电磁场与电磁波习题目解答选
电磁场与电磁波试题与答案
电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号。
每小题2分,共20分)1.设一个矢量场=x x+2y y+3z z,则散度为()A. 0B. 2C. 3D. 62.人们规定电流的方向是()运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为()A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是()A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为()A. •B.E2C.εE2D. εE26.电容器的大小()A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为()A.=0,Tq= •B.=0, = ×C.= •,= ×D.= •,=08.在=0的磁介质区域中的磁场满足下列方程()A.× =0, • =0B.×≠0, •≠0C.×≠0, • =0D.× =0, •≠09.洛伦兹条件人为地规定的()A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?()A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。
电磁场与电磁波 答案
23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
《电磁场与电磁波》课后习题解答(全)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波》(第四版 )答案二章习题解答
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波:练习题参考答案
一、填空题1、电荷守恒定律的微分形式是,其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];2、麦克斯韦第一方程=⨯∇HDJ t ∂+∂,它的物理意义是[电流与时变电场产生磁场];对于静态场,=⨯∇H[J ]];3、麦克斯韦第二方程E⨯∇B ∂,它表明[时变磁场产生电场];对于静态场,E⨯∇=[0],它表明静态场是[无旋场];4、坡印廷矢量S 是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[E H ⨯],它表示[通过垂直于功率传输方向单位面积]的电磁功率;5、在两种不同物质的分界面上,[电场强度,(或E )]矢量的切向分量总是连续的, [磁感应强度,(或B )]矢量的法向分量总是连续的;6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或μ、ε)]有关,但在导电媒质中传播时,相速度还与[频率,(或f ,或ω)],这种现象称为色散;7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2π,(或-2π,或90)];8.均匀平面波在良导体中传播时,电场振幅从表面值E 0下降到E 0/e 时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。
二、选择题1、能激发时变电磁场的源是[c]a.随时间变化的电荷与电流 b 随时间变化的电场与磁场c.同时选a 和b2、在介电常数为ε的均匀媒质中,电荷体密度为ρ的电荷产生的电场为),,(z y x E E =,若E Dε=成立,下面的表达式中正确的是[a]a. ρ=⋅∇Db. 0/ερ=⋅∇Ec. 0=⋅∇D3、已知矢量)()23(3mz y e z y e x e B z y x +--+=,要用矢量B 描述磁感应强度,式中 必须取[c(0=⋅∇B )] a. 2 b. 4 c. 64、导电媒质中,位移电流密度d J 的相位与传导电流密度J的相位[a]a.相差2πb.相同或相反c.相差4π5、某均匀平面波在空气中传播时,波长m 30=λ,当它进入介电常数为04ε=ε的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m6、空气的本征阻抗π=η1200,则相对介电常数4=εr ,相对磁导率1=μr ,电导率0=σ的媒质的本征阻抗为[c].a.仍为)(120Ωπb. )(30Ωπc. )(60Ωπ 7、z j y z j x e j e e e E π-π-+=2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波8、区域1(参数为0,,10101===σμμεε)和区域2(参数为0,20,520202===σμμεε)的分界面为0=z 的平面。
电磁场与电磁波试题答案
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+= ,z y x e e e B ˆˆ3ˆ5--= ,求(1)B A +(2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2)说明电磁波的传播方向; 四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球内任一点的电场强度(2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
电磁场与电磁波试题及参考答案
2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1.旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6.理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × ) 二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。
A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。
A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。
A.22aE r ρε=B. 202r E a ρε= C. 02r E ρε= 4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。
A.02I r μπB. 02Ir a μπC. 022Ir aμπ 5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。
A.()0cos y x e E t ωϕ+ B. ()0cos x x e E t ωϕ+ C. ()0sin x x e E t ωϕ+6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。
电磁场和电磁波练习(有答案)
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
第四章第2节电磁场与电磁波练习(word版含答案)
2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。
关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。
电磁场与电磁波第二版课后练习题含答案
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
04《电磁场与电磁波》练习及答案
电磁学试题库试题4一、填空题(每小题2分,共20分)1、一均匀带电球面,电量为Q,半径为R,在球内离球心R/2处放一电量为q 的点电荷,假定点电荷的引入并不破坏球面上电荷的均匀分布,整个带电系统在球外P点产生的电场强度( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的受力( )5、一电路如图所示,已知V 121=ε V 92=ε V 83=ε Ω===1321r r rΩ====25431R R R R Ω=32R 则Uab =( )6、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )7、通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势,引起磁通量变化的物理量是( )R R 33r ε54I a Pa a I8、0C C r ε=成立的条件是( )。
9、铁介质的主要特征是( )。
10、麦克斯韦在总结前人电磁学全部成就的基础上,提出了两条假设。
一、选择题(每小题2分,共20分)1、在用试探电荷检测电场时,电场强度的定义为:0q FE =则( )(A )E 与q o 成反比(B )如果没有把试探电荷q o 放在这一点上,则E=0(C )试探电荷的电量q o 应尽可能小,甚至可以小于电子的电量 (D )试探电荷的体积应尽可能小,以致可以检测一点的场强 2、一点电荷q 位于边长为d 的立方体的顶角上,通过与q 相连的三个平面的电通量是( )(A )04εq (B )08εq(C )010εq (D )03、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有( ) (A )3241σ-=σσ=σ,(B )3241σ=σσ=σ, (C )3241σ-=σσ-=σ, (D )3241σ=σσ-=σ,4、如图所示,图中各电阻值均为R ,AB R 为( ) (A )Ω=4AB R (B )Ω=2AB R(C ) R R AB 43=(D ) R R AB 23=5、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是:( ) (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π26、一个分布在圆柱形体积内的均匀磁场,磁感应强度为B ,方向沿圆柱的轴线,圆柱Q Q 1234A B的半径为R ,B 的量值以κ=dt dB 的恒定速率减小,在磁场中放置一等腰形金属框ABCD (如图所示)已知AB=R ,CD=R/2,线框中总电动势为:( )(A )K R 21633 顺时针方向(B )KR 21633 逆时针方向 (C )KR 243 顺时针方向 (D )KR 243 逆时针方向7、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )(A )2004r q r επε (B)2004r q πε (C)204r q π (D)2041r q r r πε-ε)(8、在与磁感应强度为B 的均匀恒定磁场垂直的平面内,有一长为L 的直导线ab ,导线绕a 点以匀角速度ω转动,转轴与B 平行,则ab 上的动生电动势为:( )(A )221BL ω=ε(B )2BL ω(C )241BL ω=ε(D )ε=09、放在平滑桌面上的铁钉被一磁铁吸引而运动,其产生的动能是因为消耗了( ) (A )磁场能量; (B )磁场强度; (C )磁场力; (D )磁力线。
电磁场与电磁波精彩试题问题详解
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。
电磁场与电磁波习题答案
第二章2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε 2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
《电磁场与电磁波》(陈抗生)习题解答选
《电磁场与电磁波》(陈抗生)习题解答第一章 引言——波与矢量分析1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--1.2写出下列时谐变量的复数表示(如果可能的话))6sin()3sin()()6(cos 1)()5()2120cos(6)()4(cos 2sin 3)()3(sin 8)()2()4cos(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解:4/)z (v π=ϕj 23234sin j 64cos6e6V 4j+=π+π==π∴ (2)解:)2tcos(8)t (I π-ω-= 2)z (v π-=ϕ j8e 8I j 2=-=π-∴(3)解:)t cos 132t sin 133(13)t (A ω-ω= j32e13A 2)z ()2t cos(13)t (A 133cos )2(j v --==π-θ=ϕ∴π-θ+ω==θπ-θ则则令 (4)解:)2t 120cos(6)t (C π-π=j 6e6C 2j -==∴π(5)(6)两个分量频率不同,不可用复数表示1.3由以下复数写出相应的时谐变量])8.0exp(4)2exp(3)3()8.0exp(4)2(1)1(j j C j C jC +==+=π(1)解:t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j ω-ω+ω+ω=ω+ω+=+ω t sin t cos )Ce (RE )t (C t j ω-ω==∴ω(2)解:)8.0t cos(4)e e 4(RE )Ce (RE )t (C t j 8.0j t j +ω===ωω(3)解:)8.0t (j )2t (j tj 8.0j j tj e 4e3e)e4e3(Ce 2+ωπ+ωωω+=+=π得:)t cos(3)8.0t cos(4)8.0t cos(4)2t cos(3)Ce (RE )t (C t j ω-+ω=+ω+π+ω==ω1.4]Re[,)21(,)21(000000**⨯⋅⨯⋅++--=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:1B A B A B A B A z z y y x x -=++=⋅0000000000z y x z y x 000z y x 6)B A (RE j)j 21(1j 21j 1z y x B A j 21B A z )j 21(x B z )j 1(y )j 31(x )4j 4(B B B A A A z y x B A--=⨯----+=⨯--=⋅---=--+--++-==⨯****得到:则:1.5计算下列标量场的梯度xyzu xy y x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z z z y x y y z y x x x z y x++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)(000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4)解:u u grad ∇=)(00)22()22(y x y x y x+++=(5)解:u u grad ∇=)(000z xy y xz x yz ++=1.6)处的法线方向,,在点(求曲面21122y x z+=解:梯度的方向就是电位变化最陡的方向令z y x T-+=22则代入锝:将点)2,1,1(22000z y y x x T-+=∇法线方向与00022z y x-+同向1.7求下列矢量场的散度,旋度200022000002020265)4()()()3()()()()2()1(z x y yz x A y y x x y x A z y x y z x x z y A z z y y x x A ++=+++=+++++=++=(1)解:zA y A x A A A div zy x ∂∂+∂∂+∂∂=⋅∇=)(z y x 222++=0)(222000=∂∂∂∂∂∂=⨯∇=z y x z y x z y x A A curl(2)解:div(A)=0curl(A)=0(3)解:div(A)=1+2y022000)12(0)(z x y x yx z y x z y x A A curl -=++∂∂∂∂∂∂=⨯∇= (4)解:div(A)=6z002002665)(y x x y x yzz y x z y x A A curl --=∂∂∂∂∂∂=⨯∇= 1.11⎰===+⋅=Sh z z r y x S S d A x x A 组成的闭合曲面是由其中,求若矢量场,0,,2220解:由散度定理可得:hr dV dVx x h z r y x V dV A dS A VV s V20222)]([),()(π==⋅∇===+⋅∇=⋅⎰⎰⎰⎰围成的体积为1.12)()()(,,000000B A A B B A z B y B x B B z A y A x A A z y x z y x⨯∇⋅-⨯∇⋅=⨯⋅∇++=++=试证明:假定证明:)(B A ⨯⋅∇zB A B A y B A B A xB A B A B A B A z B A B A y B A B A x B B B A A A z y x x y y x z x x z y z z y x y y x z x x z y z z y zy x z yx ∂-∂+∂-∂+∂-∂=-+-+-⋅∇=⋅∇=)()()()]()()([00000)()()()()()()()(B A A B y B x B A x B z B A z B y B A yA x AB x A z A B z A y A B zB A B A A B A B yB A B A A B A B xB A B A A B A B x y z z x y yz x x y z z x y yz x xy y x y x x y zx y z x z z x y z z y z y y z⨯∇-⨯∇=∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=∂∂-∂+∂-∂+∂∂-∂+∂-∂+∂∂-∂+∂-∂=1.13AA A A A A⨯∇Φ+⨯Φ∇=Φ⨯∇⋅∇Φ+Φ∇⋅=Φ⋅∇)()2()()1(证明:(1)证明:证毕右边左边右边左边=∴∂Φ∂+∂Φ∂+∂Φ∂=∂Φ∂+∂Φ+∂Φ∂+∂Φ+∂Φ∂+∂Φ=∂∂+∂∂+∂∂Φ+∂Φ∂+∂Φ∂+∂Φ∂⋅++=∂Φ∂+∂Φ∂+∂Φ∂=Φ+Φ+Φ⋅∇=z A y A x A z A A y A A x A A zA y A x A z z y y x x z A y A x A zA y A x A z A y A x A z y x z z y y x x z y x z y x zy x z y x )()()()(000000000(2)证明:证毕左边右边左边=∂∂Φ∂∂Φ∂∂Φ+∂Φ∂∂Φ∂∂Φ∂=⨯∇Φ+⨯Φ∇=ΦΦΦ∂∂∂∂∂∂=Φ⨯∇=zyx z y x zy xA A A z y x z y x A A A z y x z y x A A A A A z y x z y x A 000000000)(1.14 证明:)()2(0)()1(=Φ∇⨯∇=⨯∇⋅∇A(1)证明:证毕)]()()([)(222222000000=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⋅∇=∂∂∂∂∂∂⋅∇=⨯∇⋅∇y z A z x A y x A y z A z x A y x A yA x A z x A z A y z A y A x A A A z y x z y x A x y z x y z xy z x y z zy x(2)证明:证毕0)()(000000=∂Φ∂∂Φ∂∂Φ∂∂∂∂∂∂∂=∂Φ∂+∂Φ∂+∂Φ∂⨯∇=Φ∇⨯∇zy x z y x z y x z zy y x x第二章 传输线基本理论与圆图2.1710'0.042/'510/'510/'30.5/R m L H m G S mC pF mk Z Ω-==⨯=⨯=市话用的平行双导线,测得其分布电路参数为:求传播常数与特征阻抗。
人教版高中物理选修二4.2电磁场与电磁波(解析版)习题
4.2 电磁场与电磁波一、选择题1.(单选)下列四个选项中的四种磁场变化情况,能产生如图所示电场的是( )【答案】 B【解析】由麦克斯韦电磁场理论知均匀变化的磁场才能产生稳定的电场,选项B正确。
方法总结均匀(非均匀)变化的磁场(电场)、恒定的磁场(电场)的比较(1)变化的磁场产生的电场,叫作感应电场,它的电场线是闭合的。
而静电荷周围产生的电场叫作静电场,它的电场线由正电荷或无限远出发,终止于无限远或负电荷,是不闭合的。
(2)恒定的电场不产生磁场,恒定的磁场不产生电场。
(3)均匀变化的磁场周围产生恒定的电场,均匀变化的电场周围产生恒定的磁场。
(4)不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。
2.(单选)如图所示的四种变化电场,能发射电磁波的是()【答案】 D【解析】图A是稳定的电场,不能产生磁场;图B与图C是均匀变化的电场,产生恒定的磁场,也不能形成电磁波;图D是周期性变化的电场,会产生同频率周期性变化的磁场,能形成电磁场,向外发射电磁波,选项D正确,A、B、C错误。
3.(多选)甲、乙两种磁场的磁感应强度B随时间t变化的规律如图所示,下列说法正确的是()A.磁场甲能够产生电场B.磁场甲能够产生电磁波C.磁场乙的磁感应强度最大时产生的电场最强D.磁场乙的磁感应强度为零时产生的电场最强【答案】AD【解析】根据麦克斯韦的电磁场理论,均匀变化的磁场甲能产生稳定的电场,不能产生电磁波,选项A 正确,B错误;周期性变化的磁场产生同频率周期性变化的电场,磁场乙的磁感应强度最大时,产生的电场最弱,磁场乙的磁感应强度为零时,产生的电场最强,选项C错误,D正确。
4.(单选)电磁波在传播时,不变的物理量是()A.振幅B.频率C.波速D.波长【答案】 B【解析】离波源越远,振幅越小,电磁波在不同介质中的波速不一样,波长也不一样。
频率是由发射电磁波的波源决定的,与介质无关。
5.(单选)电磁场理论是以下哪位科学家提出的()A.法拉第B.赫兹C.麦克斯韦D.安培【答案】 C【解析】由图示电流方向知电容器在充电,振荡电流减小,电容器极板上的电荷量正在增强,极板间的场强在增强,磁场能正在向电场能转化,选项C正确,A、B、D错误。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波习题目解答选《电磁场与电磁波》(陈抗生)习题解答第一章 引言——波与矢量分析1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--1.2写出下列时谐变量的复数表示(如果可能的话))6sin()3sin()()6(cos 1)()5()2120cos(6)()4(cos 2sin 3)()3(sin 8)()2()4cos(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解:4/)z (v π=ϕj 23234sin j 64cos6e6V 4j +=π+π==π∴ (2)解:)2tcos(8)t (I π-ω-=2)z (v π-=ϕ j 8e 8I j 2=-=π-∴(3)解:)t cos 132t sin 133(13)t (A ω-ω= j32e13A 2)z ()2t cos(13)t (A 133cos )2(j v --==π-θ=ϕ∴π-θ+ω==θπ-θ则则令 (4)解:)2t 120cos(6)t (C π-π=j 6e6C 2j -==∴π(5)(6)两个分量频率不同,不可用复数表示1.3由以下复数写出相应的时谐变量])8.0exp(4)2exp(3)3()8.0exp(4)2(1)1(j j C j C jC +==+=π(1)解:t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t j ω-ω+ω+ω=ω+ω+=+ωt sin t cos )Ce (RE )t (C t j ω-ω==∴ω(2)解:)8.0t cos(4)e e 4(RE )Ce (RE )t (C t j 8.0j t j +ω===ωω(3)解:)8.0t (j )2t (j tj 8.0j j tj e 4e3e)e4e3(Ce2+ωπ+ωωω+=+=π得:)t cos(3)8.0t cos(4)8.0t cos(4)2t cos(3)Ce (RE )t (C tj ω-+ω=+ω+π+ω==ω1.4]Re[,)21(,)21(000000**⨯⋅⨯⋅++--=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:1B A B A B A B A z z y y x x -=++=⋅0000000000z y x z y x 000z y x 6)B A (RE j)j 21(1j 21j 1z y x B A j 21B A z )j 21(x B z )j 1(y )j 31(x )4j 4(B B B A A A z y x B A--=⨯----+=⨯--=⋅---=--+--++-==⨯****得到:则:1.5计算下列标量场的梯度xyzu xy y x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z z z y x y y z y x x x z y x++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)(000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4)解:u u grad ∇=)(00)22()22(y x y x y x+++=(5)解:u u grad ∇=)(000z xy y xz x yz ++=1.6)处的法线方向,,在点(求曲面21122y x z +=解:梯度的方向就是电位变化最陡的方向令z y x T-+=22则代入锝:将点)2,1,1(22000z y y x x T-+=∇法线方向与00022z y x-+同向1.7求下列矢量场的散度,旋度200022000002020265)4()()()3()()()()2()1(z x y yz x A y y x x y x A z y x y z x x z y A z z y y x x A ++=+++=+++++=++=(1)解:zA y A x A A A div zy x ∂∂+∂∂+∂∂=⋅∇=)(z y x 222++=0)(222000=∂∂∂∂∂∂=⨯∇=z y x z y x z y x A A curl(2)解:div(A)=0curl(A)=0(3)解:div(A)=1+2y022000)12(0)(z x y x yx z y x z y x A A curl -=++∂∂∂∂∂∂=⨯∇= (4)解:div(A)=6z002002665)(y x x y x yz z y x z y x A A curl --=∂∂∂∂∂∂=⨯∇= 1.11⎰===+⋅=Sh z z r y x S S d A x x A 组成的闭合曲面是由其中,求若矢量场,0,,2220解:由散度定理可得:hr dV dVx x h z r y x V dV A dS A VV s V20222)]([),()(π==⋅∇===+⋅∇=⋅⎰⎰⎰⎰围成的体积为1.12)()()(,,000000B A A B B A z B y B x B B z A y A x A A z y x z y x⨯∇⋅-⨯∇⋅=⨯⋅∇++=++=试证明:假定证明:)(B A ⨯⋅∇zB A B A y B A B A xB A B A B A B A z B A B A y B A B A x B B B A A A z y x x y y x z x x z y z z y x y y x z x x z y z z y zy x z yx ∂-∂+∂-∂+∂-∂=-+-+-⋅∇=⋅∇=)()()()]()()([00000)()()()()()()()(B A A B y B x B A x B z B A z B y B A yA x AB x A z A B z A y A B zB A B A A B A B yB A B A A B A B xB A B A A B A B x y z z x y yz x x y z z x y yz x xy y x y x x y zx y z x z z x y z z y z y y z⨯∇-⨯∇=∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=∂∂-∂+∂-∂+∂∂-∂+∂-∂+∂∂-∂+∂-∂=1.13AA A A A A⨯∇Φ+⨯Φ∇=Φ⨯∇⋅∇Φ+Φ∇⋅=Φ⋅∇)()2()()1(证明:(1)证明:证毕右边左边右边左边=∴∂Φ∂+∂Φ∂+∂Φ∂=∂Φ∂+∂Φ+∂Φ∂+∂Φ+∂Φ∂+∂Φ=∂∂+∂∂+∂∂Φ+∂Φ∂+∂Φ∂+∂Φ∂⋅++=∂Φ∂+∂Φ∂+∂Φ∂=Φ+Φ+Φ⋅∇=z A y A x A z A A y A A x A A zA y A x A z z y y x x z A y A x A zA y A x A z A y A x A z y x z z y y x x z y x z y x zy x z y x )()()()(000000000(2)证明:证毕左边右边左边=∂∂Φ∂∂Φ∂∂Φ+∂Φ∂∂Φ∂∂Φ∂=⨯∇Φ+⨯Φ∇=ΦΦΦ∂∂∂∂∂∂=Φ⨯∇=zyx z y x zy xA A A z y x z y x A A A z y x z y x A A A A A z y x z y x A 000000000)(1.14 证明:)()2(0)()1(=Φ∇⨯∇=⨯∇⋅∇A(1)证明:证毕)]()()([)(222222000000=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⋅∇=∂∂∂∂∂∂⋅∇=⨯∇⋅∇y z A z x A y x A y z A z x A y x A yA x A z x A z A y z A y A x A A A z y x z y x A x y z x y z xy z x y z zy x(2)证明:证毕0)()(000000=∂Φ∂∂Φ∂∂Φ∂∂∂∂∂∂∂=∂Φ∂+∂Φ∂+∂Φ∂⨯∇=Φ∇⨯∇zy x z y x z y x z zy y x x第二章 传输线基本理论与圆图2.1710'0.042/'510/'510/'30.5/R m L H m G S mC pF mk Z Ω-==⨯=⨯=市话用的平行双导线,测得其分布电路参数为:求传播常数与特征阻抗。
解:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω将数据代入解得(以50Hz 代入,不是很正确):Ω⨯-=⨯-=--3810)44.15.1(10)6.198.16(j Z j k c2.2min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
解:(1)由题意可锝:80503(0)805013311(0)13 1.631(0)113L C v L C v v Z Z Z Z ΓΓρΓ--===++++===--(2)3(0)(0)013v Γψ==即 Z cZ L4141maxmin=+=∴λλd d (3)224πλπλ===l kl l时Ω=++=++=25.312tan80502tan 508050tan tan ππj j kljZ Z kljZ Z Z Z L C C L Cin Ω-=++====Ω=++====j kljZ Z kljZ Z Z Z l kl l kljZ Z kljZ Z Z Z l kl l L C C L C in L C C L Cin 50tan tan 4328380tan tan 22πλπλπλπλ时时(4)iv i V V V 513161331)0(1)0(==+=Γ+=可得:1665=i V max min max maxminmin 653[1(0)](1)51613653[1(0)](1) 3.12516130.10.0625i v i v C CV V V V V VV I A Z V I A Z ΓΓ=+=+==-=-=====2.3处输入阻抗求传输线长度,,负载阻抗无线传输线特征阻抗8/3,4/,8/99.25550λλλ===l Z Z L C解:43,2,483,4,8πππλλλ==kl l处当Ω-=++=++=Ω=++=++=Ω+=++=++=)44.4526.8(43tan99.2555043tan5099.25550tan tan 502tan99.255502tan 5099.25550tan tan )26.531.9(4tan 99.255504tan 5099.25550tan tan j j j kljZ Z kl jZ Z Z Z j j kljZ Z kljZ Z Z Z j j j kl jZ Z kljZ Z Z Z L C C L C in L C C L Cin L C C L Cin ππππππ2.4功率之比)负载反射功率与入射(点位置)离开驻波第一个最小()驻波系数(求:传输线终端归一化阻抗321,0.18.0min d j z L ρ+=解:(0)10.2 1.0(0)(0)1 1.8 1.0j L C L v L C L Z Z z j e Z Z z j ψνΓΓ---+====+++(1)96.2)0(1)0(1=Γ-Γ+=v v ρ(2)min(0)0.3544d ψλλλπ=+= (3)41)0(2=Γ=v i r P P2.6λ/3350l j 长度求传输线以波长计的电,输入阻抗为,终端开路,测得始端传输线特征阻抗为ΩΩ解:终端开路时:cot 3350tan 3350arctan 3350arctan()1330.34322in C Z jZ kl j kl kl l πλπ=-=∴=-=-=-=得:2.8求负载阻抗,,驻波系数为为为在无耗线上测得:36.0,1.0,25,100min =⋯⋯-ρλλd j Z j Z ocin sc in解:5.0131311=+-=+-=Γρρvmin 0.60.6(0)0.1(0)0.644100(25)501(0)10.5501(0)10.5oc scC in in j v L C jv d Z Z Z j j e Z Z e ππψλλλψππΩΓΓ--==+⇒=-=⋅=⋅-=++==--即2.9(3060),50,L C L Z j Z Z d ΩΩ=+=如图,用可移动单可变电纳匹配器进行匹配,用圆图决定可变电纳匹配器到负载的距离,以及并联短路支线长度。