流温度或高达400-450 °C的温度规模内进行,不必催化剂和溶剂,直到反响物没有水放出为止,在这样的低温条件下,一部分原料和产品产生碳化,部分原料酮被释放出的水所裂解,烃基产生消除或降解以及份子重排等副反响,致使产率不高.反响机理本反响的机理尚不清楚.反响实例二十三、Edvhweiler-Clarke 反响在过量甲酸存在下,一级胺或二级胺与甲醛反响,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反响机理反响实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.份子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,酿成硝基化合物.反响机理反响实例二十五、Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于分解张力较大的四员环.反响机理反响实例二十六、Friedel-Crafts 烷基化反响芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,产生芳环的烷基化反响.卤代烃反响的活跃性顺序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反响进程中易产生重排.反响机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能产生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到产生亲电取代产品:反响实例二十七、Friedel-Crafts酰基化反响芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下产生酰基化反响,得到芬芳酮:这是制备芬芳酮类最重要的办法之一,在酰基化中不产生烃基的重排.反响机理反响实例二十八、Fries 重排酚酯在Lewis酸存在下加热,可产生酰基重排反响,生成邻羟基和对羟基芳酮的混杂物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不必溶剂直接加热进行.邻、对位产品的比例取决于酚酯的结构、反响条件和催化剂等.例如,用多聚磷酸催化时主要生成对位重排产品,而用四氯化钛催化时则主要生成邻位重排产品.反响温度对邻、对位产品比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产品(动力学控制),较低温度下重排有利于形成邻位异构产品(热力学控制).反响机理反响实例二十九、Fischer,O-Hepp,E 重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):通常产生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则产生邻位重排成1-亚硝基化合物:反响机理在HCl存在下,N-亚硝基化合物首先解离成仲胺及NOCl然落后行亚硝基化:三十、Gabriel 分解法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变成邻苯二甲酰亚胺盐,此盐和卤代烷反响生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种办法.有些情况下水解很困难,可以用肼解来代替:反响机理邻苯二甲酰亚胺盐和卤代烷的反响是亲核取代反响,取代反响产品的水解进程与酰胺的水解相似.反响实例三十一、Gattermann 反响重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸产生置换反响得到氯代或溴代芳烃:本法优点是操纵比较复杂,反响可在较低温度下进行,缺点是其产率一般较低.反响机理见反响实例三十二、Gattermann-Koch 反响芬芳烃与等份子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反响,生成芬芳醛:反响机理反响实例三十三、Gomberg-Bachmann 反响芬芳重氮盐在碱性条件下与其它芬芳族化合物偶联生成联苯或联苯衍生物:反响机理反响实例三十四、Hantzsch 分解法两份子b-羰基酸酯和一份子醛及一份子氨产生缩合反响,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很普遍的反响,用于分解吡啶同系物.反响机理反响进程可能是一份子b-羰基酸酯和醛反响,另一份子b-羰基酸酯和氨反响生成b-氨基烯酸酯,所生成的这两个化合物再产生Micheal加成反响,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反响实例三十五、Haworth 反响萘和丁二酸酐产生然后按尺度的办法复原、关环、复原、脱氢得到多环芬芳族化合物.反响机理见反响实例三十六、Hell-Volhard-Zelinski 反响羧酸在催化量的三卤化磷或红磷作用下,能与卤素产生a-卤代反响生成a-卤代酸:本反响也可以用酰卤作催化剂.反响机理反响实例三十七、Hinsberg 反响伯胺、仲胺辨别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反响.此反响可用于昆季叔胺的别离与判定.三十八、Hofmann 烷基化卤代烷与氨或胺产生烷基化反响,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能持续与卤代烃反响,因此本反响不成避免地产生仲胺、叔胺和季铵盐,最后得到的往往是多种产品的混杂物.用大过量的氨可避免多取代反响的产生,从而可得到良好产率的伯胺.反响机理反响为典型的亲核取代反响(S N1或S N2)反响实例三十九、Hofmann 消除反响季铵碱在加热条件下(100--200°C)产生热分化,当季铵碱的四个烃基都是甲基时,热分化得到甲醇和三甲胺:如果季铵碱的四个烃基不合,则热分化时总是得到含取代基最少的烯烃和叔胺:反响实例四十、Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处理转变成少一个碳原子的伯胺:反响机理反响实例四十一、Houben-Hoesch 反响酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随落后行水解,得到酰基酚或酰基酚醚:反响机理反响机理较庞杂,目前尚未完全说明反响实例。

有机化学反应机理详解(共95个反应机理)

有机化学反应机理详解(共95个反应机理)

一、Arbuzow反应(重排)之阿布丰王创作亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次第为:R'I >R'Br >R'Cl.除卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应.当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团.本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即 R' = R),则 Arbuzow反应如下:这是制备烷基膦酸酯的经常使用方法.除亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热获得酸.反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,获得酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺.反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型坚持不变,说明反应属于分子内重排:分歧毛病称的酮氧化时,在重排步伐中,两个基团均可迁移,可是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,获得羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高.四、Beckmann 重排肟在酸如硫酸、多聚磷酸以及能发生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应获得酰胺.迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例五、Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反应机理首先是钠和液氨作用生成溶剂化点子,然后苯获得一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部份共振式.(Ⅰ)不稳定而被质子化,随即从乙醇中篡夺一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中篡夺一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚.反应实例取代的苯也能发生还原,而且通过获得单一的还原产物.例如六、Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得相应的饱和醇.芳香酸酯也可进行本反应,但收率较低.本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响.反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中篡夺一个质子转酿成自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步伐还原成钠,再酸化获得相应的醇.反应实例醛酮也可以用本法还原,获得相应的醇:七、Bucherer 反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的.反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺.如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得.反应机理本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上获得烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反应实例八、苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例九、Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物.反应机理反应机理不详反应实例十、Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物.此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步酿成树脂状物质.具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,获得无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应获得季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成获得负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上.反应实例十一、Chichibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,获得相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),发生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解获得2-氨基吡啶:反应实例吡啶类化合物不容易进行硝化,用硝基还原法制备氨基吡啶甚为困难.本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应.十二、Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇获得β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合获得乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反应.反应机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的.但由于最后产物乙酰乙酸乙酯是一个比力强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动.所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反应,结果反应还是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反应实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才华把酯酿成负离子.如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种分歧的酯也能发生酯缩合,理论上可获得四种分歧的产物,称为混合酯缩合,在制备上没有太年夜意义.如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比力活泼时,则仅生成一种缩合产物.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反应时,都只生成一种缩合产物.实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式暗示:十三、Claisen—Schmidt 反应一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水获得不饱和醛或酮:反应机理反应实例十四、Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要获得邻位产物,两个邻位均被取代基占据时,重排获得对位产物.对位、邻位均被占满时不发生此类重排反应.交叉反应实验证明:Claisen重排是分子内的重排.采纳g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移()到对位,然后经互变异构获得对位烯丙基酚.取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排.十五、Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物.对酸不稳定而对碱稳定的化合物可用还原.反应机理本反应的反应机理较复杂,目前尚不很清楚.反应实例十六、Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先获得高产率的β-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水获得喹啉.反应机理在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不容易发生关环反应.反应实例十七、Cope 消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行.此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除获得的烯烃是混合物,可是 Hofmann产物为主;如获得的烯烃有顺反异构时,一般以 E-型为主.例如:反应机理这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要发生这样的环状结构,氨基和β-氢原子必需处于同一侧,而且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应.反应实例十八、Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为C-烯丙基的重排反应()反应称为Cope重排.这个反应30多年来引起人们的广泛注意.1,5-二烯在150—200℃独自加热短时间就容易发生重排,而且产率非常好.Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,获得的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,暗示为经过椅式环状过渡态:反应实例十九、Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则获得胺:反应机理反应实例二十、Crigee,R 反应1,2-二元醇类的氧化产物因所用的氧化剂的种类而分歧.用K2Cr2O7或KMnO4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH3COOH或苯等不活泼有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反应也可以在酸催化剂(三氯醋酸)存在下进行.本反应被广泛地应用于研究醇类结构及制备醛、酮类,产率很高.反应机理反应过程中先生成环酯中间产物,进一步C--C键裂开成醛或酮.酸催化的场所,反应历程可以用下式暗示:反应实例二十一、Dakin 反应酚醛或酚酮类用H2O2在NaOH存在下氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反应可利用以制备多远酚类.反应机理反应实例二十二、Elbs 反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部份原料和产物发生碳化,部份原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高.反应机理本反应的机理尚不清楚.反应实例二十三、Edvhweiler-Clarke 反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,获得甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反应机理反应实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,酿成硝基化合物.反应机理反应实例二十五、Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则招致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较年夜的四员环.反应机理反应实例二十六、Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应.卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超越3个碳原子时,反应过程中易发生重排.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,获得较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子获得发生亲电取代产物:反应实例二十七、Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下发生酰基化反应,获得芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排.反应机理反应实例二十八、Fries 重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行.邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等.例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物.反应温度对邻、对位产物比例的影响比力年夜,一般来讲,较高温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制).反应机理反应实例二十九、Fischer,O-Hepp,E 重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处置时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理在HCl存在下,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:三十、Gabriel 合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转酿成邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解获得一级胺和邻苯二甲酸,这是制备纯洁的一级胺的一种方法.有些情况下水解很困难,可以用肼解来取代:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似.反应实例三十一、Gattermann 反应重氮盐用新制的铜粉取代亚铜盐(见)作催化剂,与浓盐酸或氢溴酸发生置换反应获得氯代或溴代芳烃:本法优点是把持比力简单,反应可在较高温度下进行,缺点是其产率一般较低.反应机理见反应实例三十二、Gattermann-Koch 反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应实例三十三、Gomberg-Bachmann 反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应实例三十四、Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,获得二氢吡啶衍生物,再用氧化剂氧化获得吡啶衍生物.这是一个很普遍的反应,用于合成吡啶同系物.反应机理反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化获得吡啶衍生物:反应实例三十五、Haworth 反应萘和丁二酸酐发生然后按标准的方法还原、关环、还原、脱氢获得多环芳香族化合物.见反应实例三十六、Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷作用下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也可以用酰卤作催化剂.反应机理反应实例三十七、Hinsberg 反应伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应.此反应可用于昆季叔胺的分离与鉴定.三十八、Hofmann 烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不成防止地发生仲胺、叔胺和季铵盐,最后获得的往往是多种产物的混合物.用年夜过量的氨可防止多取代反应的发生,从而可获得良好产率的伯胺.反应机理反应为典范的亲核取代反应(S N1或S N2)反应实例三十九、Hofmann 消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解获得甲醇和三甲胺:如果季铵碱的四个烃基分歧,则热分解时总是获得含取代基最少的烯烃和叔胺:反应实例四十、Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处置转酿成少一个碳原子的伯胺:反应机理反应实例四十一、Houben-Hoesch 反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随后进行水解,获得酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完全说明反应实例。

高考化学高中有机化学九十六种反应机理,精华不要错过

高考化学高中有机化学九十六种反应机理,精华不要错过

高考化学高中有机化学九十六种反应机理,精华不要错过
有机化学,永远是高中的同学们最头疼的科目,尤其是高考中有机推断题,可以说让众多考生都铩羽而归,这些有机化合物有着各种各样的性质、严密精细的制备方法、还有数不尽的方程式……,今天,丹丹姐整理了96种反应机理,只要掌握了这些,作推断题时自然信手拈来,还在等什么?
因为篇幅有限,点击我的头像私信我回复“领取”就可以免费领取PDF电子版。

以下是部分资料内容,完整高清版的发送私信即可。

更多资料持续更新,敬请关注。

96个常用有机反应机理

96个常用有机反应机理

七十九、Strecker 氨基酸合成法八十一、Schiemann,G. 反应八十三、Tiffeneau-Demjanov 重排八十五、Thorpe,J.F. 缩合八十七、Ullmann 反应八十九、Vilsmeier 反应九十一、Williamson 合成法九十三、Wagner-Meerwein 重排九十五、Wittig-Horner 反应参考资料八十二、Schmidin,J. 乙烯酮合成八十四、Tischenko,V.反应八十六、Tollens,B. 缩合八十八、Urech,F.羟腈合成法九十、Van Ekenstein,W,A 重排九十二、Wacker 反应九十四、Wittig 反应九十六、Wohl 递降反应Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 SN2 进行的分子重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

有机化学反应机理详解(共95个反应机理)

有机化学反应机理详解(共95个反应机理)

一、(一)Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学九十六种反应机理九—81-89

有机化学九十六种反应机理九—81-89

有机化学九十六种反应机理九—81~89八十一、Ullmann反应卤代芳烃在铜粉存在下加热发生偶联反应生成联苯类化合物。

如碘代苯与铜粉共热得到联苯:这个反应的应用范围广泛,可用来合成许多对称和不对称的联苯类化合物。

芳环上有吸电子取代基存在时能促进反应的进行,尤其以硝基、烷氧羰基在卤素的邻位时影响最大,邻硝基碘苯是参与Ullmann反应中最活泼的试剂之一。

1、反应机理本反应的机理还不肯定,可能的机理如下:另一种观点认为反应的第二步是有机铜化合物之间发生偶联:2、反应实例当用两种不同结构的卤代芳烃混合加热时,则有三种可能产物生成,但常常只得到其中一种。

例如,2,4,6-三硝基氯苯与碘苯作用时主要得到2,4,6-三硝基联苯:八十二、Urech,F.羟腈合成法将等当量的酮及KCN(或NaCN)混合物用醋酸处理,则生成的HCN与酮的羰基起加成反应,生成羟腈:如将醛、酮类与无水HCN在微量NaCN(KCN)或碱性催化剂(KOH)存在下,低温(0℃)时作用,则得相同的产物。

1、反应机理酸的存在下形成正碳离子,容易和弱亲核试剂HCN进行亲核反应:碱的存在,促使活性的亲核试剂CN-的形成:2、反应实例八十三、Vilsmeier反应芳烃、活泼烯烃化合物用二取代甲酰胺及三氯氧磷处理得到醛类:这是目前在芳环上引入甲酰基的常用方法。

N,N-二甲基甲酰胺、N-甲基-N-苯基甲酰胺是常用的甲酰化试剂。

1、反应机理2、反应实例八十四、VanEkenstein,W.A重排将单糖类用淡碱液处理则引起重排作用生成醛糖、酮糖的平衡混合物:1、反应机理2、反应实例八十五、Williamson合成法卤代烃与醇钠在无水条件下反应生成醚:如果使用酚类反应,则可以在氢氧化钠水溶液中进行:卤代烃一般选用较为活泼的伯卤代烃(一级卤代烃)、仲卤代烃(二级卤代烃)以及烯丙型、苄基型卤代烃,也可用硫酸酯或磺酸酯。

本法既可以合成对称醚,也可以合成不对称醚。

1、反应机理反应一般是按SN2机理进行的:2、反应实例八十六、Wacker反应乙烯在水溶液中,在氯化铜及氯化钯的催化下,用空气氧化得到乙醛:1、反应机理2、反应实例无八十七、Wittig反应Wittig试剂与醛、酮的羰基发生亲核加成反应,形成烯烃:1、反应机理2、反应实例八十八、Wittig-Horner反应用亚磷酸酯代替三苯基膦所制得的磷Ylide与醛酮反应称为Wittig-Horner反应:1、反应机理与Wittig反应类似,加成后的消除步骤无有差别。

有机化学反应机理详解共95个反应机理

有机化学反应机理详解共95个反应机理

一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学反应机理详解(共95个反应机理)之令狐文艳创作

有机化学反应机理详解(共95个反应机理)之令狐文艳创作

一、Arbuzow反应(重排)令狐文艳亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即 R' = R),则 Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学反应的96种反应类型

有机化学反应的96种反应类型

有机化学反应机理一、Arbuzov 反应二、Arndt-Eister 反应三、Baeyer-villiger 反应四、Beckmann 重排五、Birch 还原六、Bouveault-Blanc 还原七、Bucherer 反应八、Bamberger,E. 重排九、Berthsen,A.Y 吖啶合成法十、Cannizzaro 反应十一、Chichibabin 反应十二、Claisen 酯缩合反应十三、Claisen-Schmidt 反应十四、Claisen 重排十五、Clemmensen 还原十六、Combes 喹啉合成法十七、Cope 消除反应十八、Cope 重排十九、Curtius 反应二十、Crigee,R 反应二十一、Dakin 反应二十二、Elbs 反应二十三、Edvhweiler-Clarke 反应二十四、Elbs,K 过硫酸钾氧化法二十五、Favorskii 反应二十六、Favorskii 重排二十七、Friedel-Crafts 烷基化反应二十八、Friedel-Crafts 酰基化反应二十九、Fries 重排三十、Fischer,O-Hepp,E 重排三十一、Gabriel 合成法三十二、Gattermann 反应三十三、Gattermann-Koch 反应三十四、Gomberg-Bachmann 反应三十五、Hantzsch 合成法三十六、Haworth 反应三十七、Hell-Volhard-Zelinski反应三十八、Hinsberg 反应三十九、Hofmann 烷基化四十、Hofmann 消除反应四十一、Hofmann 重排(降解)四十二、Houben-Hoesch 反应四十三、Hunsdiecker 反应四十四、Kiliani 氯化增碳法四十五、Knoevenagel 反应四十六、Koble 反应四十七、Koble-Schmitt 反应四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成四十九、Leuckart 反应五十、Lossen 反应五十一、Mannich 反应五十二、Meerwein-Ponndorf 反应五十三、Michael 加成反应五十四、Martius,C.A. 重排五十五、Norrish Ⅰ和Ⅱ型裂五十六、Oppenauer 氧化五十七、Orton,K.J.P 重排五十八、Paal-Knorr 反应五十九、Pschorr 反应六十、Prileschajew,N 反应六十一、Prins,H.J 反应六十二、Pinacol 重排六十三、Perkin,W.H 反应六十四、Pictet-Spengler异喹啉合成法六十五、Reformatsky 反应六十六、Reimer-Tiemann 反应六十七、Reppe 合成法六十八、Robinson 缩环反应六十九、Rosenmund 还原七十、Ruff 递降反应七十一、Riley,H.L 氧化法七十二、Sandmeyer 反应七十三、Schiemann 反应七十四、Schmidt 反应七十五、Skraup 合成法七十六、Sommelet-Hauser 反应七十七、Stepen 还原-氰还原为醛七十八、Stevens 重排七十九、Strecker 氨基酸合成法八十、异喹啉合成法八十一、Schiemann,G. 反应八十二、Schmidin,J. 乙烯酮合成八十三、Tiffeneau-Demjanov 重排八十四、Tischenko,V.反应八十五、Thorpe,J.F. 缩合八十六、Tollens,B. 缩合八十七、Ullmann 反应八十八、Urech,F.羟腈合成法八十九、Vilsmeier 反应九十、Van Ekenstein,W,A 重排九十一、Williamson 合成法九十二、Wacker 反应九十三、Wagner-Meerwein 重排九十四、Wittig 反应九十五、Wittig-Horner 反应九十六、Wohl 递降反应Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

96个常用有机反应机理_(1)

96个常用有机反应机理_(1)

Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学九十六种反应机理及实例3——21~30

有机化学九十六种反应机理及实例3——21~30

有机化学九十六种反应机理及实例3——21~30二十一、Elbs,K.过硫酸钾氧化法将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类。

分子中的醛基或双键等都不影响。

产率约20~48%。

过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,变成硝基化合物。

1、反应机理2、应用实例二十二、Favorskii重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四元环。

1、反应机理2、反应实例二十三、Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3,HF等)存在下,发生芳环的烷基化反应。

卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。

1、反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到发生亲电取代产物:2、反应实例二十四、Friedel-Crafts 酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。

1、反应机理2、反应实例二十五、Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。

重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。

例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。

有机化学反应的96种反应类型

有机化学反应的96种反应类型

有机化学反响机理一、Arbuzov 反响二、Arndt-Eister 反响三、Baeyer-villiger 反响四、Beckmann 重排五、Birch 复原六、Bouveault-Blanc 复原七、Bucherer 反响八、Bamberger,E. 重排九、Berthsen,A.Y 吖啶合成法十、Cannizzaro 反响十一、Chichibabin 反响十二、Claisen 酯缩合反响十三、Claisen-Schmidt 反响十四、Claisen 重排十五、Clemmensen 复原十六、Combes 喹啉合成法十七、Cope 消除反响十八、Cope 重排十九、Curtius 反响二十、Crigee,R 反响二十一、Dakin 反响二十二、Elbs 反响二十三、Edvhweiler-Clarke 反响二十四、Elbs,K 过硫酸钾氧化法二十五、Favorskii 反响二十六、Favorskii 重排二十七、Friedel-Crafts 烷基化反应二十八、Friedel-Crafts 酰基化反响二十九、Fries 重排三十、Fischer,O-Hepp,E 重排三十一、Gabriel 合成法三十二、Gattermann 反响三十三、Gattermann-Koch 反响三十四、Gomberg-Bachmann 反响三十五、Hantzsch 合成法三十六、Haworth 反响三十七、Hell-Volhard-Zelinski反应三十八、Hinsberg 反响三十九、Hofmann 烷基化四十、Hofmann 消除反响四十一、Hofmann 重排〔降解〕四十二、Houben-Hoesch 反响四十三、Hunsdiecker 反响四十四、Kiliani 氯化增碳法四十五、Knoevenagel 反响四十六、Koble 反响四十七、Koble-Schmitt 反响四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成四十九、Leuckart 反响五十、Lossen 反响五十一、Mannich 反响五十二、Meerwein-Ponndorf 反响五十三、Michael 加成反响五十四、Martius,C.A. 重排五十五、Norrish Ⅰ和Ⅱ型裂五十六、Oppenauer 氧化五十七、Orton,K.J.P 重排五十八、Paal-Knorr 反响五十九、Pschorr 反响六十、Prileschajew,N 反响六十一、Prins,H.J 反响六十二、Pinacol 重排六十三、Perkin,W.H 反响六十四、Pictet-Spengler异喹啉合成法六十五、Reformatsky 反响六十六、Reimer-Tiemann 反响六十七、Reppe 合成法六十八、Robinson 缩环反响六十九、Rosenmund 复原七十、 Ruff 递降反响七十一、Riley,H.L 氧化法七十二、Sandmeyer 反响七十三、Schiemann 反响七十四、Schmidt 反响七十五、Skraup 合成法七十六、Sommelet-Hauser 反响七十七、Stepen 复原-氰复原为醛七十八、Stevens 重排七十九、Strecker 氨基酸合成法八十、异喹啉合成法八十一、Schiemann,G. 反响八十二、Schmidin,J. 乙烯酮合成八十三、Tiffeneau-Demjanov 重排八十四、Tischenko,V.反响八十五、Thorpe,J.F. 缩合八十六、Tollens,B. 缩合八十七、Ullmann 反响八十八、Urech,F.羟腈合成法八十九、Vilsmeier 反响九十、Van Ekenstein,W,A 重排九十一、Williamson 合成法九十二、Wacker 反响九十三、Wagner-Meerwein 重排九十四、Wittig 反响九十五、Wittig-Horner 反响九十六、Wohl 递降反响Arbuzov 反响亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反响时,其活性次序为:R'I >R'Br >R'Cl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、Arbuzov艾伯佐夫 反应 三、Baeyer-villiger 拜耳-维立格反应 五、Birch伯奇 还原 七、Bucherer 反应 九、Berthsen,A.Y 吖啶合成法 十 一、Chichibabin 反应 十 三、Claisen-Schmidt 反应 十 五、Clemmensen 还原 十 七、Cope 消除反应 十 九、Curtius 反应 二十一、Dakin 反应 二十三、Edvhweiler-Clarke 反应 二十五、Favorskii 反应 二十七、Friedel-Crafts 烷基化反 应 二十九、Fries 重排 三十一、Gabriel 合成法 三十三、Gattermann-Koch 反应 三十五、Hantzsch 合成法 三十七、Hell-Volhard-Zelinski反 应 三十九、Hofmann 烷基化 四十一、Hofmann 重排(降解) 四十三、Hunsdiecker 反应 四十五、Knoevenagel 反应 四十七、Koble-Schmitt 反应
Berthsen,A.Y 吖啶合成法
二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶 类化合物。
反应机理
反应实例
Chichibabin 反应
杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应 的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如 果α位已被占据,则得γ-氨基吡啶,但产率很低。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:
反应实例
Birch 还原
伯奇还原反应(Birch还原)是指用钠和醇在液氨中将芳香环还原 成1,4-环己二烯的有机还原反应。此反应最早由澳大利亚化学家 Arthur John Birch (1915–1995)在1944年发表。[1] Birch还原的重 要性在于:尽管剩下的双键(非芳香性)更为活泼,该反应却能停 留在环己双烯上,而不继续还原。
反应实例
Bouveault---Blanc 还原
脂肪族羧酸酯可用金属钠和醇还原得一级醇。α, β-不饱和羧酸酯还原得相应的饱和醇。芳香酸酯 也可进行本反应,但收率 较低。本法在氢化锂铝还原酯的方法发现以前, 广泛地被使用,非共轭的双键可不受影响。
反应机理
首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中 夺取一个质子转变为自由基,再从钠得一个电子生成负离 子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化 得到相应的醇。
五 十、Lossen 反应 五十二、Meerwein-Ponndorf 反应 五十四、Martius,C.A. 重排 五十六、Oppenauer 氧化 五十八、Paal-Knorr 反应 六 十、Prileschajew,N 反应 六十二、Pinacol 重排 六十四、Pictet-Spengler异喹啉合 成法 六十六、Reimer-Tiemann 反应 六十八、Robinson 缩环反应 七 十、 Ruff 递降反应 七十二、Sandmeyer 反应 七十四、Schmidt 反应 七十六、Sommelet-Hauser 反应 七十八、Stevens 重排 八 十、异喹啉合成法 八十二、Schmidin,J. 乙烯酮合成 八十四、Tischenko,V.反应 八十六、Tollens,B. 缩合 八十八、Urech,F.羟腈合成法 九 十、Van Ekenstein,W,A 重排 九十二、Wacker 反应 九十四、Wittig 反应 九十六、Wohl 递降反应
如果是取代芳香化合物,当取代基是羧基等吸电子基时,能够稳定 碳负离子并生成最少取代的烯烃; 当取代基是供电子基时,则生 成取代最多的烯烃。 热力学不稳定的非共轭1,4-加成产物往往产率 超过热力学稳定的1,3-加成产物,这是由于共轭的戊二烯负离子中 间体HOMO的最大轨道系数是在中间那个碳原子上,导致生成的 1,4-环己双烯没有办法经过平衡移动而生成更加热力学稳定的产物, 因此,生成的是动力学稳定产物。
肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、 苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取 代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺
反应机理
在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基 处于反位的基团迁移到缺电子的氮原子上,所形成 的碳正离子与水反应得到酰胺。
芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲 丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合 物.
.使用Birch还原的一个例子是还原萘
反应机理
钠溶于液氨中会形成一个电子盐的亮蓝色溶液,化学式为 [Na(NH3)x] e。溶剂化电子会与芳香环加成,形成一个自由基负 离子。溶液中的醇此时作为质子试剂提供一个氢原子。对大多数 反应物来说,氨上的氢酸性还不够。如下图所示。
反应机理
首先发生碱对羰基的亲核加成,四面体型中间体再与强碱作用,失去一个质子变为双负 离子(坎尼扎罗中间体)。由于氧原子带有负电荷,具有供电性,使得邻位碳原子排斥 电子的能力大大增强。两个负离子中间体都可与醛作用,碳上的氢带着一对电子以氢负 离子的形式转移到醛的羰基碳上,形成一个醇盐负离子和一个羧酸根负离子。坎尼扎罗 反应中的水可以参与反应,生成氢气,也证实了氢负转移的过程。
常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、 三苯甲基钠、二异丙氨基锂(LDA)和Grignard试 剂等。
二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。
本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳 环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发 生本反应。喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。氨基化试 剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:
反应机理
反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ), (Ⅰ)转移一个负离子给质子给予体(AH),产生一分子氢 气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质 子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得 到2-氨基吡啶:
四十九、Leuckart 反应 五十一、Mannich 反应 五十三、Michael 加成反应 五十五、Norrish Ⅰ和Ⅱ 型裂 五十七、Orton,K.J.P 重排 五十九、Pschorr 反应 六十一、Prins,H.J 反应 六十三、Perkin,W.H 反应 六十五、Reformatsky 反应 六十七、Reppe 合成法 六十九、Rosenmund 还原 七十一、Riley,H.L 氧化法 七十三、Schiemann 反应 七十五、Skraup 合成法 七十七、Stepen 还原-氰还原为醛 七十九、Strecker 氨基酸合成法 八十一、Schiemann,G. 反应 八十三、Tiffeneau-Demjanov 重排 八十五、Thorpe,J.F. 缩合 八十七、Ullmann 反应 八十九、Vilsmeier 反应 九十一、Williamson 合成法 九十三、Wagner-Meerwein 重排 九十五、Wittig-Horner 反应
Birch烷基化
在卤代烃的存在下,上文提到的碳负离子也可以发生亲核取代反应 生成新的碳-碳键。如下图所示,在Birch还原中生成的负离子中间 体可以被一个合适的亲电试剂捕获,例如卤代烃: 根据逆合成分析,前者即是后 者的合成子。 在下图所示反应中,1,4-二溴 丁烷被加入到苯甲酸叔丁酯中, 最后生成烷基化的1,4-环己双 烯产物。如下图
二、Arndt-Eister 反应 四、Beckmann 重排 六、Bouveault-Blanc 还原 八、Bamberger,E. 重排 十、Cannizzaro 反应 十 二、Claisen 酯缩合反应 十 四、Claisen 重排 十 六、Combes 喹啉合成法 十 八、Cope 重排 二 十、Crigee,R 反应 二十二、Elbs 反应 二十四、Elbs,K 过硫酸钾氧化法 二十六、Favorskii 重排 二十八、Friedel-Crafts 酰基化反 应 三 十、Fischer,O-Hepp,E 重排 三十二、Gattermann 反应 三十四、Gomberg-Bachmann 反 应 三十六、Haworth 反应 三十八、Hinsberg 反应 四十、Hofmann 消除反应 四十二、Houben-Hoesch 反应 四十四、Kiliani 氯化增碳法 四十六、Koble 反应 四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成
如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷 基相同(即 R' = R),则 Arbuzov 反应如下:
这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2 和次亚膦酸酯 R2POR' 也能发生该类反应,例 如:
反应机理 一般认为是按 SN2 进行的 分子内重排反应:
Arbuzov 反应
亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基 酯和一个新的卤代烷:
卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代 烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸 酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中 三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基 酯可以由醇与三氯化磷反应制得:
不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还 是有一定的选择性,按迁移能力其顺序为
醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例
酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或 三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成 相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特 点是反应速率快,反应温度一般在10~40℃之间,产率高。
Arndt-Eister 反应
相关文档
最新文档