第3章图形与坐标教案
八年级数学下册 3《图形与坐标》小结与复习(二)教案 (

课题:《图形与坐标》小结与复习(二)教学目标1、让学生通过复习图形变换下坐标的变化规律,综合运用图形与坐标的知识解决简单的实际问题。
2、参与本章知识梳理与知识系统构建的过程,培养归纳总结能力;领悟数形结合、分类讨论的思想方法,培养思维的灵活性。
3、培养学生良好学习习惯,激发学习兴趣,培养学生认真、严谨的做事态度和锲而不舍和实事求是的学习精神。
难点:感受数形结合思想。
教学过程:一、知识点梳理(出示ppt 课件) 知识点四:特殊位置点的坐标1.关于坐标轴、原点对称的点的坐标 横轴对称“纵”变号, 纵轴对称“横”变号. 原点对称都变号。
观察点A 、C 、和B 、D 的坐标,有什么结论? 2、象限角平分线上的点的坐标一、三象限角平分线的点纵横坐标相等。
二、四象限角平分线的点纵横坐标互为相反数。
3.关于平移下点与像点的坐标关系:上加下减“纵”加减,右加左减“横”加减. 两次平移点的坐标变化规律。
x x ky y h '=±⎧⎨'=±⎩4、平行于坐标轴的点的坐标观察点M 、N 、Q 及S 、T 、R 的坐标,有什么结论?平行于x 轴的直线上的点的纵坐标相同。
平行于y 轴的直线上的点的横坐标相同。
知识点四:坐标的应用 (1)用坐标表示地理位置建立适当的直角坐标系,构建直角坐标系 的方法不同,点的坐标就不同。
(2)用坐标作对称图形先确定对称点的坐标,再连线。
(3)用坐标表示图形的平移确定平移下,对应像点的坐标。
(4)用坐标求图形的面积将图形转化成几个三角形,实际上就是求三角形的面积。
二、基础训练(出示ppt课件)1、点(4,3)与点(4,-3)的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系2、点A(1-a,5),B(3 ,b)关于y轴对称,则a=___,b=____。
3、点A(1,3)平移到A1(-3,-1)的位置,则按同样的平移规律,将点B(3,3)移到B1的位置时,B1的坐标为。
八年级数学上册 3.1 确定位置教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

第三章位置与坐标3.1确定位置一、教学目标设计:3.体会生活中位置的确定,离不开数据, 离不开数学及数学与生活的密切关系。
4突出在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。
二、教学重点:突出在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。
三、教学难点:灵活运用不同方式确定物体的位置。
(需要学生的一定生活经验)四、教学过程:引言:美伊战争美军从地中海,红海,波斯湾三艘航空母舰上对巴格达发射了战斧式巡航导弹,当时巴格达一片火海,美国的导弹为何会打的那么准?最近有一件令全中国人骄傲和自豪的大事大家知道是什么吗?回顾一下这一激动人心的时刻:从发射到返回到杨利伟成功着陆?大家思过吗:我们在茫茫草原上是怎样找到杨利伟的,他的位置是怎样确定的?(板书确定位置)实际上这都有赖于“卫星全球定位仪”——GPS,因为全球任何一个地方都存在唯一的经度和纬度。
我们可以通过目标物如神州五号飞船的返回仓发出的信号,利用GPS“卫星全球定位仪”测得它的经纬度,顺利的找到我们的英雄杨利伟。
板书GPS定位(经度,纬度)举几个实例:在电影院内如何找到电影票上所指的位置?在电影票上,“6排3号”与“3排6号”中的6的含义有什么不同?如果将“8排3号”简记作(8,3),那么“3排8号”如何表示?(5,6)表示什么含义?5、(1)电影院确定一个座位,需要几个数,怎样确定?(2)如果老师要点一名同学回答问题,又不知道同学们的某某,请大家帮忙设计一种方法,让老师站在讲台上就能让同学知道老师在叫自己6例2(1)正门北偏东27度的方向上有那些动物景点?要想确定蝴蝶馆的位置,还需要有什么数据?()据正门图上的距离1cm 处的景点又有哪些?(3)要确定每个景点的位置,各需要几个数据?7、请用图上街道或十字路口为参照,说出莲花中学位置8、在生活中,你想确定什么物体的位置?用怎样的方法?与同伴交流。
(假定我是位游客,我知道钟楼的位置和附近主要街道的位置,你是位小导游,请你为我介绍某某的风景名胜如南城门,大雁塔,碑林,等的位置,)在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。
九年级数学上册 23.6 图形与坐标教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教

23.6 图形与坐标用坐标确定位置【知识与技能】能够在图形中建立适当的坐标系来描述物体的位置,并结合具体实例了解坐标系建立位置不同,点的坐标也随之变化;能够利用坐标找到点的位置;了解确定位置的两种方法.【过程与方法】通过实践、探索、观察、分析等数学活动过程,发展学生形象思维能力和数学应用能力.【情感态度】体验运用确定位置来解决实际问题,感受数学与人类生活的密切联系.【教学重点】建立平面直角坐标系用直角坐标和方位坐标确定物体的位置.【教学难点】建立恰当的坐标系确定物体的位置.一、创设情境,导入新知1.什么是平面直角坐标系?建立了平面直角坐标系后,平面上的点可以用什么来描述?2.画一个直角坐标系,并描出点A(1,2),B(-3,5),C(4,5),D(0,3)的位置.3.如图,四边形ABCD,在方格图中建立适当的直角坐标系,用点的坐标来表示各点的位置.你写出的点与别人相同吗?二、合作探究,理解新知问题1:确定点的位置夏令营举行野外拉练活动,老师交给大家一X地图,如图所示,在这X地图上,画一个直角坐标系,作为定向标记,有四座农舍的坐标是(1,2),(-3,5),(4,5),(0,3).目的地位于连结第一与第三座农舍的直线和第二与第四座农舍的直线的交点,请你在教材图中找出这个目的地所处的位置,你能估计出这个位置的坐标是什么吗?先确定出四座农舍的位置(即“创设情境,导入新知”中第2题的A、B、C、D四个点),过A、C作直线,过B、D作直线,两直线的交点P即是目的地,确定点P的坐标,过P作x 轴垂线,,过P作y轴垂线,,所以目的地P).问题2:你写出的坐标与别人相同吗?如图是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置.思考:(1)建立的直角坐标系是否相同?选定的坐标单位会一样吗?各点的坐标是否一样?(2)通过以上两个问题的研究,你如何确定一个点的位置?归纳:利用平面直角坐标系,我们可以较为方便地确定平面上点的位置,直角坐标系的位置不同,用坐标表示某地的位置也不同.一般地,在建立坐标系时,我们应尽量让较多的点位于坐标轴上,这样可以使点的坐标较容易给出,也方便于我们将所要研究的问题进行简化.思考:(1)这是利用什么方法来确定位置的?(2)用这种方法确定位置首先应该做什么?(3)需要几个数据来确定点的位置?(4)请举出实际生活中用这种方法来确定位置的例子.问题3:小明去某地考察环境污染问题,并且他事先知道下面的信息:“悠悠日用化工品厂”在他现在所在地的北偏东30度的方向距离此处3千米的地方;“明天调味品厂”在他现在所在地的北偏西45度的方向,距离此处的地方;“321号水库”在他现在所在地的南偏东27度的方向,距离此处的地方.根据这些信息,你能画一X图来表示各处的位置吗?在学生活动过程中,提出以下问题思考:(1)这又是用什么方法来确定位置的呢?(2)用这种方法确定位置必须要知道什么?(3)请举出生活中用这种方法确定位置的例子.归纳:用一个角度和距离也可以表示一个点的位置.三、尝试练习,掌握新知1.教材练习.2.根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.3.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课主要学习了什么内容,还有什么内容不清楚的?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材复习题第9题.2.如图,是某植物园的平面示意图.A、B、C、D、E、F分别表示梅、兰、竹、菊、月季、荷花六个花圃,请解决以下问题:(1)说出A、B、C、D、E、F在图上的坐标;(2)位于原点北偏东45度的是哪个花圃?23.6.2 图形的变换与坐标【知识与技能】理解点或图形的变化引起的坐标的变化规律,以及图形上的点的坐标的某种变化引起的图形变换,并应用于实际问题.【过程与方法】经历图形坐标变化与图形平移、旋转、放大、缩小等之间的关系,培养学生的形象思维.【情感态度】在观察、探索的过程中让学生获得发现的喜悦;体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养学生坚强的意志和品质.【教学重点】图形坐标变化与图形变换之间的关系.【教学难点】图形坐标变化与图形变换规律的探究.一、创设情境,导入新知1.在平面直角坐标系中,如果A点的坐标是(x,y),那么这个点关于x轴、y轴、原点的对称点坐标是______、______、________.2.△ABC中,AB=AC=5,BC=6,建立直角坐标系,写出各顶点的坐标.3.你能画出与△ABC成轴对称的三角形吗?请画一个以直线BC为对称轴的三角形.4.将点A(-3,-2)向右平移4个单位,得到点A′,在图上标出这个点,并写出它的坐标,把点A向上平移5个单位呢?把点A向左或向下平移,观察它们的变化,你能从中发现什么规律吗?再找几个点试一试!二、合作探究,理解新知问题1:平移变换与坐标在“创设情境,导入新知”第2题中,如果以C为坐标原点,CB所在直线为x轴建立直角坐标系如图所示.思考:(1)A、B、C三点在直角坐标系中的坐标是什么?(2)把△ACB向右平移3个单位之后,得到△A′B′C′,三个顶点的坐标是什么?与△ABC三个顶点相比,相应顶点坐标有什么变化?结论:相应顶点的横坐标都增加了3个单位,而纵坐标都不变.(3)若把△ABC向左平移3个单位,相应顶点坐标有什么变化?相应顶点的横坐标都减少了3个单位,而纵坐标都不变.(4)改变△ABC的位置,再将△ABC左、右平移,相应顶点坐标怎样变化?由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标、横坐标各有什么变化?它们的纵坐标都不变,横坐标有变化.向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位.(5)如果将一个图形上下平移,图形上点的坐标又有什么变化规律?图形上点的横坐标不变,向上平移几个单位,纵坐标加上几个单位;向下平移几个单位,纵坐标就减少几个单位.问题2:对称变换与坐标思考:(1)如图,将△AOB沿x轴翻转,对应点的坐标有什么变化?横坐标不变,纵坐标变为原来的相反数.(2)如果沿y轴翻转呢?纵坐标不变,横坐标变为原来的相反数.(3)如果图形关于原点对称呢?横坐标、纵坐标都变为原来的相反数.练习:完成教材“试一试”.问题3:位似变换与坐标思考:如图,(1)△COD的各顶点坐标是什么?C(1,2),O(0,0),D(2,0).△AOB各顶点坐标是什么?A(2,4),O(0,0),B(4,0).(2)△COD与△AOB对应顶点是怎样变化的?将△COD各顶点的横、纵坐标分别乘以2,就得到△AOB各顶点的坐标.(3)△COD与△AOB相似吗?若相似,相似比是多少?相似,相似比是1∶2.(4)比较△COD与△AOB的各对应顶点坐标的变化,它们的横纵坐标都按比例扩大,这种变化与它们的相似比有什么关系呢?都扩大了相似比的倍数.(5)△COD与△AOB是位似图形,且都在位似中心O的同侧,若△COD与△AOB在位似中心O的两侧,对应顶点的坐标的变化与相似比又有什么关系呢?变换后对应点横、纵坐标都乘以相似比的相反数.归纳:以原点为位似中心作位似变换,若位似比是k,当原图形与新图形在y轴两侧(即对应点在y轴两侧)时,那么位似图形上对应点的坐标比等于位似比的相反数;当新图形与原图形在y轴同侧(即对应点在y轴同侧)时,那么位似图形上对应点的坐标比等于位似比.三、尝试练习,掌握新知1.如图,已知在平面直角坐标系中有一个正方形ABCO.(1)写出A、B、C、O四个点的坐标.(2)若A向右移动两个单位,B点也向右平移两个单位,写出A、B的坐标,这时四边形ABCO是什么图形?(3)在(2)的图形中B、C两点要怎样变化才能使四边形ABCO为正方形?2.将图中的点A(6,0),B(6,3),C(6,6),D(0,3)作如下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标加2,再将所得的点用线段依次连结起来,所得的图案与原来的图案相比有什么变化?(3)纵坐标保持不变,横坐标分别乘以-1,所得的图案与原来的图案相比有什么变化?3.如下图,已知:(1)AC的长等于______;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是______;(3)若将△ABC绕点C按顺时针方向旋90°后得到△A1B1C1,则A点的对应点A1的坐标是______.4.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知通过本节课的学习,你有什么收获?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题23.6第2题.,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按下列要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);②将四边形ABCD沿x轴翻转180°,得到四边形A′B′C′D′,再将四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.。
三年级下册图形坐标教案

作为一个小学三年级的数学老师,我一直认为图形坐标是一个很重要的知识点。
在三年级下册的图形坐标教学中,我会采用多种方法来帮助学生更好地理解这个概念。
第一步,我会使用实物教具,比如平面直角坐标纸和各种形状的图形,让学生亲自操作和观察。
我会让学生在平面直角坐标纸上绘制一个简单的图形,并为它标上坐标。
接着,我会让学生移动这个图形,观察坐标是如何变化的。
通过这种方式,他们可以更好地理解图形坐标的概念和操作方法。
第二步,我会让学生在黑板或白板上进行示范演练。
我会绘制一张带有坐标轴的图表,并在上面标上一些坐标点和图形。
然后我会请学生上来演示,让他们自己选择一个坐标点,并标出该点的坐标。
接着,我会让他们在图表上移动这个点,重新标注它的新坐标。
这样,学生们可以通过亲身体验和实践操作,更好地理解图形坐标的概念和规则。
第三步,我会使用电子教学工具,比如电子白板和电脑软件,来进行图形坐标的演示和教学。
这些工具可以让学生更清楚地看到图形坐标的变化过程,并可以帮助学生更好地理解这个概念。
在这种情况下,我会为学生演示一些简单的图形和坐标点,并让他们自己操作软件,尝试绘制和移动图形,以帮助他们更深入地理解图形坐标的概念和规则。
我会采用互动教学的方式,让学生在互相配对的情况下进行图形坐标的练习。
我会准备一些题目,并将这些题目分配给学生。
每个学生都要在纸上绘制图形,并为它标上坐标。
他们将把自己的图形交给同桌,同桌需要移动这个图形,并重新标注坐标。
这样,学生们可以在跟同桌学习的同时,互相帮助和提高。
通过以上对图形坐标教学方法的介绍,可以看出,我教学中注重帮助学生通过多种不同的途径和方式,更好地理解这个概念。
无论是实物教具、示范演练、电子教学工具,还是互动教学,都是非常有效的教学方法,可以帮助学生更深入、更全面地掌握图形坐标的知识。
而在这个过程中,我会加强与学生的互动,让他们积极参与,并及时纠正他们的错误,帮助他们更快地进步。
对于三年级下册图形坐标的教学,关键在于如何让学生理解它的概念和规则。
32图形与坐标五导学案教案

长乐中学八年级数学导学案教案编制人:周浩雄审核人:日期:总课时数:第32课时课题:3.3轴对称和平移的坐标表示(一)教学目标1、轴对称的坐标表示2、发展学生的数形结合的意识, 合作交流的意识.教学重点:能根据已知条件,建立轴对称的坐标表示教学难点:关于x轴或y轴对称的两个点的坐标的关系.一、引在我们生活中,对称是一种很常见的现象。
若把某个成轴对称的图形放在平面直角坐标系中,其对称轴为某条坐标轴,那么,图形上对称的两个点的坐标会有什么关系?二.探学生自学教材P95-P96,学生小组内部合作,讨论交流,解决课本的例题重点,难点。
试一试:正方形ABCD的边长为6,如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,那么y轴是哪条线?(1)写出正方形的顶点A、B、C、D的坐标。
(2)请另建立一个直角坐标系,这时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下。
三.结本课小结:1.坐标平面被坐标轴分成四个象限,坐标轴上的点不在任何象限2.各象限内点的坐标符号特点及坐标轴上点的坐标特点;3.根据点的坐标确定点的位置;4.建立适当平面直角坐系,描述点的位置.三.结归纳:在平面直角坐标中,点(a,b)关于x轴对称点的坐标为(a,-b),关于y轴对称点的坐标为(-a,b)四.用【例题】【练习】归纳:每对对称点的横坐标相同,纵坐标互为相反数.动手操作:学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.关于y轴对称的每对对称点的坐标:纵坐标相同,横坐标互为相反数归纳:点(x,y)关于x 轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y)[总结]对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。
想一想:如果要在平面直角坐标系中画一个轴对称图形,怎样画才较简便?五.作业P97 第1、2、3题板书设计轴对称和平移的坐标表示(一)引入题例题学生练习教学反思。
北师大版八年级上册数学第3章《位置与坐标》教案

第三章位置与坐标1确定位置【学习目标】1.知道在平面内确定一个物体的位置至少需要两个数据.2.会用两个量表示平面内一个点的位置.【学习重点】掌握平面内确定物体位置的两种方法.【学习难点】在现实情境中感受确定物体位置的多种方法.一、情景导入生成问题在日常生活中,我们常常会遇到;(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义相同吗?上面的问题你能解决吗?你能举出生活中利用数据表示位置的例子吗?【说明】用学生比较熟悉的事例引入,容易引起学生的注意,唤起全体学生的学习欲望,使他们很快融入到学习中.二、自学互研生成能力知识模块一行列定位法先阅读教材第54页引言部分和“议一议”的内容,然后解答下面的问题:思考:(1)在电影院内,确定一个座位一般需要几个数据?(2)在生活中,确定物体的位置还有其他方法吗?与同伴进行交流.知识模块二极坐标定位法(方位角法)自学自研教材第54页和第55页的例题及其解答过程.【说明】让学生明确确定一个物体或点的具体位置需要两个数据,从而找到表示平面内一个确定位置的方法.知识模块三经纬定位法和区域定位法1.自学自研教材第55页“做一做”和“议一议”的内容.【说明】通过给出的数据找到对应点的位置与给出物体所在的位置如何来描述相结合,让学生体会它们之间的相互转化,加深对知识的理解.2.议一议:在平面内,确定一个物体的位置一般需要几个数据:【说明】经过上面的学习,学生很容易回答问题,能对所学知识进行提炼和归纳.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一行列定位法知识模块二极坐标定位法(方位角法)知识模块三经纬定位法和区域定位法四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________2平面直角坐标系第1课时平面直角坐标系【学习目标】1.理解平面直角坐标系的相关概念,并能正确画出平面直角坐标系.2.掌握坐标的概念,能在一个平面直角坐标系内由点的位置写出坐标.【学习重点】在坐标系内正确写出点的坐标.【学习难点】象限及其坐标特点.一、情景导入生成问题我们知道:数轴上的一个点可以用一个数来表示,这个数就叫做这个点的坐标.你能采用类似的办法解决下面的问题吗?问题见教材第58页“做一做”上面的内容.【说明】从学生身边发生的事情为例出发,激发他们的学习兴趣,经历体验解决问题的过程.二、自学互研生成能力知识模块一平面内点的表示方法自学自研教材第58页“做一做”的内容,然后与同伴进行交流.【说明】让学生初步掌握已知平面内点的坐标怎样描出这个点的方法和已知平面内的点怎样找到这个点的坐标的方法,经历这样相反的两个过程加深了对知识的理解.知识模块二平面直角坐标系的组成先阅读教材第59页例1上面的内容,然后完成下面的问题.究竟怎样确定平面内一个点的位置呢?这就需要利用平面直角坐标系.(1)什么是平面直角坐标?它由什么组成?各部分的名称是什么?(2)什么叫横坐标、纵坐标?如何来表示一个点的坐标?(3)平面直角坐标系分成哪几个部分?各部分的名称是什么?它们点的坐标有什么特征?知识模块三直角坐标系中点与实数对之间一一对应自学自研教材第60页“做一做”的内容,若有困难与同伴进行交流.【说明】让学生经历在平面直角坐标系内描点的过程,深切体会到平面直角坐标系内的点与有序实数对之间的对应关系,加深了对知识的理解与运用.【归纳结论】在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一平面内点的表示方法知识模块二平面直角坐标系的组成知识模块三直角坐标系中点与实数对之间一一对应四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________第2课时建立适当的平面直角坐标系【学习目标】1.学会根据实际情况,建立适当的平面直角坐标系.2.体会同一图形,可以根据不同需要,建立不同的直角坐标系.【学习重点】建立适当的坐标系表示点的位置.【学习难点】建立适当的坐标系.一、情景导入生成问题前面我们学习了如何在平面直角坐标系内根据位置找点的坐标和根据坐标来找点的位置.利用这个知识,你能解决下面的问题吗?问题:教材第62页例2.【说明】通过学生实际操作,既对上节课所学的知识进行了巩固,又通过观察得出平行于坐标轴点的坐标特征.为这一节课的学习作好了充分的准备.二、自学互研生成能力知识模块一坐标轴及各个象限点的坐标特点自学自研教材第63页的“议一议”和“做一做”的内容,先独立完成,然后再与同伴交流.【说明】学生利用点的坐标总结归纳坐标轴上及各个象限点的坐标特征,使知识体系化,运用方便化.知识模块二建立适当的平面直角坐标系1.教材第65页例3.议论:除了上面的方法外,你还可以怎样建立直角坐标系?【说明】学生通过讨论、交流,体验建立坐标系的位置不同,所得的结果并不完全一样.当然,可以根据实际情况力求使解题简单化.2.教师引导学生完成教材第65页例4.议论:教材第65页“议一议”.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一坐标轴及各个象限点的坐标特点知识模块二建立适当的平面直角坐标系四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3轴对称与坐标变化【学习目标】1.会由一点求关于坐标轴对称的点的坐标.2.掌握两点关于坐标轴对称的坐标规律,并能利用这个规律在平面坐标系中作出一个图形的轴对称图形.【学习重点】会由一点求关于坐标轴对称的点的坐标.【学习难点】找两点关于坐标轴对称的坐标规律.一、情景导入生成问题教材第68页例题上方的内容.【说明】学生通过观察和实际操作对关于坐标轴对称点的坐标特点有个初步的认识.利用数形结合帮助他们进一步理解这一规律.二、自学互研生成能力知识模块关于坐标轴对称点的坐标特点1.前面,我们已经对关于坐标轴对称点之间的关系有了一定的了解,利用这个关系,请看例题并思考.例:教材第68页例题.【说明】一方面,通过学生描点对以前所学知识加以巩固;另一方面,让学生经历纵坐标不变,横坐标乘-1点的坐标变化形成的规律特征,印象深刻.2.做一做:教材第69页“做一做”.【说明】相反的,当上面的各个顶点的横坐标不变,纵坐标乘-1所形成的规律特征让学生形成鲜明的对比,有助于学生理解与记忆.【归纳结论】 关于x 轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y 轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 关于坐标轴对称点的坐标特点四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握平面直角坐标系的概念及组成,学会建立平面直角坐标系以及利用轴对称的坐标规律解决有关问题.2.通过梳理本章知识点,充分利用平面直角坐标系与点的坐标之间一一对应关系,使数与形的相互转化得以体现,加深了对知识的理解.【学习重点】平面内点的坐标的表示方法及求法,能建立适当的平面直角坐标系来描述点所处的位置以及利用轴对称的坐标规律解决实际问题.【学习难点】建立适当的平面直角坐标系的优化方案和利用轴对称的坐标规律解决问题.一、情景导入 生成问题引导学生回顾本章知识点,展示本章知识结构图,让学生对本章所学知识有个系统地了解.教学时,可以边回顾边建立结构图.位置与坐标⎩⎪⎨⎪⎧确定平面内点的位置→有序实数对→建立平面直角坐标系轴对称的坐标变化⎩⎪⎨⎪⎧关于x 轴对称的坐标特点关于y 轴对称的坐标特点二、自学互研 生成能力知识模块一 知识清单 加深理解1.平面直角坐标系与点的坐标(1)一、三象限角平分线上的点横、纵坐标同号;二、四象限角平分线上的点横、纵坐标异号,但他们到两坐标轴的距离都相等,注意有时要考虑到这两种情况的存在.(2)点的横坐标与该点到y 轴的距离有关,点的纵坐标与该点到x 轴的距离有关.不能理解为相反的意思.同时点的横、纵坐标的值可正可负,而距离只可能为非负数.2.在坐标系中求几何图形的面积在坐标系中求图形的面积一般从两个方面去把握:(1)通常向坐标轴作垂线,运用“割”或“补”的方法将要求的图形转化为一些特殊的图形,去间接计算面积;(2)需要将已知点的坐标转化为线段的长度,以备求面积的需要. 知识模块二 典例引路 全面复习例1:等腰梯形的各点坐标为B(-1,0),A(0,2),C(4,0),则点D 的坐标为________.分析:求一个点的坐标,首先求出它到x 轴与y 轴的距离,然后再看它所在的象限,确定其横、纵坐标的符号.解:如图,过点D 作DE ⊥x 轴.∵四边形ABCD 为等腰梯形.∴CE =BO =1.又∵C 点坐标为(4,0),∴OC =4.∴OE =4-1=3.∵AD ∥BC.∴点D 的纵坐标与点A 的纵坐标相等为2.∴D 点的坐标为(3,2).例2:在平面直角坐标系中,A(-3,4),B(-1,2),O 为原点,如图所示.求三角形AOB 的面积.分析:本题考查利用坐标求图形的面积.在平面直角坐标系中求图形的面积,通常将图形面积转化成边在两轴上的图形的面积的和或差,这样可以充分利用点的坐标求出图形中线段的长度.解:过点作AE ⊥y 轴于E ,过点B 作BD ⊥y 轴于D.因为A(-3,4),B(-1,2),所以E(0,4),D(0,2),所以OD =2,BD =1,AE =3,DE =OE -OD =4-2=2,所以S 三角形AOB =S 三角形AOE -S 三角形OBD -S 梯形BDEA =12AE·EO -12BD·OD -12(BD +AE)·DE =12×3×4-12×1×2-12×(1+3)×2=6-1-4=1. 三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解知识模块二 典例引路 全面复习四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
图形的变换与坐标教案

图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。
图形的变换与坐标教案

图形的变换与坐标教案一、教学目标:1. 知识与技能:理解坐标系的概念,掌握坐标系的建立方法。
学习图形的平移、旋转和缩放等基本变换。
能够运用坐标表示和计算图形的变换。
2. 过程与方法:通过实际操作和观察,培养学生的空间想象能力和抽象思维能力。
学会使用坐标系解决实际问题,提高解决问题的能力。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情。
培养学生的团队协作能力和交流表达能力。
二、教学内容:1. 坐标系的概念和建立方法学习直角坐标系的定义和建立方法。
理解坐标轴和坐标点的含义。
2. 图形的平移变换学习图形的平移概念和规律。
掌握图形平移的坐标表示和计算方法。
3. 图形的旋转变换学习图形的旋转概念和规律。
掌握图形旋转的坐标表示和计算方法。
4. 图形的缩放变换学习图形的缩放概念和规律。
掌握图形缩放的坐标表示和计算方法。
5. 实际问题应用通过实际问题,运用坐标系和图形变换解决实际问题。
培养学生的解决问题能力和创新思维能力。
三、教学资源:1. 教学课件和教学素材。
2. 坐标纸和绘图工具。
3. 实际问题案例。
四、教学过程:1. 导入:通过实际例子,引入坐标系的概念,激发学生的兴趣。
2. 教学内容讲解:结合课件和教学素材,讲解坐标系的概念和建立方法,图形的平移、旋转和缩放变换的规律和计算方法。
3. 课堂练习:布置相关的练习题,让学生巩固所学内容。
4. 实际问题应用:给出实际问题案例,引导学生运用坐标系和图形变换解决实际问题。
五、教学评价:1. 课堂练习:通过课堂练习题,评估学生对知识的掌握程度。
2. 实际问题应用:通过实际问题解决情况,评估学生的应用能力和创新能力。
3. 学生互评和自评:鼓励学生进行互评和自评,提高学生的交流和表达能力。
六、教学活动设计:1. 导入活动:通过一个简单的图形变换游戏,让学生感受图形变换的乐趣,引发学生对图形变换的好奇心。
2. 主体活动:引导学生通过合作探究,自主发现图形变换的规律,并通过实际操作验证自己的发现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系(一)
教学目标:
1、知识目标:认识平面直角坐标系,知道点的坐标及象限的含义。
2、能力目标:能够在给定的直角坐标系中,根据点的坐标指出点的位置,会由点的位置写出点的坐标。
3、情感目标:经历画坐标系,由点找坐标等过程,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。
教学重点:平面直角坐标系 教学难点:确定点的坐标
教学方法:观察、比较、合作、交流、探索. 教学过程: 一、复习铺垫 1、什么是数轴?
2、数轴上的点与_______实数一一对应。
3、写出数轴上A 、B 、C 各点的坐标。
二、探究活动
1、想一想:在教室里怎样确定一个同学的位置?
2
3、怎样表示平面内的点的位置? (小明和小亮是网上认识的好朋友, 今年暑假,小亮邀小明到他家所在 的镇江市去玩,他发了E_mail 给 小明:我家在镇江市中山路南边20 米,解放路西边50米。
你能根据 小亮的提示从右图中找出他家的位置吗? 想一想:
1、小亮是怎样描述他家的位置的?
2、小亮可以省去“南边”和“西边”这几个字吗?
3、若小亮说在“中山路南边、解放路东边”,你能找到他家吗?
4、若小亮只说在“中山路南边20米”或只说在“解放路西边50米“,你能找到他家吗? 三、接受新知
平面上有公共原点且互相垂直的两条数轴构成平面直角坐标系,简称直角坐标系。
水平方向的数轴称为x 轴或横轴,竖直方向的数轴称为y 轴或纵轴,它们统称坐标轴。
公共原点O 称为坐标原点。
中山路 城市
客厅 解放路
解
放路
四、确定点的位置
1、若平面内有一点P(如图),我们应该如何确定它的位置?
(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,即为点P的坐标,可表示为P(a,b))
2、若已知点Q的坐标为(m,n),该如何确定点P的位置?
(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)例:分别在平面内确定点A(3,2)、B(2,3)的位置,并确定点C、D、E的坐标。
五、练习:(判断:)⑴对于坐标平面内的任一点,都有唯一的一对有序实数与它对应.()
⑵在直角坐标系内,原点的坐标是0.()
六、课堂小结:
今天我们学到了什么?
1、怎样建立坐标系?
2、怎样确定点的位置?
3、不同位置的点的坐标的特征。
七、分别在坐标系中描出下列各点的位置:A(-3,4)、B(5,-4)、
C(-6,-3)、D(-4,2)
八、课后反思:
平面直角坐标系
教学目标
1.能建立适当的直角坐标系,描述物体的位置;
2.在给定的直角坐标系中,会根据坐标描出点的位置.
3.经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识.
重点:建立适当直角坐标系,描述物体的位置; 难点:建立适当直角坐标系. 教学方法:合作、交流、探索. 教学过程
一、复习旧知,导入新课
问题:1.为什么叫做直角坐标系,画出直角坐标系. 2.写出图中点A 、B 、C 、D,E 的位置.
二、师生共同活动
例:在平面直角坐标系中描出下列各点:
A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).
分析:先在x 轴上找出表示4的点,再在y 轴上找出表示5的点, 过这两个点分别作x 轴和y 轴的垂线,垂线的交点就是A.
师生共同活动作出点A 、B 、C 、D 、E 由学生独立完成. 探究:如图,正方形ABCD 的边长为6.
A(O)
x
D
C
B
(1)如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系,那么y 轴是哪条线?
(2)写出正方形的顶点A 、B 、C 、D 的坐标.
(3)请另建立一个平面直角坐标系,此时正方形的顶点A 、B 、C 、D 的坐标又分别是多少?与同学交流一下.
学生讨论、交流后,得到以下共识: ①y 轴是AD 所在直线.
②A(0,0),B(0,6),C(6,6),D(6,0).
③让部分学生描述,并投影作法,同学讨论.
④建立的平面直角坐标系不同,则各点的坐标也不同. 三、巩固练习 教科书P86练习 四、作业 一、填空题.
1.若点P(x,y)满足xy=0,则点P 在___________.
2.在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________.
3.若线段AB 的中点为C,如果用(1,2)表示A,用(4,3) 表示B, 那么C 点的坐标是________.
4.若线段AB 平行x 轴,AB 长为5,若A 的坐标为(4,5),则B 的坐标为________. 二、解答题.
1.在图直角坐标系中描出下列各组点,并将各组点用线段依次连结起来,观察所得到的图形,你觉得它像什么?
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5); (2)(-9,3),(-9,0),(-3,0),(-3,3);
(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9); (4)(3,7),(1,5)(2,5),(5,5),(6,5),(4,7);
(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
2.如图长方形ABCD 的长和宽分别是6和4.以C 为坐标原点,分别以CD 、CB 所在的直线为x 轴、y 轴建立直角坐标,则长方形各顶点坐标分别是多少?
C(O)x
y D B
A
五、课后反思:
1.4 平面直角坐标系(三)
【教学目标】
1、能根据坐标描出点的位置(坐标都为整数);
2、能在方格纸中建立适当的平面直角坐标系描述物体的位置;
3、能根据点的位置关系探索坐标之间的关系,以及根据坐标之间的关系探索点的位置关系.
【重点难点】
重点:根据点的坐标在直角坐标系中描出点的位置。
难点:探索特殊的点与坐标之间的关系。
教学方法:观察、比较、
【教学过程】
一、提出问题
1、在图1的平面直角坐标系、中,你能说出三角形ABC三个
顶点A,B,C的坐标吗?
2、思考:
在上面的问题中,点B和点C的坐标之间有什么关系?每一
个点的横坐标与纵坐标的符号与什么有关?
设计意图:设计这两个问题,一方面是复习上一节课的知识,一方面又为本节课的学习做准备.
由于本节课是建立在上一节课的基础之上的,因此以复习的方式来引入新知的学习,也不失为一种好的方法。
二、学习新知
1、象限的概念:
以教师讲解的方式介绍四个象限的概念,如图2
注意:坐标轴上的点不属于任何象限。
2、探究点的位置与它的坐标的符号之间的关系.
分组讨论:
(1)四个象限内的点的坐标的符号有什么规律?
(2)从上表中你还能发现什么规律?
最后归纳出一、二、三、四象限内点的坐标的符号分别是(+,+),(-,+),(-,-),(+,-).同时还可以让学生说出:x轴的正半轴上的点的横坐标为正数,纵坐标是零……
设计意图:通过学生自己的探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解。
3、口答:分别说出下列各个点在哪个象限内或在哪条坐标轴上?
A(6,-2),B(0,3),C(3,7),D(-6,-3)E(-2,0),
F(-9,5)]
设计意图:这里安排一组口答练习,是为了及时运用前面的规律,培养学生的空间想象能力;二是为下面例题的学习做准备。
三、探究活动
活动一:教材第85页的“做一做”.
处理方法:先让学生独立尝试,然后小组内交流,最后教
师进行归纳:用方位角与距离也可以描述点的位置。
活动二:在方格纸上分别描出下列点的坐标,看看这些点在什么位置上,由此你有什么发现?
A(2,3),B(2,-1),C(2,7),D(2,0),E(2,-5),F(2,-4)
设计意图:活动二主要是让学生发现与y轴平行的直线上的点的坐标的特征。
四、巩固新知
1、在平面直角坐标系中描出下列各点:
A(-3,-1),B(-3,2),C(0,2),D(3,2),E(3,-1),
F(0,-1)
并用线段顺次连接各点,看看你画出的图形是什么形状?
五、总结归纳
让学生围绕教师的问题进行回答:
1、本节课学习了哪些知识和方法?
2、你认为应该注意哪些方面的问题?
3、你有什么收获?
六、布置作业
必做题:教材P3.1习题A组.
选做题:教材P3.1习题B组
七、课后反思:。