抛物线练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线练习题
一、选择题
1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )
A .直线
B .抛物线
C .圆
D .双曲线 2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )
3.抛物线y =ax 2
的准线方程是y =2,则a 的值为( )
B .-18
C .8
D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )
A .4
B .6
C .8
D .12 5.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )
A .相交
B .相切
C .相离
D .以上答案都有可能
6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )
A .y 2=12x
B .y 2=-12x
C .x 2=12y
D .x 2=-12y 7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )
A .20
B .8
C .22
D .24 8.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离
为( )
A .2 3 3 3
9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )
A .4
B .4或-4
C .-2
D .2或-2
10.抛物线y =1m
x 2(m <0)的焦点坐标是( )
11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )
A .y 2=-2x
B .y 2=-4x
C .y 2=2x
D .y 2=-4x 或y 2
=-36x
12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )
B .1
C .2
D .4 二、填空题
13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。

14.已知圆x2+y2+6x+8=0与抛物线y2=2px(p>0)的准线相切,则p=________.
15.以双曲线x2
16-
y2
9
=1的中心为顶点,左焦点为焦点的抛物线方程是__________.
16.抛物线y2=16x上到顶点和焦点距离相等的点的坐标是________.
17.抛物线y2=4x的弦AB垂直于x轴,若AB的长为43,则焦点到AB的距离为________.
抛物线练习题(答案)
1、[答案] A [解析] ∵定点(1,1)在直线x +2y =3上,∴轨迹为直线.
2、[答案] B [解析] 设P (x 0,y 0),则|PF |=x 0+p 2=x 0+14=2,∴x 0=74,∴y 0=±72
. 3、[答案] B [解析] ∵y =ax 2,∴x 2=1a y ,其准线为y =2,∴a <0,2=1-4a ,∴a =-18
. 4、[答案] B [解析] 本题考查抛物线的定义.
5、[答案] C [解析] 由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离, 故动圆圆心的轨迹是以F 为焦点,直线y =-3为准线的抛物线.
6、[答案] B [解析] 特值法:取AB 垂直于抛物线对称轴这一情况研究.
由抛物线的定义可知,点P 到抛物线焦点的距离是4+2=6.
7、[答案] A [解析] 设P (x 0,12),则x 0=18,∴|PF |=x 0+p 2
=20. 8、[答案] B [解析] p 2=c =32
,∴p = 3. 9、[答案] B [解析] 由题意,设抛物线的标准方程为:x 2=-2py , 由题意得,p 2
+2=4,∴p =4,x 2=-8y .又点(k ,-2)在抛物线上,∴k 2=16,k =±4. 10、[答案] A [解析] ∵x 2=my (m <0),∴2p =-m ,p =-m 2,焦点坐标为⎝ ⎛⎭⎪⎫0,-p 2,即⎝ ⎛⎭
⎪⎫0,m 4. 11、[答案] B [解析] 由题意,设抛物线的标准方程为:y 2=-2px (p >0), 由题意,得p 2
+5=6,∴p =2,∴抛物线方程为y 2=-4x . 12、[答案] C [解析] 本题考查抛物线的准线方程,直线与圆的位置关系.
抛物线y 2=2px (p >0)的准线方程是x =-p 2,由题意知,3+p 2
=4,p =2. 13、[答案] 90° [解析] 由抛物线的定义得,|AF |=|AA 1|,|BF |=|BB 1|,
∴∠1=∠2,∠3=∠4,又∠1+∠2+∠3+∠4+∠A 1AF +∠B 1BF =360°,
且∠A 1AF +∠B 1BF =180°,∴∠1+∠2+∠3+∠4=180°,∴2(∠2+∠4)=180°, 即∠2+∠4=90,故∠A 1FB =90°.
14、[答案] 4或8 [解析] 抛物线的准线方程为:x =-p 2
,圆心坐标为(-3,0),半径为1, 由题意知3-p 2=1或p
2
-3=1,∴p =4或p =8. 15、[答案] y 2=-20x [解析] ∵双曲线的左焦点为(-5,0),故设抛物线方程为y 2=-
2px(p>0),
又p=10,∴y2=-20x.
16、[答案] (2,±42) [解析] 设抛物线y2=16x上的点P(x,y)
由题意,得(x+4)2=x2+y2=x2+16x,∴x=2,∴y=±4 2.
17、[答案]2[解析]由题意,设A点坐标为(x,23),则x=3,又焦点F(1,0),∴焦点到AB的距离为2.。

相关文档
最新文档