图形运动与坐标教案
第七单元《图形的运动》教案
最后,关于课堂氛围的营造,我觉得在本章节的教学中,课堂氛围较为活跃,学生们的学习兴趣得到了很好的激发。在今后的教学中,我会继续关注学生的兴趣点,将更多有趣的生活实例融入教学,让数学课堂变得更加生动有趣。
其次,在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论效率不高,个别学生参与度较低。为了提高学生的参与度,我应该在分组时更加注意成员的搭配,尽量让每个学生都能在小组中发挥自己的作用。同时,在讨论过程中,我会加强对学生的引导,鼓励他们积极表达自己的观点,提高讨论效果。
在学生小组讨论环节,我发现有些学生在分享成果时表达不够清晰,逻辑性不强。针对这一问题,我计划在今后的教学中加强对学生表达能力的训练。例如,在小组讨论结束后,让学生先在组内进行一次预演,然后再向全班展示。这样有助于提高他们表达的条理性和自信心。
难点举例:让学生在实际操作中,理解并掌握平移和旋转前后坐标之间的关系。
(2)轴对称的判定:正确判断轴对称图形,并找到对称轴。
难点举例:引导学生观察、分析常见轴对称图形的特点,掌握轴对称的判定方法。
(3)图形运动组合问题:解决图形在平移、旋转和轴对称组合运动下的变化规律。
难点举例:通过具体实例,让学生学会分析图形运动过程,将复杂问题分解为简单运动组合,并逐步解决问题。
第七单元《图形的运动》教案
一、教学内容
《图形的运动》为七年级数学第七单元,主要包括以下内容:1.平移:理解平移的概念,掌握图形的平移规律,并能运用坐标描述平移;2.旋转:理解旋转的概念,掌握图形的旋转规律,并能运用坐标描述旋转;3.轴对称:掌握轴对称的性质和判定方法,了解轴对称在实际中的应用;4.图形的运动组合:掌握图形在平移、旋转和轴对称的组合运动下的变化规律。本章节将通过丰富的实例和练习,让学生在实际操作中感受和掌握图形的运动规律,提高空间想象能力和解决问题的能力。
九年级数学上册 23.6 图形与坐标教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教
23.6 图形与坐标用坐标确定位置【知识与技能】能够在图形中建立适当的坐标系来描述物体的位置,并结合具体实例了解坐标系建立位置不同,点的坐标也随之变化;能够利用坐标找到点的位置;了解确定位置的两种方法.【过程与方法】通过实践、探索、观察、分析等数学活动过程,发展学生形象思维能力和数学应用能力.【情感态度】体验运用确定位置来解决实际问题,感受数学与人类生活的密切联系.【教学重点】建立平面直角坐标系用直角坐标和方位坐标确定物体的位置.【教学难点】建立恰当的坐标系确定物体的位置.一、创设情境,导入新知1.什么是平面直角坐标系?建立了平面直角坐标系后,平面上的点可以用什么来描述?2.画一个直角坐标系,并描出点A(1,2),B(-3,5),C(4,5),D(0,3)的位置.3.如图,四边形ABCD,在方格图中建立适当的直角坐标系,用点的坐标来表示各点的位置.你写出的点与别人相同吗?二、合作探究,理解新知问题1:确定点的位置夏令营举行野外拉练活动,老师交给大家一X地图,如图所示,在这X地图上,画一个直角坐标系,作为定向标记,有四座农舍的坐标是(1,2),(-3,5),(4,5),(0,3).目的地位于连结第一与第三座农舍的直线和第二与第四座农舍的直线的交点,请你在教材图中找出这个目的地所处的位置,你能估计出这个位置的坐标是什么吗?先确定出四座农舍的位置(即“创设情境,导入新知”中第2题的A、B、C、D四个点),过A、C作直线,过B、D作直线,两直线的交点P即是目的地,确定点P的坐标,过P作x 轴垂线,,过P作y轴垂线,,所以目的地P).问题2:你写出的坐标与别人相同吗?如图是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置.思考:(1)建立的直角坐标系是否相同?选定的坐标单位会一样吗?各点的坐标是否一样?(2)通过以上两个问题的研究,你如何确定一个点的位置?归纳:利用平面直角坐标系,我们可以较为方便地确定平面上点的位置,直角坐标系的位置不同,用坐标表示某地的位置也不同.一般地,在建立坐标系时,我们应尽量让较多的点位于坐标轴上,这样可以使点的坐标较容易给出,也方便于我们将所要研究的问题进行简化.思考:(1)这是利用什么方法来确定位置的?(2)用这种方法确定位置首先应该做什么?(3)需要几个数据来确定点的位置?(4)请举出实际生活中用这种方法来确定位置的例子.问题3:小明去某地考察环境污染问题,并且他事先知道下面的信息:“悠悠日用化工品厂”在他现在所在地的北偏东30度的方向距离此处3千米的地方;“明天调味品厂”在他现在所在地的北偏西45度的方向,距离此处的地方;“321号水库”在他现在所在地的南偏东27度的方向,距离此处的地方.根据这些信息,你能画一X图来表示各处的位置吗?在学生活动过程中,提出以下问题思考:(1)这又是用什么方法来确定位置的呢?(2)用这种方法确定位置必须要知道什么?(3)请举出生活中用这种方法确定位置的例子.归纳:用一个角度和距离也可以表示一个点的位置.三、尝试练习,掌握新知1.教材练习.2.根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.3.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课主要学习了什么内容,还有什么内容不清楚的?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材复习题第9题.2.如图,是某植物园的平面示意图.A、B、C、D、E、F分别表示梅、兰、竹、菊、月季、荷花六个花圃,请解决以下问题:(1)说出A、B、C、D、E、F在图上的坐标;(2)位于原点北偏东45度的是哪个花圃?23.6.2 图形的变换与坐标【知识与技能】理解点或图形的变化引起的坐标的变化规律,以及图形上的点的坐标的某种变化引起的图形变换,并应用于实际问题.【过程与方法】经历图形坐标变化与图形平移、旋转、放大、缩小等之间的关系,培养学生的形象思维.【情感态度】在观察、探索的过程中让学生获得发现的喜悦;体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养学生坚强的意志和品质.【教学重点】图形坐标变化与图形变换之间的关系.【教学难点】图形坐标变化与图形变换规律的探究.一、创设情境,导入新知1.在平面直角坐标系中,如果A点的坐标是(x,y),那么这个点关于x轴、y轴、原点的对称点坐标是______、______、________.2.△ABC中,AB=AC=5,BC=6,建立直角坐标系,写出各顶点的坐标.3.你能画出与△ABC成轴对称的三角形吗?请画一个以直线BC为对称轴的三角形.4.将点A(-3,-2)向右平移4个单位,得到点A′,在图上标出这个点,并写出它的坐标,把点A向上平移5个单位呢?把点A向左或向下平移,观察它们的变化,你能从中发现什么规律吗?再找几个点试一试!二、合作探究,理解新知问题1:平移变换与坐标在“创设情境,导入新知”第2题中,如果以C为坐标原点,CB所在直线为x轴建立直角坐标系如图所示.思考:(1)A、B、C三点在直角坐标系中的坐标是什么?(2)把△ACB向右平移3个单位之后,得到△A′B′C′,三个顶点的坐标是什么?与△ABC三个顶点相比,相应顶点坐标有什么变化?结论:相应顶点的横坐标都增加了3个单位,而纵坐标都不变.(3)若把△ABC向左平移3个单位,相应顶点坐标有什么变化?相应顶点的横坐标都减少了3个单位,而纵坐标都不变.(4)改变△ABC的位置,再将△ABC左、右平移,相应顶点坐标怎样变化?由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标、横坐标各有什么变化?它们的纵坐标都不变,横坐标有变化.向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位.(5)如果将一个图形上下平移,图形上点的坐标又有什么变化规律?图形上点的横坐标不变,向上平移几个单位,纵坐标加上几个单位;向下平移几个单位,纵坐标就减少几个单位.问题2:对称变换与坐标思考:(1)如图,将△AOB沿x轴翻转,对应点的坐标有什么变化?横坐标不变,纵坐标变为原来的相反数.(2)如果沿y轴翻转呢?纵坐标不变,横坐标变为原来的相反数.(3)如果图形关于原点对称呢?横坐标、纵坐标都变为原来的相反数.练习:完成教材“试一试”.问题3:位似变换与坐标思考:如图,(1)△COD的各顶点坐标是什么?C(1,2),O(0,0),D(2,0).△AOB各顶点坐标是什么?A(2,4),O(0,0),B(4,0).(2)△COD与△AOB对应顶点是怎样变化的?将△COD各顶点的横、纵坐标分别乘以2,就得到△AOB各顶点的坐标.(3)△COD与△AOB相似吗?若相似,相似比是多少?相似,相似比是1∶2.(4)比较△COD与△AOB的各对应顶点坐标的变化,它们的横纵坐标都按比例扩大,这种变化与它们的相似比有什么关系呢?都扩大了相似比的倍数.(5)△COD与△AOB是位似图形,且都在位似中心O的同侧,若△COD与△AOB在位似中心O的两侧,对应顶点的坐标的变化与相似比又有什么关系呢?变换后对应点横、纵坐标都乘以相似比的相反数.归纳:以原点为位似中心作位似变换,若位似比是k,当原图形与新图形在y轴两侧(即对应点在y轴两侧)时,那么位似图形上对应点的坐标比等于位似比的相反数;当新图形与原图形在y轴同侧(即对应点在y轴同侧)时,那么位似图形上对应点的坐标比等于位似比.三、尝试练习,掌握新知1.如图,已知在平面直角坐标系中有一个正方形ABCO.(1)写出A、B、C、O四个点的坐标.(2)若A向右移动两个单位,B点也向右平移两个单位,写出A、B的坐标,这时四边形ABCO是什么图形?(3)在(2)的图形中B、C两点要怎样变化才能使四边形ABCO为正方形?2.将图中的点A(6,0),B(6,3),C(6,6),D(0,3)作如下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标加2,再将所得的点用线段依次连结起来,所得的图案与原来的图案相比有什么变化?(3)纵坐标保持不变,横坐标分别乘以-1,所得的图案与原来的图案相比有什么变化?3.如下图,已知:(1)AC的长等于______;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是______;(3)若将△ABC绕点C按顺时针方向旋90°后得到△A1B1C1,则A点的对应点A1的坐标是______.4.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知通过本节课的学习,你有什么收获?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题23.6第2题.,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按下列要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);②将四边形ABCD沿x轴翻转180°,得到四边形A′B′C′D′,再将四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.。
12.2图形在坐标系中的平移教案
12.2图形在坐标系中的平移一、教学内容在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系二、教学目标1、能在直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面坐标系上的平移实质上就是点坐标的对应变换;2、运用图形在直角坐标系中平移的点坐标的变化规律进行简单的平移作图;3、经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程进一步发展数形结合的思想与空间观念。
三、教学重点掌握用坐标系的变化规律来描述平移的过程四、教学难点根据图形的平移过程,探索、归纳出坐标的变化规律五、教学关键通过探究发现并总结规律,让学生在坐标系中,结合图形的变换理解得出的结论。
六、教学准备多媒体、三角板及相关资料七、教学方法:探究、启发教学八、教学过程(一)创设情境(多媒体显示)1、平移的概念(提问学生,强调方向和距离)2、同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?(二)问题导入,新课讲解探索图形在平移过程中各点坐标的变化规律。
第13页思考题(多媒体显示)师:引导学生讨论、分析;生:与同伴交流回答问题。
(教师指正)发现:第(2)题对应点的纵坐标都不变,横坐标变了,将横坐标都减去5即可;第(3)题对应点的横坐标都不变,纵坐标变了,将纵坐标都减去2即可。
师:把三角形ABC向左或向上移动1个单位,点坐标又将怎样的变化?生:讨论回答问题师生共同归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的;(2)在直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记“上加下减”。
(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则纵(横)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量即可。
第六章 图形与坐标全章教案
6.1探索确定位置的方法一、背景介绍及教学资料有序数对法确定点的位置在生活中有着广泛的应用,如电影票,海上搜救,地球仪上的经纬法等等。
本教材一改过去有老师马上给出平面直角坐标系的做法,而是给出一些实际情境,以小学里曾学过的数对法确定位置为基础,让学生在探索中,亲身体验知识的发生过程,为下一课时平面直角坐标系的提出打下基础。
其他教材中提及的区域定位法在教师也可以酌情加以介绍。
教学内容分析:本节课一开始,让学生拿着票找座位,使学生在在实际情景中,亲身体会用数对表示位置的必要性,通过探索明白如何用有序数对定位。
接着,以海上搜救工作为例,说明方向、距离定位法的广泛应用,并体会两种定位法的异同,再结合本地地图,综合应用这两种方法为自己所在地定位,进一步巩固两种定位法,最后以探究活动:球面上点的经纬定位法把本节课提升到更高的境界。
教学目标:1、探索确定平面上物体位置的方法;2、体验用有序实数对表示平面上点的位置的坐标思想,体验用方向和距离表示平面上点的位置的坐标思想;3、初步会用有序实数对和方向、距离表示平面上点的位置.教学重点与难点:教学重点:探索在平面上确定位置的两种常用方法.教学难点:本节“合作学习”涉及两种确定方法的运用,还涉及测量、比例计算等方面,是本节教学的难点.教学准备:刻度尺方格纸量角器教学过程::某渔船8:00从小岛出发向西航行,10:00平均航速均为20千米?时。
问11:30该渔船在什么位置?请先画出航线示意图(比例尺1:1000000)船相对于小岛的方位,并量出距离。
两种方法,灵活运用设计说明:1.本课时是按“问题情境——数学活动——概括——巩固、应用和拓展”的模式呈现,这种方式符合学生的认知规律和学习规律,因此也是课堂教学设计的立足点,就是根据这一模式进行设计的。
2.学生的学习态度决定了学习效果,一堂课成功与否与学生的参与度紧密相连。
本案用大量的实际例子,内容贴近学生的生活实际,充满生活气息,更好地激发了学生的学习兴趣,吸引了注意力。
图形的变换与坐标教案
图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。
图形的变换与坐标教案
图形的变换与坐标教案一、教学目标:1. 知识与技能:理解坐标系的概念,掌握坐标系的建立方法。
学习图形的平移、旋转和缩放等基本变换。
能够运用坐标表示和计算图形的变换。
2. 过程与方法:通过实际操作和观察,培养学生的空间想象能力和抽象思维能力。
学会使用坐标系解决实际问题,提高解决问题的能力。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情。
培养学生的团队协作能力和交流表达能力。
二、教学内容:1. 坐标系的概念和建立方法学习直角坐标系的定义和建立方法。
理解坐标轴和坐标点的含义。
2. 图形的平移变换学习图形的平移概念和规律。
掌握图形平移的坐标表示和计算方法。
3. 图形的旋转变换学习图形的旋转概念和规律。
掌握图形旋转的坐标表示和计算方法。
4. 图形的缩放变换学习图形的缩放概念和规律。
掌握图形缩放的坐标表示和计算方法。
5. 实际问题应用通过实际问题,运用坐标系和图形变换解决实际问题。
培养学生的解决问题能力和创新思维能力。
三、教学资源:1. 教学课件和教学素材。
2. 坐标纸和绘图工具。
3. 实际问题案例。
四、教学过程:1. 导入:通过实际例子,引入坐标系的概念,激发学生的兴趣。
2. 教学内容讲解:结合课件和教学素材,讲解坐标系的概念和建立方法,图形的平移、旋转和缩放变换的规律和计算方法。
3. 课堂练习:布置相关的练习题,让学生巩固所学内容。
4. 实际问题应用:给出实际问题案例,引导学生运用坐标系和图形变换解决实际问题。
五、教学评价:1. 课堂练习:通过课堂练习题,评估学生对知识的掌握程度。
2. 实际问题应用:通过实际问题解决情况,评估学生的应用能力和创新能力。
3. 学生互评和自评:鼓励学生进行互评和自评,提高学生的交流和表达能力。
六、教学活动设计:1. 导入活动:通过一个简单的图形变换游戏,让学生感受图形变换的乐趣,引发学生对图形变换的好奇心。
2. 主体活动:引导学生通过合作探究,自主发现图形变换的规律,并通过实际操作验证自己的发现。
图形运动与坐标课件
缩放运动
定义
缩放运动是指图形在某一方向上 放大或缩小一定的比例,而不改
变其形状和大小。
特点
图形在缩放过程中,其内部任意两 点间的距离会发生变化,且与缩放 的比例和方向有关。
示例
将一个圆形横向缩小为原来的1/2, 得到一个新的圆形。
04
坐标变换
坐标变换基础
坐标系转换
理解不同坐标系之间的转换关系 ,如二维平面直角坐标系与极坐
详细描述
极坐标系由一个极点和一个极轴构成。极点是极坐标系的中心,极轴是经过极点的直线。每个点P在平面上都可 以用一个实数r表示点到极点的距离,用一个角度θ表示点P与极轴之间的夹角,这对数值(r, θ)称为点P的极坐标 。
参数坐标系
总结词
参数坐标系是一种通过设定参数方程来描述点的位置的坐标系,常用于描述曲线和曲面。
特点
图形在平移过程中,其内 部任意两点间的距离保持 不变,且与移动的方向和 距离有关。
示例
将一个三角形向右平移3个 单位,得到一个新的三角 形。
旋转运动
定义
示例
旋转运动是指图形绕某一点转动一定 的角度,而不改变其形状和大小。
将一个正方形绕其中心点顺时针旋转 90度,得到一个新的正方形。
特点
图形在旋转过程中,其内部任意两点 间的距离保持不变,且与旋转的中心 点和角度有关。
实世界的环境和物体的动态变化。通过实时追踪用户的头部、手部等运
动,实现沉浸式的交互体验。
03
游戏开发
在游戏开发中,图形运动与坐标用于控制角色的动作、场景的变换以及
碰撞检测等。通过精确的坐标计算,可以实现流畅的游戏动画和交互效
果。
物理学中的应用
经典力学
28图形与坐标一导学案教案
长乐中学八年级数学导学案教案编制人: 周浩雄 审核人: 日期: 总课时数:第28课时课题:3.1 平面直角坐标系(一)教学目标 1、知识目标:认识平面直角坐标系,知道点的坐标及象限的含义。
2、能力目标:能够在给定的直角坐标系中,根据点的坐标指出点的位置,会由点的位置写出点的坐标。
3、情感目标:经历画坐标系,由点找坐标等过程,让学生进一步感受“数形结合”的数学思想。
教学重点:在给点的平面直角坐标系中,会根据点的位置写坐标教学难点:确定点的坐标;一、引 1、什么是数轴?2、数轴上的点与_______实数一一对应。
二.探学生自学教材P83-84,学生小组内部合作,讨论交流,解决课本的例题重点,难点。
活动一:1、想一想:在教室里怎样确定一个同学的位置?2、上电影院看电影,电影票上至少要有几个数字才能确定你的位置? 3、怎样表示平面内的点的位置? (小明和小亮是网上认识的好朋友, 今年暑假,小亮邀小明到他家所在 的镇江市去玩,他发了E_mail 给小明:我家在镇江市中山路南边20米, 解放路西边50米。
(1)、小亮是怎样描述他家的位置的? (2)、小亮可以省去“南边”和“西边”这几个字吗? (3)、若小亮说在“中山路南边、解放路东边”,你能找到他家吗?(4)、若小亮只说在“中山路南边20米”或只说在“解放路西边50米“,你能找到他家吗?活动二:明确平面直角坐标系概念:平面上有公共原点且互相垂直的两条数轴构成平面直角坐标 解放路 中山路 中山路城市 客厅 国际饭商业城 解放路系,简称直角坐标系。
水平方向的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴,它们统称坐标轴。
公共原点O称为坐标原点。
活动三:确定点的位置1、若平面内有一点P(如图),我们应该如何确定它的位置?(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,即为点P的坐标,可表示为P(a,b))2、若已知点Q的坐标为(m,n),该如何确定点P的位置?(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)三.结小结:今天我们学到了什么?1、怎样建立坐标系?2、怎样确定点的位置?3、不同位置的点的坐标的特征。
图形的变换与坐标教案
图形的变换与坐标教案一、教学目标1. 让学生理解图形变换的概念,掌握图形变换的基本方法。
2. 让学生掌握坐标系中图形的变换规律,能够运用坐标解决实际问题。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的变换规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的变换规律。
2. 教学难点:图形变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。
2. 利用多媒体辅助教学,直观展示图形变换过程。
3. 结合实际例子,让学生动手操作,加深对图形变换的理解。
五、教学准备1. 教学课件:图形变换的动画演示。
2. 教学素材:纸张、剪刀、直尺等。
3. 练习题:巩固所学知识。
教案内容请参考下述示例:教案示例:一、教学目标1. 让学生了解图形变换的概念,掌握图形变换的基本方法。
2. 让学生掌握坐标系中图形的平移和旋转规律。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的平移和旋转规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的平移和旋转规律。
2. 教学难点:图形变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。
2. 利用多媒体辅助教学,直观展示图形变换过程。
3. 结合实际例子,让学生动手操作,加深对图形变换的理解。
五、教学准备1. 教学课件:图形变换的动画演示。
2. 教学素材:纸张、剪刀、直尺等。
3. 练习题:巩固所学知识。
六、教学内容1. 图形缩放的概念及方法2. 坐标系中图形的缩放规律3. 实际问题中的图形缩放应用七、教学重点与难点1. 教学重点:图形缩放的概念,坐标系中图形的缩放规律。
2. 教学难点:图形缩放在实际问题中的应用。
幼儿园 坐标教案
幼儿园坐标教案一、教学目标1.知道坐标系的概念并学会绘制坐标系;2.掌握正方形和长方形的特点;3.知道坐标的概念,能够在坐标系中确定点的位置,并理解坐标的表示方法。
二、教学内容1.坐标系的概念;2.正方形和长方形的特点;3.坐标的概念与表示方法。
三、学习活动1. 引入活动教师向幼儿们展示一个平面图形,并询问幼儿图形的位置。
然后,教师引导幼儿们思考如何表示图像的位置。
2. 呈现活动教师首先介绍坐标系的概念,并简单地演示如何绘制坐标系。
接着,让幼儿们分别绘制一个正方形和一个长方形,并通过询问他们来说明正方形和长方形的特点。
例如,正方形是一个边长相等的图形。
3. 演示活动教师向幼儿们展示坐标系,并通过简单的示例向幼儿们演示如何使用坐标表示图形的位置。
例如,给定一个点的坐标是(2,3),那么这个点应该在坐标系的第二行第三列。
4. 实践活动让幼儿们分组,每组4人,分别给定一组坐标,让他们在坐标系中绘制出所给定的图形。
5. 检查活动教师请幼儿们展示他们自己绘制的图形,并检查他们绘制的图形是否正确。
教师还可以要求幼儿们用正确的坐标表示图形的位置。
6. 总结活动教师引导幼儿们总结本节课所学的知识点,并带领幼儿们用正确的语言回答几个问题。
四、教学反思幼儿园坐标教案的编写需要充分考虑幼儿的认知能力和学习兴趣。
教师需要通过生动的引导和形象的教学,让幼儿们学会坐标系的概念和使用。
同时,教师还需要激发幼儿的学习兴趣,让他们在轻松愉悦的氛围中学习。
本教案中通过分组、实践活动等多种教学形式,提高了幼儿们的参与度,提高了教学效果。
初中生图形的运动教案
初中生图形的运动教案教学目标:1. 让学生理解图形运动的概念,掌握图形运动的基本性质和特点。
2. 培养学生观察、思考、表达和解决问题的能力。
3. 培养学生对图形运动的兴趣和好奇心,提高学生的审美能力。
教学重点:1. 图形运动的概念和基本性质。
2. 不同类型图形的运动特点。
教学难点:1. 图形运动的数学表达方法。
2. 图形运动的实际应用。
教学准备:1. 教学课件或黑板。
2. 图形运动的相关图片或实物。
3. 练习题和答案。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,找出它们在运动中的共同点和不同点。
2. 提问:你们听说过图形运动吗?你们对图形运动有什么了解?二、新课导入(10分钟)1. 介绍图形运动的概念:图形运动是指图形在平面内或空间内的移动,包括平移、旋转、翻转等。
2. 讲解图形运动的基本性质:图形运动不改变图形的大小和形状,只改变图形的位置和方向。
3. 举例说明不同类型图形的运动特点:a. 平移:图形在平面内沿直线移动,移动的距离和方向相同。
b. 旋转:图形绕某一点旋转,旋转的角度和方向相同。
c. 翻转:图形绕某一条直线或点翻转,翻转后的图形与原图形关于翻转轴对称。
三、课堂练习(10分钟)1. 让学生分组讨论,总结图形运动的特点和性质。
2. 每组选出一个图形,进行图形运动的设计和展示。
3. 邀请部分学生上台演示和讲解所设计的图形运动。
四、巩固知识(10分钟)1. 出示练习题,让学生独立完成。
2. 讲解答案,分析错误原因,及时纠正学生的错误。
五、拓展与应用(10分钟)1. 引导学生思考:图形运动在实际生活中有哪些应用?2. 举例说明:如服装设计、建筑设计、动画制作等。
3. 让学生尝试自己设计一个图形运动应用实例,并进行展示和讲解。
六、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结图形运动的概念、性质和特点。
2. 提问:你们觉得图形运动有什么意义和价值?3. 鼓励学生积极参与图形运动的相关活动,提高自己的审美和创新能力。
青岛版七年级第十一章图形与坐标教学案
第 4 周第 1 课时总第13 课时课题名称:怎样确定平面内点的位置设计人:一、预习学案预习目标:1、通过生活中确定物体位置的丰富实例,使学生感受生活和数学的密切联系,感受生活中确定物体位置的方法的必要性。
2、会用一对有序数确定物体的位置预习重点:会用一对有序数确定物体的位置预习任务一:阅读并分析教材第46页,感受生活中确定物体位置的方法的必要性。
1、阅读并分析教材第46页,把课本中问题答案写在下面总结:在直线上确定一个位置需要个数据,在平面内确定一个位置需要个数据2、在看电影时,只要根据电影票就能准确的找到自己的座位,因为每张电影票上都有几排己号的字样。
如:“3排4号”可记为(3,4),“4排3号”可记为(4,3),我们把有顺序的两个数x与y组成的数对(x,y)叫做有序数对。
3、思考:在课本中图11-2中,(4,5)与(5,4)的位置相同吗?预习任务二:阅读课本47页图11-2,会用有序实数对确定物体位置。
1、(0,0)表示办公楼的位置,(0,-2)表示校门的位置,(3,0)表示风雨操场的位置,那么(2,6)表示的位置。
在图中表示出来,并写下其他建筑物的位置。
实验楼教学楼阶梯教室2、阅读课本47页的(2),回答下列问题。
(1)在确定位置时以哪个位置为中心?用哪两个量确定的教学楼的位置(2)写出其他位置实验楼教学楼阶梯教室预习诊断:1、排列做操队形时,甲,乙,丙的位置如图,甲的位置用(0,0)表示,乙的位置用(2,1)表示,那么丙的位置是A、(5,4)B、(4,3)C、(3,4)D、(4,5)2、确定一个点的位置,下列说法正确的是A、偏北20°B、东北方向C、距此正北300mD、距此300m预习质疑:二、课中实施(一)预习交流1.小组内交流,检查预习情况。
2.小组间交流,教师帮扶并注意收集,解决问题。
(二)精讲点拨1、如果将你的座位3排5号简记为(3, 5),那么5排3号如何表示?(1,4)表示什么含义?(7,6)的位置在哪里?你能用这种方法表示出自己的座位吗?2、“3排5号”与“5排3号”中的“5”是否有相同的意义?请说明你的理由?3、有没有“7排7号”?“7排”能确定一个位置吗?“6号”呢?确定一个位置需要几个数据?能否交换数据的位置?4、像(3, 5)、(1, 4)、(7,6)这样数对我们称之为有序数对。
《图形的变换与坐标教案 (公开课获奖)2022华师大版
图形的交换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1 如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2 如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC 沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3 如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4 如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?(2)△AOB 的顶点坐标发生了什么变化?【归纳结论】横纵坐标都变为原来的21. 思考 将例4中的△AOB 以O 为位似中心,将△AOB 放大到原来的2倍得到△A ′OB ′. (1)△A ′OB ′可以画几个?(2)△AOB 的顶点坐标发生了什么变化? 4.概括:填充完成教材92页的表格. 三、运用新知,深化理解1.如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′. (1)在坐标纸上画出这几次变换相应的图形;(2)设P (x,y )为△AOB 边上任一点,依次写出这几次变换后点P 对应点的坐标.【教学说明】教师适当点拨,学生分组讨论. 四、师生互动,课堂小结这节课你学到哪些知识?有哪些收获?还有哪些疑问?1.布置作业:从教材相应练习和“习题23.6”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课采用集体讨论和活动探究`的数学方法,“以教师为主导,学生为主体”,教师的“导”立足于学生的学,以学为重心,放手让学生自主探索、归纳结论,体验学习的快乐,从而激发学生的学习兴趣.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
三年级下册图形坐标教案
作为一个小学三年级的数学老师,我一直认为图形坐标是一个很重要的知识点。
在三年级下册的图形坐标教学中,我会采用多种方法来帮助学生更好地理解这个概念。
第一步,我会使用实物教具,比如平面直角坐标纸和各种形状的图形,让学生亲自操作和观察。
我会让学生在平面直角坐标纸上绘制一个简单的图形,并为它标上坐标。
接着,我会让学生移动这个图形,观察坐标是如何变化的。
通过这种方式,他们可以更好地理解图形坐标的概念和操作方法。
第二步,我会让学生在黑板或白板上进行示范演练。
我会绘制一张带有坐标轴的图表,并在上面标上一些坐标点和图形。
然后我会请学生上来演示,让他们自己选择一个坐标点,并标出该点的坐标。
接着,我会让他们在图表上移动这个点,重新标注它的新坐标。
这样,学生们可以通过亲身体验和实践操作,更好地理解图形坐标的概念和规则。
第三步,我会使用电子教学工具,比如电子白板和电脑软件,来进行图形坐标的演示和教学。
这些工具可以让学生更清楚地看到图形坐标的变化过程,并可以帮助学生更好地理解这个概念。
在这种情况下,我会为学生演示一些简单的图形和坐标点,并让他们自己操作软件,尝试绘制和移动图形,以帮助他们更深入地理解图形坐标的概念和规则。
我会采用互动教学的方式,让学生在互相配对的情况下进行图形坐标的练习。
我会准备一些题目,并将这些题目分配给学生。
每个学生都要在纸上绘制图形,并为它标上坐标。
他们将把自己的图形交给同桌,同桌需要移动这个图形,并重新标注坐标。
这样,学生们可以在跟同桌学习的同时,互相帮助和提高。
通过以上对图形坐标教学方法的介绍,可以看出,我教学中注重帮助学生通过多种不同的途径和方式,更好地理解这个概念。
无论是实物教具、示范演练、电子教学工具,还是互动教学,都是非常有效的教学方法,可以帮助学生更深入、更全面地掌握图形坐标的知识。
而在这个过程中,我会加强与学生的互动,让他们积极参与,并及时纠正他们的错误,帮助他们更快地进步。
对于三年级下册图形坐标的教学,关键在于如何让学生理解它的概念和规则。
初中数学教学课例《图形的运动与坐标》教学设计及总结反思
(2)你能求出它们的相似比吗?(3)对应点的坐标有 什么关系? (放大或缩小,横坐标都扩大或缩小相同的倍数) 4、学生取出自己准备的坐标纸建立直角坐标系,并任 意画出自己所熟悉喜欢的图形,画出以 X 轴 Y 轴对称的 对称图形作出它经过平移、旋转、轴对称、放大或缩小 的图形并写出对应点的坐标。 5、完成课堂练习 P91 习题 1、2 设计意图:让学生自己动手、观察,动脑,与同学合作 交流达到本节目标。使学生明确图形运动与坐标变化规 律,解决本节重点问题。培养学生的动手能力与观察能 力,发展学生数形结合思想,解决难点问题。打破教材 束缚画三角形、四边形的范围,由学生画自己“喜欢的 图形”进一步研究图形运动与坐标;激发学生学习兴 趣;使学生敢于面对学习和生活的困难和挫折,培养学 生坚强的意志品质。 (四)迁移拓展:假如给你一把尺子你会测出我们学校 旗杆的高度吗? 设计意图:通过知识拓展承上启下的作用。 (五)课堂小结: (1)图形沿 x 轴平移,横变纵不变; 图形沿 y 轴平移,纵变横不变;
初中数学教学课例《图形的运动与坐标》教学设计及总结反 思
学科
初中数学
教学课例名
《图形的运动与坐标》
称
《图形的运动与坐标》数学八年级(下)第 18 章
《图形的相似》第 5 节第 2 课时。本章继轴对称、平移、
旋转后介绍了相似,相似也是图形之间的一种变换,生
教材分析 活中有大量存在相似图形,从生活实际出发,认识相似
研究对应点坐标变化情况,激发学生学习的兴趣。
教学方法:探索式教学方法。整个教学过程是由问 题展示到问题解决,中间围绕“观察----发现----归 纳”三个环节组织教学。整个教学模式是由“教师怎么 教学策略选 教”转向“学生怎么学”,是从以教师为课堂核心转变 择与设计 为以学生发展为核心,是创新的体现。
人教版数学八年级下册坐标与图形的位置教案
人教版数学八年级下册坐标与图形的位置【知识目标】1、能结合所给图形的特点,建立适当的坐标系,写出点的坐标;2、能根据一些特殊点的坐标复原坐标系;3、经历建立坐标系描述图形的过程,进一步发展数形结合意识。
【能力目标】通过多角度的探索,灵活选取简便易懂的方法解决问题,拓宽学生的思维,提高学生解决问题的能力。
学习过程设计第一环节:探究建立平面直角坐标系,描述图形1.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。
『师』:在没有直角坐标系的情况下不能写出各个顶点的坐标,所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思考。
如下图所示,以点C为坐标原点,分别以CD,CB所在直线为x轴、y轴,建立直角坐标系。
由CD的长为6,CB长为4,可得A,B,C,D的坐标分别为A(6,4),B(0,4),C (0,0),D(6,0)。
如下图所示,以点D为坐标原点,分别以CD,AD所在直线为x轴、y轴,建立直角坐标系。
『师』:这两种选取坐标系的方式都是以矩形的某一个顶点为坐标原点,矩形的相邻两边所在直线分别作为x轴、y轴,建立直角坐标系的。
这样建立直角坐标系的方式还有两种,即以A,B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。
除此之外,还有其他方式吗?如下图所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直线为x轴、y轴建立直角坐标系,则A,B,C,D的坐标分别为A(3,2),B(-3,2),C (-3,-2),D(3,-2)。
从刚才我们讨论的情况看,大家能发现什么?第二环节:应用对于边长为4的整三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标。
『师』:正三角形的边长已经确定是4,则它一边上的高是不是会因所处位置的不同而发生变化?『师』:除了上面的直角坐标系的选取外,是否还有其他的选取方法?3.议一议你认为怎样建立适合的直角坐标系?第三环节:巩固运用。
图形与坐标教案
图形与坐标教案图形与坐标教案教学目标:1. 了解图形和坐标的概念;2. 学习如何在坐标平面上表示图形;3. 掌握如何根据坐标点绘制图形;4. 提高学生观察和分析问题的能力。
教学重点:1. 图形和坐标的概念;2. 如何在坐标平面上表示图形;3. 如何根据坐标点绘制图形。
教学难点:学生如何根据坐标点绘制图形。
教学准备:1. 教师准备一坐标纸和彩色铅笔;2. 打印或准备一些图形的坐标点。
教学过程:Step 1 引入新知识教师出示一个图形,让学生描述该图形的特征,并引导学生思考图形和坐标之间有没有关系。
Step 2 学习图形和坐标的概念教师向学生解释图形和坐标的概念,并给出一些示例进行讲解。
同时,教师鼓励学生提出自己的思考和疑问。
Step 3 如何在坐标平面上表示图形教师向学生演示如何在坐标平面上表示图形。
首先,教师绘制一个坐标平面,并解释横坐标和纵坐标的意义。
然后,教师演示如何在坐标平面上表示一个点和一条直线。
Step 4 练习根据坐标点绘制图形教师发给学生一些图形的坐标点,让学生根据这些坐标点绘制图形。
教师可以提前准备一些简单和复杂的图形,根据学生水平选择题目。
Step 5 检查练习结果教师和学生一起检查练习结果,并讨论解决过程和方法。
Step 6 深化学习教师出示一些特殊的情况,让学生思考如何根据坐标点绘制这些图形。
例如,给出一些重复的坐标点,让学生找出规律。
Step 7 拓展应用教师引导学生思考如何在生活中应用图形和坐标。
例如,如何利用图形和坐标设计房屋、花坛等。
Step 8 总结和评价教师总结本课的教学重点和难点,并评价学生的学习情况。
同时,鼓励学生继续思考和学习。
Step 9 作业布置布置作业,要求学生根据给定的坐标点绘制图形,并写出解题过程和方法。
Step 10 下节课预告教师预告下节课的内容和目标。
教具:1. 坐标纸和彩色铅笔;2. 打印或准备的图形的坐标点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形运动与坐标教案
第一层次:教学背景分析
一、教学分析
1、教材地位、作用
《图形的运动与坐标》在华师大版数学八年级(下)第18章《图形的相似》第5节第2课时。
本章继轴对称、平移、旋转后介绍了相似,相似也是图形之间的一种变换,生活中有大量存在相似图形,从生活实际出发,认识相似图形的特征并用于解决一些简单的实际问题,让学生体会图形经过平移、旋转、轴对称、相似变换后坐标的变化情况。
加深对图形的认识,初步体会数形结合的思想。
2、教学目标
知识目标:在同一直角坐标系中,感受图形变化后各点坐标的变化和图形的变化(平移、轴对称、旋转、放大、缩小);并发展学生数形结合的思想。
能力目标:培养学生的观察能力和动手能力。
情感态度目标:在观察、探索的过程让学生获得发现的喜悦,体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养坚强的意志品质。
3、教学重点和难点
重点:同一直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小,探索图形的位置变化引起的点的坐标的变化,点的变化引起的图形的位置的变化。
难点:通过观察、分析、概括把坐标思想与图形变换的思想联系起来,形成数形结合意识。
二、学情分析
1、学生起点分析
八年级下学期的学生已具有图形的平移、旋转、轴对称、相似等变化知识储备,同时已学过建立适当的坐标系来描述物体的位置,能结合具体情景,灵活运用多种形式确定物体的位置,这也是为本节学习图形变化后各点坐标变化带来了知识的可能,但缺乏数形结合意识,所以应加以引导、点拨和启发。
2、教学环境分析
本节是设计在一个平等、民主、合作的环境下进行;同时引入现代教学手段,形成教学环境的选择的多样化。
三、教学方法、手段
教学方法:探索式教学方法。
整个教学过程是由问题展示到问题解决,中间围绕“观
察----发现----归纳”三个环节组织教学。
整个教学模式是由“教师怎么教”转向“学生
怎么学”,是从以教师为课堂核心转变为以学生发展为核心,是创新的体现。
教学手段:电脑、实物投影仪等现代教学设备。
四、学法指导
1、感知认识:学生通过认识图形的位置变化引起点的坐标的变化,本节从游戏导入
点的位置变化引起坐标的变化
2、实践、探索:通过实例进一步观察图形经过平移、旋转、轴对称、放大或缩小,
探索位置变化引起的点的变化经过小组讨论,团结合作,发现、归纳、总结规律。
同时每
一个学生自己试一试在直角坐标系中画一个自己喜欢的一个图形,并写出图形变化后对应
点的坐标,达到巩固目的。
3、迁移拓展:怎样用所学的知识测量我校旗杆的高度。
(承上启下的作用)
五、理论依据、数学思想
1、理论依据:本节在教学中采用以学生的发展为核心,让学生真正做到课堂的主人,整节是围绕学生的观察感知,实践,概括把坐标思想与图形变化的思想联系起来。
2、数学思想:本节发展数形结合,形象思维的数学思想。
第二层次:教学展开分析
(一)课题引入:设计一个简单游戏,在班级座位中创造性地建立直角坐标系,确定每
位同学在这个坐标系中的位置,接着将一个球按线在班级坐标系中运动,引导学生去发现
这个球的移动对坐标变化的影响,并由此过度到图形变化中关键点的坐标变化。
这样的设
计能较为生动的引导学生进入本节课的教学情景中,同时也能感受将“游戏问题转化为数
学问题”的过程。
(二)感知阶段:
例:将右图中的ΔAOB沿x轴向右平移3个单位后得到ΔCDE,三个顶点的坐标有什
么变化呢?请回答(1)平移后ΔCDE顶点坐标为多少?(2)比较顶点坐标你发现了什么?
(沿X轴向右平移之后,三个顶点纵坐标都没有改变,而横坐标增加一样数)
问:1、沿任意方向平移三角形顶点坐标怎么变化?
2、图形作轴对称、旋转、放大或缩小,对应点坐标如何变化?
设计意图:使学生明确本节是研究图形变化对应点坐标如何变化,从平移入手,懂得
研究的方法;老师的提问为学生指明方向。
但得让学生明确平移方向不是唯一。
(三)深入探究:演示课件
1、请学生观察ΔAOB,画出以X轴,Y轴为对称轴的对称图形,写出了对应点的坐标,四人小组讨论对应点的变化情况,并汇报,(关于X轴对称,横坐标不变纵变为相反数,
关于Y轴对称,纵坐标不变横变为相反数)
2、请学生继续观察ΔAOB,画出绕O旋转1800的图形写出了对应点坐标,四人小组
讨论对应点坐标变化情况,并作汇报。
问旋转任意角度呢?对应点的坐标作如何变化?(留
给学生思考)
(图形关于原点对称,横纵皆为相反数)
3、三角形变大(缩小)时顶点坐标变化情况。
问:(1)ΔAOB和它缩小后得到ΔCOD三角形顶点是多少?
(2)你能求出它们的相似比吗?(3)对应点的坐标有什么关系?
(放大或缩小,横坐标都扩大或缩小相同的倍数)
4、学生取出自己准备的坐标纸建立直角坐标系,并任意画出自己所熟悉喜欢的图形,画出以X轴Y轴对称的对称图形作出它经过平移、旋转、轴对称、放大或缩小的图形并写
出对应点的坐标。
5、完成课堂练习P91习题1、2
设计意图:让学生自己动手、观察,动脑,与同学合作交流达到本节目标。
使学生明
确图形运动与坐标变化规律,解决本节重点问题。
培养学生的动手能力与观察能力,发展
学生数形结合思想,解决难点问题。
打破教材束缚画三角形、四边形的范围,由学生画自
己“喜欢的图形”进一步研究图形运动与坐标;激发学生学习兴趣;使学生敢于面对学习和
生活的困难和挫折,培养学生坚强的意志品质。
(四)迁移拓展:假如给你一把尺子你会测出我们学校旗杆的高度吗?
设计意图:通过知识拓展承上启下的作用。
(五)课堂小结:
(1)图形沿x轴平移,横变纵不变;
图形沿y轴平移,纵变横不变;
(2)图形关于x轴对称,横不变,纵为相反数;
图形关于y轴对称,纵不变,横为相反数;
(3)
您正在看的中学综合是:图形的运动与坐标。
图形关于原点对称,横纵皆为相反数。
(4)放大或缩小,横纵坐标都扩大或缩小相同的倍数。
(六)布置作业:同步练习P351、2、3
第三层次:教学设计和教学结果预测以及评价
本节课注意培养学生动手、动脑、观察及严谨性,效果较好。
本节课打破教材束缚,让学生自己画喜欢的图形,研究对应点坐标变化情况,激发学生学习的兴趣。
感谢您的阅读。
祝语:那片纯净的原野,我们手牵手,一起走入;那片茂盛的果园,我们肩并肩,一起收获。
播下友情的种子,收获幸福的生活,人生有你而精彩,祝朋友快乐天天。