佛山科学技术学院-操作系统-存储管理-实验报告

合集下载

操作系统存储管理实验报告.doc

操作系统存储管理实验报告.doc

操作系统存储管理实验报告实验5存储管理第一,实验的目的1,加深对操作系统存储管理的理解2,可以过度模拟页面调试算法,加深对操作系统内存管理的理解二、一般设计思想、环境语言、工具等一般设计思想:1.编写一个函数来计算和输出以下算法的命中率:(1) OPT页面替换算法OPT选定的过时页面是已经转移到内存中并且将来不会被使用或者在最长时间内不会被访问的页面。

因此,如何找到这样的页面是算法的关键。

每页可以设置一个步长变量。

它的初始值是一个足够大的数字。

对于不在内存中的页面,其值将重置为零。

对于内存中的页面,其值被重置为当前访问的页面与页面首次出现时的距离。

因此,该值越大,在最长时间内不会被访问的页面就越多,并且可以选择它作为交换页面。

(2)先进先出页面替换算法先进先出总是选择首先进入内存的页面进行清除,因此可以设置先进先出的繁忙页面帧队列,新转移到内存的页面挂在队列的尾部,当没有空闲页面帧时,可以从队列的头部取出下一个页面帧作为空闲页面帧,然后再转移到需要的页面。

(3) LRU页面替换算法LRU 根据转移到存储器中的页面的使用做出决定。

它使用“最近的过去”作为“最近的未来”的近似,并选择最长时间没有使用的页面进行删除。

该算法主要通过页面结构中的访问时间来实现。

时间记录页面的最后访问时间。

因此,当需要删除一个页面时,选择时间值最小的页面,即最近最长时间没有使用的页面进行删除。

(4) LFU页面替换算法LFU要求每个页面配置一个计数器(即页面结构中的计数器)。

一旦页面被访问,计数器的值将增加1。

当需要替换一个页面时,将选择计数器值最小的页面,即存储器中访问次数最少的页面进行清除。

⑤NUR页面替换算法NUR要求为每个页面设置一个访问位(访问位仍然可以由页面结构中的计数器表示)。

当页面被访问时,其访问位计数器被设置为1。

当需要页面替换时,替换算法从替换指针(最初指向第一页)开始顺序检查内存中的每一页。

如果其访问位为0,则选择页面进行替换,否则,替换指针向下移动以继续向下搜索。

操作系统存储器管理实验报告.doc

操作系统存储器管理实验报告.doc

一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。

(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。

(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。

(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。

(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。

(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。

2、根据实验说明,画出相应的程序流程图。

3、按照程序流程图,用C语言编程并实现。

(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。

pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。

time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。

pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。

next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。

操作系统实验报告存储管理

操作系统实验报告存储管理

操作系统上机实验报告实验名称:存储管理实验目的:通过请求页式存储管理页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理页面置换算法。

实验内容:1.设计一个虚拟存储区和内存工作区;例如内存工作区大小为9个内存块,假设系统中最多可运行3个进程,每个进程分配3个内存块;2.模拟实现FIFO、LRU、OPT算法,给出页面走向,可计算缺页率;3.根据实验结果比较几种算法的差别。

实验步骤及分析:(一)FIFO算法实现提示定义一个常量total_instruction来记录页面总共使用的次数;定义一个变量diseffect记录总共换入页面的次数。

利用公式diseffect/total_instruction*100%可以得到缺页率。

(1)初始化。

设置两个数组page[ap]和pagecontrol[pp]分别表示进程页面数和内存分配的页面数,并产生一个随机数序列pageorder[total_instruction ](这个序列由page[]的下标随机构成)表示待处理的进程页面顺序,diseffect置0。

(2)看pageorder[]中是否有下一个元素,若有,就由pageorder[]中获取该页面的下标,并转到(3);如果没有就转到(7)。

(3)如果该page已在内存中,就转到(2);否则就到(4),同时未命中的diseffect加1。

(4)观察pagecontrol是否占满,如果占满须将使用队列中最先进入的pagecontrol单元“清干净”,同时将对应的page[]单元置为“不在内存中”。

(5)将该page[]与pagecontrol[]建立关系。

可以改变pagecontrol[]的标志位,也可以采用指针链接,总之至少要使对应的pagecontrol单元包含两个信息:一是它被使用了,二是哪个page[]单元使用的。

Page[]单元也包含两个信息:对应的pagecontrol 单元号和本 page[]单元已在内存中。

《操作系统》存储管理实验报告

《操作系统》存储管理实验报告

____大学____学院实验报告课程名称:计算机操作系统实验名称:存储管理实验实验日期:班级:姓名:学号:仪器编号: XX实验报告要求:1.实验目的 2.实验要求 3.实验步骤 4.程序清单 5.运行情况6.流程图 7.实验体会1、实验目的①通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰法。

②通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。

2、实验要求①设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。

可以假定每个作业都是批处理作业,并且不允许动态申请内存。

为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。

②设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。

对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。

③编写并调试一个段页式存储管理的地址转换的模拟程序。

首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。

要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。

3、实验步骤(1)理解实验要求,联系所学知识;(2)根据要求编写调度算法;(3)编写完整的实验代码并在VC++ 6.0环境下编译运行;(4)调试程序直至得出结果。

4、程序清单①#include <stdio.h>#include <stdio.h>#include<math.h>#include<stdlib.h>#define NUM 4#define alloMemory(type) (type*)malloc(sizeof(type)) struct partiTab{int no;int size;int firstAddr;char state;}parTab[NUM];typedef struct partiTab PARTITAB;typedef struct jcb { /*定义作业控制块JCB ,部分信息省略*/ char name[10]; //作业名int size; //作业大小struct jcb* link; //链指针}JCB;typedef struct{JCB *front,*rear;}jcbQue;jcbQue *jcbReadyQue;void AllocateMemory(int size);void createTab();void checkTab();void recycleMemory(int i);void AllocateMemory(int size){int i;for(i=0;i<NUM;i++){PARTITAB p=parTab[i];if(p.state='N' && p.size>size)parTab[i].state='Y';elseprintf("没有空闲分区,无法分配内存!\n"); }}void createTab(){int i;for( i=1;i<=NUM;i++){//getPartiTab(PARTITAB);parTab[i-1].no=i;parTab[i-1].size=20;parTab[i-1].firstAddr=21;parTab[i-1].state='N';}}void checkTab(){int i;printf("分区号\t大小\t起址\t状态\n");for(i=0;i<NUM;i++){printf("%d\t",parTab[i].no);printf("%d\t",parTab[i].size);printf("%d\t",parTab[i].firstAddr);printf("%c\t",parTab[i].state);printf("\n");}}void recycleMemory(int i){parTab[i-1].state='N';}int main(int argc, char* argv[]){int i;printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验一存储管理实验\n");printf("\t\t\t\t固定式分区分配存储管理\n");printf("\t\t*********************************************\t\t\n"); createTab();checkTab();printf("请按任意键继续:\n");getchar();printf("每个分区装入一道作业:\n");for(i=0;i<NUM;i++){AllocateMemory((i+1)*3);}checkTab();printf("请按任意键继续:\n");getchar();printf("假如一段时间后,其中一个作业结束,回收给它分配的分区(假如该作业在第2分区)\n");recycleMemory(2);checkTab();printf("请按任意键继续:\n");getchar();printf("接着,从外存后备作业队列中选择一个作业装入该分区(假如该作业大小为10)\n");AllocateMemory(10);checkTab();return 0;}#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#define n 10#define m 10#define minisize 100struct{float address;float length;int flag;}used_table[n];struct{float address;float length;int flag;}free_table[m];void allocate(char J,float xk) {int i,k;float ad;k=-1;for(i=0; i<m; i++)if(free_table[i].length>=xk&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i;if(k==-1){printf("无可用空闲区\n");return;}if(free_table[k].length-xk<=minisize){free_table[k].flag=0;ad=free_table[k].address;xk=free_table[k].length;}else{free_table[k].length=free_table[k].length-xk;ad=free_table[k].address+free_table[k].length;}i=0;while(used_table[i].flag!=0&&i<n)i++;if(i>=n){printf("无表目填写已分分区,错误\n");if(free_table[k].flag==0)free_table[k].flag=1;else{free_table[k].length=free_table[k].length+xk;return;}}else{used_table[i].address=ad;used_table[i].length=xk;used_table[i].flag=J;}return;}void reclaim(char J){int i,k,j,s,t;float S,L;s=0;while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n)s++;if(s>=n){printf("找不到该作业\n");return;}used_table[s].flag=0;S=used_table[s].address;L=used_table[s].length;j=-1;k=-1;i=0;while(i<m&&(j==-1||k==-1)){if(free_table[i].flag==1){if(free_table[i].address+free_table[i].length==S)k=i; if(free_table[i].address==S+L)j=i;}i++;}if(k!=-1)if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/ {free_table[k].length=free_table[j].length+free_table[k].length+L; free_table[j].flag=0;}else/*上邻空闲区,下邻非空闲区,与上邻合并*/free_table[k].length=free_table[k].length+L;else if(j!=-1) /*上邻非空闲区,下邻为空闲区,与下邻合并*/{free_table[j].address=S;free_table[j].length=free_table[j].length+L;}else /*上下邻均为非空闲区,回收区域直接填入*/{/*在空闲区表中寻找空栏目*/t=0;while(free_table[t].flag==1&&t<m)t++;if(t>=m) /*空闲区表满,回收空间失败,将已分配表复原*/{printf("主存空闲表没有空间,回收空间失败\n");used_table[s].flag=J;return;}free_table[t].address=S;free_table[t].length=L;free_table[t].flag=1;}return;}/*主存回收函数结束*/int main( ){printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验三存储管理实验\n");printf("\n\t\t\t可变式分区分配 (最佳适应算法)\n");printf("\t\t*********************************************\n");int i,a;float xk;char J;/*空闲分区表初始化:*/free_table[0].address=10240; /*起始地址假定为10240*/free_table[0].length=10240; /*长度假定为10240,即10k*/free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/for(i=1; i<m; i++)free_table[i].flag=0; /*其余空闲分区表项未被使用*//*已分配表初始化:*/for(i=0; i<n; i++)used_table[i].flag=0; /*初始时均未分配*/{printf("功能选择项:\n1。

操作系统:实验4 存储管理(实验报告)

操作系统:实验4 存储管理(实验报告)

欢迎共阅班级: 姓名: 学号:5) 当前计算机的实际内存大小为:______________________________________ 分析程序4-1,请回答问题:1) 理论上每个Windows 应用程序可以独占的最大存储空间是:_____________2) 程序中,用于检查系统中虚拟内存特性的API 函数是:__________________ 4.2 Windows 虚拟内存本节实验的目的是:实验4存储管理1) 通过实验了解Windows内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。

2) 学习检查虚拟内存空间或对其进行操作;3) 了解Windows的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。

1. 工具/准备工作在开始本节实验之前,请回顾教材的相关内容。

需要准备一台运行Windows系统的计算机,且安装了C/C++编译器。

2. 实验内容与步骤将系统当前的保留区(reserved)虚拟地址空间填入表4.3中。

表4.3 实验记录2) 根据运行结果,请简单描述程序运行的流程:_________________________________________________________________________________________________________________________________________的程序段,该段程序试图通过VirtualAlloc()函数,然后利用物理备用内存将整个块分配到虚拟内存空间的任何位置。

这种技术只对拥有1GB以上的RAM且都有换页文件的计算机可行。

从运行结果看,这种技术成功了吗?_________________。

3) 程序中说明为___________________________________________________的程序段,该段程序利用VirtualAlloc()函数,如果函数成功,则获得大块内存,但不将任何物理内存调配到此块中。

实验四 操作系统存储管理实验报告

实验四  操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。

二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。

离散分配:分页存储管理、分段存储管理、段页式存储管理。

2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。

最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。

最坏适应算法:选择最大的空闲分区进行分配。

3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。

四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。

输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。

2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。

输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。

3、离散内存分配实验实现分页存储管理的地址转换功能。

输入逻辑地址,程序计算并输出对应的物理地址。

4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。

记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。

五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。

内存状态显示清晰,分区的使用和空闲情况一目了然。

动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。

2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。

操作系统存储管理实验报告

操作系统存储管理实验报告
4 / 37
操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)

操作系统-----存储管理实验报告

操作系统-----存储管理实验报告

操作系统实验报告一、实验题目:存储管理(该实验为综合性实验,共用8个学时)二、实验要求:1、通过随机数产生一个指令序列,共320条指令。

其地址按下述原则生成:①50%的指令是顺序执行的;②25%的指令是均匀分布在前地址部分;③25%的指令是均匀分布在后地址部分;具体的实施方法是:A.在[0,319]的指令地址之间随机选取一起点M;B.顺序执行一条指令,即执行地址为M+1的指令;C.在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;D.顺序执行一条指令,其地址为M’+1;E.在后地址[M’+2,319]中随机选取一条指令并执行;F.重复A—E,直到执行320次指令。

2、指令序列变换成页地址流,设:①页面大小为1K;②用户内存容量为4页到32页;③用户虚存容量为32K。

在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);…………第310条~第319条指令为第31页(对应虚存地址为[310,319]);3、计算并输出下述各种算法(可任选三个)在不同内存容量下的命中率。

A. FIFO先进先出置换算法;B. LRU最近最久未使用置换算法;C. OPT最佳置换算法。

D. NUR最近未使用置换算法。

E. LFU最少使用置换算法。

三、总的设计思想、环境语言、工具等总的设计思想:1、编写函数计算并输出下述各种算法的命中率①OPT页面置换算法OPT所选择被淘汰的页面是已调入内存,且在以后永不使用的,或是在最长时间内不再被访问的页面。

因此如何找出这样的页面是该算法的关键。

可为每个页面设置一个步长变量,其初值为一足够大的数,对于不在内存的页面,将其值重置为零,对于位于内存的页面,其值重置为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越大表示该页是在最长时间内不再被访问的页面,可以选择其作为换出页面。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。

本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。

三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。

分区的大小可以相等,也可以不等。

2、实现创建一个固定大小的内存空间数组,模拟内存分区。

为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。

3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。

分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。

(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。

2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。

实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。

3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。

观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。

(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。

2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。

模拟页面的调入和调出过程,处理缺页中断。

3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。

探讨页大小的选择对存储管理的影响。

(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收、页面置换算法等关键概念,并能够分析和解决存储管理中可能出现的问题。

二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了 Visual Studio 等编程工具和相关的调试环境。

三、实验内容(一)内存分配与回收算法实现1、首次适应算法首次适应算法从内存的起始位置开始查找,找到第一个能够满足需求的空闲分区进行分配。

在实现过程中,我们通过建立一个空闲分区链表来管理内存空间,每次分配时从表头开始查找。

2、最佳适应算法最佳适应算法会选择能够满足需求且大小最小的空闲分区进行分配。

为了实现该算法,在空闲分区链表中,分区按照大小从小到大的顺序排列,这样在查找时能够快速找到最合适的分区。

3、最坏适应算法最坏适应算法则选择最大的空闲分区进行分配。

同样通过对空闲分区链表的排序和查找来实现。

(二)页面置换算法模拟1、先进先出(FIFO)页面置换算法FIFO 算法按照页面进入内存的先后顺序进行置换,即先进入内存的页面先被置换出去。

在模拟过程中,使用一个队列来记录页面的进入顺序。

2、最近最久未使用(LRU)页面置换算法LRU 算法根据页面最近被使用的时间来决定置换顺序,最近最久未使用的页面将被置换。

通过为每个页面设置一个时间戳来记录其最近使用的时间,从而实现置换策略。

3、时钟(Clock)页面置换算法Clock 算法使用一个环形链表来模拟内存中的页面,通过指针的移动和页面的访问标志来决定置换页面。

四、实验步骤(一)内存分配与回收算法的实现步骤1、初始化内存空间,创建空闲分区链表,并为每个分区设置起始地址、大小和状态等信息。

2、对于首次适应算法,从链表表头开始遍历,找到第一个大小满足需求的空闲分区,进行分配,并修改分区的状态和大小。

3、对于最佳适应算法,在遍历链表时,选择大小最接近需求的空闲分区进行分配,并对链表进行相应的调整。

操作系统实验-存储管理

操作系统实验-存储管理

操作系统实验-存储管理操作系统实验-存储管理1、引言1.1 概述在操作系统中,存储管理是一个关键的任务。

它负责将程序和数据加载到内存中,管理内存的分配和回收,并确保不同进程之间的内存互不干扰。

本实验旨在深入了解并实践存储管理的相关概念和算法。

1.2 目的本实验的目的是让学生通过实际操作,了解存储管理的基本原理和常用算法,包括分页、分段和虚拟内存等。

通过实验,学生将学会如何实现内存分配和回收,以及处理内存碎片等问题。

1.3 实验环境- 操作系统:Windows、Linux、MacOS等- 编程语言:C、C++等2、实验步骤2.1 实验准备- 安装相应的开发环境和工具- 创建一个空白的项目文件夹,用于存放实验代码和相关文件2.2 实验一、分页存储管理- 理解分页存储管理的概念和原理- 实现一个简单的分页存储管理系统- 设计测试用例,验证分页存储管理的正确性和有效性2.3 实验二、分段存储管理- 理解分段存储管理的概念和原理- 实现一个简单的分段存储管理系统- 设计测试用例,验证分段存储管理的正确性和有效性2.4 实验三、虚拟存储管理- 理解虚拟存储管理的概念和原理- 实现一个简单的虚拟存储管理系统- 设计测试用例,验证虚拟存储管理的正确性和有效性3、实验结果分析3.1 分页存储管理结果分析- 分析分页存储管理系统的性能优缺点- 比较不同页面大小对系统性能的影响3.2 分段存储管理结果分析- 分析分段存储管理系统的性能优缺点- 比较不同段大小对系统性能的影响3.3 虚拟存储管理结果分析- 分析虚拟存储管理系统的性能优缺点- 比较不同页面置换算法对系统性能的影响4、总结与展望4.1 实验总结- 总结本次实验的收获和体会- 分析实验中遇到的问题和解决方法4.2 实验展望- 探讨存储管理领域的未来发展方向- 提出对本实验的改进意见和建议附件:无法律名词及注释:- 存储管理:操作系统中负责管理内存的任务,包括内存分配、回收和管理等功能。

《操作系统》存储管理实验报告

《操作系统》存储管理实验报告

《操作系统》存储管理实验报告操作系统是计算机系统中最基础、最核心的软件之一,负责管理计算机硬件资源和提供资源的分配与调度。

而存储管理是操作系统中的重要组成部分,它负责管理计算机的内存,包括内存的分配、回收、保护等操作。

本文将针对存储管理进行实验,并撰写实验报告。

本次实验主要涉及以下内容:内存的分配与回收、内存的保护。

实验过程中,我首先根据操作系统的要求,设计了相应的算法用于内存的分配与回收。

并通过编写程序,验证了算法的正确性。

随后,我进一步研究了内存的保护机制,通过设置访问权限位和访问控制表,实现了对内存的合理保护。

在内存的分配与回收方面,我设计了一种简单的算法,首次适应算法。

具体实现如下:首先,将内存分为若干个块,每个块的大小为固定值。

当需要分配内存时,首先遍历内存块列表,找到第一个大小合适的块,将其分配给进程。

当进程终止时,将其占用的内存块回收,以便后续进程使用。

通过编写程序进行测试,结果表明该算法能够正确地进行内存的分配与回收。

在内存的保护方面,我采用了访问权限位和访问控制表的方式进行。

具体实现如下:首先,为每个进程分配一组访问权限位,记录了该进程能够访问的内存区域。

同时,设置一个访问控制表,记录了每个内存块的权限。

当进程访问一些内存块时,首先检查该进程的访问权限位,再与访问控制表中的权限进行比较,以确定该进程是否有权限访问该内存块。

通过编写程序进行测试,证明了该机制能够有效地保护内存。

总结来说,本次实验主要涉及了操作系统中的存储管理部分,包括内存的分配与回收、内存的保护。

通过设计算法和编写程序,我成功地实现了这些功能,并验证了其正确性。

通过本次实验,我进一步加深了对操作系统存储管理的理解,提高了编程和设计的能力。

操作系统存储管理实验报告

操作系统存储管理实验报告

四、实验中遇到的难点及解决办法
1、在安装的时候为系统建立分区,平时用惯了windows操作系统,在分区的时候分配一个适合的可以供Linux系统运行的空间,在开始的时候分配空间不足,导致在安装的时候一直无法安装在老师的提示下,才得以解决。

2、在虚拟机下进行安装Linux操作系统使得安装更简单方便,便于安装,但是在Linux系统从光盘安装的哪些步骤不能一一体验,比如如何划分Linux系统下的五个分区和从硬盘安装Linux系统的以下命令,这些老师都进行了讲解,如果有较好的实验条件是去安装一次真正的SuSE Linux系统。

五、实验体会
由于试验时间的紧迫,通过这次试验使我只是初步的学会了,在虚拟机下安装Linux系统的过程,通过本学期的学习操作系统的过程,感觉学习的内容不足以能让我较好地使用Linux系统,感觉对他的了解还是那么少,会在以后的时间内多学习一些关于Linux系统方面的内容,努力做好和学习好Linux系统。

操作系统内存管理实验报告

操作系统内存管理实验报告

操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。

内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。

本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。

一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。

在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。

内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。

二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。

具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。

三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。

该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。

当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。

2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。

该机制使用页表来记录虚拟地址与物理地址的映射关系。

当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。

3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。

该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。

只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验

操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。

最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。

最坏适应算法:选择空闲分区中最大的分区进行分配。

2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。

最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。

时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。

五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。

实现首次适应算法、最佳适应算法和最坏适应算法的函数。

编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。

2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。

实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。

编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告操作系统存储管理实验报告引言:操作系统是计算机系统中的核心软件之一,它负责管理计算机硬件资源和提供用户与计算机之间的接口。

在操作系统中,存储管理是一个重要的子系统,它负责管理计算机的内存资源。

本实验旨在通过实际操作,深入了解操作系统的存储管理机制,并通过实验结果分析其性能和效果。

实验目的:1. 了解操作系统的存储管理机制;2. 掌握存储管理相关的概念和技术;3. 分析不同存储管理策略的优缺点;4. 通过实验验证不同策略的性能和效果。

实验内容:本次实验主要涉及以下几个方面的内容:1. 内存分配:在操作系统中,内存是计算机中的重要资源,它被划分为多个固定大小的块,每个块称为一页。

实验中,我们将学习不同的内存分配算法,如连续分配、离散分配和分页分配,并通过实验验证它们的性能和效果。

2. 内存回收:当某个进程不再需要使用内存时,操作系统需要回收该内存空间,以便其他进程使用。

实验中,我们将学习不同的内存回收算法,如最佳适应算法、最坏适应算法和首次适应算法,并通过实验比较它们的效果。

3. 虚拟内存管理:虚拟内存是一种扩展内存的技术,它将磁盘空间作为辅助存储器,将部分数据存储在磁盘上,以释放内存空间。

实验中,我们将学习虚拟内存的概念和原理,并通过实验验证其性能和效果。

实验结果与分析:通过实验,我们得到了不同存储管理策略的性能数据,并进行了分析。

在内存分配方面,连续分配在内存利用率方面表现较好,但容易产生外部碎片;离散分配能够充分利用内存空间,但需要额外的管理开销;分页分配能够灵活地分配内存,但会带来内部碎片。

在内存回收方面,最佳适应算法能够更好地利用内存空间,但需要较长的搜索时间;最坏适应算法能够减少外部碎片,但可能导致内存利用率较低;首次适应算法在搜索时间和内存利用率方面都有较好的平衡。

在虚拟内存管理方面,虚拟内存能够有效扩展内存空间,提高系统的性能和效率。

通过实验,我们发现虚拟内存的使用可以显著减少交换空间的开销,并提高系统的响应速度。

佛山科学技术学院-操作系统-虚拟存储器-实验报告

佛山科学技术学院-操作系统-虚拟存储器-实验报告

实验三虚拟存储器3.1背景知识在Windows 2000环境下,4GB的虚拟地址空间被划分成两个部分:低端2GB提供给进程使用,高端2GB提供给系统使用。

这意味着用户的应用程序代码,包括DLL以及进程使用的各种数据等,都装在用户进程地址空间内 (低端2GB) 。

用户过程的虚拟地址空间也被分成三部分:1)虚拟内存的已调配区 (committed):具有备用的物理内存,根据该区域设定的访问权限,用户可以进行写、读或在其中执行程序等操作。

2)虚拟内存的保留区 (reserved):没有备用的物理内存,但有一定的访问权限。

3)虚拟内存的自由区 (free):不限定其用途,有相应的PAGE_NOACCESS权限。

与虚拟内存区相关的访问权限告知系统进程可在内存中进行何种类型的操作。

例如,用户不能在只有PAGE_READONLY权限的区域上进行写操作或执行程序;也不能在只有PAGE_EXECUTE权限的区域里进行读、写操作。

而具有PAGE_ NOACCESS权限的特殊区域,则意味着不允许进程对其地址进行任何操作。

在进程装入之前,整个虚拟内存的地址空间都被设置为只有PAGE_NOACCESS权限的自由区域。

当系统装入进程代码和数据后,才将内存地址的空间标记为已调配区或保留区,并将诸如EXECUTE、READWRITE和READONLY的权限与这些区域相关联。

如表3-2所示,给出了MEMORY_BASIC_INFORMAITON的结构,此数据描述了进程虚拟内存空间中的一组虚拟内存页面的当前状态,期中State项表明这些区域是否为自由区、已调配区或保留区;Protect项则包含了windows系统为这些区域添加了何种访问保护;type项则表明这些区域是课执行图像、内存映射文件还是简单的私有内存。

VirsualQueryEX() API能让用户在指定的进程中,对虚拟内存地址的大小和属性进行检测。

Windows还提供了一整套能使用户精确控制应用程序的虚拟地址空间的虚拟内存API。

实验四--操作系统存储管理实验报告

实验四--操作系统存储管理实验报告

实验四 操作系统存储管理实验报告一、实验目的存储管理的主要功能之一是合理地分配空间。

请求页式管理是一种常用的虚拟存储管理技术。

本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。

二、实验内容(1) 通过计算不同算法的命中率比较算法的优劣。

同时也考虑了用户内存容量对命中率的影响。

页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。

在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。

(2) produce_addstream 通过随机数产生一个指令序列,共320条指令。

A 、 指令的地址按下述原则生成:1) 50%的指令是顺序执行的2)25%的指令是均匀分布在前地址部分3) 25%的指令是均匀分布在后地址部分B 、 具体的实施方法是:1)在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令;3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4)顺序执行一条指令,地址为m ’+1的指令 5)在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令C 、 将指令序列变换称为页地址流在用户虚存中,按每k 存放10条指令排列虚存地址,即320条指令在虚存中页地址流长度页面失效次数命中率-=1的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);。

第310条~第319条指令为第31页(对应虚存地址为[310,319]);按以上方式,用户指令可组成32页。

(3)计算并输出下属算法在不同内存容量下的命中率。

1)先进先出的算法(FIFO);2)最近最少使用算法(LRU);3)最佳淘汰算法(OPT);4)最少访问页面算法(LFR);其中3)和4)为选择内容三、系统框图五运行结果首先打印出产生的指令信息,第一列为指令序列号,第二列为指令地址,第三列为指令所在的虚页号选择FIFO调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率选择LRU调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率选择OPT调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率六实验程序产生指令流文件produce_addstream.h #ifndef PRODUCE_ADDSTREAM_H #define PRODUCE_ADDSTREAM_H #include<stdio.h>#include<stdlib.h>#include<time.h>#include<iomanip.h>#include<vector>using namespace std;#define random(x) (rand()%x)#define MAX_LENGTH 320struct produce{int num; //指令序号int zhiling; //指令地址int virtualpage; //指令虚页号produce *next;};struct produce*creatlist();void insert(struct produce *first,struct produce *s); //插入一个节点(尾插法)void print(struct produce *first); //打印函数int max(vector<vector<int> >,int );struct produce*creatlist(){srand((int)time(0));struct produce*first=new produce;first->next=NULL;int m=0,m1=0;/*int yanzheng[20]={7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1};for (int i=0;i<(MAX_LENGTH/4);i++){struct produce *s0;s0=new produce;s0->num=i*4+0;s0->zhiling=yanzheng[i*4+0];s0->virtualpage=s0->zhiling;insert(first,s0);struct produce *s1;s1=new produce;s1->num=i*4+1;s1->zhiling=yanzheng[i*4+1];s1->virtualpage=s1->zhiling;insert(first,s1);struct produce *s2;s2=new produce;s2->num=i*4+2;s2->zhiling=yanzheng[i*4+2];s2->virtualpage=s2->zhiling;insert(first,s2);struct produce *s3;s3=new produce;s3->num=i*4+3;s3->zhiling=yanzheng[i*4+3];s3->virtualpage=s3->zhiling;insert(first,s3);}//*///*for (int i=0;i<(MAX_LENGTH/4);i++){struct produce *s0;s0=new produce;m=random(MAX_LENGTH);s0->num=i*4+0;s0->zhiling=m+1;s0->virtualpage=s0->zhiling/10;insert(first,s0);m1=random(m+1);struct produce *s1;s1=new produce;s1->num=i*4+1;s1->zhiling=m1;s1->virtualpage=s1->zhiling/10;insert(first,s1);struct produce *s2;s2=new produce;s2->num=i*4+2;s2->zhiling=m1+1;s2->virtualpage=s2->zhiling/10;insert(first,s2);struct produce *s3;s3=new produce;s3->num=i*4+3;s3->zhiling=random(MAX_LENGTH-m1-2)+m1+2;s3->virtualpage=s3->zhiling/10;insert(first,s3);}//*/return first;}void insert(struct produce *first,struct produce *s){struct produce *r=first;struct produce *p;while(r){p=r;r=r->next;}p->next=s;p=s;p->next=NULL;}void print(struct produce *first) //打印函数{struct produce *p;p =first->next;cout<<"随机产生的指令的信息如下"<<endl;cout<<"指令序号"<<"指令地址"<<"指令虚页号"<<endl;while (p){cout<<p->num<<'\t'<<p->zhiling<<setw(14)<<p->virtualpage<<endl;p=p->next;}}int max(vector<vector<int> > page,int Maxpage){int a=0,position=0;for (int i=0;i<Maxpage;i++){if (page[i][1]>a){a=page[i][1];position=i;}}return position;}#endif先来先出调度算法:fifo.h#ifndef FIFO_H#define FIFO_Hvoid fifo(struct produce *first,int Maxpage){vector<int> page(Maxpage);//for (int i=0;i<Maxpage;i++)page[i]=-1;int rear=0;//定义一个变量,指向要被替换的位置int pages;//定义变量保存当前指令的所在的地址int count1=0;//int count2=0;//缺页次数int find=1;struct produce *p=first->next;while (p){pages=p->virtualpage;for(int i=0;i<Maxpage;i++){if (page[i]==-1||count1<Maxpage){page[i]=pages;count1 ++;count2 ++;find =1;break;}else if (page[i]==pages){find =1;break;}find=0;}if (find==0){page[rear]=pages;rear ++;rear=rear%Maxpage;count2 ++;}p=p->next;}cout<<"FIFO调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(25)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}#endif FIFO_HLRU调度算法lru.h#ifndef LRU_H#define LRU_H#include<vector>using namespace std;//int max(vector<vector<int> >,int );void lru(struct produce*first,int Maxpage){struct produce*p=first->next;vector<vector<int> > page2(Maxpage, vector<int>(2));int count1=0; //定义内存已经被占用的页数int count2=0; //定义记录缺页次数int equal=0; //定义判断如果当前页数与比较的页数,如果相等则为1,否则为0int place=0; //定义要替换的位置for (int i=0;i<Maxpage;i++){page2[i][0]=-1;page2[i][1]=0;}while (p){if (count1<Maxpage){for (int i=0;i<Maxpage;i++){page2[i][1]=page2[i][1]+1;if (page2[i][0]==-1){page2[i][0]=p->virtualpage;count2++;break;}else if (page2[i][0]==p->virtualpage){page2[i][1] =1;}}count1++;}else{for (int i=0;i<Maxpage;i++){page2[i][1] +=1;if (page2[i][0]==p->virtualpage){equal=1;place=i;break;}}if (equal==1){page2[place][1] =1;equal=0;}else{place = max(page2,Maxpage);page2[place][1]=1;page2[place][0]=p->virtualpage;count2++;}}p=p->next;}cout<<"LRU调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(24)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}#endif LRU_HOPT调度算法opt.h#ifndef OPT_H#define OPT_H#include<vector>using namespace std;int search(struct produce*place,int position);void opt(struct produce*first,int Maxpage){struct produce*p =first->next;vector<vector<int> > page3(Maxpage, vector<int>(2));int count1=0; //定义内存已被使用的页数int count2=0; //定义缺页次数int current=0; //定义当前工作位置int equal=0; //定义判断如果当前页数与比较的页数,如果相等则为1,否则为0int place=0; //定义要替换的位置for (int i=0;i<Maxpage;i++){page3[i][0]=-1;page3[i][1]=0;}while (p){//cout<<1111<<endl;if (count1<Maxpage){for (int i=0;i<Maxpage;i++){if (page3[i][0]==-1){page3[i][0]=p->virtualpage;page3[i][1]=search(p,current);count2++;break;}else if (page3[i][0]==p->virtualpage){page3[i][1]=search(p,current);}}count1++;}else{for (int i=0;i<Maxpage;i++){if (page3[i][0]==p->virtualpage){equal=1;place=i;break;}}if (equal==1){page3[place][1] =search(p,current);equal=0;}else{place = max(page3,Maxpage);page3[place][1]=search(p,current);page3[place][0]=p->virtualpage;count2 +=1;}}p=p->next;current +=1;}cout<<"OPT调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(25)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}int search(struct produce*place,int position){struct produce*p=place->next;int current=place->virtualpage;int position1=position+1;while(p){if (current==p->virtualpage){return position1;}position1++;p=p->next;}return position1;}#endif主函数控制台ccglmain.cpp#include<iostream.h>#include "produce_addstream.h"#include "fifo.h"#include "lru.h"#include "opt.h"void main(){int S; //定义变量记录用户选择char again; //定义变量用户选择继续还是退出cout<<"开始产生内存指令"<<endl;struct produce *first=creatlist();//产生随机指令cout<<"打印产生的指令信息"<<endl;print(first);//打印产生的指令信息while (1){int Maxpage=3;//定义内存最大页面数cout<<"输入你的选择"<<endl;cout<<"1:FIFO(先进先出)调度算法\n"<<"2:LRU(最近最少使用算法)\n"<<"3:OPT(最佳淘汰算法)\n"<<"4:清屏"<<endl;cin>>S;while(S>4||S<1){cout<<"输入错误重新输入"<<endl;cin>>S;}if (S!=4){while(Maxpage<=32){switch(S){case 1:fifo(first,Maxpage);break;case 2:lru(first,Maxpage);break;case 3:opt(first,Maxpage);break;default:break;}Maxpage++;}cout<<"是否继续调用其他算法?是请按y/Y,否请按其它键"<<endl;cin>>again;if(again=='y'||again=='Y'){continue;}else break;}else system("cls");}}。

实训7 操作系统配置和存储管理实训报告

实训7 操作系统配置和存储管理实训报告

实训7 操作系统配置和存储管理实训报告
实验目标
本次实训的主要目标是配置和管理操作系统,以及进行存储管理。

通过本实训,我们将研究如何设置和优化操作系统的配置,以及如何进行有效的存储资源管理。

实验过程
1. 配置操作系统:
- 首先,确保操作系统的安装正确完成,并且系统已经启动。

- 再次检查硬件驱动程序的安装情况,并根据需要进行更新。

- 对操作系统进行优化,例如禁用不必要的服务和功能,以提高系统性能。

2. 存储管理:
- 确定系统所使用的存储设备,例如硬盘、固态硬盘等。

- 创建和管理存储卷,包括分区、格式化和设置文件系统。

- 配置存储资源的访问权限和共享设置。

- 实施文件系统的访问控制策略,以确保数据的安全性和完整性。

实验结果
在本次实训中,我们成功配置了操作系统并进行了存储管理。

通过对操作系统的优化,系统的性能得到了显著提升。

同时,我们成功创建和管理了存储卷,并设置了合适的文件系统和访问权限。

通过实施访问控制策略,我们保证了存储资源的安全性和数据的完整性。

总结
通过本次实训,我们学习了如何配置和管理操作系统,以及如何进行存储管理。

这些技能对于提高计算机系统的性能和数据安全至关重要。

在今后的工作和学习中,我们可以根据实训中学到的知识和经验,更好地应用和优化操作系统,并有效地管理存储资源。

实训7 操作系统配置和存储管理实训报告

实训7 操作系统配置和存储管理实训报告

实训7 操作系统配置和存储管理实训报告
1. 实训背景
在本次实训中,我们研究了操作系统的配置和存储管理。

通过实际操作,我们深入了解了操作系统的配置和存储管理的相关概念和技术。

2. 操作系统配置
操作系统配置是指对操作系统进行硬件和软件的安装和设置。

在本次实训中,我们研究了如何安装和配置操作系统。

我们通过以下步骤完成了操作系统配置:
- 确定操作系统版本
- 准备安装介质
- 安装操作系统
- 完成操作系统的基本设置和配置
3. 存储管理
存储管理是指对计算机系统中的存储设备进行管理和优化。

在本次实训中,我们研究了存储管理的相关知识和技术。

以下是我们进行的存储管理实践:
- 磁盘分区和格式化
- 文件系统的创建和管理
- 存储设备的挂载和卸载
- 存储空间的配额管理
4. 实训心得与总结
通过本次实训,我们对操作系统的配置和存储管理有了更深入的了解。

我们学会了如何安装和配置操作系统,以及如何对存储设备进行管理和优化。

这些知识和技能对我们今后的研究和工作都具有重要意义。

5. 参考资料
在完成本次实训报告的过程中,我们参考了以下资料:
- 操作系统教材和课件
- 相关的网上文档和教程
以上是实训7 操作系统配置和存储管理实训报告的内容。

通过实际操作,我们掌握了操作系统配置和存储管理的相关技术,对我们的学习和工作都有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二存储管理2.1背景知识耗尽内存是Windows 2000/XP系统中最常见的问题之一。

当系统耗尽内存时,所有进程对内存的总需求超出了系统的物理内存总量。

随后,Windows 2000/XP必须借助它的虚拟内存来维持系统和进程的运行。

虚拟内存机制是Windows 2000/XP操作系统的重要组成部分,但它的速度比物理内存慢得多,因此,应该尽量避免耗尽物理内存资源,以免导致性能下降。

解决内存不足问题的一个有效的方法就是添加更多的内存。

但是,一旦提供了更多的内存,Windows 2000/XP很可以会立即“吞食”。

而事实上,添加更多的内存并非总是可行的,也可能只是推迟了实际问题的发生。

因此,应该相信,优化所拥有的内存是非常关键的。

1、分页过程当Windows 2000/XP求助于硬盘以获得虚拟内存时,这个过程被称为分页(paging)。

分页就是将信息从主内存移动到磁盘进行临时存储的过程。

应用程序将物理内存和虚拟内存视为一个独立的实体,甚至不知道Windows 2000/XP使用了两种内存方案,而认为系统拥有比实际内存更多的内存。

例如,系统的内存数量可能只有16MB,但每一个应用程序仍然认为有4GB内存可供使用。

使用分页方案带来了很多好处,不过这是有代价的。

当进程需要已经交换到硬盘上的代码或数据时,系统要将数据送回物理内存,并在必要时将其他信息传输到硬盘上,而硬盘与物理内存在性能上的差异极大。

例如,硬盘的访问时间通常大约为4-10毫秒,而物理内存的访问时间为60 us,甚至更快。

2、内存共享应用程序经常需要彼此通信和共享信息。

为了提供这种能力,Windows 2000/XP必须允许访问某些内存空间而不危及它和其他应用程序的安全性和完整性。

从性能的角度来看,共享内存的能力大大减少了应用程序使用的内存数量。

运行一个应用程序的多个副本时,每一个实例都可以使用相同的代码和数据,这意味着不必维护所加载应用程序代码的单独副本并使用相同的内存资源。

无论正在运行多少个应用程序实例,充分支持应用程序代码所需求的内存数量都相对保持不变。

3、未分页合并内存与分页合并内存Windows 2000/XP决定了系统内存组件哪些可以以及哪些不可以交换到磁盘上。

显然,不应该将某些代码 (例如内核) 交换出主内存。

因此,Windows 2000/XP将系统使用的内存进一步划分为未分页合并内存和分页合并内存。

分页合并内存是存储迟早需要的可分页代码或数据的内存部分。

虽然可以将分页合并内存中的任何系统进程交换到磁盘上,但是它临时存储在主内存的这一部分,以防系统立刻需要它。

在将系统进程交换到磁盘上之前,Windows 2000/XP会交换其他进程。

未分页合并内存包含必须驻留在内存中的占用代码或数据。

这种结构类似于早期的MS-DOS程序使用的结构,在MS-DOS中,相对较小的终止并驻留程序 (Terminate and Stay Resident,TSR) 在启动时加载到内存中。

这些程序在系统重新启动或关闭之前一直驻留在内存的特定部分中。

例如,防病毒程序将加载为TSR程序,以预防可能的病毒袭击。

未分页合并内存中包含的进程保留在主内存中,并且不能交换到磁盘上。

物理内存的这个部分用于内核模式操作(例如,驱动程序)和必须保留在主内存中才能有效工作的其他进程。

没有主内存的这个部分,内核组件就将是可分页的,系统本身就有变得不稳定的危险。

分配到未分页内存池的主内存数量取决于服务器拥有的物理内存数量以及进程对系统上的内存地空间的需求。

不过,Windows 2000/XP将未分页合并内存限制为256MB (在Windows NT 4中的限制为128MB) 。

根据系统中的物理内存数量,复杂的算法在启动时动态确定Windows 2000/XP系统上的未分页合并内存的最大数量。

Windows 2000/XP内部的这一自我调节机制可以根据当前的内存配置自动调整大小。

例如,如果增加或减少系统中的内存数量,那么Windows2000将自动调整未分页合并内存的大小,以反映这一更改。

4、提高分页性能只有一个物理硬盘驱动器的系统限制了优化分页性能的能力。

驱动器必须处理系统和应用程序的请求以及对分页文件的访问。

虽然物理驱动器可能有多个分区,但是将分页文件分布到多个分区的分页文件并不能提高硬盘驱动器的能力。

只有当一个分区没有足够的空间来包含整个分页文件时,才将分页文件放在同一个硬盘的多个分区上。

拥有多个物理驱动器的服务器可以使用多个分页文件来提高分页性能。

关键是将分页请求的负载分布到多个物理硬盘上。

实际上,使用独立物理驱动器上的分页文件,系统可以同时处理多个分页请求。

各个物理驱动器可以同时访问它自己的分页文件并写入信息,这将增加可以传输的信息量。

多个分页文件的最佳配置是将各个分页文件放在拥有自己的控制器的独立驱动器上。

不过,由于额外的费用并且系统上的可用中断很有限,因此对于大多数基于服务器的配置来说,这可能是不切实际的解决方案。

分页文件最重要的配置参数是大小。

无论系统中有多少个分页文件,如果它们的大小不合适,那么系统就可能遇到性能问题。

如果初始值太小,那么系统可能必须扩大分页文件,以补偿额外的分页活动。

当系统临时增加分页文件时,它必须在处理分页请求的同时创建新的空间。

这时,系统将出现大量的页面错误,甚至可能出现系统失效。

当系统必须在进程的工作区外部 (在物理内存或分页文件中的其他位置) 查找信息时,就会出现页面错误。

当系统缺乏存储资源(物理内存及虚拟内存)来满足使用需求,从而遇到过多的分页时,就会出现系统失效。

系统将花更多的时间来分页而不是执行应用程序。

当系统失效时,Memory:Pages/see计数器将持续高于每秒100页。

系统失效严重降低了系统的性能。

此外,动态扩展分页文件将导致碎片化。

分页文件将散布在整个磁盘上而不是在启动时的连续空间中创建,从而增加了系统的开销,并导致系统性能降低。

因此,应该尽量避免系统增加分页文件的大小。

提示:1) WINDOWS中采用的虚拟存储管理方案是请求页式存储管理,分页文件就是我们原理课中所说的交换/对换文件,存放的内容是暂时被交换到外存中的进程页面。

UNIX使用的是交换分区,WINDOWS使用的是交换文件。

2)在NTFS驱动器上,总是至少保留25%的空闲驱动器空间,以确保可以在连续的空间中创建分页文件。

3)Windows 2000使用内存数量的1.5倍作为分页文件的最小容量,这个最小容量的两倍作为最大容量。

它减少了系统因为错误配置的分页文件而崩溃的可能性。

系统在崩溃之后能够将内存转储写入磁盘,所以系统分区必须有一个至少等于物理内存数量加上1的分页文件。

5、Windows虚拟内存Windows 2000是32位的操作系统,它使计算机CPU可以用32位地址对32位内存块进行操作。

内存中的每一个字节都可以用一个32位的指针来寻址。

这样,最大的存储空间就是232字节或4000兆字节 (4GB) 。

这样,在Windows下运行的每一个应用程序都认为能独占可能的4GB大小的空间。

而另一方面,实际上没有几台机器的RAM能达到4GB,更不必说让每个进程都独享4GB内存了。

Windows在幕后将虚拟内存(virtual memory,VM) 地址映射到了各进程的物理内存地址上。

而所谓物理内存是指计算机的RAM和由Windows分配到用户驱动器根目录上的换页文件。

物理内存完全由系统管理。

在Windows 2000环境下,4GB的虚拟地址空间被划分成两个部分:低端2GB提供给进程使用,高端2GB提供给系统使用。

这意味着用户的应用程序代码,包括DLL以及进程使用的各种数据等,都装在用户进程地址空间内 (低端2GB) 。

用户进程的虚拟地址空间也被分成三部分:1)虚拟内存的已调配区 (committed) :具有备用的物理内存,根据该区域设定的访问权限,用户可以进行写、读或在其中执行程序等操作。

2)虚拟内存的保留区 (reserved) :没有备用的物理内存,但有一定的访问权限。

3)虚拟内存的自由区 (free) :不限定其用途,有相应的PAGE_NOACCESS权限。

与虚拟内存区相关的访问权限告知系统进程可在内存中进行何种类型的操作。

例如,用户不能在只有PAGE_READONLY权限的区域上进行写操作或执行程序;也不能在只有PAGE_EXECUTE权限的区域里进行读、写操作。

而具有PAGE_ NOACCESS权限的特殊区域,则意味着不允许进程对其地址进行任何操作。

在进程装入之前,整个虚拟内存的地址空间都被设置为只有PAGE_NOACCESS权限的自由区域。

当系统装入进程代码和数据后,才将内存地址的空间标记为已调配区或保留区,并将诸如EXECUTE、READWRITE和READONLY的权限与这些区域相关联。

程序清单2-1还显示了如何理解Virtual QueryEX() API填充的MEMORY_BASIC_INFORMATION结构,如表2-l所示。

此数据描述了进程虚拟内存空间中一组虚拟内存页面的当前状态。

其中State项表明这些区域是否为自由区、已调配区或保留区;Protect项则包含了Windows系统为这些区域添加了何种访问保护;Type项则表明这些区域是可执行图像、内存映射文件还是简单的私有内存。

VirtualQueryEX() API能让用户在指定的进程中,对虚拟内存地址的大小和属性进行检测。

表2-1 MEMORY_BASIC_INFORMATION结构的成员成员名称目的PVOID BaseAddress虚拟内存区域开始处的指针PVOID AllocationBase 如果这个特定的区域为子分配区的话,则为虚拟内存外面区域的指针;否则此值与BaseAddress相同DWORD AllocationProtect 虚拟内存最初分配区域的保护属性。

其可能值包括:PAGE_NOACCESS,PAGE_READONLY,PAGE_REA DWRITE和PAGE _EXECUTE_READDWORD RegionSize虚拟内存区域的字节数DWORD State 区域的当前分配状态。

其可能值为MEM_COMMIT,MEM_FREE和MEM_RESERVEDWORD Protect 虚拟内存当前区域的保护属性。

可能值与AllocationProtect成员的相同DWORD Type 虚拟内存区域中出现的页面类型。

可能值为MEM_IMAGE, MEM_MAPPED和MEM_PRIVATEWindows还提供了一整套能使用户精确控制应用程序的虚拟地址空间的虚拟内存API。

一些用于虚拟内存操作及检测的API见表4-2所示。

相关文档
最新文档