历届高考题分类整理

合集下载

历年(2020-2024)全国高考语文真题分类(直接式名句名篇默写)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(直接式名句名篇默写)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(直接式名句名篇默写)汇编一、(2022ꞏ浙江卷ꞏ高考真题)补写出下列句子中的空缺部分。

(只选3小题)(1)其为人也,,,不知老之将至云尔。

(《论语》)(2)故不积跬步,;不积小流,。

(荀子《劝学》)(3)弦弦掩抑声声思,;,说尽心中无限事。

(白居易《琵琶行》) (4),多情应笑我,早生华发。

人生如梦,。

(苏轼《念奴娇∙赤壁怀古》)) (5)潮平两岸阔,。

海日生残夜,。

(王湾《次北固山下》)二、(2022ꞏ天津ꞏ高考真题)补写出下列句子中的空缺部分。

(1)知人者智,。

胜人者有力,自胜者强。

(《老子》)(2)大学之道,在明明德,在亲民,。

(《礼记∙大学之道》)(3),固前圣之所厚。

(屈原《离骚》)(4)风急天高猿啸哀,。

(杜甫《登高》)三、(2021ꞏ浙江卷ꞏ高考真题)补写出下列句子中的空缺部分。

(只选3小题)(1)曾子曰:“,任重而道远,,不亦重乎?”(《论语》)(2)哀吾生之须臾,。

,抱明月而长终。

(苏轼《赤壁赋》)(3),下有冲波逆折之回川。

黄鹤之飞尚不得过,。

(李白《蜀道难》) (4)春花秋月何时了?,,故国不堪回首月明中。

(李煜《虞美人》) (5)细草微风岸,危樯独夜舟。

,。

(杜甫《旅夜书怀》)四、(2021ꞏ天津卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)仰观宇宙之大,。

(王羲之《兰亭集序》)(2)江间波浪兼天涌,。

(杜甫《秋兴八首(其一)》)(3),石破天惊逗秋雨。

(李贺《李凭箜篌引》)(4)想当年,金戈铁马,。

(辛弃疾《永遇乐∙京口北固亭怀古》)五、(2020ꞏ浙江卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)凤兮!凤兮!何德之衰!,。

(《论语》)(2)巫医乐师百工之人,,,其可怪也欤!(韩愈《师说》)(3),靡有朝矣。

,至于暴矣。

(《诗经∙氓》)(4)此去经年,。

,更与何人说!(柳永《雨霖铃》)(5)可怜楼上月徘徊,应照离人妆镜台。

历年(2020-2024)全国高考语文真题分类(情境式名句名篇默写)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(情境式名句名篇默写)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(情境式名句名篇默写)汇编一、(2024ꞏ新高考Ⅰ卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)作文课上,房老师使用《屈原列传》中“,”两句话,引导学生描写寻常事物以表示宏大意旨,列举浅近事例来传达深远意蕴。

(2)乡村民宿“爱陶居”开业了,房屋周围按照陶渊明《归园田居》(其一)中“,”的句意,栽种了多种树木,受到游客喜爱。

二、(2024ꞏ新高考Ⅱ卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)同学们到郊外春游,阳光下树木葱郁,水流淙淙,小慧不禁想起了陶渊明《归去来兮辞》中的文句:“,。

”(2)快过年了,于老师牵挂在成都旅行的女儿,给她发短信息时用了李白《蜀道难》中的诗句“,”,希望她不要贪玩,早点儿回家。

三、(2024ꞏ全国甲卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)王湾《次北固山下》的名句“,”,描写时序交替中的景物,暗示着时光流逝,蕴含着自然理趣。

(2)小慧为朋友家的农家乐餐厅写宣传横幅,直接使用了陆游《游山西村》里的“,”两句诗,朋友看了觉得很贴切。

四、(2023ꞏ新高考Ⅱ卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)欧阳修《五代史伶官传序》中记载,李存勖将李克用留给他的三支箭收藏在祖庙中,其后用兵作战,“ ,”,装在锦囊中背在身上,奔赴战场。

(2)陆游《临安春雨初霁》中“,”两句,看似闲适恬静,实则透露出诗人由于内心的惆怅而彻夜难眠。

五、(2023ꞏ新高考Ⅰ卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)司马迁在《报任安书》中说,自己编写《史记》“”,便遭遇了李陵之祸,因痛惜这部书不能完成,所以“”。

(2)《旧唐书∙音乐志》记载竖箜篌“体曲而长,二十有二弦”,而李贺《李凭箜篌引》中“,”两句,说明竖箜篌的弦数还有另一种可能。

六、(2023ꞏ全国乙卷ꞏ高考真题)补写出下列句子中的空缺部分。

(1)白居易《琵琶行》中“,”两句,写琵琶女结束演奏后的动作及神态,同时也引出下文对其身世的叙述。

高考试题板块分类及答案

高考试题板块分类及答案

高考试题板块分类及答案一、选择题1. 高考历年真题分类汇总a. 语文b. 数学c. 英语d. 物理e. 化学f. 生物g. 政治h. 历史i. 地理2. 选择题解题技巧a. 选取关键词b. 排除干扰项c. 做题顺序二、填空题1. 高考填空题分类汇总a. 语文b. 数学c. 英语d. 物理e. 化学f. 生物g. 政治h. 历史i. 地理2. 填空题解题技巧a. 找准题干信息b. 掌握单词搭配及语法规则c. 注意上下文逻辑关系三、解答题1. 解答题分类汇总a. 语文c. 英语d. 物理e. 化学f. 生物g. 政治h. 历史i. 地理2. 解答题答题技巧a. 理清思路,合理组织答案结构b. 充分利用题目中的提示信息c. 注意语言表达清晰、准确四、高考试题答案示范以下为部分高考试题及其答案,供参考:1. 语文选择题题目:《红楼梦》是我国古代一部脍炙人口的经典小说,它是谁的作品?A. 曹雪芹C. 施耐庵D. 吴承恩答案:A2. 数学填空题题目:已知函数f(x) = 3x^2 + 2x - 1,求f(2)的值。

答案:f(2) = 3(2)^2 + 2(2) - 1 = 153. 英语解答题题目:请以“My Favorite Hobby”为题,写一篇100词左右的英语短文,介绍你最喜欢的爱好。

答案:My Favorite HobbyOne of my favorite hobbies is playing the guitar. I started learning toplay it when I was in middle school...总结:高考试题板块主要分为选择题、填空题和解答题三个部分。

选择题包括了各科目的选择题真题,填空题则是针对各科目的填空题目,解答题则要求学生详细解答问题。

本文对这三个板块进行了分类汇总,并给出了解题技巧。

另外,还以部分高考试题为例,给出了答案示范。

希望本文能够对高考复习有所帮助。

近五年高考历史试题分类归纳

近五年高考历史试题分类归纳

近五年高考历史试题分类归纳一、经济重心南移:T25—3.(2011年·新课标全国卷·T25)图4是依据《隋书·食货志》等制作的南北朝时期各地区货币使用情况示意图。

该图反映出图4A.长江流域经济水平总体上高于黄河流域B.河西走廊与岭南地区经济发展速度最快C.黄河流域的丝织业迅速发展D.长江流域经济发展相对稳定T25—4.(2012年·新课标全国卷·T25)许仙与白娘子自由相恋因法海和尚作梗终成悲剧,菩萨化身的济公游戏人间维持正义。

这些在宋代杭州流传的故事,反映出当时A.对僧人爱恨交加的社会心态B.民间思想借助戏剧广泛传播C.中国文化的地域性浓厚D.市民阶层的价值取向T26—9.(2015年·新课标全国Ⅰ卷·T26)宋代东南沿海地区出现了一些民间崇拜,如后来被视为海上保护神的妈祖、被视为妇幼保护神的临水夫人等,这些崇拜得到朝廷认可,后世影响不断扩大。

这反映出A.朝廷不断鼓励海洋开发B.女性地位逐渐得到提高C.东南沿海经济社会影响力上升D.统治思想与民众观念趋向一致T26—10.(2015年·新课标全国Ⅱ卷·T26)唐宋时期,江南经济迅猛发展,南宋时全国经济重心已移至江南。

促成这一转变的主要动力之一是A.坊市制度瓦解B.土地集中加剧C.农业技术进步D.海外贸易拓展T27—6.(2013年·新课标全国Ⅱ卷·T27)清代有学者说:“古有儒、释、道三教,自明以来,又多一教,曰小说……士大夫、农、工、商贾,无不习闻之,以至儿童、妇女不识字者,亦皆闻而如见之,是其教较之儒、释、道而更广也。

”这表明A.小说成为一种新的宗教传播载体B.小说的兴起冲击了封建等级观念C.市民阶层扩大推动世俗文化发展D.世俗文化整合了社会的价值观念T27—10.(2015年·新课标全国Ⅱ卷·T27)明成祖朱棣认为,北京“山川形胜,足以控四夷,制天下”,将都城从南京迁至北京。

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

全国20套高考卷分类汇编

全国20套高考卷分类汇编

全国20套高考卷分类汇编一、选择题(每题5分,共50分)A. 北京B. 上海C. 江苏D. 广东A. 2001年全国卷B. 2002年全国卷C. 2003年全国卷D. 2004年全国卷A. 语文B. 数学C. 英语D. 物理A. 浙江B. 江苏C. 湖北D. 山东5. 全国卷与地方卷的主要区别在于:A. 考试科目B. 难度C. 考试内容D. 考试时间A. 语文B. 数学C. 英语D. 物理A. 北京B. 天津C. 上海D. 广东A. 语文B. 数学C. 英语D. 历史A. 浙江B. 江苏C. 湖北D. 山东A. 语文B. 数学C. 英语D. 政治二、填空题(每题5分,共25分)1. 全国20套高考卷中,______省份的高考卷最具特色。

2. 2018年全国卷的高考作文题目是《______》。

3. 在全国20套高考卷中,______科目在地方卷中的分值比重最低。

4. 2020年,全国卷的数学试卷首次采用了______卷的形式。

5. 高考改革后,全国卷的考试科目由原来的“3+X”调整为______。

三、简答题(每题10分,共30分)1. 请简要介绍全国20套高考卷的分类及特点。

2. 请举例说明近年来全国卷高考作文题目的发展趋势。

3. 请简述高考改革对全国卷和地方卷的影响。

四、论述题(15分)结合我国高考制度的发展,论述全国20套高考卷在选拔人才、推动教育改革方面的作用。

五、案例分析题(20分)【案例】2021年某省份高考卷数学试题:(1)选择题:共10题,满分50分,涉及函数、几何、概率、统计等知识点。

(2)填空题:共5题,满分30分,涵盖数列、平面向量、立体几何等知识点。

(3)解答题:共6题,满分70分,包括三角函数、导数、解析几何、概率统计等知识点。

(4)附加题:共2题,满分20分,涉及高等数学和竞赛数学内容。

一、选择题1. C2. A3. B4. A5. C6. B7. D8. A9. A10. D二、填空题1. 江苏2. 写给未来2035年的那个他3. 政治4. 甲乙5. 3+1+2三、简答题1. 全国20套高考卷分为全国卷和地方卷。

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。

历年(2020-2023)全国高考物理真题分类(物理常识)汇编(附答案)

历年(2020-2023)全国高考物理真题分类(物理常识)汇编(附答案)

历年(2020-2023)全国高考物理真题分类(物理常识)汇编一、单选题1.(2023ꞏ辽宁ꞏ统考高考真题)安培通过实验研究,发现了电流之间相互作用力的规律。

若两段长度分别为1l ∆和2l ∆、电流大小分别为I 1和I ₂的平行直导线间距为r 时,相互作用力的大小可以表示为21221I I l l F k r ∆∆∆=。

比例系数k 的单位是( )A .kgꞏm/(s²ꞏA )B .kgꞏm/(s²ꞏA²)C .kgꞏm²/(s³ꞏA )D .kgꞏm²/(s³ꞏA³)2.(2023ꞏ浙江ꞏ高考真题)下列属于国际单位制中基本单位符号的是( )A .JB .KC .WD .Wb3.(2022ꞏ浙江ꞏ统考高考真题)下列属于力的单位是( )A .2kg m/s ⋅B .kg m/s ⋅C .2kg m /s ⋅D .2kg s/m ⋅4.(2021ꞏ海南ꞏ高考真题)公元前4世纪末,我国的《墨经》中提到“力,形之所以奋也”,意为力是使有形之物突进或加速运动的原因。

力的单位用国际单位制的基本单位符号来表示,正确的是( ) A .1kg m s -⋅⋅ B .2kg m s -⋅⋅ C .2Pa m ⋅ D .1J m -⋅5.(2021ꞏ天津ꞏ高考真题)科学研究方法对物理学的发展意义深远,实验法、归纳法、演绎法、类比法、理想实验法等对揭示物理现象的本质十分重要。

下列哪个成果是运用理想实验法得到的( )A .牛顿发现“万有引力定律”B .库仑发现“库仑定律”C .法拉第发现“电磁感应现象”D .伽利略发现“力不是维持物体运动的原因”6.(2021ꞏ河北ꞏ高考真题)普朗克常量346.62610J s h -=⨯⋅,光速为c ,电子质量为e m ,则e h m c在国际单位制下的单位是( ) A .J/s B .m C .J m ⋅ D .m/s7.(2020ꞏ浙江ꞏ高考真题)以下物理量为矢量,且单位是国际单位制基本单位的是( )A .电流、AB .位移、mC .功、JD .磁感应强度、T参考答案一、单选题1.(2023ꞏ辽宁ꞏ统考高考真题)安培通过实验研究,发现了电流之间相互作用力的规律。

2011—2020年十年新课标全国卷高考数学分类汇编——1

2011—2020年十年新课标全国卷高考数学分类汇编——1

2011—2020年十年新课标全国卷高考数学分类汇编——1.集合2011年至2020年的新课标全国卷数学试题共包含8套全国卷,包括全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷和新高考Ⅱ卷。

本资料根据全国卷的特点编写,共包含14个专题,包括集合、复数、逻辑、数学文化、新定义、平面向量、不等式、数列、三角函数与解三角形、解析几何、概率与统计、程序框图、坐标系与参数方程、不等式选讲。

通过掌握各种题型,可以把握全国卷命题的灵魂。

集合与简易逻辑是数学试题中的一个重要专题。

以下是一些选择题的例子:2020年新高考Ⅰ卷第一题:设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}2020年全国卷Ⅰ理科第二题:设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.42020年全国卷Ⅰ文科第一题:已知集合A={x|x23x40},B={4,1,3,5},则B={x|1<x<4}。

2020年全国卷Ⅱ理科第一题:已知集合U={−2,−1.1,2,3},A={−1.1},B={1,2},则CUAA.{−2,3} B.{−2,2,3} C.{−2,−1.3} D.{−2,−1.2,3}2020年全国卷Ⅱ文科第一题:已知集合A={x||x|1,x∈Z},则A∩B={–2,2}。

2020年全国卷Ⅲ理科第一题:已知集合A{(x,y)|x,y N*,y x},B{(x,y)|x y8},则A∩B中元素的个数为3.2020年全国卷Ⅲ文科第一题:已知集合A1,2,3,5,7,11,B x|3x15,则A∩B中元素的个数为4.2019·全国卷Ⅰ,理1)已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M的正确表示为A。

历年(2020-2024)全国高考语文真题分类(语言文字运用)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(语言文字运用)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(语言文字运用)汇编一、(2024ꞏ新高考Ⅱ卷ꞏ高考真题)阅读下面的文字,完成下面小题。

众所周知,运动可以帮助放松肌肉、减轻身体紧张感、改善血液循环,让我们身体更健康,但是,可能很多人都不知道,运动更是让我们心情愉悦、大脑强健的“灵丹妙药”。

多年以前,运动就已被列入情绪障碍的治疗方法之一,疗效不但立竿见影,令人信服,而且适用范围很广。

喜欢运动,经常运动的人,相信..都体验过“跑者欣快”,即连续高强度运动一段时间后, ① ,但心情很好,有一种酣畅淋漓的感觉,这是因为,运动可以促使大脑分泌许多与愉悦感相关的“快乐物质”,如多巴胺、内啡肽等。

而运动后的大脑,还会分泌一种名叫脑源性神经营养因子的蛋白质,有助于强健大脑。

因此,运动不仅会让你轻松快乐,还会让你头脑更清晰,更有活力。

当然,不是每个人 ② ,但即使做一些轻微运动,也是有助于身心健康的。

20.文中画波浪线的句子有语病。

请进行修改,使语言表达准确流畅,逻辑严密,可少量增删词语,不得改变原意。

21.请在文中横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密,每处不超过10个字。

22.下列句子中的“相信”与文中加点的“相信”,意义和用法相同的一项是()A.身处困境他却并不消沉,相信自己能拼出一个光明的未来。

B.我满心欢喜地迎接他回来,相信现在的他一定和从前不同。

C.看到气势磅礴的壶口瀑布,相信每一位游客都会激动不已。

D.翠翠还是不离开码头,相信祖父会来找她,同她一起回家。

二、(2024ꞏ全国甲卷ꞏ高考真题)阅读下面的文字,完成下面小题。

天山可谓家喻户晓,但真正了解它的人恐怕不多。

怎样算是真正了解天山呢?不妨做个测试。

你闭上眼睛,念出“天山”这个名字,试试看,能不能想象出一幅天山的全景图来?在这幅全景图里,山脉或平行或交错,许多巨大的、汽车要.开上很久很久的盆地坐落其间。

两座威严的雪峰——托木尔峰和汗腾格里峰巍然耸立,俯视着周边十多座海拔6000米以上的山峰。

高考真题分类汇编

高考真题分类汇编

高考真题分类汇编一、语文题目1. 散文题2. 诗歌题3. 阅读题4. 改错题5. 审美题6. 文言文题7. 写作题8. 短文写作题二、数学题目1. 初等数学题2. 几何题3. 代数题4. 概率与统计题5.函数题6. 推理与证明题三、英语题目1. 词汇题2. 阅读理解题3. 完型填空题4. 语法题5. 写作题四、物理题目1. 力学题2. 光学题3. 电学题4. 热学题5. 声学题6. 直流电路题7. 交流电路题8. 波动题五、化学题目1. 元素与化合物题2. 离子反应题3. 化学方程式题4. 酸碱中和题5. 氧化还原题6. 有机化学题六、生物题目1. 动物学题2. 植物学题3. 生态学题4. 生物实验题5. 遗传学题6. 分子生物学题七、历史题目1. 战国时期问题2. 三国时期问题3. 隋唐时期问题4. 宋元明清问题5. 近代史问题6. 20世纪问题八、地理题目1. 中国地理题2. 世界地理题3. 物理地理题4. 人文地理题5. 地图题九、政治题目1. 政治理论问题2. 国际政治问题3. 共和社会主义问题4. 中华人民共和国政治问题5. 中央政府问题6. 地方政府问题十、经济题目1. 经济基本知识问题2. 经济体制改革问题3. 经济发展问题4. 财政与税收问题5. 市场经济与社会主义问题。

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编十一、立体几何一、多选题1.(2021·全国高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P二、单选题2.(2021·浙江高考真题)如图已知正方体1111ABCD A BC D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDDB C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDDB 3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .4.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12BC .4D 5.(2021·全国高考真题(文))在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .6.(2021·全国高考真题(理))在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π67.(2021·全国高考真题)圆锥的母线长为( )A .2B .C .4D .8.(2020·天津高考真题)若棱长为面积为( )A .12πB .24πC .36πD .144π 9.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6B .6+C .12D .12+10.(2020·浙江高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .611.(2020·海南高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°12.(2020·全国高考真题(文))下图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .13.(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 14.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .1215.(2020·全国高考真题(理))已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .216.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 17.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32418.(2019·全国高考真题(理))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线19.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .3220.(2019·浙江高考真题)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<21.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 22.(2019·全国高考真题(文))设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面23.(2019·上海高考真题)已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面 24.(2018·浙江高考真题)已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1626.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤ 27.(2018·全国高考真题(文))在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .C .D .28.(2018·北京高考真题(理))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.429.(2018·全国高考真题(文))某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.B.C.3D.2,,,是同一个半径为4的球的球面上四点,30.(2018·全国高考真题(理))设A B C D体积的最大值为ABC为等边三角形且其面积为D ABCA.B.C.D.31.(2018·全国高考真题(理))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .32.(2018·浙江高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8 33.(2018·全国高考真题(文))在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2BCD .2 34.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π35.(2018·全国高考真题(理))在长方体1111ABCD A BC D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD .2 36.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 37.(2017·全国高考真题(文))如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( )A .B .C .D .未命名未命名三、解答题38.(2021·全国高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.39.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.40.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.41.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.42.(2021·全国高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 43.(2021·全国高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.44.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.45.(2020·天津高考真题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.46.(2020·北京高考真题)如图,在正方体1111ABCD A BC D -中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.47.(2020·浙江高考真题)如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.48.(2020·海南高考真题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.49.(2020·江苏高考真题)在三棱锥A—BCD中,已知CB=CD BD=2,O为BD 的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.50.(2020·江苏高考真题)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F 分别是AC,B1C的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.51.(2020·全国高考真题(理))如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 52.(2020·全国高考真题(文))如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.53.(2020·全国高考真题(文))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,求三棱锥P−ABC的体积. 54.(2020·全国高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为=.ABC是底面的内接正三角形,P为DO上一点,PO=.底面直径,AE AD(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E55.(2020·全国高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.56.(2020·全国高考真题(理))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.57.(2019·江苏高考真题)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .58.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 59.(2019·全国高考真题(理))图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.60.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.61.(2019·全国高考真题(理))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.62.(2019·上海高考真题)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ======(1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角;(2)求P ABC -的体积.63.(2018·上海高考真题)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.64.(2018·江苏高考真题)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.65.(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.66.(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.67.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.68.(2018·北京高考真题(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .69.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.70.(2018·全国高考真题(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.71.(2018·浙江高考真题)如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.72.(2018·全国高考真题(文))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.73.(2018·全国高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.74.(2017·山东高考真题(文))由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.四、填空题75.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).76.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为30 则该圆锥的侧面积为________.77.(2020·海南高考真题)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________78.(2020·海南高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D BCC1B1的交线长为________.179.(2020·江苏高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.80.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.81.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝82.(2019·江苏高考真题)如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.83.(2019·北京高考真题(理))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.84.(2019·北京高考真题(理))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.85.(2019·全国高考真题(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .86.(2019·天津高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.87.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 88.(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.89.(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.90.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为面积为__________.91.(2018·天津高考真题(理))已知正方体1111ABCD A BC D -的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH 的体积为__________.五、双空题92.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.近五年(2017-2021)高考数学真题分类汇编十一、立体几何(答案解析)1.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【小结】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.2.A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A BC D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A BC D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【小结】关键点小结:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 3.A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A BC D -,其高为1,底面为等腰梯形ABCD ,1=,故111113122ABCD A B C D V -=⨯=, 故选:A.4.A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=则ABC ,又球的半径为1, 设O 到平面ABC 的距离为d ,则2d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.【小结】关键小结:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【解析】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D7.B【分析】 设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B.8.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【小结】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【小结】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.A【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【小结】本小题主要考查根据三视图计算几何体的体积,属于基础题.11.B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【小结】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.12.C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【小结】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【小结】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 14.C【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.。

历年(2020-2024)全国高考语文真题分类(多文本文言文阅读)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(多文本文言文阅读)汇编(附答案)

历年(2020-2024)全国高考语文真题分类(多文本文言文阅读)汇编一、(2024ꞏ新高考Ⅰ卷ꞏ高考真题)阅读下面的文言文,完成下面小题。

材料一:李广有孙陵,为侍中,善骑射。

帝以为有广之风,使教射酒泉、张掖以备胡。

及贰师击匈奴[注],陵叩头自请曰:“臣所将屯边者,皆荆楚勇士奇材剑客也。

愿得自当一队,到兰干山南以分单于兵,毋令专乡贰师军。

臣愿以少击众,步兵五千人涉单于庭。

”上壮.而许之。

陵至浚稽山,与单于相值,骑可三万围陵军。

陵搏战攻之,虏还走上山,汉军追击,杀数千人。

单于大惊,召八万余骑攻陵。

陵军步斗树木间,复杀数千人。

陵居谷中,虏在山上,四面射,矢如雨下。

士卒多死,不得行。

陵曰:“无面目报陛下!”遂降。

上怒甚,群臣皆罪陵。

上以问太史令司马迁,迁盛言:“陵事亲.孝,与士信,常奋不顾身以徇国家之急,其素所畜积也,有国士之风。

且陵提步卒不满五千,深蹂戎马之地,抑数万之师。

身虽陷败,然其所摧败亦足暴于天下。

彼之.不死,宜欲得当以报汉也。

”上以迁为诬罔,下迁腐刑。

久之,上悔陵无救。

上遣(公孙)敖深入匈奴迎李陵,敖军无功还,因曰:“捕得生口,言李陵教单于为兵以备汉军。

”上于是族陵家。

既而闻之,乃汉将降匈奴者李绪,非陵也。

陵使人刺杀绪,大阏氏欲杀陵,单于匿之北方。

大阏氏死,乃还。

单于以女妻陵,立为右校王,与卫律皆贵用事。

卫律常在单于左右;陵居外,有大事乃入议。

(征和三年)三月,遣李广利将七万人出五原,击匈奴。

匈奴使大将与李陵将三万余骑追汉军,转战九日。

(节选自《资治通鉴·汉纪》) 材料二:李陵之降也,罪较著而不可掩。

如谓其孤军支虏而无援,则以步卒五千出塞,陵自炫其勇,而非武帝命之不获辞也。

陵之族也,则嫁其祸于李绪;迨.其后李广利征匈奴,陵将三万余骑追汉军,转战九日,亦将委罪于绪乎?如曰陵受单于之制,不得不追奔转战者,匈奴岂伊无可信之人?令陵有两袒之心,单于亦何能信陵而委以重兵,使深入而与汉将相持乎!迁之为陵文过若不及,而抑称道李广于不绝,以奖其世业。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编-01集合(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编-01集合(精解精析)

2012-2021十年全国卷高考真题分类汇编 集合(精解精析)1.(2021年高考全国乙卷理科)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=( )A .∅B .SC .TD .Z【结果】C思路:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C .2.(2021年高考全国甲卷理科)设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【结果】B思路:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B .【点睛】本题考查集合地运算,属基础题,在高考中要求不高,掌握集合地交并补地基本概念即可求解.3.(2020年高考数学课标Ⅰ卷理科)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4【结果】B【思路】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B .【点睛】本题主要考查交集地运算,不等式地解法等知识,意在考查学生地转化能力和计算求解能力.4.(2020年高考数学课标Ⅱ卷理科)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【结果】A思路:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A【点睛】本题主要考查并集,补集地定义与应用,属于基础题.5.(2020年高考数学课标Ⅲ卷理科)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中圆素地个数为( )A .2B .3C .4D .6【结果】C思路:由题意,A B 中地圆素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=地有(1,7),(2,6),(3,5),(4,4),故A B 中圆素地个数为4.故选:C .【点晴】本题主要考查集合地交集运算,考查学生对交集定义地理解,是一道容易题.6.(2019年高考数学课标Ⅲ卷理科)已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【结果】A 【思路】因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A .【点评】本题考查了集合交集地求法,是基础题.7.(2019年高考数学课标全国Ⅱ卷理科)设集合{}2560A x x x =-+>,{}10B x x =-<,则A B =( )A .(),1-∞B .()2,1-C .()3,1--D .()3,+∞【结果】A.【思路】{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A .【点评】本题主要考查一圆二次不等式,一圆二次不等式地解法,集合地运算,属于基础题.本题考点为集合地运算,为基础题目,难度偏易.不能领会交集地含义易致误,区分交集与并集地不同,交集取公共部分,并集包括二者部分.8.(2019年高考数学课标全国Ⅰ卷理科)已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N =( )A .{|43}x x -<<B .{|42}x x -<<-C .{|22}x x -<<D .{|23}x x <<【结果】C 思路:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< .9.(2018年高考数学课标Ⅲ卷(理))已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( )A .{}0B .{}1C .{}1,2D .{}0,1,2【结果】C思路:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C .10.(2018年高考数学课标Ⅱ卷(理))已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中圆素地个数为( )A .9B .8C .5D .4【结果】A 思路:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y xy x y =+∈∈=-------Z Z ,≤,,,故选A .11.(2018年高考数学课标卷Ⅰ(理))己知集合{}220A x x x =-->,则R A =ð( )A .{}12x x -<<B .{}12x x -≤≤C .{}{}12x x x x <-> D .{}{}12x x x x ≤-≥ 【结果】B思路:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B .地.【思路】解法一:常规解法∵ ∴ 1是方程地一个根,即,∴ 故 解法二:韦达定理法∵ ∴ 1是方程地一个根,∴ 利用伟大定理可知:,解得:,故 解法三:排除法∵集合中地圆素必是方程方程地根,∴ ,从四个选项A ﹑B ﹑C ﹑D 看只有C 选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义相结合,集合考点有二:1.集合间地基本关系。

13~15高考全国卷分类整理专题

13~15高考全国卷分类整理专题

一、集合与常用逻辑用语(2013-I )1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} (2013-I )5.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝ (2014-II )(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ( )A. ∅B. {}2C. {0}D. {2}-(2015-I )1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2(2015-II )1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B = ( )A .()1,3-B .()1,0-C .()0,2D .()2,3二、复数(2013-I )2.212(1)i i +=-( ) (A )112i -- (B )112i -+ (C )112i + (D )112i - (2013-II )2.||=( )(A )2 (B )2 (C ) (D )1(2014-I )(3)设i iz ++=11,则=||z ( ) A. 21 B. 22 C. 23 D. 2 (2014-II )(2)131i i+=-( )A.12i +B. 12i -+C. 12i -D. 12i --(2015-I )3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +(2015-II )2. 若为a 实数,且2i 3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4四、不等式、推理与证明(2014-I )11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )(A )-5 (B )3 (C )-5或3 (D )5或-3(2014-II )9.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )1(2014-I )14.甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(2013-I )14.设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为__________。

近十年全国各地的高考真题按考点分类哲学常识部分

近十年全国各地的高考真题按考点分类哲学常识部分

近十年全国各地的高考真题按考点分类哲学常识部分四川省中江县仓山中学唐成虎(整合)专题一:辩证的唯物论常考考点:人们改造自然、变革社会的活动要以承认自然、社会的客观性为前提1、(2004年江苏卷)“树欲静而风不止”,这句话反映了( A )A. 客观事物的存在与发展不以人的意志为转移B.运动是物质的根本属性C.世界上一切事物都是物质的D.物质决定意识,意识对物质有反作用2、(2004年湘鄂川渝卷)随着人类改造自然的范围扩大和程度的加深,一些原来只在动物中传播的疾病威胁到人类的健康。

这提醒我们:( B )A.人类改造自然的同时也改变了自然界的客观规律B.利用和改造自然必须以认识和保护自然为前提C.受人类活动影响的自然失去了客观性D.改造自然必然以牺牲自然为代价3、(2004年两广卷)为了发展生产、改善生活,人们常常引进一些外来物种,但有些外来物种会破坏当地的生态平衡,造成严重的生态灾难。

这表明( B )①任何事物都是一分为二的②事物的性质是不确定的③利用和改造自然必须以认识和保护自然为前提④改造自然必须以牺牲自然为代价A.①②B.①③C.①④D.②③4、(06·江苏政治卷·26)人们能够创造出自然界里本来没有的东西,如计算机、电冰箱、宇宙飞船等。

这表明 BA.人们能够创造自然物B.人们能够改变自然物的具体形态C.人工化的自然物不再具有客观性D.人们已经全面把握自然规律(04·广东政治卷·17)为了发展生产、改善生活,人们常常引进一些外来物种,但有些外来物种会破坏当地的生态平衡,造成严重的生态灾难。

这表明B①任何事物都是一分为二的②事物的性质是不确定的③利用和改造自然必须以认识和保护自然为前提④改造自然必须以牺牲自然为代价A.①②B.①③C.①④D.②③盆景艺术是自然美与艺术美的巧妙结合。

它以特有的艺术魅力美化人的生活,陶冶人的情操,给人以美的感受。

(05·天津卷34.)盆景的制作不是一蹴而就的。

10年高考题汇总按题型分类总结

10年高考题汇总按题型分类总结

10年高考题汇总按题型分类总结一、选择题中国古代史选择题1.2002上海,我国境内原始人分布十分广阔,其中活动范围最为接近的是A.元谋人,蓝田人B.元谋人,北京人C.北京人,山顶洞人D.蓝田人,山顶洞人2.2001全国,传说中的尧舜时期大致处于A.旧石器时代B.新石器时代C.青铜时代D.铁器时代3.2001春季,与半坡文化相比,大汶口文化中晚期的历史进步表现在A.定居生活B.按血缘关系组成社会集团C.从事农业生产D.出现贫富分化4.2000全国,下列关于北京人和山顶洞人不同点的叙述,正确的是①居住地区不同②体制特征不同③取火方式不同④社会组织形式不同①②③④A.①②③B.①③④C.②③④D.①②④5.2000年春季高考,促使原始定居的主要因素是A.原始农业的发展B.掌握建造房屋与制陶的技术C.饲养家畜家禽D.营造公共墓地6.2000年春季高考,下列各项,不符合北京人生产和生活状况的是A.群居生活B.制造和使用简单的劳动工具C.人工取火D..使用简单的语言7.2000年上海,据考古报道,安徽发现的繁昌人距今有180万年,这样,中国人类的历史向前推进了A.10万年B.20万年C.100万年D.120万年8.1999年全国,《韩非子》载:“上古之世,民食瓜果蚌蛤,腥臊恶臭,民多疾病,有圣人作,钻燧取火,以化腥臊”。

懂得“钻燧取火”的我国远古居民相当于A.元谋人B.蓝田人C.北京人D..山顶洞人9.1999上海,在下列各项中,生活在不同石器时代的人是A.元谋人与山顶洞人B.蓝田人与北京人C.北京人与山顶洞人D.山顶洞人与半坡人10.1998全国,半坡人和河姆渡人生活的共同点是A.普遍使用打制石器B.制造陶器C.种植粟,水稻D.饲养猪,水牛11.1998上海,确立中国人种自生说最有力的证据是中国原始人类的A.传说,记载和遗址B.遗物,遗址和传说C.遗址,遗物和记载D.化石,遗址和遗物12.2000年广东,下列关于禹的表述,准确的是①传说中的人物②建立了夏朝③主要活动在黄河流域④舜的儿子A.①②B.①③C.②③D.①④13.2002上海,在下列历史事件中,导致王朝更替的是A.盘庚迁殷B.牧野之战C.周公东征D.共和行政14.下列事件中,发生在商朝的是A.周公东征B.盘庚迁殷C.国人暴动D.平王东迁15.2000年春季,导致西周共和的直接原因是A.王室衰微,诸侯反叛B.奴隶起义C.国人暴动D.犬戎攻破镐京16.1996年全国,周初实行分封制是为了A.建立军事屏障,防止外族入侵B.削弱功臣,贵族的权力C.排斥异姓诸侯,团结同姓诸侯D.巩固奴隶制国家政权17.2000年上海,公元前8世纪平王东迁后,朝野出现的现象是①周室衰微王命不行②迁都频繁异姓反叛③列国内乱诸侯兼并④尊王攘夷大国争霸A.①②③B.①②④C.①③④D.②③④18.1999上海,在汉语中,“鼎”可作为权力和地位的象征,其形成至少应追溯到A.商周时期B.春秋时期C.战国时期D.秦汉时期19.1997上海,下列史实按先后顺序排列应是①牧野之战②盘庚迁殷③管仲相齐④平王东迁①②③④A.①②③④B.①②④③C.②①④③D.③②①④20.2001年全国,下列手工业行业中较早兴起的是A.冶铁业B.制瓷业C.造纸业D.印刷业21.2000年全国,下列关于春秋争霸性质的说法,正确的是A.打击奴隶制,推广封建制B.尊王攘夷,维护周王室统治C.春秋无义战,阻碍社会进步D.正对土地和人口的兼并战争22.200年春季,下列各项,作为中国奴隶制开始瓦解标志的是A.使用铁器和牛耕B.鲁国实行初税亩C.商业繁荣,城市兴起D.商鞅变法,废井田,开阡陌23.1999上海,史学家认为,公元前645年晋国“作爰田”是一次重大变革,因为它的实质是A.承认了私田的合法B.扩大了作战的兵源C.争取了民众的支持D.提高了野人的地位24.1998年全国,屈原杯楚王流放的主要原因是A.反对君主专制B.要求革新图强C.主张抵抗秦军D.《离骚》触怒权贵25.1998上海,《周易》中八卦的总根源是A.天和地B.水和火C.山和泽D.雷和风26.1996全国,齐桓公多次召集诸候会盟的主要目的是A.提高齐国的政治地位B.加强各国之间的交流C.协调诸侯国间的争端D.维护小国的经济利益27.2002年新课程文综,仁的思想在先秦时期的进步意义主要是A.满足新兴地主阶级的政治需要B.抑制统治者的暴政C.成为各国变法的理论依据D.奠定“非攻”主张的思想基础28.2002年上海,以下主张明显体现春秋战国时期儒家思想的是A.仁者爱人,民贵君轻B.万物虚无,祸福相依C.兼爱非攻,节用尚俭D.以法为教,今必胜昔29.2002年广东,下列言论,属于韩非思想主张的是A.制天命而用之B.刑过不避大夫,赏善不遗匹夫C.选择天下之贤可者,立以为天子D.百亩之田,毋多其时,数口之间可以无饥矣30.2001年全国文综,在战国变法运动中,提出了“圣人苟可以强国,不法其故,苟可以利民,不循其理”的思想家是A.墨子B.孟子C.商鞅D.荀子31.2001春季,下列各项,不属于墨子观点的是A.民贵君轻B.人应互爱互利C.反对掠夺战争D.提倡节约反对浪费32.2000年上海,“道之以政,齐之以刑,民免而无耻;道之以德,齐之以礼,有耻且格”,这段论述应当出自春秋战国时的A.儒家B.道家C.发家D.兵家33.2000年广东,春秋战国时期,对促进民族融和起直接作用的因素是A.兼并战争B.铁器使用C.各国变法D.商业兴盛34.1999年全国,秦国成为战国七雄中实力最强的国家,主要原因是A.实行商鞅变法B.更多地使用铁农具C.牛耕得到推广D.重视水利工程建设35.1999上海,“为人臣者畏诛罚而利庆赏,故人主自用其刑德,则群臣畏其威而归其利矣”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届高考名词解释题2001年(5×6=30)1.传染病2.幼儿身心发展3.无意注意4.自然角5.韵律活动2002年(4×10=40)1.幼儿社会性的发展2.行为练习3.结构游戏4.新陈代谢5.美育6.蛋白质的互补作用7.课程模式8.启发性原则9.反射10.幼儿异常行为2003年(4×10=40)1.幼儿教育心理学2.道德品质3.领会4.新陈代谢5.角色游戏6.蛋白质的互补作用7.课程模式8.启发性原则9.幼儿心理卫生10.活动教育课程2004年(4×10=40)1.幼儿异常行为2.幼儿的生活制度3.学习4.新陈代谢5.发展性原则6.蛋白质的互补作用7.社会规范8.教学设计9.个性10.活动教育课程2005年(5×8=40) 1.角色游戏2.直观法3.发现学习4.社会规范5.蛋白质的互补作用6.幼儿的生活制度7.核心课程8.智力2006年(5×10=50)1.营养素2.社会性3.探索引导法4.传染病5.认知6.幼儿园教育教学计划7.动机8.灵活性原则9.幼儿园课程10.迁移2007年(4×10=40)1.新陈代谢2.能量3.神经系统4.观察技能5.学习6.品德7.创造性游戏8.幼儿园的教育目标9.价值澄清法10.教学设计2008年1.营养:2.幼儿健康检查:3.幼儿的心理卫生:4.年龄特征:5.幼儿园教育活动设计:6.生成课程:7.整个教学法:8.发现学习:9.迁移:10.幼儿教育:2009年(5×10=50)1.新陈代谢2.营养素3.蛋白质的互补作用4.直观性原则:5.幼儿园的教育目标:6.生活课程:7.接受学习:8.识记:9.定势:10.社会规范:2010年(5×10=50)1.自选教育活动:2.启发性原则:3.幼儿园教育活动方法:4.游戏:5.遗传素质:6.德育:7.认知:8.幼儿智育:9.心理发展的年龄特征:10.反思训练历届高考简答题2001年(10分\小题×6小题=60分)1.简述角色游戏的指导方法。

2.新入园幼儿的行为表现。

3.制定幼儿园生活制定的原则。

4.幼儿园诗歌教学的方法。

5.幼儿德育的原则。

6.选择幼儿园常识教学方法应注意的问题。

2002年(10分\小题×6小题=60分)1.幼儿运动系统的卫生保健要求有哪些?2.为什么说教育在幼儿身心发展中起主导作用?3.简述体育对幼儿的特殊意义。

4.幼儿生长发育的一般特点是什么?5.简述幼儿掌握知识的基本环节。

6.贯彻教育的统一性原则应注意哪些方面?7.怎样预防小儿龋齿?8.幼儿美感表现有哪些特点?9.贯彻在《幼儿园活动教程》中的主导性原则有哪些?10.幼儿心理卫生的原则有哪些?2003年(10分\小题×6小题=60分)1.制定幼儿园教育教学计划应符合哪些要求?2.智育对幼儿心理发展的促进作用表现在哪些方面?3.幼儿园体育工作中保护幼儿健康的内容有哪些方面?4.幼儿园教育环境创设的意义有哪些?5.幼儿园直观教学的方式主要有哪些?6.幼儿园与家庭衔接的方式主要有哪些?7.怎样预防小儿龋齿?8.表演游戏的教育作用有哪些?9.贯彻在《幼儿园活动教程》中的主导性原则有哪些?10.幼儿心理卫生的原则有哪些?2004年(10分\小题×6小题=60分)1.幼儿园对幼儿心理健康的维护应做哪些工作?2.引发幼儿学习动机的有哪些措施?3.幼儿园体育工作中保护幼儿健康的内容有哪些方面?4.幼儿园教育环境创设的意义有哪些?5.培养幼儿求知兴趣的具体措施和方法有哪些?6.幼儿教育的原则有哪些?7.综合主题教育有哪些方法?8.幼儿神经系统的卫生要求有哪些?9.国内外幼儿教育的发展趋向有哪些?10.幼儿心理卫生的原则有哪些?2005年(10分\小题×6小题=60分)1.什么是肥胖病?肥胖病的病因及预防措施是什么?2.幼儿园怎样维护幼儿的心理健康?3.促进幼儿运动技能形成的体育措施有哪些?4.幼儿园教育环境创设的意义和作用是什么?5.什么是保教结合原则?怎样运用保教结合原则?6.游戏对幼儿的教育作用主要体现在哪些方面?2006年(10分\小题×7小题=70分)1.制订幼儿园生活制度的原则是什么?2.创设幼儿园物质环境应考虑的因素有哪些?3.引发幼儿学习动机的措施有哪些?4.简述幼儿园教育活动模式选择的原则。

5.简述幼儿园教育目标制定的依据。

6.简述运用评价应注意的问题。

7.简述美感的特性。

2007年(8分\小题×8小题=64分)1.简述蛋白质的生理功能。

2.幼儿烫伤的急救措施有哪些?3.简述幼儿园安全教育的主要内容。

4.幼儿学习的特殊性表现在哪些方面?5.简述幼儿应接受的社会规范。

6.幼儿园教育教学活动的原则主要有哪些?7.制定幼儿园教育教学计划的要求是什么?8.选择幼儿园教育活动方法时应注意的问题有哪些?2008年(8分\小题×8小题=64分)1.幼儿美育的有效措施有哪些?2.科学选择幼儿园教育活动模式应把握哪些基本原则?3.新课程对教师的基本要求有哪些?4.游戏对幼儿的教育作用体现在哪些方面?5.如何促进幼儿园――小学的衔接?6.怎样进行幼儿运动系统的卫生保健?7.如何预防幼儿传染病?8.如何维护和促进幼儿的心理健康?2009年(10分\小题×6小题=60分)1.活动教育课程有哪些特征?2.幼儿教师应具备哪些重要的个性特征?3.活动模式选择的依据是什么?4.教师应帮助幼儿接受哪些方面的社会规范?5.幼儿安全教育的内容有哪些?6.制定生活制度的原则有哪些?2010年(10分\小题×8小题=80分)1.简述对“赋予活动新内涵,促进幼儿主动发展”的理解。

2.简述对五大领域教育活动模式的评价。

3.简述小组教育活动的含义及划分小组的方式。

4.简述幼儿园教育计划的含义及制定其的一般步骤。

5.简述幼儿园营造宽松、平等、愉快的精神环境的主要途径。

6.什么是学习?幼儿学习的特殊性表现在哪些方面?7.教师对角色游戏的指导应体现在哪些方面?8.维护和促进幼儿心理健康的措施有什么?9.幼儿运动系统的卫生保健包括哪些内容?10.促进幼儿园—小学的迁移和衔接有哪些措施?历届高考论述题02年六、论述题:(本大题共2小题,每题20分,共40分。

)1、试述角色游戏的教育作用,并能举例说明。

2、试述维生素D缺乏性佝偻病的病因、症状和预防。

03年六、论述题:(本大题共2小题,每题20分,共40分。

)1、请联系实际谈谈,幼儿园为什么必须实行保育和教育相结合的原则,以及在实施该原则中应注意的问题有哪些?2、举例说明幼儿园制定生活制度应遵循哪些原则。

04年七、论述题:(本大题共2小题,每题20分,共40分。

)1、结合新“纲要”的有关内容,谈谈良好的师幼关系是怎样的?并联系实际说明怎样建立良好的师幼关系。

2、举例说明游戏的作用。

05年七、论述题(本题共20分)。

幼儿教师应具备哪些教育能力?试举例说明幼儿教师与幼儿的相互关系及促进教师与幼儿形成良好关系的措施。

06年七、论述题(本大共20分)教育者在促进幼儿社会规范学习中应采取哪些有效措施?并举例说明。

07年七、论述题(本题20分)教师培养幼儿感知观察力的主要措施和方法有哪些?请举例说明。

08年七、论述题(本题20分)09年七、论述题(本题20分)1.联系实际谈谈怎样贯彻幼儿园教育活动环境创设的原则。

2.教师介入幼儿游戏的形式主要有哪几种?请举例说明,并指出其利弊。

10年七、论述题(本题20分)什么是学习动机?联系实际说明引发幼儿学习动机的措施有哪些?历届高考活动设计题01年综合题:(本题45分)根据综合性主题课程和分科课程的不同要求,以“春天”为题,设计一套主题综合课的方案(三项以上),和一份分科课程的方案(教案),并应用自己所学过的教育专业理论,对方案进行简要评价和解释,在此基础上,比较两种课程方案在幼儿园教育中的实际作用。

02年活动设计:(本题共20分)以“炎热的夏天”为题,设计一个中班综合主题教育活动计划。

要求结合所学理论,针对中班幼儿的年龄特点进行设计。

03年活动设计:(本题共20分)“我们生活的环境”为题,设计一个大班综合主题教育活动计划。

要求结合所学理论,针对大班幼儿的年龄特点进行设计。

04年活动设计:(本题共20分)以“国庆节”为题,设计一个大班综合主题教育活动计划。

要求结合所学理论,针对大班幼儿的年龄特点进行设计。

05年教育活动设计与分析(本题共30分)根据活动教育模式的特点与要求,设计一例活动教育课程模式方案(教案),活动形式为游戏,活动内容和方法自定。

并运用所学过的幼儿教育专业理论,对方案教学简要评价和解释。

06年活动设计(本题30分)根据综合主题教育活动模式的理论,以“我长大了”为主题,设计一例大班儿童的教育活动方案,要求活动不少于三项;并用所学幼儿教育理论教学简要分析。

07年教育活动设计(本题20分)根据活动教育课程模式的理论,以“春天在哪里”为主题,设计一个大班幼儿科学教育活动方案,要求活动不少于三项,并用所学的幼儿教育理论进行简要的分析。

要求:(1)针对大班儿童的年龄特点进行设计;(2)要求活动不得少于三项;(3)运用所学的幼儿教育理论进行简要分析。

08年教育活动设计(本题20分)09年教育活动设计(本题30分)根据整合教育活动课程模式理论,设计一例大班整合活动方案——“地球——我们的家园”。

要求先画出单元网络图,然后设计活动方案,活动不少于三项。

10年教育活动设计(本题30分)根据活动教育课程模式理论,设计一例大班活动教育法案——“购物”。

要求设计活动方案时包括设计意图,活动不少于三项。

相关文档
最新文档