2016年《电磁场与电磁波》仿真实验 (1)
电磁场与电磁波实验指导书(参考)
![电磁场与电磁波实验指导书(参考)](https://img.taocdn.com/s3/m/1df0ab8d02d276a200292ed5.png)
电磁场与电磁波实验指导书目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。
二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。
2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。
3、理解电磁波辐射原理。
三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。
电场和磁场构成了统一的电磁场的两个不可分割的部分。
能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。
图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。
如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。
接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。
电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。
电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。
图2 接收天线本实验重点介绍其中的一种─—半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为/4λ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。
电磁场与电磁波实验报告
![电磁场与电磁波实验报告](https://img.taocdn.com/s3/m/fdec27b249649b6648d747ce.png)
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
电磁场与微波仿真实验教程
![电磁场与微波仿真实验教程](https://img.taocdn.com/s3/m/ff347feaba4cf7ec4afe04a1b0717fd5360cb267.png)
电磁场与微波仿真实验教程
电磁场仿真实验是电磁场理论课程中非常重要的一环,通过仿真实验可以加深学生对于电磁场及其应用的理解,并且从实际中提高了学生的动手实践能力。
本文将向大家介绍电磁场与微波仿真实验教程。
1. 实验目的
通过对电磁场仿真实验的学习,达到以下目的:
1)熟练掌握电场、磁场的分布特性;
2)掌握典型的电磁场问题的求解方法;
3)掌握微波传输理论及其在工程中的应用;
4)掌握电磁场仿真软件的使用方法。
2. 实验内容
本实验涉及到的内容主要有:
2)电容器、电感器、共振器、传输线等典型电磁场问题的求解;
3. 实验设备
本实验主要使用Ansys电磁场仿真软件。
4. 实验步骤
1)学生需要独立完成仿真实验和报告撰写工作;
2)学生需要根据课件资料学习仿真软件的基本操作,包括建立仿真模型,设定仿真参数,运行仿真程序等;
3)学生需要选择一个电磁场仿真实验题目进行仿真实验,理解仿真实验过程,并且掌握解决典型电磁场问题的方法;
4)学生需要根据学习成果,撰写实验报告,包括实验目的、实验原理、仿真结果分析等。
5. 实验注意事项
2)学生需要注意安全事项,遵守实验室规章制度;
3)学生需要独立思考和创新,加深对电磁场理论和应用的理解和掌握。
6. 实验总结
通过电磁场仿真实验的学习,使学生加深了对电磁场理论与应用的理解和掌握,并且掌握了电磁场仿真软件的使用方法。
学生通过自主选择模型,独立完成仿真实验和报告撰写工作,培养了学生的实践能力和创新思维。
电磁仿真实践报告一
![电磁仿真实践报告一](https://img.taocdn.com/s3/m/cb1be4926bec0975f465e264.png)
十一、总结及心得体会:(作文1篇,1000字以上)
通过此次实验,以及对电磁仿真的学习才体会到自己对电磁场与波以及微波技术基础学习上的不足。以前学习电磁场与波以及微波技术基础时只是理论上的理解,最终的目的只是通过考试、学会做题,然而对其实际的应用却并不十分了解,也不懂得如何在实际中去设计微波器件。总之学过之后却无法真正用于实际。而通过此次实验,才真正学会了如何将学到的知识用于实际,解决问题。
YLabel('Ver (V)','FontSize',15,'FontWeight','b');
axis([0 4.5e-8 -0.2 0.2]
附件2:二维FDTD终端匹配仿真源代码
ar
clc
c=3e8;% ×ÔÓÉ¿Õ¼ä¹âËÙ
mu0=4*pi*1e-7;% ×ÔÓÉ¿Õ¼ä´Åµ¼ÂÊ
Maxwell方程FDTD的差分格式:
图8-1 Yee模型
麦克斯韦第一、二方程 (7)
式中, 是电流密度,反映电损耗, 是磁流密度,单位 ,反映磁损耗。主要与上式对应。各向同性介质中的本构关系:
(8)
是磁阻率,计算磁损耗的。
以 为变量,在直角坐标中,展开麦克斯韦第一、二方程,分别为
(9)
(10)
令 代表 在直角坐标中的任何一个分量,离散符号取为
六、实验内容:
1.均匀平板传输线传输特性仿真
2.带挡板的平板传输线传输特性仿真
七、实验器材(设备、元器件):电子计算机
八、实验步骤:
1.电磁仿真的时域有限差分法。
数值差分原理:
时空离散及连续取函数样
高中物理模拟电磁感应与电磁波
![高中物理模拟电磁感应与电磁波](https://img.taocdn.com/s3/m/775e4dab112de2bd960590c69ec3d5bbfd0adae3.png)
高中物理模拟电磁感应与电磁波近年来,随着科技的飞速发展,电磁感应与电磁波的研究逐渐成为物理学领域中的热点话题。
本文将介绍高中物理模拟电磁感应与电磁波的相关实验,旨在通过实践探索,帮助学生更好地理解和掌握这一领域的知识。
实验一:法拉第感应实验实验目的:通过模拟法拉第感应现象,观察电磁感应现象对电流的影响。
实验器材:电磁铁、螺线管、直流电源、开关、恒流电流表。
实验步骤:1.连接电磁铁和直流电源,将螺线管放置在电磁铁附近。
2.打开开关,记录螺线管表面的电流变化情况。
实验结果:当开关闭合时,螺线管中会产生感应电流;当开关断开时,感应电流停止。
实验二:电磁波的传播实验目的:通过模拟电磁波的传播过程,观察电磁波的性质。
实验器材:带有辐射源的电磁波传输装置、接收装置、示波器。
实验步骤:1.将辐射源放置于电磁波传输装置上,接收装置与示波器连接。
2.观察示波器上的波形变化。
实验结果:示波器上会显示出电磁波的传播过程及其特点。
实验三:电磁感应与电磁波的应用实验目的:通过模拟电磁感应与电磁波的应用情景,加深学生对其应用领域的理解。
实验器材:自行车发电机、电子设备(手机等)。
实验步骤:1.将自行车发电机与电子设备连接。
2.骑行自行车,观察电子设备是否能够正常充电。
实验结果:由于电磁感应产生的电能转化,电子设备能够通过骑行行为进行充电。
结论:通过以上三个实验,我们可以更加直观地了解电磁感应与电磁波的相关原理与应用。
法拉第感应实验帮助我们认识到当电磁感应体验到变化时,会产生感应电流;电磁波的传播实验让我们能够观察到电磁波是如何传播的;应用实验则直接将这些理论付诸实践,帮助我们认识到这些知识在日常生活中的应用。
通过这些实验,我们将学习到的物理知识与实际应用相结合,加深对电磁感应与电磁波的理解。
总结:高中物理模拟电磁感应与电磁波的实验能够更好地帮助学生理解相关原理与应用。
通过实践探索,学生能够观察并体验到电磁感应与电磁波的现象,加深对物理学知识的理解与掌握。
电磁场与电磁波实验
![电磁场与电磁波实验](https://img.taocdn.com/s3/m/cd95bca8e518964bce847c58.png)
天线形式
水平
距离( cm ) 垂直
45 度
V形天线1
环形天线2
八木天线3
半波天线4 5、也可接检波装置,观测不同极化时的检波电流大小。
(有兴趣的同学,可用这种方式记录数据,从而画出半波天线
的极化图)。
五、实验步骤 (一)装置白炽灯泡 1、用SMA电缆连接“输出口3”和极化天线(可先选择A端口垂 直极化),将电磁波信号输送到极化天线上发射出去。 2、按下机器供电开关,机器工作正常,按下“发射开关”, 绿色发射指示灯亮,说明发射正常。
3、半波天线的长度计算方法(也可由液晶界面直接显示): 已知电磁波发射源的频率f,求得波长:λ= v/f, ,比如,电磁波发 射源频率为900MHz,则:
次 天线形式
数
1
2
3பைடு நூலகம்
…
…
天线长 距离 电流大小
度
…
…
实验八 电磁波波长测试实验
一、实验目的 1 、学习了解电磁场电磁波的空间传播特性; 2 、通过对电磁场电磁波波长、波幅、波节、驻波的测量进 一步认识和了解电磁场电磁波 3、了解电磁波的反射特性,利用迈克尔逊干涉现象和相干 波原理测量波长
三、实验仪器
5、开始移动测试支架滑块(向靠近极化天线方向移动), 直到小灯刚刚发光时,直接在显示器上读取滑块与发射天线的 距离并记录。
6、改变天线振子的长度,重复上面过程,记录数据,总结 得出天线长度与灯泡亮暗的关系。
7、设计制作其它天线形式制作感应器,重复上面过程,记 录数据。
次数 1 2 3 …
天线形式 …
2、将制作的线极化的电磁波感应器安装在测试支架上,分 别设置成垂直、水平、斜45 度三种位置,按下发射按钮,并 移动感应器滑块,观察灯泡达到同等亮度时与发射天线的距 离,并记录数据。
电磁场与电磁波实验讲义
![电磁场与电磁波实验讲义](https://img.taocdn.com/s3/m/e1cdf351cd7931b765ce0508763231126edb77a4.png)
电磁场与电磁波实验讲义(试用)实验一、电磁波的反射特性研究一、实验目的1、研究电磁波在良导体表面的反射;2、熟悉微波分光仪DH962B的使用方法。
二、实验原理如上图所示,,我们用一块金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角(如上图所示,θr =θi)。
三、实验装置(1)四、实验内容和步骤1、熟悉微波分光仪的结构、仪器的连接和系统调整:在微波分光仪的底座上有两个支臂,其中一个为固定支臂,另一个支臂则可绕中心轴旋转(带固定螺钉),发射喇叭天线和信号源安装在固定支臂上,接收喇叭天线和微安表安装在旋转支臂上。
微波分光仪底座中央有一带角度刻度线的园形工作平台。
仪器连接时,两喇叭天线的口面应正对,它们各自的轴线应在同一条直线上,两个臂的位置指针应分别指向工作平台的900刻度处。
按信号源的操作规程打开电源,调节衰减器使微安表有一适当的读数(满量程的三分之二及以上,这样可以减小读数误差对测试结果的影响)。
将带支座的金属反射板放在园形工作平台上(注意:金属反射板的平面应与支座下面的小园盘上的某一对刻度线一致),在将带支座的金属反射板放在园形工(2)作平台上时,应注意两点:(1)使小园盘的刻度线(与金属板平面一致的一对刻度线)与工作平台上相应900刻度的一对刻度线一致,这时工作平台上的00刻度线就与金属反射板的法线方向一致;(2)利用工作平台上的固定螺钉将金属反射板的支座固定。
2、测量入射角和反射角:转动工作平台,使固定臂的指针指在某一角度处,该角度数就是入射角,然后转动旋转臂使微安表的读数达到最大,此时旋转臂上的指针所指的刻度就是反射角。
如果此时微安表的指示太大或太小,可调节信号源的衰减器,使微安表的指示有一适当值。
做此项实验时,入射角最好取300至650之间,因为入射角太大接收喇叭天线有可能直接接收到入射波。
《电磁场与电磁波》仿真实验
![《电磁场与电磁波》仿真实验](https://img.taocdn.com/s3/m/b3121ef8b9f3f90f76c61b3a.png)
年《电磁场与电磁波》仿真实验————————————————————————————————作者:————————————————————————————————日期:《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
2016年《电磁场与电磁波》仿真实验
![2016年《电磁场与电磁波》仿真实验](https://img.taocdn.com/s3/m/445d4e78b8f67c1cfbd6b842.png)
2016年《电磁场与电磁波》仿真实验《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
电磁场与电磁波实验报告.
![电磁场与电磁波实验报告.](https://img.taocdn.com/s3/m/dc577736182e453610661ed9ad51f01dc28157d5.png)
电磁场与电磁波实验报告.中南⼤学信息科学与⼯程学院课题名称:电磁场与电磁波实验报告信息科学与⼯程学院通信⼯程1201 学班学姓院:级:号:名:0909120927 苏⽂强指导⽼师:陈宁实验⼀电磁波反射实验⼀实验⽬的1. 掌握微波分光仪的基本使⽤⽅法;2. 了解3cm 信号源的产⽣、传输及基本特性;3. 验证电磁波反射定律。
⼆预习内容电磁波的反射定律三实验原理微波与其它波段的⽆线电波相⽐具有:波长极短,频率很⾼,振荡周期极短的特点。
微波传输具有似光特性,其传播为直线传播。
电磁波在传播过程中如遇到障碍物,必定要发⽣反射。
本实验以⼀块⼤的⾦属板作为障碍物来研究当电磁波以某⼀⼊射⾓投射到此⾦属板上所遵循的反射定律,即:反射电磁波位于⼊射电磁波和通过⼊射点的法线所决定的平⾯上反射电磁波和⼊射电磁波分别位于法线两侧;反射⾓θr 等于⼊射⾓θi。
原理如图1.1所⽰。
图1.1四实验内容与步骤1. 调整微波分光仪的两喇叭⼝⾯使其互相正对,它们各⾃的轴线应在⼀条直线上,指⽰两喇叭位置的指针分别指于⼯作平台的0-180 刻度处。
将⽀座放在⼯作平台上,并利⽤平台上的定位销和刻线对正⽀座,拉起平台上四个压紧螺钉旋转⼀个⾓度后放下,即可压紧⽀座。
2. 将反射全属板放到⽀座上,应使⾦属板平⾯与⽀座下⾯的⼩圆盘上的90-90 这对刻线⼀致,这时⼩平台上的0 刻度就与⾦属板的法线⽅向⼀致。
将⾦属板与发射、接收喇叭锁定,以保证实验稳定可靠。
3. 打开信号源开关,将三厘⽶固态信号源设置在:“电压”和“等幅”档。
4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。
5. 转动微波分光仪的⼩平台,使固定臂指针指在刻度为30 度处,这个⾓度数就是⼊射⾓度数,然后转动活动臂,使得表头指⽰最⼤,此时活动臂上指针所指的刻度就是反射⾓度数,记下该⾓度读数。
如果此时表头指⽰太⼤或太⼩,应调整微波分光仪中的可变衰减器或晶体检波器,使表头指⽰接近满量程的80%做此项实验。
华中科技大学电磁场与电磁波课程仿真实验报告
![华中科技大学电磁场与电磁波课程仿真实验报告](https://img.taocdn.com/s3/m/c542a003be1e650e52ea9981.png)
《电磁场与电磁波》课程仿真实验报告学号*********姓名Crainax专业光学与电子信息学院院(系)******2016 年11月27日1.实验目的1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;2)了解HFSS 仿真的基本原理、操作步骤;3)会用HFSS 对金属波导的导波特性进行仿真;4)画出波导主模的电磁场分布;5)理解波导中的模式、单模传输、色散与截止频率等概念。
2.实验原理2.1导波原理如图1,z轴与金属波导管的轴线重合。
假设:1)波导管内填充的介质是均匀、线性、各向同性的;2)波导管内无自由电荷和传导电流;3)波导管内的场是时谐场。
图1 矩形波导以电场为例子,将上式代入亥姆霍兹方程 2E+k2E=0,并在直角坐标内展开,即有:其中k c表示电磁波在与传播方向相垂直的平面上的波数。
如果导波沿z方向传播,则对波导中传播的电磁波进行分析可知:1)场的横向分量可由纵向分量表示;2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。
2.2 矩形波导中传输模式的纵向传输特性波导中的电磁波在传输方向的波数β由下式给出:式中k为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即如上式不满足,则电磁波不能在波导内传输,即截止。
矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足a<λ<2a λ>2b当工作波长给定时,则波导尺寸必须满足3.实验内容在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。
模型半径为:4.20mm.1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)4.仿真实验步骤1)理论计算(给出截止频率计算过程及结果);圆波导中的TM波:容易得到TM模式下对应截至频率(c)TM01=(h)TM01/2 = (HZ)即为TM模式下的极限频率。
电磁场与电磁波实验报告
![电磁场与电磁波实验报告](https://img.taocdn.com/s3/m/1a08be3eb6360b4c2e3f5727a5e9856a5712264f.png)
电磁场与电磁波实验报告班级:学号:姓名:实验一:验证电磁波的反射和折射定律1学时1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律;1研究电磁波在良好导体表面上的全反射;2研究电磁波在良好介质表面上的反射和折射;3研究电磁波全反射和全折射的条件;2、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角;3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验;1、实验目的1研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面出现的衍射波强度不是均匀的,中央最强;2研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源;由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度;两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;当然电磁波通过每个缝也有狭缝现象;因此实验将是衍射和干涉两者结合的结果;为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°;因此取较大的b,则干涉强受单缝衍射影响大;干涉加强的角度为:干涉减弱的角度为:3、实验结果图2.1 单缝衍射的I-α曲线图2.2双缝干涉的I-α曲线实验三:布朗格衍射的实验1、实验目的本实验是仿造X射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替X射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件;这个条件就是布拉格方程;1掌握100面,110面点阵的反射波产生干涉的条件,得出布拉格方程;2了解直线极化和圆极化波特性参数的测试方法;2、实验原理任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关;晶体内的离子、原子或分子占据着点阵的结构, 两相邻结点的距离叫晶体的晶格常数;真实晶体的晶格常数约在10−8厘米的数量级,X 射线的波长与晶体的常数属于同一数量级,实际上晶体是起着衍射光栅的作用,因此可以利用 X 射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构得了解;本实验是仿造 X 射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替 X 射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件,这个条件就是布拉格方程;它是这样说的,当波长为入的平面波射到间距为α的晶面上,入射角为Θ°,当满足条件时n为整数发生衍射;衍射线在所考虑的晶面反射线方向;在布拉格衍射实验中采用入射线与晶面的夹角即通称的入射角,是为了在实验时方便,因为当被研究晶面的法线与分光仪上度盘的 0 度刻度一致时,入射线与反射线的方向在度盘上有相同的示数,不容易搞错,操作方便;3、实验结果图3.1 布拉格衍射I-θ关系曲线由实验数据可得,两侧发生衍射的角度大约在34°和65°附近;根据布拉格方程nλ=2aCOSθ,将λ=32mm,a=40mm代入得:当n=1时,θ=66.42°;当n=2时,θ=36.87°.实验测得数据与理论计算值比较接近,可验证布拉格方程;69°附近产生的峰值可能是由其他实验组影响造成的,不计入考虑;实验四:均匀无损耗媒质参量的测量2学时1、实验目的了解电磁波在真空中传播特性和相干原理;1在学习均匀平面电磁波的基础上,观察电磁波传播特性,E、H、S互相垂直;2推导相干波理论数学模型,自行调节测量仪器,测量基本参量;3测定自由空间内电磁波波长λ、频率f,并确定电磁波的相位常数β和波速υη的测量;4了解电磁波的其他参量,如波阻抗5利用相干波接点位移法推导测量均匀无损耗媒质参量的ε和μ的数学模型6了解均匀无损耗媒质参量λ、β、的差别7熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性;2、实验原理迈克尔逊干涉试验的基本原理见下图 13 所示:在平面波前进的方向上放置一个成45°的半透射板,由于该板的作用,将入射波分成两束波:一束由于反射向 A 方向传播;另一束透过半透射板向B 方向传播;由于A﹑B 处全反射板的作用,两列波就再次回到半透射板并到达接收喇叭处,于是接收喇叭收到两束同频率且振动方向一致的两个波;如果这两个波的位相差为2π的整数倍,则干涉加强;当相位差为π的奇数倍则干涉减弱;因此在 A 处放一固定板,让 B 处的反射板移动,当表头指示从一次极小变到又一次极小时,则 B 处的反射板就移动λ⁄2的距离,因此有这个距离就可求得平面波的波长;3、实验结果()()mm 32.341-443.5-91.5621n 0L -3L 2=⨯=-⨯=λ实验五:利用微波衰减测量湿度、厚度2学时1、实验目的学习介质特性参量:相移常数和衰减常数的测量方法,自行推导出介质厚度和湿度的数学模型,设计实验方法;1了解被测量的物质所用波为TEM 波,TEM 波产生的条件; 2相移常数和衰减常数测量方法; 3湿度、厚度测量方法 4信号处理方法 2、实验原理同迈克尔干涉实验原理 3、实验结果491.5602.5592.4067.4172.2357.2643.532.13-+-+-+-=91.2=n33221100L L L L L L L L L -'+-'+-'+-'=∆()()mm80.271-432.13-2.05521n 0-32ˊ=⨯=-''⨯'L L λ()d L /1/∆+= λλ()d /91.21/32.3480.27+=mmd 6.12≈。
电磁场与电磁波实验报告
![电磁场与电磁波实验报告](https://img.taocdn.com/s3/m/700ffe850408763231126edb6f1aff00bfd57052.png)
电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。
一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。
二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。
三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。
电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。
四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。
同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。
通
过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。
综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。
2016年《电磁场与电磁波》仿真实验
![2016年《电磁场与电磁波》仿真实验](https://img.taocdn.com/s3/m/89972487ba0d4a7302763aed.png)
《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
辽工大电磁场与电磁波平板电容器实验报告_实验一
![辽工大电磁场与电磁波平板电容器实验报告_实验一](https://img.taocdn.com/s3/m/ecdb72064431b90d6c85c7dc.png)
电磁场与电磁波实验报告实验一班级:姓名:学号:日期:实验一静电场问题实例:平板电容器电容计算仿真1.实验目的1.学习Ansoftmaxwell软件的使用方法。
2.复习电磁学相关的基本理论。
3.通过软件的学习掌握运用Ansoft Maxwell运行电磁场仿真的流程。
4.通过对对平板电容器电容计算仿真实验进一步熟悉Ansoft Maxwell软件的应用。
2.实验内容1.学习Ansoftmaxwell有限元分析步骤2.会用Ansoftmaxwell后处理器和计算器对仿真结果分析3.对圆柱体电容器电容仿真计算结果与理论结果值进行比较3.实验步骤平板电容器模型描述:上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体)介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)激励:电压源,上极板电压:5V,下极板电压:0V。
要求计算该电容器的电容值1.建模(Model)Project > Insert Maxwell3D DesignFile>Save as>Planar Cap(工程命名为“Planar Cap”)选择求解器类型:Maxwell > Solution Type>Electric>Electrostatic(静电的)创建下极板六面体Draw > Box(创建下极板六面体)下极板起点:(X,Y,Z)>(0,0,0)坐标偏置:(dX,dY,dZ)(25,25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为DownPlateAssign Material>pec(设置材料为理想导体perfect conductor)创建上极板六面体Draw > Box(创建下极板六面体)上极板起点:(X,Y,Z)>(0, 0, 3)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为UpPlateAssign Material >pec(设置材料为理想导体perfect conductor)创建中间的介质六面体Draw > Box(创建下极板六面体)介质板起点:(X,Y,Z)>(0, 0, 2)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0,1)将六面体重命名为mediumAssign Material > mica(设置材料为云母mica,)图3-12.创建计算区域(Region)Padding Percentage:0%图3-2电容器中电场分布的边缘效应忽略电场的边缘效应(fringing effect)3.设置激励(Assign Excitation)选中上极板UpPlate,Maxwell3D> Excitations > Assign(计划,分配)>Voltage> 5V选中下极板DownPlate,Maxwell3D> Excitations > Assign >Voltage> 0V4.设置计算参数(AssignExecutive Parameter)Maxwell 3D> Parameters > Assign >Matrix(矩阵)> Voltage1,Voltage25.设置自适应计算参数(Create Analysis Setup)Maxwell3D> Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10误差要求:Percent Error>1%每次迭代加密剖分单元比例:Refinement per Pass>50%图3-36. Check & Run7.查看结果Maxwell3D>Reselts>Solution data > Matrix 电容值: -31.543pF图3-4图3-54.实验结果由实验数据可得电容为-31.543PF平板式电容计算公式:C=ε *ε0* S/d;ε0真空介电常数8.86×10(-12方)单位F/m;5.心得体会在实验之前我以为这个实验一定十分简单。
电磁场与电磁波静电场物理模拟实验报告
![电磁场与电磁波静电场物理模拟实验报告](https://img.taocdn.com/s3/m/18151d0fa45177232f60a2a1.png)
电磁场与电磁波实验报告实验项目:__ 静电场物理模拟_____________________一、实验目的要求1. 理解物理模拟法的实验原理和应用条件。
2. 学习用物理模拟法研究静电场。
3. 加深对静电场场强和电位的理解。
二、实验内容1. 了解装置电路及实验原理。
2. 描绘矩形水槽薄水层中两个点电极产生的二维静电场。
三、实验仪器与软件矩形水槽、坐标纸两张、稳压电源和电压表,模拟电极、导线、固定支架。
四、实验原理理论上讲,如果知道了电荷的分布,就可以确定静电场的分布。
电场既可以用电场强度0E(电力线)来描述,又可以用电势U (等势面、线)来描述。
由于标量的测量和计算比矢量简便,因此,人们更愿意用电势来描述电场。
在给定条件下,确定系统静电场分布的方法,一般有解析法﹑数值模拟法和物理模拟法。
解析法只能求解一些简单的问题;数值模拟法,也就是数值计算方法,它能解决一些复杂的问题,虽计算量很大,但在计算机的帮助下,目前已经得到长足的发展,应用很广,数值模拟也有不足之处,对于一些形状比较复杂的带电体或电极周围静电场的分布,求解也非常困难。
模拟法作为一种重要的实验研究方法,它本质上是用一种易于实现﹑便于测量的物理状态或过程来模拟另一种不易实现﹑不便测量的物理状态或过程。
其条件是两种状态或过程有两组一一对应的物理量,并且满足相同形式的数学规律。
由于静电场中不存在电流,一般磁电式仪表,在有电流时才会有反应,因此难以确定静电场的等势线。
由于在一定条件下电介质中的稳恒电流场与静电场服从相同的数学规律,可以用恒定电流的电场模拟静电场。
如接到直流电源两端的小圆柱形电极之间形成的恒定电场,可以用来模拟等量异种电荷之间的静电场。
静电场与稳恒电流场的对应关系为导体上的电荷 ±Q电场强度 E介电常数极间电流±I 电场强度E电导率电位移 D=E无电荷区0E dS ε⋅=⎰电位满足 02=∇U电流密度 J=E无源区0E dS σ⋅=⎰电位满足 02=∇U根据上表中的对应关系可知,要想在实验上用稳恒电流场来模拟静电场,需要满足下面三个条件:⑴电极系统与导体几何形状相同或相似; ⑵导电质与电介质分布规律相同或相似;⑶电极的电导率远大于导电质的电导率,以保证电极表面为等势面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (1)2四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
2. plot函数:用来绘制线形图形plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
plot(x,y,s)contour函数:用来绘制等高线图形ezplot函数:对于显式函数f=f(x),在默认范围[-2π<x<2π]上绘制函数f(x)的图形;对于隐式函数f=f(x,y),在默认的平面区域[-2π<x<2π, -2π<y<2π]上绘制函数f(x,y)的图形。
3.具有两个纵坐标标度的图形在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。
调用格式为:plotyy(x1,y1,x2,y2)其中x1,y1对应一条曲线,x2,y2对应另一条曲线。
横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。
4.三维曲线plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n)其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函数相同。
当x,y,z是同维向量时,则x,y,z 对应元素构成一条三维曲线。
当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数。
命令:为绘制的图形加上图例调用格式:legend('string1','string2',...)例如:legend('电信161班','学号:05401111','张三','Location','best');6.xlabel命令:给X轴加标题调用格式:xlabel('string')例如:xlabel('x');三、实验内容1. 在命令窗口中运行一个加法程序;2. 在命令窗口中练习帮助命令(doc命令)的使用。
3. 建立第一个M文件,并运行,观察并保存运行结果。
四、实验步骤1.在命令窗口中运行一个加法程序(1)点击桌面上快捷方式图标,如图所示,启动该软件。
图快捷方式图标(2)在打开的界面右方,是命令窗口(Command Windows),如图所示,在闪动光标处可以写入命令;图 Matlab的命令窗口(3)在光标处写入如图所示的命令(注意:前两个语句后面有分号,最后一个语句没有分号);按回车键,则得到运行结果为50,如图所示。
图在命令窗口输入命令图按回车键执行命令得到正确运行结果2. 在命令窗口中练习帮助命令(doc命令)的使用。
在命令窗口光标处输入命令:doc plot;回车,则进入在线帮助文件,显示plot命令的使用方法页面,如图所示。
图 plot命令的在线帮助页面3.建立第一个M文件,并运行,观察并保存运行结果。
(1)点击图标,如图中红色圆圈所示,即创建了一个新的M文件,如图所示。
图红色圆圈的图标用于创建新的M文件图创建的空白M文件(2)在空白M文件中输入“二、实验原理”例子的程序,保存,运行,得到运行结果如图所示。
要求:在E盘建立新文件夹,命名为Fiele_Wave_simulation_2012_10_27;将M文件保存在Fiele_Wave_simulation_2012_10_27目录下,命名为;特别说明两点:a. M文件名及保存的路径名均应为英文,否则运行出错;b.程序中的所有字符均应为英文状态下输入,特别注意单引号,逗号,空格,这些细节会导致运行报错,又极难发现。
图 M文件的保存、运行按键及运行结果五、实验工具1.计算机 1台2.MATLAB 仿真软件 1套六、实验报告要求1.写出仿真程序源代码。
2.在同一窗口用不同的线性绘制y=sinx ,y=cosx 在[0,2*pi]上的图像,并加标注。
3. 在同一窗口用不同的线性绘制y=sin2x ,y=cos2x 在[-2*pi,2*pi]上的图像,并加标注。
(要在图中绘制出姓名与学号)实验二 单电荷的场分布一、实验目的1. 掌握 MATLAB 仿真的基本流程与步骤;2. 学会绘制单电荷的等位线和电力线分布图。
二、实验原理1.基本原理单电荷的外部电位计算公式:04q φπεr等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向外辐射的线,比较简单,这里就不再赘述。
2. 参考程序3.程序参考运行结果运行程序,获得图像大致如图所示。
-10-8-6-4-2246810-10-8-6-4-20246810图 单电荷的等位线和电力线分布图三、实验内容绘制单电荷的等位线和电力线分布图。
四、实验步骤1.在E 盘建立新文件夹,命名为Fiele_Wave_simulation_2012_10_27; 2.打开Matlab 软件,新建一个空白的M 文件,保存在Fiele_Wave_simulation_2012_10_27目录下,命名为;3.将源程序拷贝到M 文件中,保存;4.点击运行按钮,观察程序运行结果。
五、实验工具1.计算机 1台 2.MATLAB 仿真软件 1套 六、实验报告要求 1.写出仿真程序源代码。
2.绘制单电荷的等位线和电力线分布图。
(要在图中绘制出姓名与学号)实验三点电荷电场线的图像一、实验目的学会由解析表达式进行数值求解的方法。
二、实验原理1.基本原理考虑一个三点电荷系所构成的系统。
如图所示,其中一个点电荷-q位于坐标原点,另一个-q位于y轴上的点,最后一个+2q位于y轴的-点,则在xoy平面内,电场强度应满足任意条电场线应该满足方程:(1)求解(1)式可得:(2)这就是电场线满足的方程,常数C取不同值将得到不同的电场线。
2.参考程序解出y=f(x) 的表达式再作图是不可能的。
用Matlab语言即能轻松的做到这一点。
其语句是:syms x y % 设置x,y变量;for C=0::ezplot(2*(y+1)/sqrt((y+1)^2+x^2)-y/sqrt(y^2+x^2)-(y-1)/sqrt((y-1)^2+x^2)-C, [- 5,5,]); %其中取了a=1,C=0,,,……,hold on;end3.程序参考运行结果运行程序,获得图像大致如图所示。
xy(2 y+2)/(y 2+2 y+1+x 2)1/2-...-3 = 0-5-4-3-2-1012345-5-4-3-2-1012345图 点电荷电场线的图像三、实验内容根据给出的三点电荷系所构成的系统电场线满足的方程,绘制其图像。
四、实验步骤1.在E 盘建立新文件夹,命名为Fiele_Wave_simulation_2012_10_27; 2.打开Matlab 软件,新建一个空白的M 文件,保存在Fiele_Wave_simulation_2012_10_27目录下,命名为;3.将源程序拷贝到M 文件中,保存;4.点击运行按钮,观察程序运行结果。
五、实验工具1.计算机 1台 2.MATLAB 仿真软件 1套 六、实验报告要求 1.写出仿真程序源代码。
2.绘制三点电荷系所构成的系统电场线的图像。
(要在图中绘制出姓名与学号)实验四线电荷产生的电位一、实验目的理解交互式程序运行的过程。
二、实验原理1.基本原理设电荷均匀分布在从z=-L到z=L,通过原点的线段上,其密度为q(单位C/m),求在xy平面上的电位分布。
点电荷产生的电位可表示为是一个标量。
其中r为电荷到测量点的距离。
线电荷所产生的电位可用积分或叠加的方法来求。
为此把线电荷分为N段,每段长为dL。
每段上电荷为q*dL,看作集中在中点的点电荷,它产生的电位为然后对全部电荷求和即可。
2.参考程序把xy平面分成网格,因为xy平面上的电位仅取决于离原点的垂直距离R,所以可以省略一维,只取R为自变量。
把R从0到10米分成Nr+1点,对每一点计算其电位。
clear all;L=input(‘线电荷长度L=:’);N=input(‘分段数N=:’);Nr=input(‘分段数Nr=:’);q=input(‘电荷密度q=:’);E0=;C0=1/4/pi/E0;L0=linspace(-L,L,N+1);L1=L0(1:N);L2=L0(2:N+1);Lm=(L1+L2)/2;dL=2*L/N;R=linspace(0,10,Nr+1);for k=1:Nr+1Rk=sqrt(Lm.^2+R(k)^2);Vk=C0*dL*q./Rk;V(k)=sum(Vk);end[max(V),min(V)] plot(R,V),grad3.程序参考运行结果输入:线电荷长度L =:5 分段数N =:50 分段数Nr =:50 电荷密度q=:1可得最大值和最小值为:ans =+010 *[ ] 图像大致如图所示。